2014高考数学大纲——知识点总结
(2014年新课标高考考试大纲解读)重点、难点、核心考点全演练数学篇:专题01 函数、初等函数的图象与性质
![(2014年新课标高考考试大纲解读)重点、难点、核心考点全演练数学篇:专题01 函数、初等函数的图象与性质](https://img.taocdn.com/s3/m/2fbecc5a3c1ec5da50e270c4.png)
【2014高考考纲】(1)函数的概念和函数的基本性质是B级要求,是重要考点;(2)指数与对数的运算、指数函数与对数函数的图象和性质都是考查热点,要求都是B 级;(3)幂函数是A级要求,不是热点考点,但要了解幂函数的概念以及简单幂函数的性质。
【命题趋势】1.集合的概念与运算是历年来必考内容之一,题型主要以选择填空题为主,单纯的集合问题以解答题的形式出现的机率不大,多数与函数的定义域、值域、不等式的解法相联系,解题时要注意利用韦恩图、数轴、函数图象相结合。
另外,集合新定义信息题是近几年命题的热点,注意此种类型。
2.2014年的高考将会继续保持稳定,坚持考查集合运算,命题形式会更加灵活、新颖。
3.试题类型一般是一道填空题,有时与方程、不等式综合考查。
1.函数及其图象(1)定义域、值域和对应关系是确定函数的三要素,是一个整体,研究函数问题时务必须“定义域优先”.(2)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.证明函数的单调性时,规范步骤为取值、作差、变形、判断符号和下结论.复合函数的单调性遵循“同增异减”的原则;(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性;(3)周期性:周期性也是函数在定义域上的整体性质.若函数满足f(a+x)=f(x)(a不等于0),则其周期T =ka (k ∈Z )的绝对值.3.求函数最值(值域)常用的方法(1)单调性法:适合于已知或能判断单调性的函数; (2)图象法:适合于已知或易作出图象的函数; (3)基本不等式法:特别适合于分式结构或两元的函数; (4)导数法:适合于可求导数的函数.4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)的图象和性质,分0<a <1和a >1两种情况,着重关注两函数图象中的两种情况的公共性质;(2)幂函数y =x α的图象和性质,分幂指数α>0和α<0两种情况. 5.函数图象的应用函数的图象和解析式是函数关系的主要表现形式,它们的实质是相同的,在解题时经常要互相转化.在解决函数问题时,尤其是较为繁琐的(如分类讨论,求参数的取值范围等)问题时,要注意充分发挥图象的直观作用.考点1、函数的性质及其应用【例1】 (1)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=________. (2)(2013·苏州模拟)设奇函数y =f (x )(x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎡⎦⎤0,12时,f (x )=-x 2,则f (3)+f ⎝⎛⎭⎫-32的值等于________.【变式探究】 (1)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为________.(2)定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2,当-1≤x <3时,f (x )=x ,则f (1)+f (2)+f (3)+…+f (2014)=________.【解析】(1)由f ′(x )>2转化为f ′(x )-2>0,构造函数F (x )=f (x )-2x ,得F (x )在R 上是增函数,又F (-1)=f (-1)-2×(-1)=4,f (x )>2x +4,即F (x )>4=F (-1),所以x >-1.考点2、函数的图象及其应用【例2】 设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式fx -f -x x <0的解集为________.【变式探究】设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c x,x ,若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为________.方程f (x )=x 解的个数即y =f (x )与y =x 图象的交点个数.由图知两图象有A ,B ,C 三个交点,故方程有3个解.【答案】3【例1】设函数f (x )=lg ∑n -1i =1i x +n x a n ,其中a ∈R ,对于任意的正整数n (n ≥2),如果不等式f (x )>(x -1)lg n 在区间[1,+∞)上有解,则实数a 的取值范围为______.【变式探究】 已知函数f (x )=⎝⎛⎭⎫x a -12+⎝⎛⎭⎫bx -12的定义域是[a ,b ],其中0<a <b . (1)求f (x )的最小值; (2)讨论f (x )的单调性.(2)由t =x a +bx≥2b a ,当且仅当x a =b x, 即x =ab 时等号成立,且t =x a +bx 在[a ,ab ]上单调递减,在[ab ,b ]上单调递增, 且y =t 2-2t +2-2b a 是⎣⎡⎦⎤2b a ,1+b a 上单调递增函数,所以f (x )在区间[a ,ab ]上单调递减,区间[ab ,b ]上单调递增.1.函数f (x )=1-2log 6x 的定义域为______.【解析】由题意⎩⎪⎨⎪⎧x >0,1-2log 6x ≥0,所以x ∈(0,6].【答案】(0,6] 2.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a 等于________.3.已知定义域为R 的函数f (x )=-2x +12x +1+a是奇函数,则a =________.4.已知f (x )=ln(1+x )的定义域为集合M ,g (x )=2x +1的值域为集合N ,则M ∩N =________.【解析】由对数与指数函数的知识,得M =(-1,+∞),N =(1,+∞),故M ∩N =(1,+∞).【答案】(1,+∞)5.已知函数y =log 2(ax -1)在(1,2)上单调递增,则a 的取值范围为________.6.已知a =20.5,b =2.10.5,c =log 21.5,则a ,b ,c 的大小关系是________.7.已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围是________.8.已知函数y =f (x )是R 上的偶函数,对∀x ∈R 都有f (x +4)=f (x )+f (2)成立.当x 1,x 2∈[0,2],且x 1≠x 2时,都有fx 1-fx 2x 1-x 2<0,给出下列命题:①f (2)=0;②直线x =-4是函数y =f (x )图象的一条对称轴;③函数y =f (x )在[-4,4]上有四个零点; ④f (2 014)=0.其中所有正确命题的序号为________.9.已知函数f (x )=log a (x +1)(a >1),若函数y =g (x )的图象上任意一点P 关于原点对称的点Q 的轨迹恰好是函数f (x )的图象.(1)写出函数g (x )的解析式;(2)当x ∈[0,1)时总有f (x )+g (x )≥m 成立,求m 的取值范围.10.已知二次函数f (x )=ax 2+bx +1(a >0),F (x )=⎩⎪⎨⎪⎧fx ,x >0,-fx ,x <0.若f (-1)=0,且对任意实数x 均有f (x )≥0成立.(1)求F (x )的表达式;(2)当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求k的取值范围.(2)由(1)知,g(x)=x2+2x+1-kx=x2+(2-k)x+1.∵g(x)在[-2,2]上是单调函数,∴k-22≤-2或k-22≥2,解得k≤-2或k≥6.所以k的取值范围是(-∞,-2]∪[6,+∞).11.已知函数f(x)=e x-e-x(x∈R且e为自然对数的底数).(1)判断函数f(x)的奇偶性与单调性;(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.。
2014高考数学理科知识要点归纳(理科选修系列)
![2014高考数学理科知识要点归纳(理科选修系列)](https://img.taocdn.com/s3/m/6d4964fa7c1cfad6195fa7ab.png)
2014高考数学理科选修系列知识要点概括(理科专用)一、排列组合.本节公式(1)排列数公式)1()3)(2)(1(+-⋅⋅⋅---=m n n n n n A mn(这里m、n∈*N ,且m≤n)(2)组合数公式n m n n n n n A A C m mm n mn)1()3)(2)(1(+-⋅⋅⋅---==(这里m、n∈*N ,且m≤n)(3)组合数的两个性质mn nm n C C -= 二、二项式定理1.二项式定理:*222110,)(N n b C b a C b a C b a C a C b a nn n r r n r n n n n n n n n ∈+⋅⋅⋅++⋅⋅⋅+++=+---上列公式所表示的定理叫做二项式定理.右边的多项式叫做n b a )(+的二项展开式,它一共有n+1项.其中各项的系数),,2,1,0(n r C rn ⋅⋅⋅=叫做二项式系数. 式中的r r n r n b a C -叫做二项展开式的通项,用1+r T 表示,即1+r T =rr n r n b a C -.2.二项式系数的性质:(1)对称性.与首末两端“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式mn nm n C C -=得到. (3)各二项式系数的和.)!(!m n n A m n -=)!(!!m n m n C m n -=n b a )(+的展开式的各个二项式系数的和等于n 2.4.二项式奇数项系数的和等于二项式偶数项系数的和.即131202-=⋅⋅⋅++=⋅⋅⋅++n n n n n C C C C三、离散型随机变量分布列1、 离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ⋅⋅⋅⋅⋅⋅、ξ取每一个值()1,2,i x i =⋅⋅⋅的概率为()i i P x p ξ==,则称表ξ1x 2x … i x …P1p2p…i p …为随机变量ξ的概率分布,简称ξ的分布列2、数学期望: 一般地,若离散型随机变量ξ的概率分布为ξ x 1 x 2 … x n … Pp 1p 2…p n…则称=ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望3、方差:对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,…,那么,ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+n n p E x ⋅-2)(ξ+…称为随机变量ξ 的均方差,简称为方差,式中的ξE 是随机变量ξ的期望. 