河北省邢台市育才中学人教A版高中物理奥赛辅导一轮复习七 对称法 练习(附答案)$826277

合集下载

2019高三物理人教版一轮教师用书:第7章 章末专题复习 Word版含解析

2019高三物理人教版一轮教师用书:第7章 章末专题复习 Word版含解析

(对应学生用书第130页)[知识结构导图][导图填充]①k q 1q 2r 2 ②F q ③k q r 2 ④E p A -E p B ⑤E pq ⑥φA -φB ⑦qU AB ⑧U AB d ⑨Q U ⑩εr S 4πkd [思想方法] 1.理想模型法 2.等效法 3.对称法 4.图象法 [高考热点]1.电场中的图象问题2.平行板电容器动态分析3.带电粒子在电场中的运动物理方法1|等效法处理带电粒子在电场、重力场中的运动1.等效思维方法等效法是将一个复杂的物理问题,等效为一个熟知的物理模型或问题的方法.带电粒子在匀强电场和重力场组成的复合场中做圆周运动的问题,是高中物理教学中一类重要而典型的题型.对于这类问题,若采用常规方法求解,过程复杂,运算量大.若采用“等效法”求解,则能避开复杂的运算,过程比较简捷.2.等效法求解电场中圆周运动问题的解题思路(1)求出重力与电场力的合力F合,将这个合力视为一个“等效重力”.(2)将a=F合m视为“等效重力加速度”.(3)小球能自由静止的位置,即是“等效最低点”,圆周上与该点在同一直径的点为“等效最高点”.注意:这里的最高点不一定是几何最高点.(4)将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解.如图7-1所示,绝缘光滑轨道AB部分是倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的带正电小球,电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图7-1[题眼点拨]①“绝缘光滑”说明小球运动过程中无摩擦且电量不变;②“安全通过圆轨道”联想到等效最高点,重力与电场力的合力恰提供向心力.[解析]小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg′,大小为mg′=(qE)2+(mg)2=23mg3,tan θ=qEmg=33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的“等效最高点”(D点)满足“等效重力”刚好提供向心力,即有:mg′=m v2DR,因θ=30°与斜面的倾角相等,由几何关系知AD=2R,令小球以最小初速度v0运动,由动能定理知:-2mg′R=12m v2D-12m v20解得v0=103gR3,因此要使小球安全通过圆轨道,初速度应满足v≥103gR3.[答案]v≥103gR3如图所示,空间有与水平方向成θ角的匀强电场.一个质量为m的带电小球,用长L的绝缘细线悬挂于O点.当小球静止时,细线恰好处于水平位置.现用一个外力将小球沿圆弧缓慢地拉到最低点,此过程小球的电荷量不变.则该外力做的功为( )A .mgL B.mgL tan θ C .mgL tan θD.mgL cos θB [对小球受力分析如图所示,则重力与电场力的合力F 合=mgtan θ,由动能定理可知: W F =-W F 合=mgtan θ·L .] [突破训练]1.如图7-2所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高为h 的A 处由静止开始下滑,沿轨道ABC 运动并进入圆环内做圆周运动.已知小球所受电场力是其重力的34,圆环半径为R ,斜面倾角为θ=60°,s BC =2R .若使小球在圆环内能做完整的圆周运动,h 至少为多少?(sin 37°=0.6,cos 37°=0.8)【导学号:84370300】图7-2 [解析] 小球所受的重力和电场力都为恒力,故可将两力等效为一个力F ,如图所示.可知F =1.25mg ,方向与竖直方向成37°角.由图可知,小球做完整的圆周运动的临界点是D 点,设小球恰好能通过D 点,即达到D 点时圆环对小球的弹力恰好为零.由圆周运动知识得:F =m v 2D R ,即:1.25mg =m v 2DR小球由A 运动到D 点,由动能定理得:mg (h -R -R cos 37°)-34mg ×(h cot θ+2R +R sin 37°)=12m v 2D 联立解得h =7.7R . [答案] 7.7R物理方法2|带电粒子在交变电场中运动的分析方法1.常见的交变电场常见的产生交变电场的电压波形有方形波、锯齿波、正弦波等. 2.常见的试题类型(1)粒子做单向直线运动(一般用牛顿运动定律求解); (2)二是粒子做往返运动(一般分段研究);(3)粒子做偏转运动(一般根据交变电场的特点分段研究). 3.常用的分析方法(1)注重全面分析(分析受力特点和运动规律),抓住粒子的运动具有周期性和空间上具有对称性的特征,求解粒子运动过程中的速度、位移等,并确定与物理过程相关的边界条件.(2)分析时从两条思路出发:一是力和运动的关系,根据牛顿第二定律及运动学规律分析;二是功能关系.如图7-3甲所示,长为L 、间距为d 的两金属板A 、B 水平放置,ab 为两板的中心线,一个带电粒子以速度v0从a点水平射入,沿直线从b点射出,若将两金属板接到如图7-1乙所示的交变电压上,欲使该粒子仍能从b点以速度v0射出,求:甲乙图7-3(1)交变电压的周期T应满足什么条件;(2)粒子从a点射入金属板的时刻应满足什么条件?[题眼点拨]①由U-t图知粒子垂直极板方向运动具有周期性;②“仍从b点以速度v0射出”应考虑两方面问题:一是在垂直极板方向y m≤12d,二是达b点时v y=0.[解析](1)为使粒子仍从b点以速度v0穿出电场,在垂直于初速度方向上,粒子的运动应为:加速,减速,反向加速,反向减速,经历四个过程后,回到中心线上时,在垂直于金属板的方向上速度正好等于零,这段时间等于一个周期,故有L=nT v0,解得T=Ln v0粒子在14T内离开中心线的距离为y=12a⎝⎛⎭⎪⎫14T2又a=qEm,E=U0d,解得y=qU0T232md在运动过程中离开中心线的最大距离为y m=2y=qU0T2 16md粒子不撞击金属板,应有y m≤1 2d解得T≤2d 2m qU0故n ≥L2d v 0qU 02m ,即n 取大于等于L 2d v 0qU 02m 的整数.所以粒子的周期应满足的条件为 T =L n v 0,其中n 取大于等于L 2d v 0qU 02m 的整数.(2)粒子进入电场的时刻应为14T ,34T ,54T ,… 故粒子进入电场的时刻为t =2n -14T (n =1,2,3…). [答案](1)T =L n v 0,其中n 取大于等于L2d v 0qU 02m 的整数 (2)t =2n -14T (n =1,2,3…) [突破训练]2.(多选)制造纳米薄膜装置的工作电极可简化为真空中间距为d 的两平行金属板,如图7-4甲所示,加在A 、B 间的电压U AB 做周期性变化,其正向电压为U 0,反向电压为-kU 0(k ≥1),电压变化的周期为2T ,如图乙所示.在t =0时,有一个质量为m 、电荷量为e 的电子以初速度v 0垂直电场方向从两极板正中间射入电场,在运动过程中未与极板相撞,且不考虑重力的作用,则下列说法中正确的是( )图7-4 A .若k =54且电子恰好在2T 时刻射出电场,则应满足的条件是d ≥9eU 0T 25mB .若k =1且电子恰好在4T 时刻从A 板边缘射出电场,则其动能增加eU 02 C .若k =54且电子恰好在2T 时刻射出电场,则射出时的速度为v 20+⎝⎛⎭⎪⎫5eU 0T 4md 2D .若k =1,则电子在射出电场的过程中,沿电场方向的分速度方向始终不变AD [ 竖直方向,电子在0~T 时间内做匀加速运动,加速度的大小a 1=eU 0md ,位移x 1=12a 1T 2,在T ~2T 时间内先做匀减速运动,后反向做匀加速运动,加速度的大小a 2=5eU 04md ,初速度的大小v 1=a 1T ,匀减速运动阶段的位移x 2=v 212a 2,由题知12d ≥x 1+x 2,解得d ≥9eU 0T 25m ,A 正确.若k=1且电子恰好在4T 时刻从A 板边缘射出电场,静电力做功为零,动能不变,B 错误.若k =54且电子恰好在2T 时刻射出电场,垂直电场方向速度为v 0,射出时的速度v =v 20+⎝ ⎛⎭⎪⎫eU 0T 4md 2,C错误.若k =1,电子在射出电场的过程中,沿电场方向的分速度方向始终不变,D 正确.]如图甲所示,离子源产生的正离子由离子源飞出时的速度可忽略不计,离子离开离子源后进入一加速电压为U 0的加速电场,偏转电场极板间的距离为d ,极板长为l =2d ,偏转电场的下极板接地,偏转电场极板右端到竖直放置的足够大的荧光屏之间的距离也为l .