4、标准差:ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ四、矩阵与变换1、定义:规定二阶矩阵A=a b c d ⎡⎤⎢⎥⎣⎦,与向量x y α→⎡⎤=⎢⎥⎣⎦的乘积为ax by A cx dy α→+⎡⎤=⎢⎥+⎣⎦,即A α→=a b c d ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦=ax by cx dy +⎡⎤⎢⎥+⎣⎦2、单位矩阵:1001M ⎡⎤=⎢⎥⎣⎦,3、矩阵的逆矩阵、特征值与特征向量 (1).矩阵的逆矩阵设A 是一个二阶矩阵,如果存在二阶矩阵B ,使得BA =AB =E ,则称矩阵A可逆,或称矩阵A 是可逆矩阵,并且称B 是A 的逆矩阵.(性质1)设A 是一个二阶矩阵,如果A 是可逆的,则A 的逆矩阵是唯一的.A 的逆矩阵记为A -1.(性质2)设A ,B 是二阶矩阵,如果A ,B 都可逆,则AB 也可逆,且(AB )-1=B -1A -1. (2).二阶矩阵的特征值和特征向量(1) 特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,α称为A 的一个属于特征值λ的一个特征向量.(2) 特征多项式设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的一个特征值,它的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y ,即⎩⎨⎧ ax +by =λx ,cx +dy =λy ,也即⎩⎨⎧(λ-a )x -by =0,-cx +(λ-d )y =0.(*) 定义:设A =⎣⎢⎡⎦⎥⎤a b c d 是一个二阶矩阵,λ∈R , 我们把行列式f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc,称为A 的特征多项式.(3) 矩阵的特征值与特征向量的求法如果λ是二阶矩阵A 的特征值,则λ一定是二阶矩阵A 的特征多项式的一个根,即f (λ)=0,此时,将λ代入二元一次方程组(*),就可得到一组非零解⎣⎢⎡⎦⎥⎤x 0y 0,于是非零向量⎣⎢⎡⎦⎥⎤x 0y 0即为A 的属于λ的一个特征向量五、选修不等式证明 1、基本不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a bab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b ab +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭2、柯西不等式(重点记忆内容)(1),二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.(2)三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++ (3),一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++。
2014年新课标高考数学考试大纲详细解读
![2014年新课标高考数学考试大纲详细解读](https://img.taocdn.com/s3/m/59d28b647e21af45b307a8a7.png)
2014年高考数学考试大纲详细解读2014年全国新课标数学学科《考试大纲》和《考试说明》文理科和2013年对比,在内容、能力要求、时间、分值(含选修比例)、题型题量等几个方面都没有发生变化。
注重对数学思想与方法的考查,体现数学的基础、应用和工具性的学科特色,多视角、多维度、多层次地考查数学思维品质和思维能力,考查考生对数学本质的理解,考查考生的数学素养和学习潜能。
新课标考试说明与去年的考试说明比较,可以看出:依然是对如下知识和能力的考查1.坚持对五种能力的考查:(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.这一能力的考查在试卷中主要以立体几何中的三视图得以体现,且难度有逐年递增的趋势。
(2)抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断.(3)推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.(4)运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.(5)数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.2.两个意识的考查:(1)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.(2)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.3.2014年高考数学主客观题考试特点:理科必考知识点(即近三年高考每年都考的知识点,主要针对客观题):复数、常用逻辑用语、程序框图、三视图、球的组合体、概率、函数与导数、圆锥曲线、三角函数等。
2014届高考理科数学知识点总结(经典)(1)
![2014届高考理科数学知识点总结(经典)(1)](https://img.taocdn.com/s3/m/4a59ea27cfc789eb172dc862.png)
高考数学(理科)基础知识归纳集合与简易逻辑知识回顾:(一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性.3 ⑪①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. (二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.x(自右向左正负相间)则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定.3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. (2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.特例① 一元一次不等式ax>b 解的讨论;2原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互否互(1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0) (1)根的“零分布”:根据判别式和韦达定理分析列式解之. (2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
2014年高考数学重要知识点详细总结-高考数学
![2014年高考数学重要知识点详细总结-高考数学](https://img.taocdn.com/s3/m/4b477c0d02020740be1e9b74.png)
2014年高考数学重要知识点详细总结高中数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .3.包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔= 64.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+ .5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a b k +<-<,或0)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数.28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.30.分数指数幂(1)m na =0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质 (1)na =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m n a a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()axy bx =(1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数. , (2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a am nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩. 42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nn ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式(奇变偶不变,符号看象限)212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,n n co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=. 22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).48.二倍角公式sin 2sin cos ααα=.2222cos2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-. 50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa)=(λμ)a;(2)第一分配律:(λ+μ)a=λa+μa; (3)第二分配律:λ(a+b)=λa+λb. 58.向量的数量积的运算律: (1) a 〃b= b 〃a (交换律); (2)(λa )〃b= λ(a 〃b )=λa 〃b= a 〃(λb ); (3)(a +b )〃c= a 〃c +b 〃c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示 设a=11(,)x y ,b=22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a 〃b=|a ||b|cos θ. 61. a 〃b 的几何意义数量积a 〃b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积. 62.平面向量的坐标运算(1)设a=11(,)x y ,b=22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a=11(,)x y ,b=22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a=(,),x y R λ∈,则λa=(,)x y λλ.