现在偏转电场的两极板间接一周期为T 的交变电压,上极板的电势随时间变化的图象如图乙所示.(设正离子的电荷量为q 、质量为m ,大量离子从偏转电场中央持续射入,穿过平行板的时间都极短)(1)试计算离子刚进入偏转电场时的速度v 0的大小;(2)在电势变化的过程中发现荧光屏有“黑屏”现象,即无正离子到达荧光屏,试计算每个周期内荧光屏黑屏的时间t ;(3)离子打到荧光屏上的区间的长度x .[解析](1)由题意可知,离子刚进入偏转电场时的速度大小恰为离子出加速电场时的速度大小,由动能定理可得qU 0=12m v 20 解得离子刚进入偏转电场时的速度大小为v 0=2qU 0m .(2)由题意可知,只要正离子能射出偏转电场,即可打到荧光屏上,因此当离子打在偏转电场的极板上时,出现“黑屏”现象.设离子刚好能射出偏转电场时的偏转电压为U ,则有 d 2=12·qU md ·⎝ ⎛⎭⎪⎫l v 02又因为l =2d 所以可得U =U 02由题图乙可知,偏转电压U 在0.5U 0~U 0之间变化时,进入偏转电场的离子无法射出偏转电场打在荧光屏上,因此每个周期内出现“黑屏”的时间为t =T 2.(3)设离子射出偏转电场时的侧移量为y ,打在荧光屏上的位置到O 点的距离为Y ,如图所示,由几何关系可得y Y =l 23l 2=13所以离子打到荧光屏上的区间的长度 x =2Y =6y =6×d2=3d .[答案](1)2qU0m(2)T2(3)3d高考热点|带电粒子(体)在电场中运动的综合问题1.分析方法(1)力和运动的关系——牛顿第二定律:根据带电粒子受到静电力,用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的速度、位移等.这种方法通常适用于受恒力作用下做匀变速运动的情况.(2)功和能的关系——动能定理:根据静电力对带电粒子所做的功,引起带电粒子的能量发生变化,利用动能定理研究全过程中能量的转化,研究带电粒子的速度变化、经历的位移等.这种方法同样也适用于非匀强的电场.(3)正交分解法或化曲为直法.处理这种运动的基本思想与处理平抛运动是类似的,可以将此复杂的运动分解为两个互相正交的比较简单的直线运动,而这两个直线运动的规律是我们已经掌握的,然后再按运动合成的观点去求出复杂运动的有关物理量.2.解题流程(2017·全国Ⅱ卷)如图7-5所示,两水平面(虚线)之间的距离为H,其间的区域存在方向水平向右的匀强电场.自该区域上方的A 点将质量均为m 、电荷量分别为q 和-q (q >0)的带电小球M 、N 先后以相同的初速度沿平行于电场的方向射出.小球在重力作用下进入电场区域,并从该区域的下边界离开.已知N 离开电场时的速度方向竖直向下;M 在电场中做直线运动,刚离开电场时的动能为N 刚离开电场时动能的1.5倍.不计空气阻力,重力加速度大小为g .求:图7-5 (1)M 与N 在电场中沿水平方向的位移之比;(2)A 点距电场上边界的高度;(3)该电场的电场强度大小.【自主思考】(1)N 进入电场后在水平方向和竖直方向各做怎样的运动?[提示] 在竖直方向继续做匀加速直线运动,在水平方向做匀减速直线运动,出电场时水平速度恰为0.(2)要M 在电场中做直线运动,M 进入电场时的水平速度v 0和竖直速度v y 应满足怎样的关系?[提示] v 0v y =qE mg ,还等于在电场中的水平位移和竖直位移之比.[解析](1)设小球M 、N 在A 点水平射出时的初速度大小为v 0,则它们进入电场时的水平速度仍然为v 0.M 、N 在电场中运动的时间t 相等,电场力作用下产生的加速度沿水平方向,大小均为a ,在电场中沿水平方向的位移分别为s 1和s 2.由题给条件和运动学公式得v 0-at =0① s 1=v 0t +12at 2② s 2=v 0t -12at 2 ③联立①②③式得s 1s 2=3. ④(2)设A 点距电场上边界的高度为h ,小球下落h 时在竖直方向的分速度为v y ,由运动学公式得v 2y =2gh⑤ H =v y t +12gt 2 ⑥M 进入电场后做直线运动,由几何关系知v 0v y =s 1H⑦联立①②⑤⑥⑦式可得h =13H . ⑧ (3)设电场强度的大小为E ,小球M 进入电场后做直线运动,则v 0v y =qE mg ⑨设M 、N 离开电场时的动能分别为E k1、E k2,由动能定理得E k1=12m (v 20+v 2y )+mgH +qEs 1⑩ E k2=12m (v 20+v 2y )+mgH -qEs 2⑪由已知条件E k1=1.5E k2⑫ 联立④⑤⑦⑧⑨⑩⑪⑫式得E =mg 2q .⑬ [答案](1)3∶1 (2)13H (3)mg 2q[突破训练]3.在电场方向水平向右的匀强电场中,一带电小球从A 点竖直向上抛出,其运动的轨迹如图7-6所示,小球运动的轨迹上A 、B 两点在同一水平线上,M 为轨迹的最高点,小球抛出时的动能为8 J ,在M 点的动能为6 J ,不计空气的阻力,则下列判断正确的是( )【导学号:84370301】图7-6 A .小球水平位移x 1与x 2的比值为1∶3B .小球水平位移x 1与x 2的比值为1∶4C .小球落到B 点时的动能为32 JD .小球从A 点运动到B 点的过程中最小动能为6 JAC [小球在水平方向做初速度为零的匀加速运动,小球在竖直方向上升和下落的时间相同,由匀变速直线运动位移与时间的关系可知水平位移x 1∶x 2=1∶3,选项A 正确,B 错误;设小球在M 点时的水平分速度为v x ,则小球在B 点时的水平分速度为2v x ,根据题意有12m v 20=8 J ,12m v 2x =6 J ,因而在B 点时小球的动能为E k B =12m [v 20+(2v x )2]2=32 J ,选项C 正确;由题意知,小球受到的合外力为重力与电场力的合力,为恒力,小球在A 点时,F 合与速度之间的夹角为钝角,小球在M 点时,速度与F 合之间的夹角为锐角,即F 合对小球先做负功再做正功,由动能定理知,小球从A 到M 过程中,动能先减小后增大,小球从M 到B 的过程中,合外力一直做正功,动能一直增大,故小球从A 运动到B 的过程中最小动能一定小于6 J ,选项D 错误.]在地面附近,存在着一个有界电场,边界MN 将空间分成左、右两个区域,在右区域中有水平向左的匀强电场,在右区域中离边界MN 某一位置的水平地面上由静止释放一个质量为m 的带电滑块(滑块的电荷量始终不变),如图甲所示,滑块运动的v -t 图象如图乙所示,不计空气阻力,则( )A .滑块在MN 右边运动的位移大小与在MN 左边运动的位移大小相等B .在t =5 s 时,滑块经过边界MNC .滑块受到的滑动摩擦力与电场力之比为2∶5D .在滑块运动的整个过程中,滑动摩擦力做的功小于电场力做的功 C [根据题中速度图线与横轴所围的面积表示位移可知,滑块在MN 右边运动的位移大小与在MN 左边运动的位移大小不相等,选项A 错误.根据题图乙所示速度图象可知,t =2 s 时滑块越过分界线MN ,选项B 错误.根据题中速度图象斜率表示加速度可知,在0~2 s 时间内,滑块加速度大小可表示为a 1=v 02,在2~5 s 时间内,滑块加速度大小可表示为a 2=v 03,设电场力为F ,运动过程中所受摩擦力为f ,对滑块在MN 分界线右侧的运动,由牛顿第二定律,F -f =ma 1,对滑块在MN 分界线左侧的运动,由牛顿第二定律,f =ma 2,联立解得:f ∶F =2∶5,选项C 正确.在滑块运动的整个过程中,滑动摩擦力做的功可表示为:W f =f ·2.5v 0,电场力做的功可表示为W F =F ·v 0=2.5f ·v 0,二者做功相等,选项D 错误.] 4.(2018·河北正定模拟)从地面以v 0斜向上抛出一个质量为m 的小球,当小球到达最高点时,小球具有的动能与势能之比是9∶16,取地面为重力势能参考面,不计空气阻力.现在此空间加上一个平行于小球抛出平面的水平电场,以相同的初速度抛出带上正电荷量为q 的原小球,小球到达最高点时的动能与刚抛出时动能相等.求:(1)无电场时,小球升到最高点的时间;(2)后来加上的电场的场强大小.[解析](1)无电场时,当小球到达最高点时,小球具有的动能与势能之比是9∶16将小球的运动分解为水平方向和竖直方向,则由v 2y =2gh ,得12m v 2y =mgh 由12m v 2x ∶12m v 2y =9∶16解得初始抛出时v x ∶v y =3∶4所以竖直方向的初速度为v y =45v 0竖直方向做匀减速运动由v y =gt ,解得t =4v 05g .(2)设后来加上的电场场强大小为E ,小球到达最高点时的动能与刚抛出时的动能相等,若电场力的方向与小球初速度的水平分量方向相同,则 有E 1q m t +35v 0=v 0解得:E 1=mg 2q若电场力的方向与小球初速度的水平分量方向相反,则有E 2q m t -35v 0=v 0解得:E 2=2mg q .[答案](1)4v 05g (2)mg 2q 或2mg q。