(5)设a=11(,)x y ,b=22(,)x y ,则a 〃b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b=22(,)x y ).64.平面两点间的距离公式,A B d=||AB ==(A 11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a=11(,)x y ,b=22(,)x y ,且b ≠0,则 A||b ⇔b=λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a 〃b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PPPP λ=,则 121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a=(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a=(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a=(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a=(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m=(,)x y 按向量a=(,)h k 平移后得到的向量仍然为m=(,)x y .70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔== .(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=.(5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式 (1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩.(22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或.(32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩.76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;80.夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π. 82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA CBb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是 0000()()022D x xE y y x x y yF ++++++=.当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b⇔+>. 95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b+=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<. 98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y a b-=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.过焦点弦长p x x px p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2 y py 或或)2,2(2pt pt P P (,)x y ,其中 22y px = .102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->.104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212|||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B ++++--=++.108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y 即得方程0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b=b +a .(2)加法结合律:(a +b)+c=a +(b +c). (3)数乘分配律:λ(a +b)=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b(b ≠0 ),a ∥b ⇔存在实数λ使a=λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB = ⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD共线且AB CD 、不共线⇔AB tCD = 且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+ ,或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC共面⇔AD xAB y AC =+ ⇔ (1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理 如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =xa +yb +zc .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.121.射影公式已知向量AB=a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB = 〈a ,e 〉=a 〃e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a 〃b =112233a b a b a b ++;123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式. 126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r(其中θ(090θ<≤o o)为异面直线a b ,所成角,,a b r 分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin ||||AB m arc AB m β⋅=(m为平面α的法向量). 129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=.131.二面角l αβ--的平面角cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+ (当且仅当90θ= 时等号成立).134.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB = =135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a=PA ,向量b=PQ ). 136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式d =.d =d ='E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos S S θ=. (平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a,. 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理)12n N m m m =+++ .150.分步计数原理(乘法原理)12n N m m m =⨯⨯⨯ .151.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 152.排列恒等式 (1)1(1)mm n n A n m A -=-+;(2)1m mn n n A A n m -=-; (3)11m m n n A nA --=;(4)11nn nn n n nA A A ++=-; (5)11mmm n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+- .153.组合数公式m n C=m n m m A A =mm n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 154.组合数的两个性质 (1)mn C =mn nC - ; (2) mn C +1-m nC =mn C 1+.注:规定10=n C . 155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-;(3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n rn rr rr r rC C C C C .(6)nnn rn n n n C C C C C 221=++++++ . (7)1425312-+++=+++n n n n n n n C C C C C C .(8)1321232-=++++n nn n n n n nC C C C .(9)rn m rn rm n r m n rm C C C C C C C +-=+++011. (10)nn n n n n n C C C C C 22222120)()()()(=++++ . 156.排列数与组合数的关系m m n n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n mn A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n kk A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh hh A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法. (4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为n n m C +.158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn nn nn mn nn mn nmn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m 〃n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--. (3)(非平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m =⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!!...211c b a m C C C N m m n n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n = 1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!! (212)11m n n n n p n p n n n p C C C N m m =⋅=-.159.