高考物理复习热点解析—对称法

高考物理复习热点解析—对称法

高考物理复习热点解析—对称法由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中.应用这种对称性不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题。

应用对称性去求解某些具体的物理问题的思维方法在物理学中称为物理解题中的对称法。

例题1.(多选)如图所示,立方体ABCD EFGH的四个顶点A、C、F、H处各固定着一个电荷量均为Q的正点电荷,M为AC连线的中点,N为CH连线的中点。

下列说法正确的是()A.B、D两点处的电势相同B.M、N两点处的电势相同C.B、D两点处的电场强度相同D.M、N两点处的电场强度相同【答案】AB【解析】AC.设正方体中心为O,根据几何关系可知三角形ACH和ACF为全等的等边三角形。

设A、C、H在D点产生的电场强度为E1,电势为φ1;A、C、F在B点处产生的电场强度为E2,电势为φ2。

根据对称性可知φ1等于φ2,E1沿OD方向,E2沿OB方向。

而F在D 点产生的电场强度方向沿OD方向,H在B点产生的电场强度沿OB方向,根据对称性以及电场的叠加可知B、D两点电场强度大小相同、方向不同。

而F在D点产生的电势与H在B点产生的电势相等,则根据电势的叠加可知B、D两点电势相等,故A正确,C错误;BD.根据对称性可知A、C两点在M产生的合场强为零,F、H两点在M产生的合场强沿OM 方向;H 、C 两点在N 产生的合场强为零,A 、F 在N 产生的合场强沿ON 方向,根据对称性以及电场的叠加可知M 、N 两点电场强度大小相同、方向不同。

而A 、C 在M 产生的电势与H 、C 在N 产生的电势相等,H 、F 在M 产生的电势又与A 、F 在N 产生的电势相等,根据电势的叠加可知M 、N 两点电势相等,故B 正确,D 错误。

故选AB 。

例题2.(多选)如图所示,一轻质弹簧下端系一质量为m 的书写式激光笔,组成一竖直悬挂的弹簧振子,在竖直平面内装有记录纸。

高中物理竞赛试题解题方法对称法3

高中物理竞赛试题解题方法对称法3

高中物理竞赛试题解题方法:对称法针对训练1.从距地面高19.6m处的A点,以初速度为5.0m/s沿水平方向投出一小球. 在距A点5.0m处有一光滑墙,小球与墙发生弹性碰撞(即入射角等于反射角,入射速率等于反射率),弹回后掉到地面B处.求:B点离墙的水平距离为多少?2.如图7—17所示,在边长为a的正方形四个顶点上分别固定电量均为Q的四个点电荷,在对角线交点上放一个质量为m,电量为q(与Q同号)的自由点电荷。

若将q沿着对角线移动一个小的距离,它是否会做周期性振动?若会,其周期是多少?3.如图7—18所示是一个由电阻丝构成的平面正方形无穷网络,当各小段电阻丝的电阻均为R时,A、B两点之间的等效电阻为R/2,今将A,B之间的一小段电阻丝换成电阻为R′的另一端电阻丝,试问调换后A,B之间的等效电阻是多少?4.有一无限大平面导体网络,它由大小相同的正六角形网眼组成,如图7—19所示,所有六边形每边的电阻均为R0,求a,b两结点间的等效电阻。

5.如图7—20所示,某电路具有8个节点,每两个节点之间都连有一个阻值为2 的电阻,在此电路的任意两个节点之间加上10V 电压,求电路的总电流,各支路的电流以及电阻上消耗的总功率。

6.电路如图7—21所示,每两个节点间电阻的阻值为R ,求A 、B 间总电阻R AB 。

7.电路如图7—22所示,已知电阻阻值均为15Ω,求R AC ,R AB ,R AO 各为多少欧?8.将200个电阻连成如图7—23所示的电路,图中各P 点是各支路中连接两个电阻的导线上的点,所有导线的电阻都可忽略. 现将一电动势为ε,内阻为r 的电源接到任意两个P 点处,然后将任一个没接电源的支路在P 点处切断,发现流过电源的电流与没切断前一样,则这200个电阻R 1,R 2,…,R 100,r 1,r 2…,r 100应有下列的普遍关系:,100100332211r R r R r R r R ==== 这时图中AB 导线与CD 导线之间的电压等于 。

2025年新人教版高考数学一轮复习讲义 第二章 §2.4 函数的对称性

2025年新人教版高考数学一轮复习讲义  第二章 §2.4 函数的对称性

题型二 中心对称问题
例2 (1)(多选)下列说法中,正确的是
√A.函数 f(x)=2xx+-21的图象关于点(-2,2)中心对称 √B.函数 f(x)满足 f(2x-1)为奇函数,则函数 f(x)关于点(-1,0)中心对称 √C.若函数 y=f(x)过定点(0,1),则函数 y=f(x-1)+1 过定点(1,2)
2025年新人教版高考数学一轮复习讲义
第二章
§2.4 函数的对称性
课标要求
1.能通过平移,分析得出一般的轴对称和中心对称公式和推论. 2.会利用对称公式解决问题.
内容索引
第一部分 落实主干知识 第二部分 探究核心题型
课时精练
第一部分
落实主干知识
知识梳理
1.奇函数、偶函数的对称性 (1)奇函数关于 原点 对称,偶函数关于 y轴 对称. (2)若f(x+a)是偶函数,则函数f(x)图象的对称轴为 x=a ;若f(x+a)是奇 函数,则函数f(x)图象的对称中心为 (a,0) . 2.若函数y=f(x)满足f(a-x)=f(a+x),则函数的图象关于直线x=a对称; 若函数y=f(x)满足f(a-x)=-f(a+x),则函数的图象关于点 (a,0) 对称.
对任意x∈R恒成立,则
√A.f(-1)<f(3)
C.f(-1)=f(3)
B.f(0)>f(3) D.f(0)=f(3)
因为f(x+2)=f(2-x), 所以f(x)的图象关于直线x=2对称,所以f(3)=f(1), 由于f(x)在(-∞,2)上单调递增, 所以f(-1)<f(1)=f(3),f(0)<f(1)=f(3).
思维升华
函数y=f(x)的图象关于直线x=a对称⇔f(x)=f(2a-x)⇔f(a-x)=f(a+x); a+b