“错位问题”及其推广贝努利装错笺问题:信n 封信与n 个信封全部错位的组合数为1111()![(1)]2!3!4!!n f n n n =-+-+- . 推广: n 个元素与n 个位置,其中至少有m 个元素错位的不同组合总数为 1234(,)!(1)!(2)!(3)!(4)!(1)()!(1)()!m m m m ppmm mmf n m n C n C n C n C n C n p C n m =--+---+--+--++--12341224![1(1)(1)]p m p m m m m m m mp mn n n n n nC C C C C C n A A A A A A =-+-+-+-++- . 160.不定方程2n x x x m = 1+++的解的个数(1)方程2n x x x m = 1+++(,n m N *∈)的正整数解有11m n C --个. (2) 方程2n x x x m = 1+++(,n m N *∈)的非负整数解有 11n m n C +--个.(3) 方程2n x x x m = 1+++(,n m N *∈)满足条件i x k ≥(k N *∈,21i n ≤≤-)的非负整数解有11(2)(1)m n n k C +----个.(4) 方程2n x x x m = 1+++(,n m N *∈)满足条件i x k ≤(k N *∈,21i n ≤≤-)的正整数解有12222321(2)11121221(1)n m n m n k n m n k n m n k n n n n n n C C C C C C C +--+---+---+---------+-+- 个. 161.二项式定理nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;二项展开式的通项公式。
2014年高考数学基础知识点框架复习
![2014年高考数学基础知识点框架复习](https://img.taocdn.com/s3/m/0ea0f90ca6c30c2259019ecd.png)
常 用 简单的逻辑 “或”、“且”、“非” 逻 联结词 辑 用 p q则 p 是q 的 条 语 件; p q则 p 是q 的 条 充要条件 件; p q则 p 是q 的 条 件 全称量词与 “ ”、“ ” 存在量词
命题 ①“非 p ” -----“真假相对” ②“ p且q ”-----“全真且真” ③“ p或q ”-----“全假或假” 1、小范围推出大范围 2、注意语句形式: “A 是 B 的什么条件” “B 的什么条件是 A”
a, A, b 成等差数列
若 m n p q ,则
若 m n p q ,则
⑴公式法:①等差数列通项公式;②等比数列通项公式. ⑵已知含 Sn 的关系式: an
S1 ,(n 1) .并检验是否可以 Sn Sn 1 ,(n 2)
数列通项求 合并写 法 ⑶已知递推关系式: “ an1 an f (n) 型”用迭加法; “
小值.
八、复数 形如 的数 z=a+bi 是实数 复数的概念 z=a+bi 是虚数 z=a+bi 是纯虚数 复数相等的条件 a+bi=c+di 一一对应 一一对应 复数的代数表示 复数 z a bi 向量 OZ 点 Z(a,b) 法 及几何意义 设 z1= a + bi , z2 = c + di (a,b,c,d∈R),则: (1) z 1±z2 = (2) z1z2 = 复数的四则运算 z (3) 1 = z2 九、立体几何初步:画思维导流图 ①由平行四边形得到 ②由三角形中位线得到 ③直线与平面平行的性质定理:如果一天直线和一个平面 线线平行证明 平行,经过这条直线的平面和这个平面相交,那么这条 直线就和两平面的交线平行。 ④如果两个平行平面同时与第三个平面相交,那么它们的 交线平行。 平 ①直线与平面平行的判定定理:如果不在平面内的一条直 行 线和平面内的一条直线平行,那么这条直线和这个平面 线面平行证明 平行。 ②平面与平面平行的定义 ①平面与平面平行的判定定理:如果一个平面内有两条相 交直线平行于另一个平面,那么这两个平面平行。 面面平行证明 ②推论:如果一个平面内有两条相交直线分别平行于另一 个平面内的两条直线,则这两个平面平行。 ①勾股定理 线线垂直证明 ②等腰三角形三线合一 ③线面垂直定义 垂 直 ①直线与平面垂直的判定定理:如果一条直线与平面内的 线面垂直证明 两条相交直线垂直,则这条直线与这个平面垂直。 ②平面与平面垂直的性质定理:如果两个平面互相垂直,
(2014)高中数学知识点总结(文科新稿)
![(2014)高中数学知识点总结(文科新稿)](https://img.taocdn.com/s3/m/42ef397527d3240c8447efae.png)
高中数学知识点归纳(文科)1.集合与逻辑1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”.{}{}{}|lg |lg (,)|lg A x y x B y y x C x y y x A B C ======如:集合,,,、、中元素各表示什么? 2.∅进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况.数形结合是解决集合问题的常用方法,解题要尽可能地借助数轴、直角坐标系或韦恩图等工具. 注意:空集是一切集合的子集,是一切非空集合的真子集3.注意下列性质:(1){}12n a a a 集合,,…,的所有子集的个数是 ;(答:2n)(2)A B ⊆有以下四种等价形式:① A B = ,______A B = ;②U B ð U A ð;③U A B = ð ;④()U A B = ð . (答:A ;B ;⊆;∅;R ) (3)德摩根定理:()()()U U U A B A B =U I 痧?,()()()U U U A B A B =I U 痧? 4.()()∨∧可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和“非”().⌝p q ∧若为真,当且仅当 ; (p q 、均为真)_______________________p q ∨若为真,当且仅当; (p q 、至少有一个为真) p ⌝若为真,当且仅当 ; ()p 为假5.命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题.) 原命题与逆否命题同真、同假;逆命题与否命题同真同假.6.判断命题充分、必要条件的三种方法:(1)定义法:条件推出结论,结论不能推出条件,则条件为结论的充分不必要条件,结论为条件的必要不充分条件。
(2)利用集合间的包含关系判断(小充分大必要),若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;(3)等价法:即利用等价关系“A B B A ⇒⇔⌝⇒⌝”判断,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法;7.特称命题:()p x A p x ∃∈,,它的否定是::p x A ⌝∀∈,()p x ⌝,全称命题:q x A ∀∈,()q x ,它的否定是::q x A ⌝∃∈,()q x ⌝.2. 函 数1.映射与函数的概念?它们是何种关系?2.(1)求不等式(方程)的解集,或求定义域时,你按要求写成集合或区间的形式了吗?(2)你会求分式函数的对称中心吗?函数2()3x f x x -=-的对称中心是()3,1-, 3.求一个函数的解析式,你注明了该函数的定义域了吗?4.复合函数的有关问题:复合函数的单调性由复合函数单调性的判断法则:“同增异减”判定,或由导数来判断.5.函数的奇偶性(1)若()f x 是偶函数,那么()()()f x f x f x =-=;(2)若()f x 是奇函数,0在其定义域内,则(0)0f =(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:()()0f x f x ±-=,或()()()10()f x f x f x -=±≠; (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性.6.函数图像(或方程对应的曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C 1与C 2的对称性,即证明C 1上任意点关于对称中心(对称轴)的对称点仍在C 2上,反之亦然;(3)若函数()y f x =对x ∈R 时,()()f a x f a x +=-恒成立,则()y f x =图像关于________对称;(直线x a =)(4)函数()y f x a =-与()y f b x =-的图像关于________对称;(直线x =2b a +) (特殊:若()()f a x f a x -=+,则()y f x =的图像关于x a =对称)(5)若函数()y f x =对x ∈R 时,()()2f a x f a x b ++-=恒成立,则()y f x =图像关于______对称.(点(),a b ),即:函数()y f x =与()y f x =--的图像关于________成中心对称;(原点)函数()y f x =,()y n f m x =--的图像关于点________对称;22(,)m n 7.图象变换:①()y f x =)(轴对称x f y y -=−−−→−;②y =f (x ))(轴对称x f y x -=−−−→−;③()y f x =)(原点对称x f y --=−−−→−;④()y f x =→()y f x =,把x 轴上方的图象保留,x 轴下方的图象关于x 轴对称;⑤()y f x =→()y f x =,把y 轴右边的图象保留,然后将轴右边部分关于y 轴对称;⑥伸缩变换:()y f x =→()y f x ω=,()y f x =→()y Af x ωϕ=+具体参照三角函数的图象变换8.函数的周期性(1) ()y f x =对x ∈R 时,()()f x a f x a +=-,或()()()20f x a f x a -=>恒成立,则()y f x =是周期为 的周期函数;(周期是2a )(2)若()y f x =是偶函数,其图像又关于直线x a =对称,则()f x 是周期为______的周期函数;(2a )(3)若()y f x =奇函数,其图像又关于直线x a =对称,则()f x 是周期为________的周期函数;(4a )(4)若()y f x =的图象关于点()()(),0,,0a b a b ≠对称,则()f x 是周期函数,其中一个周期为______ ;(2b a -)(5)()y f x =的图象关于直线(),x a x b a b ==≠对称,则函数()y f x =是周期函数,其中的一个周期为 ;(2b a -)(6)()y f x =的图象关于直线x a =和点(),0b 对称,则函数()y f x =是周期函数,其中的一个周期为 ;(4b a -)(7)()y f x =对x ∈R 时,()()f x a f x +=-,或()()1f x a f x +=-,则()y f x =是周期为 的周期函数;(2a )9.