2024年高考物理一轮复习(新人教版) 第7章 实验8 验证动量守恒定律

2024年高考物理一轮复习(新人教版) 第7章 实验8 验证动量守恒定律

实验八 验证动量守恒定律目标要求 1.理解动量守恒定律成立的条件,会利用不同案例验证动量守恒定律.2.知道在不同实验案例中要测量的物理量,会进行数据处理及误差分析.实验技能储备一、实验原理在一维碰撞中,测出相碰的两物体的质量m 1、m 2和碰撞前、后物体的速度v 1、v 2、v 1′、v 2′,算出碰撞前的动量p =m 1v 1+m 2v 2及碰撞后的动量p ′=m 1v 1′+m 2v 2′,看碰撞前、后动量是否相等.二、实验方案及实验过程案例一:研究气垫导轨上滑块碰撞时的动量守恒 1.实验器材气垫导轨、数字计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等. 2.实验过程(1)测质量:用天平测出滑块的质量. (2)安装:正确安装好气垫导轨,如图所示.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前、后的速度. (4)改变条件,重复实验: ①改变滑块的质量;②改变滑块的初速度大小和方向. (5)验证:一维碰撞中的动量守恒. 3.数据处理(1)滑块速度的测量:v =ΔxΔt ,式中Δx 为滑块上挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间. (2)验证的表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′. 案例二:研究斜槽末端小球碰撞时的动量守恒 1.实验器材斜槽、小球(两个)、天平、复写纸、白纸、圆规、铅垂线等.2.实验过程(1)测质量:用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)安装:按照如图甲所示安装实验装置.调整固定斜槽使斜槽底端水平.(3)铺纸:白纸在下,复写纸在上且在适当位置铺放好.记下铅垂线所指的位置O.(4)放球找点:不放被撞小球,每次让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面.圆心P就是小球落点的平均位置.(5)碰撞找点:把被撞小球放在斜槽末端,每次让入射小球从斜槽同一高度(同步骤(4)中的高度)自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被撞小球落点的平均位置N,如图乙所示.(6)验证:连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中,最后代入m1·OP =m1·OM+m2·ON,看在误差允许的范围内是否成立.(7)整理:将实验器材放回原处.3.数据处理验证的表达式:m1·OP=m1·OM+m2·ON.三、注意事项1.前提条件:碰撞的两物体应保证“水平”和“正碰”.2.案例提醒(1)若利用气垫导轨进行验证,调整气垫导轨时,应确保导轨水平.(2)若利用平抛运动规律进行验证:①斜槽末端的切线必须水平;②入射小球每次都必须从斜槽同一高度由静止释放;③选质量较大的小球作为入射小球;④实验过程中实验桌、斜槽、记录的白纸的位置要始终保持不变.考点一 教材原型实验考向1 研究气垫导轨上滑块碰撞时的动量守恒例1 (2022·全国甲卷·23)利用图示的实验装置对碰撞过程进行研究.让质量为m 1的滑块A 与质量为m 2的静止滑块B 在水平气垫导轨上发生碰撞,碰撞时间极短,比较碰撞后A 和B 的速度大小v 1和v 2,进而分析碰撞过程是否为弹性碰撞.完成下列填空:(1)调节导轨水平;(2)测得两滑块的质量分别为0.510 kg 和0.304 kg.要使碰撞后两滑块运动方向相反,应选取质量为________ kg 的滑块作为A ;(3)调节B 的位置,使得A 与B 接触时,A 的左端到左边挡板的距离s 1与B 的右端到右边挡板的距离s 2相等;(4)使A 以一定的初速度沿气垫导轨运动,并与B 碰撞,分别用传感器记录A 和B 从碰撞时刻开始到各自撞到挡板所用的时间t 1和t 2;(5)将B 放回到碰撞前的位置,改变A 的初速度大小,重复步骤(4).多次测量的结果如下表所示;1 2 3 4 5 t 1/s 0.49 0.67 1.01 1.22 1.39 t 2/s 0.15 0.21 0.33 0.40 0.46 k =v 1v 20.31k 20.330.330.33(6)表中的k 2=________(保留2位有效数字); (7)v 1v 2的平均值为______(保留2位有效数字); (8)理论研究表明,对本实验的碰撞过程,是否为弹性碰撞可由v 1v 2判断.若两滑块的碰撞为弹性碰撞,则v 1v 2的理论表达式为__________________(用m 1和m 2表示),本实验中其值为________________(保留2位有效数字),若该值与(7)中结果间的差别在允许范围内,则可认为滑块A 与滑块B 在导轨上的碰撞为弹性碰撞. 答案 (2)0.304 (6)0.31 (7)0.32(8)v 1v 2=m 2-m 12m 10.34 解析 (2)用质量较小的滑块碰撞质量较大的滑块,碰后运动方向相反,故选质量为0.304 kg 的滑块作为A .(6)由于两段位移大小相等,根据表中的数据可得k 2=v 1v 2=t 2t 1=0.210.67=0.31.(7)v 1v 2的平均值为k =0.31+0.31+0.33+0.33+0.335=0.32. (8)弹性碰撞时满足动量守恒和机械能守恒,可得m 1v 0=-m 1v 1+m 2v 2 12m 1v 02=12m 1v 12+12m 2v 22 联立解得v 1v 2=m 2-m 12m 1,代入数据可得v 1v 2=0.34.考向2 研究斜槽末端小球碰撞时的动量守恒例2 (2023·湖北武汉市模拟)用如图甲所示装置研究两个半径相同的小球在轨道水平部分碰撞前后的动量关系.