能熟练地用定义证明函数的单调性.切记:研究函数性质注意一定在该函数的定义域内进行!一般是先求定义域,后化简,再研究性质. 例如:()212log 2y x x =-+的单调递增区间是________答:(1,2)10.(1)log m na b = ()0,1,0,0a a b m >≠>≠; (2)换底公式:log a N = ()0,1,0,1a a b b >≠>≠;(3)log ()______(01,0,0)a MN a a M N =>≠>>且;(4)log _______(01,0,0)a M a a M N N=>≠>>且; (5)()log ___________0,1,0a N a a a N =>≠>;推论:12123log log log 1log log log _____n a b c a a a n b c a a a a -⋅⋅=⇒⋅⋅⋅= . (1log a n a )(120,1,0,1,0,1,,,0n a a b b c c a a a >≠>≠>≠> 且12,,n a a a 均不等于1)答案: (1)log a n b m ;(2)aN b b log log ;(3)log log a a M N +; (4)log log a a M N -; (5)N 11.一元二次函数:(有一般式、标准式、零点式) 一般式:)0(2≠++=a c bx ax y ,对称轴方程是2b x a =-;顶点为24(,)24b ac b a a --; 12.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;13.二次方程实数根的分布问题: 设实系数一元二次方程0)(2=++=c bx ax x f 的两根为21,x x ,则:14.你掌握了指数函数与对数函数的图像与性质吗?知道它们之间的关系吗?知道底数范围对它们性质的影响吗?(参考课本) 特别注意:对数函数的底数、真数的限制条件.15.幂函数 (1)你掌握了幂函数的定义吗?(2)你掌握了5个基本的幂函数:12312,,,,y x y x y x y x y x -=====的性质了吗? 3. 导 数1.平均变化率:y f x x∆∆==∆∆__________________________________称为函数()f x 从x 1到x 2的平均变化率. 2.导数的定义函数()y f x =在点0x 处可导:函数()y f x =在0x 到0x x +∆之间的平均变化率,即00()()f x x f x y x x+∆-∆=∆∆,如果当0x ∆→时,y x ∆∆有极限,则称()y f x =在点0x 处可导. 3.导数的几何意义:函数()y f x =在点0x 的导数的几何意义,就是曲线()y f x =在点00(())P x f x ,处的切线的斜率k ,即0()k f x '=.4..①请一定要牢记常见函数导数公式;②请牢记导数的运算法则;③要知道复合函数的求导方法.5.求切线的斜率:根据导数的几何意义,函数()y f x =在点0x 处的导数,就是曲线()y f x =在点00(())P x f x ,处的切线的斜率. (注意:当切线平行于y 轴时,这时导数不存在,切线方程为0x x =.)6.求函数的单调区间:利用导数判断函数单调性的步骤是:(1)确定函数()y f x =的定义域;(2)求导数()f x ';(3)令()0f x '≥,解出x 的取值范围,得函数单调递增的区间;令()0f x '≤,解出x 的取值范围,得函数单调递减的区间.(注意:求单调区间不等式可不带等号,但求参数范围则一定带等号)7.求函数极值:设函数()y f x =在点x 0处连续且0()0f x '=,若在点0x 附近左侧()0f x '>,右侧()0f x '<,则0x 为函数的极大值点;若在点0x 附近左侧()0f x '<,右侧()0f x '>,则0x 为函数的 极小值点.注意:可导函数()f x 在点0x 取得极值的充要条件是()0f x '=且在0x 左右侧()f x '符号不同.()0f x '= 是0x 为极值点的必要不充分条件.函数的极值点是区间内的点,不能是区间的端点.把使()0f x '=的点0x 附近的函数值的变化情况列成表格,这样可使函数在各单调区间的增减情况一目了然.8.求函数的最值:在闭区间[a ,b ]上连续的单调函数()y f x =,在[a ,b ]上必有最大值与最小值. 设函数()y f x =在[a ,b ]上连续,在(a ,b )内可导,先求出()0f x '=的点,然后求出使()0f x '=的 所有点的函数值,再与端点函数值()()f a f b ,比较,其中最大的一个为最大值,最小的一个为最小 4.三角函数1. 终边相同的角?若角α与β的终边相同,则2,()k k Z αβπ=+∈,其三角函数值相等。
2014年高考数学知识大梳理
![2014年高考数学知识大梳理](https://img.taocdn.com/s3/m/0a98e3a0d1f34693daef3e85.png)
2014........年高考数学..........知识识大大梳梳理理((...........知知识识精精粹粹版版)) 《《黄黄冈冈中中学学》》资资深深老老师师强强势势总总结结,,为为年年学学子子倾倾情情打打造造.............................................. 高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA AA B C A B B C A C A B A B x B x A A B A B A B A BA B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A BA B x x A x B A A A A A A B B A A B A A B B A B A C a rd A B C a rd A C a rd B C a rd A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
2014年高考数学全部知识点
![2014年高考数学全部知识点](https://img.taocdn.com/s3/m/e8507ed06f1aff00bed51e48.png)
2014年高考数学全部知识点1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 4.你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。
()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝ 若为真,当且仅当、均为真p q p q ∧ 若为真,当且仅当、至少有一个为真p q p q ∨若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? ()()例:函数的定义域是y x x x =--432lg()()()(答:,,,)022334 10. 如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_。
高中数学复习-2014高考数学_大纲_公式
![高中数学复习-2014高考数学_大纲_公式](https://img.taocdn.com/s3/m/c853d130f5335a8102d220d7.png)
考点1集合与简易逻辑典型易错题会诊命题角度1 集合的概念与性质命题角度2 集合与不等式命题角度3 集合的应用命题角度4 简易逻辑命题角度5 充要条件探究开放题预测预测角度1 集合的运算预测角度2 逻辑在集合中的运用预测角度3 集合的工具性预测角度4 真假命题的判断预测角度5 充要条件的应用考点2 函数(一) 典型易错题会诊命题角度1 函数的定义域和值域命题角度2 函数单调性的应用命题角度3 函数的奇偶性和周期性的应用命题角度4 反函数的概念和性质的应用探究开放题预测预测角度1 借助函数单调性求函数最值或证明不等式预测角度2 综合运用函数奇偶性、周期性、单调进行命题预测角度3 反函数与函数性质的综合考点3 函数(二)典型易错题会诊命题角度1 二次函数的图象和性质的应用命题角度2 指数函数与对数函数的图象和性质的应用命题角度3 函数的应用探究开放题预测预测角度1 二次函数闭区间上的最值的问题预测角度2 三个“二次”的综合问题预测角度3 含参数的对数函数与不等式的综合问题考点4 数列典型易错题会诊命题角度1 数列的概念命题角度2 等差数列命题角度3 等比数列命题角度4 等差与等比数列的综合命题角度5 数列与解析几何、函数、不等式的综合命题角度6 数列的应用探究开放题预测预测角度1 数列的概念预测角度2 等差数列与等比数列预测角度3 数列的通项与前n项和预测角度4 递推数列与不等式的证明预测角度5 有关数列的综合性问题预测角度6 数列的实际应用预测角度7 数列与图形考点5 三角函数典型易错题会诊命题角度1 三角函数的图象和性质命题角度2 三角函数的恒等变形命题角度3 三角函数的综合应用探究开放题预测预测角度1 三角函数的图象和性质预测角度2 运用三角恒等变形求值预测角度3 向量与三角函数的综合考点6 平面向量典型易错题会诊命题角度1 向量及其运算命题角度2 平面向量与三角、数列命题角度3 平面向量与平面解析几何命题角度4 解斜三角形探究开放题预测预测角度1 向量与轨迹、直线、圆锥曲线等知识点结合预测角度2 平面向量为背景的综合题考点7 不等式典型易错题会诊命题角度1 不等式的概念与性质命题角度2 均值不等式的应用命题角度3 不等式的证明命题角度4 不等式的解法命题角度5 不等式的综合应用探究开放题预测预测角度1 不等式的概念与性质预测角度2 不等式的解法预测角度3 不等式的证明预测角度4 不等式的工具性预测角度5 不等式的实际应用考点8 直线和圆典型易错题会诊命题角度1 直线的方程命题角度2 两直线的位置关系命题角度3 简单线性规划命题角度4 圆的方程命题角度5 直线与圆探究开放题预测预测角度1 直线的方程预测角度2 两直线的位置关系预测角度3 线性规划预测角度4 直线与圆预测角度5 有关圆的综合问题考点9 圆锥曲线典型易错题会诊命题角度1 对椭圆相关知识的考查命题角度2 对双曲线相关知识的考查命题角度3 对抛物线相关知识的考查命题角度4 对直线与圆锥曲线相关知识的考查命题角度5 对轨迹问题的考查命题角度6 考察圆锥曲线中的定值与最值问题探究开放题预测预测角度1 椭圆预测角度2 双曲线预测角度3 抛物线预测角度4 直线与圆锥曲线预测角度5 轨迹问题预测角度6 圆锥曲线中的定值与最值问题考点10 空间直线与平面典型易错题会诊命题角度1 空间直线与平面的位置关系命题角度2 空间角命题角度3 空间距离命题角度4 简单几何体探究开放题预测预测角度1 利用三垂线定理作二面角的平面角预测角度2 求点到面的距离预测角度3 折叠问题考点11 空间向量典型易错题会诊命题角度1 求异面直线所成的角命题角度2 求直线与平面所成的角命题角度3 求二面角的大小命题角度4 求距离探究开放题预测预测角度1 利用空间向量解立体几何中的探索问题预测角度2 利用空间向量求角和距离考点12 排列、组合、二项式定理典型易错题会诊命题角度1 正确运用两个基本原理命题角度2 排列组合命题角度3 二项式定理探究开放题预测预测角度1 在等可能性事件的概率中考查排列、组合预测角度2 利用二项式定理解决三项以上的展开式问题预测角度3 利用二项式定理证明不等式考点13 概率与统计典型易错题会诊命题角度1 求某事件的概率命题角度2 离散型随机变量的分布列、期望与方差命题角度3 统计探究开放题预测预测角度1 与比赛有关的概率问题预测角度2 以概率与统计为背景的数列题预测角度3 利用期望与方差解决实际问题考点14 极限典型易错题会诊命题角度1 数学归纳法命题角度2 数列的极限命题角度3 函数的极限命题角度4 函数的连续性探究开放题预测预测角度1 数学归纳法在数列中的应用预测角度2 数列的极限预测角度3 函数的极限预测角度4 函数的连续性考点15 导数及其应用典型易错题会诊命题角度1 导数的概念与运算命题角度2 导数几何意义的运用命题角度3 导数的应用探究开放题预测预测角度1 利用导数的几何意义预测角度2 利用导数探讨函数的单调性预测角度3 利用导数求函数的极值和最考点16 复数典型易错题会诊命题角度1 复数的概念命题角度2 复数的代数形式及运算探究开放题预测预测角度1 复数概念的应用预测角度2 复数的代数形式及运算考点7不等式不等式的概念与性质均值不等式的应用不等式的证明不等式的解法不等式的综合应用不等式的概念与性质 不等式的解法 不等式的证明 不等式的工具性 不等式的实际应用 典型易错题会诊 命题角度1不等式的概念与性质1.(典型例题)如果a 、b 、c 满足c<b<a ,且ac<0,那么下列选项中不一定成立的是 ( ) A .ab>ac B .c(b-a)>0C .cb 2<ab 2D .dc(a-c)<0[考场错解] A ∵b>c ,而ab ,ao 不一定成立,原因是不知a 的符号.[专家把脉] 由d>b>c ,且ac<0.则。
2014年高考数学知识点总结
![2014年高考数学知识点总结](https://img.taocdn.com/s3/m/33672940767f5acfa1c7cd7a.png)
学科一级知识点二级知识点三级知识点数学集合和常用逻辑用语集合集合的含义与表示数学集合间的基本关系数学集合基本运算【交集、并集、补集、余集】数学常用逻辑用语命题及其关系数学充分条件与必要条件数学充要条件数学简单逻辑联结词数学全称量词与存在性量词数学函数与导数函数函数及其表示数学函数的定义域与值域数学函数的解析式数学映射数学反函数数学函数的图像数学函数单调性与最值数学函数的奇偶性数学函数周期性与对称性数学基本初等函数I与应用一次函数与二次函数数学指数与指数函数数学对数与对数函数数学指数方程与对数方程数学幂函数数学函数与方程数学函数模型及其应用数学函数综合数学导数导数概念与几何意义数学导数计算数学利用导数研究函数单调性数学利用导数求函数最值与极值数学利用导数证明不等式数学导数实际应用数学导数综合应用数学定积分与微积分基本定理数学极限数学三角函数、三角恒等变换、解三角形三角函数任意角、弧度制和任意角三角函数数学同角三角函数基本关系式和诱导公式数学三角函数图像与性质数学三角函数图像变换数学反三角函数与简单三角方程数学三角函数模型应用数学三角恒等变换两角和与差的三角函数数学倍角公式数学简单三角恒等变换数学解三角形正弦定理数学余弦定理数学正弦定理与余弦定理的实际应用数学三角函数综合应用数学平面向量平面向量的概念及线性运算平面向量概念数学平面向量线性运算数学平面向量基本定理及坐标表示平面向量基本定理数学平面向量坐标运算数学平面向量的数量积平面向量的数量积定义数学平面向量的数量积应用数学线段定比分点数学平移数学平面向量应用平面向量物理应用数学平面向量几何应用数学数列数列的概念和表示法数学等差数列等差数列通项公式数学等差数列前n项和数学等比数列等比数列通项公式数学等比数列前n项和数学数列求和公式法、分组求和数学倒序相加、错位相减、裂项相消求和数学数列综合应用数学不等式不等式的性质数学解不等式一元二次不等式数学绝对值不等式数学分是不等式数学基本不等式数学线性规划二元一次不等式(组)表示的区域数学线性规划数学不等式选讲绝对值不等式数学柯西不等式数学排序不等式数学不等式证明数学立体几何空间几何体柱、锥、台、球结构特征数学空间几何体三视图和直观图数学空间几何体表面积和体积数学空间点、线、面之间位置关系平行数学垂直数学距离数学角数学空间向量空间直角坐标系数学空间向量及运算数学空间向量的应用数学解析几何直线直线的倾斜角与斜率数学直线的方程数学两直线的位置关系数学距离数学圆圆的标准方程与一般方程数学直线与圆位置关系数学圆与圆位置关系数学圆锥曲线椭圆【标准方程,解析式,离心率,准线】数学双曲线【标准方程,解析式,离心率,准线】数学抛物线【标准方程,解析式,离心率,准线】数学直线与圆锥位置关系数学曲线与方程数学坐标系与参数方程平面直角坐标系与平面上伸缩变换数学极坐标系数学简单曲线的极坐标方程数学柱坐标系和球坐标系数学参数方程的概念数学参数方程与普通方程的互化数学直线的参数方程数学圆的参数方程数学圆锥曲线的参数方程数学计数原理与概率统计计数原理分类加法计数原理与分类乘法计数原理数学排列组合数学二项定理数学统计与概率分成抽样数学用样本估计总体数学变量相关性数学统计案列数学事件与概率数学古典概型数学几何概型数学离散型随便变量及其分布列数学超几何分布数学条件概率数学独立事件与乘法公式数学n次独立重复实验与二项分布数学离散型随机变量的均值、方差数学正态分布数学算法和程序框图框图结构图、流程图数学算法初步算法的概念数学程序框图的三种逻辑结构数学基本算法语句数学中国古代算法案列数学推理与证明合情推理与演绎推理数学直接证明与间接证明【反证法】数学数学归纳法数学数系的扩充与复数复数复数的概念与向量表示数学复数的加减及几何意义数学复数的乘除数学矩阵与行列式矩阵与变换线性变换与二阶矩阵数学变换的复合与二阶矩阵数学逆变换与逆矩阵数学变换的不变量与矩阵的特征向量数学行列式二阶、三阶行列式数学二元、三元线性方程组的讨论数学几何证明选讲相似三角形平行截割定理数学直角三角形射影定理数学圆圆周角定理数学圆的切线判定定理及性质定理数学相交弦定理与切割定理数学圆的内接四边形的性质定理与判定定理以上知识点为个人参考众多资料总结得出,如有不妥之处请联系修改;如有雷同纯属巧合;仅供大家参考使用。
2014年高考(文科数学)知识点归纳总结
![2014年高考(文科数学)知识点归纳总结](https://img.taocdn.com/s3/m/0d6e44d9b9f3f90f76c61b7e.png)
2014年高考(文科数学)知识点归纳总结一.常见的数集自然数集:N ;正整数集:N *或N +;整数集:Z ;有理数集:Q ;实数集:R 。
复数集:C 二.集合间基本关系的几个结论(1)A ⊆A (任何一个集合是本身子集).(2)∅⊆A (空集是任何集合的子集);(3)∅A (非空集合)(空集是任何非空集合的真子集) (4).若A 含有n 个元素,则A 的子集有2n 个,A 的非空子集有2n -1个,A 的非空真子集有2n -2个. 3.集合的运算及其性质(1)集合的交、并、补运算:交集:A ∩B ={x|x ∈A ,且x ∈B};并集:A ∪B ={x|x ∈A ,或x ∈B};补集:∁U A ={x|x ∈U ,且x ∉A}.U 为全集,∁U A 表示A 相对于全集U 的补集.(2)集合的交、并、补运算性质:①A ∪B =A ⇔B ②A ∩B =A ⇔A ③ A ∪(∁U A)=U ④A ∩(∁U A)=∅⑤⑤∁U (∁U A)=A.⑥∁U (A ∪B) =(∁U A) ∩ (∁U A)⑦∁U (A ∩B) =(∁U A) ∪ (∁U A) 三:映 射与函数1.映射:设A 、B 是两个非空集合,如果按某一种对应法则f ,对于A 中的每一个元素,在B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做集合A 到集合B 的映射.A 中的元素叫做原象,B 中的相应元素叫做象。
在A 到B 的映射中,从A 中元素到B 中元素的对应,可以多对一,不可以一对多。
2.函数:设A ,B 是两个非空的数集,如果按照某种对应法则f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数,记作y =f(x),x ∈A 函数三要素:定义域A :x 取值范围组成的集合。
值域B :y 取值范围组成的集合。
对应法则f :y 与x 的对应关系。
有解析式和图像和映射三种表示形式 3.函数与映射的区别在于:(1)两个集合必须是数集; (2)不能有剩余的象,即每个函数值y 都能找到相应的自变量x 与其对应。
2014高考数学知识点
![2014高考数学知识点](https://img.taocdn.com/s3/m/61deb660302b3169a45177232f60ddccda38e619.png)
2014高考数学知识点2014年的高考数学试卷是考查学生对数学知识点的掌握和应用能力的重要考试。
下面,我将为您详细介绍2014年高考数学试卷涉及的主要知识点。
知识点一:函数与方程在2014年的高考数学试卷中,函数与方程是一个非常重要的知识点。
学生需要掌握函数的概念、性质和图像,并能够解一元一次方程、一元二次方程、一次不等式、二次不等式等各种类型的方程。
此外,还需要了解函数与方程在实际问题中的应用,例如利用函数关系解决实际问题、求函数的最值等。
知识点二:三角函数三角函数也是2014年高考数学试卷中的重点内容。
学生需要了解正弦函数、余弦函数、正切函数等各种三角函数的定义、性质以及它们的图像。
同时,还需要能够解三角方程和三角不等式,并能够应用三角函数解决实际问题,如求角度、求距离等。
知识点三:数列与数学归纳法数列与数学归纳法也是2014年高考数学试卷中的重要知识点。
学生需要了解数列的概念、性质和求和公式,并能够判断数列的特点,如等差数列、等比数列等。
此外,还需要掌握数学归纳法的基本原理和应用,以解决数列问题。
知识点四:立体几何立体几何是2014年高考数学试卷中的必考知识点之一。
学生需要了解各种立体几何的基本概念,如球体、圆柱体、锥体等,并能够计算立体几何的表面积和体积。
此外,还需要掌握立体几何在实际问题中的应用,如计算容积、表面积等。
知识点五:概率与统计概率与统计也是2014年高考数学试卷中的重点知识点。
学生需要了解概率的基本概念、性质和计算方法,并能够解决概率问题,如计算事件的概率、计算样本空间等。
同时,还需要了解统计的基本概念和方法,如频数、频率、均值、中位数等,并能够分析和解释统计数据。
通过对2014年高考数学试卷的分析,我们可以看出,数学知识点的掌握是高考数学考试的核心要求。
只有对这些知识点有深入的理解和熟练的应用,才能在考试中取得好成绩。
因此,我们应该注重对这些知识点的学习和巩固,并进行大量的练习,以提高自己的数学水平和解题能力。
2014数学高考基础知识、常见结论详解
![2014数学高考基础知识、常见结论详解](https://img.taocdn.com/s3/m/4ab63fe114791711cd79179e.png)
数学高考基础知识、常见结论详解一、集合与简易逻辑:-、理解集合中的有关概念(1) 集合中元素的特征:确定性,互异性,无序性。
集合元素的互异性:如: A ={x,xy, lg(xy)},B{O,|x|,y},求A ;(2) 集合与元素的关系用符号,F表示。
(3) __________________________________ 常用数集的符号表示:自然数集__________ ;正整数集_______ 、________________________________________ ;整数集_________ ;有理数集 _____________ 、实数集________ 。
(4 )集合的表示法:列举法,描述法,韦恩图。
注意:区分集合中兀素的形式:如:A={x|y=x2亠2x亠1} ;B={y|y=x2亠2x亠1};2 2c ={( X, y) I y = x 2x 1} ; D ={ x | ^ x 2x 1} ;2E 二{( x,y) | y =x 2x 1,x := Z, y := Z};F 二{( x, y') | y = x2 2x1} ;G 二{z|y=x22x 1,z = '}x(5)空集是指不含任何元素的集合。
({0}、 '和{'}的区别;0与三者间的关系)空集是任何集合的子集,是任何非空集合的真子集。
注意:条件为A 5 B,在讨论的时候不要遗忘了A二■-的情况。
”” ” n ■女口:A = {x | ax2- 2x -1=0},如果A R =,求a 的取值。
二、集合间的关系及其运算(1 )符号“ •,F ”是表示元素与集合之间关系的,立体几何中的体现点与直线(面)的关系;符号“,二”是表示集合与集合之间关系的,立体几何中的体现面与直线(面)的关系。
(2)A^l B ={ _____________________ } ;A U B ={ ________________________ };C uA = _______________________________________ }(3)对于任意集合AB,则:① A B_B A ;A B_B A ;A B_A B ;② A B=A= ___________ ;A B=A= ____________ ;C U A B =U = ________ ; C U A B = = ____________ ;③ C U A £B 二_________________ ;___________ 二C u(A B);(4)①若n为偶数,则n = ;若n为奇数,则n = ___________ ;②若n被3除余o,贝u n =__________ ;若n被3除余1,贝u n = ___________ ;若n被3除余2 ,_则n = __________________ ;三、集合中元素的个数的计算:(1) ___________________________________________________________________ 若集合A中有n个元素,则集合A的所有不同的子集个数为______________________________________________ ,所有真子集的个数是__________ ,所有非空真子集的个数是 _________________ 。
2014高考数学必修章节知识点归纳
![2014高考数学必修章节知识点归纳](https://img.taocdn.com/s3/m/b352321e52d380eb62946d41.png)
2014年高考数学知识点归纳总结必修1数学知识点第一章、集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集. 4、 如果集合A 中含有n 个元素,则集合A 有n2个子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…§1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。
2014年高中新课标理科数学所有知识点总结
![2014年高中新课标理科数学所有知识点总结](https://img.taocdn.com/s3/m/9f1fbf3fcfc789eb172dc831.png)
高中数学 必修1知识点第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N*或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A =(2)A ∅=∅ (3)A B A ⊆ A B B ⊆BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)AB A ⊇ A B B ⊇BA补集U A ð{|,}x x U x A ∈∉且1()U A A =∅ð 2()U A A U = ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<<||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一()()()U U U A B A B = 痧?()()()U U U A B A B = 痧?个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且ab <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x的集合分别记做[,),(,),(,a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.yxo③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号na 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根.②式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n na a =;当n 为奇数时,n n a a =;当n 为偶数时, (0)|| (0)n n a a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m n m naa a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数函数名称指数函数定义函数(0x y a a =>且1)a ≠叫做指数函数图象1a >01a <<定义域 R值域(0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对 图象的影响在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义xa y =xy(0,1)O1y =xa y =xy(0,1)O1y =①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x ax N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N,即log eN (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()n a a n M M n R =∈ ④log a N a N =⑤loglog (0,)bn a an M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且【2.2.2】对数函数及其性质(5)对数函数函数 名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a >01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x=时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数xyO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y的函数,函数()xy ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则qpy x=是偶函数,若p 为偶数q 为奇数时,则q py x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质 ①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--.②当0a>时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a-=;当0a<时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba-+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a ∆=-=. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号.①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f kx y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k fxy1x 2x O∙ab x 2-=k<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0)(<k f xy1x 2x 0>a O∙kx y1x 2x O∙k<a 0)(>k f④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f ab x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a>时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p = (Ⅱ)当0a <时(开口向下)①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使)(=x f 成立的实数x叫做函数))((D x x f y ∈=的零点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014高考数学大纲——知识点总结(一)必考内容与要求1. 集合(1) 集合的含义与表示①了解集合的含义、元素与集合的属于关系。
②能用自然语言、图形语言、几何语言(列举法或描述法)描述不同的具体问题。
(2) 集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。
②在具体情境中,了解全集与空集的含义。
(3) 集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
②理解在给定集合中一个子集的补集的含义,会要求给定及子集的补集。
③能使用韦恩(Venn)图表达集合的关系与运算。
2. 函数概念与基本初等函数Ⅰ(指数函数、对数函数。
幂函数)(1) 函数①了解构成函数的要素,会简单求一些简调性,掌握对数函数图像通过的特殊点。
③知道对数函数是一类重要的函数模型。
④了解指数函数与对数函数互为反函数(a﹥0,且a≠1)(4) 幂函数①了解幂函数的概念。
②结合函数的图像,了解它们的变化情况。
(5) 函数与方程①结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。
③根据具体函数的图像,能够用二分法求相应方程的近似解。
(6) 函数模型及其应用①了解指数函数、对数函数以及幂函数的增长特征,知道直线上升,指数增长,对数增长等不同函数类型增长的含义。
②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。
3.立体几何初步(1)认识空间几何①认识柱、锥、台、球极其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物理的结构。
②能画出简单空间图形(长方形、球、圆柱、圆锥、棱柱等简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的指示图。
③会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同形式。
④会画某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。
⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式。
(2)点、直线、平面之间的位置关系①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理。
·公理1:如果一条直线上的两个点在一个平面内,那么这条直线上的所有点都在此平面内。
·公理2:过不在同一条直线上的三点,有且只有一个平面。
·公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
·公理4:平行于同一条直线的两条直线互相平行。
·定理:空间中如果一个角度的两边与另一个角的两边平行,那么这两个角相等或互补。
②以立体几何的上述定义、公理和定理为出发点,认识和理解空中线面平行、垂直的有关性质与判定定理。
理解以下判定定理·如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
·如果一个平面内的两条相交直线与另一平面平行,那么这两个平面都平行。
·如果一条直线与另一个平面内的两条相交直线都垂直,那么该直线与此平面平行。
·如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直。
理解以下性质定理,并能够证明·如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行。
.如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行..垂直于同一个平面的两条直线平行。
.如果两个平面垂直那么一个平面内垂直于它们交线的直线与另一个平面垂直。
③能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题。
4.平面解析几何初步(1)直线方程①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。
②能根据两条直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。
③能根据两条直线的斜率判定这两条直线平行或垂直。
④掌握正确直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。
⑤能用解方程组的方法求两条相交直线的交点坐标。
⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
(2)圆与方程①掌握确定圆的几何要素,掌握圆的标准方程与一般方程。
②能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系。
③能用直线和圆的方程解决一些简单的问题。
④初步了解用代数方法处理几何问题的思想。
(3)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标系表示点的位置。
②会推导空间两点的距离公式。
5.算法初步(1)算法的含义、程序框图①了解算法的含义,了解算法的思想。
②理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。
(2)基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义。
6.统计(1)随机抽样①理解随机抽样的必要性和重要性。
②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。
(2)用样本估计总体①了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点。
②理解样本数据标准的意义和作用,会计算数据标准差。
③能从样本数据中提取基本的数字特征(如平均数、标准差)并给出合理的解释。
④会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想。
⑤会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。
(3)变量的相关性①会作两个有关联变量的数据的散点图,会利用三点图认识变量间的相关关系。
②了解最小二乘法的思想,能根据给出的线性回归方程系数公式7.概率(1)事件与概率①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。
②了解两个互斥事件的概率加法公式。
(2)古典概型①理解古典概型及其概率计算公式。
②会计算一些随机事件所含的基本事件数及事件发生的概率。
(3)随机数与几何概率①了解随机数的意义,能运用模拟方法估计概率。
②了解几何概型的意义。
8.基本初等函数Ⅱ(三角函数)(1)任意角的概念、弧度制①了解任意角的概念②了解弧度制的概念,能进行弧度与角度的互化。
(2)三角函数①理解任意角三角函数(正弦、余弦、正切)的定义。
②能利用单位圆中的三角函数线推导出的正弦、余弦、正切的诱导公式,能画出的图像,了解三角函数的周期性。
③理解正弦函数、余弦函数在区间的性质(如单调性、最大值和最小值以及与x轴交点等),理解正切函数在区间的单调性。
④理解同角三角函数的基本关系式:⑤了解函数的物理意义;能画出的图像,了解参数A、ω、对函数图象变化的影响。
⑥了解三角函数式描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题。
9.平面向量(1)平面向量的实际背景及基本概念①了解向量的实际背景。
②理解平面向量的概念,理解两个向量的相等含义。
③理解向量的几何表示.(2)向量的线性运算①掌握向量加法、减法的运算,并理解其几何意义.②掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.③了解向量线性运算的性质及其几何意义.(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义。
②掌握平面向量的正交分解及其坐标表示.③会用坐标表示平面向量的加法、减法与数乘运算.④理解用坐标表示的平面向量共线的条件.(4)平面向量的数量积①理解平面向量数量积的含义及其物理意义.②了解平面向量的数量积与向量投影的关系.③掌握数量积的坐标表达式,会进行平面向量数量积的运算.④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.(5)向量的应用①会用向量方法解决某些简单的平面几何问题.②会用向量方法解决简单的力学问题与其他一些实际问题.10.三角恒等变换(1)和与差的三角函数公式①会用向量的数量积推导出两角差的余弦公式.②能利用两角差的余弦公式导出两角差的正弦、正切公式.③能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)11.解三角形(1)正弦三角形和余弦三角形掌握正弦定理,余弦定理,并能解决一些简单的三角形度量问题。
(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
12.数列(1)数列的概念和简单的表示法①了解数列的概念和几种简单的表示方法(列表、图像、通项公式)②了解数列是自变量为正整数的一类函数。
(2)等差数列、等比数列①理解等差数、列等比数列的概念②掌握等差数列、等比数列的通项公式与前n项和公式。
③能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题④了解等差数列与一次函数、等比数列与指数函数的关系。
13.不等式(1)不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。
(2)一元二次不等式①会从实际情景中抽象出一元二次不等式模型。
②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的关系。
③会解一元二次不等式。
对给定的一元二次不等式,会设计求解的程序框图。
(3)二元一次不等式组与简单线性规划问题①会从实际情景中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。
③会从实际情景中抽象出一些简单的二元一次线性规划问题,并能加以解决。
(4)基本不等式:①了解基本不等式的证明过程。
②会用解决简单的最大(小)值问题。
14.常用逻辑用语(1)命题及其关系①理解命题的概念。
②了解"若p,则q"形式的命题及其逆命题、否命题与逆命题,会分析四种命题的相互关系。
③理解必要条件、充分条件与充要条件的含义。
(3)全称量词与存在量词①理解全称量词与存在量词的意义。
②能正确地对含有一个量词的命题进行否定。
15.圆锥曲线与方程(1)圆锥曲线①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用。
②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质。
③了解双曲线的定义、几何图形和标准方程。
知道它的简单几何性质。
④了解圆锥曲线的简单应用。
⑤理解数形结合的思想(2)曲线与方程了解方程的曲线与与曲线方程的对应关系。
16.空间向量与立体几何(1)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示。
②掌握空间向量的线性运算及其坐标表示。
③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。
(2)空间向量的应用①理解直线的方向向量与平面的法向量。