(1)关于本实验,下列说法中正确的是________. A .同一组实验中,入射小球必须从同一位置由静止释放 B .轨道倾斜部分必须光滑 C .轨道末端必须水平(2)图甲中O 点是小球抛出点在地面上的竖直投影,实验时先让入射小球多次从斜轨上的位置S 点由静止释放,通过白纸和复写纸找到其平均落点的位置(A 、B 、C 三点中的某个点),然后把被碰小球静置于轨道的水平部分末端,仍将入射小球从斜轨上的位置S 点由静止释放,与被碰小球相碰,并多次重复该操作,用同样的方法找到两小球碰后平均落点的位置(A 、B 、C 三点中剩下的两个点).实验中需要测量的有________. A .入射小球和被碰小球的质量m 1、m 2 B .入射小球开始的释放高度hC.小球抛出点距地面的高度HD.两球相碰前后平抛的水平位移OB、OA、OC(3)某同学在做上述实验时,测得入射小球和被碰小球的质量关系为m1=2m2,两小球在记录纸上留下三处落点痕迹如图乙所示,他将米尺的零刻线与O点对齐,测量出O点到三处平均落地点的距离分别为OA、OB、OC.该同学通过测量和计算发现,在实验误差允许范围内,两小球在碰撞前后动量是守恒的.①该同学要验证的关系式为__________________________________________________;②若进一步研究该碰撞是否为弹性碰撞,需要判断关系式______________________是否成立.答案(1) AC(2)AD(3)①2(OC-OA)=OB②OC+OA=OB解析(1)本实验只要确保轨道末端水平,从而确保小球离开轨道后做的是平抛运动即可,并不需要轨道光滑;另一方面,要确保放上被碰小球后,入射小球的碰前的速度大小保持不变,故要求从同一位置由静止释放入射小球,故选A、C.(2)验证动量守恒定律,必须测量质量和速度,由于入射小球、被碰小球离开轨道后的运动都是平抛运动,且平抛的竖直位移相同,故由x=v02H可知,小球的水平位移x∝v0,故可g用水平位移的大小关系表示速度的大小关系,因此不需要测量H及入射小球开始的释放高度h,H只要保持不变就可以了,并不需要测量出来,故选A、D.(3) ①由题图乙可知,OA=17.60 cm,OB=25.00 cm,OC=30.00 cm,代入质量关系,可知m1·OB≠m1·OA+m2·OC但是m1·OC≈m1·OA+m2·OB故OC才是入射小球碰前速度对应的水平位移,由动量守恒定律得m1·OC=m1·OA+m2·OB根据m1=2m2解得2(OC-OA)=OB②验证碰撞是否为弹性碰撞,则可以验证12=12m1v1′2+12m2v2′22m1v1即m1·OC2=m1·OA2+m2·OB2变形得m1·OC2-m1·OA2=m2·OB2根据m1=2m2则有2(OC-OA)(OC+OA)=OB2解得OC+OA=OB.考点二探索创新实验考向1实验装置的创新例3如图为验证动量守恒定律的实验装置,实验中选取两个半径相同、质量不等的小球,按下面步骤进行实验:①用天平测出两个小球的质量分别为m1和m2;②安装实验装置,将斜槽AB固定在桌边,使槽的末端切线水平,再将一斜面BC连接在斜槽末端;③先不放小球m2,让小球m1从斜槽顶端A处由静止释放,标记小球在斜面上的落点位置P;④将小球m2放在斜槽末端B处,仍让小球m1从斜槽顶端A处由静止释放,两球发生碰撞,分别标记小球m1、m2在斜面上的落点位置;⑤用毫米刻度尺测出各落点位置到斜槽末端B的距离.图中M、P、N三点是实验过程中记下的小球在斜面上的三个落点位置,从M、P、N到B的距离分别为s M、s P、s N.依据上述实验步骤,请回答下面问题:(1)两小球的质量m1、m2应满足m1________m2(填“>”“=”或“<”);(2)小球m1与m2发生碰撞后,m1的落点是图中________点,m2的落点是图中________点;(3)用实验中测得的数据来表示,只要满足关系式________________,就能说明两球碰撞前后动量是守恒的;(4)若要判断两小球的碰撞是否为弹性碰撞,用实验中测得的数据来表示,只需比较________与________是否相等即可. 答案 (1)> (2)M N (3)m 1s P =m 1s M +m 2s N (4)m 1s P m 1s M +m 2s N解析 (1)为了防止入射小球碰撞后反弹,一定要保证入射小球的质量大于被碰小球的质量,故m 1>m 2;(2)碰撞前,小球m 1落在题图中的P 点,由于m 1>m 2,当小球m 1与m 2发生碰撞后,m 1的落点是题图中M 点,m 2的落点是题图中N 点;(3)设碰前小球m 1的水平初速度为v 1,当小球m 1与m 2发生碰撞后,小球m 1落到M 点,设其水平速度为v 1′,m 2落到N 点,设其水平速度为v 2′,斜面BC 与水平面的倾角为α,由平抛运动规律得s M sin α=12gt 2,s M cos α=v 1′t ,联立解得v 1′=gs M cos 2 α2sin α,同理可得v 2′=gs N cos 2α2sin α,v 1=gs P cos 2 α2sin α,因此只要满足m 1v 1=m 1v 1′+m 2v 2′,即m 1s P =m 1s M +m 2s N .(4)如果小球的碰撞为弹性碰撞, 则满足12m 1v 12=12m 1v 1′2+12m 2v 2′2代入以上速度表达式可得m 1s P =m 1s M +m 2s N 故验证m 1s P 和m 1s M +m 2s N 相等即可.考向2 实验方案的创新例4 某物理兴趣小组设计了如图甲所示的实验装置.在足够大的水平平台上的A 点放置一个光电门,其右侧摩擦很小,可忽略不计,左侧为粗糙水平面.当地重力加速度大小为g .采用的实验步骤如下:A .在小滑块a 上固定一个宽度为d 的窄挡光片;B .用天平分别测出小滑块a (含挡光片)和小球b 的质量m a 、m b ;C .a 和b 间用细线连接,中间夹一被压缩了的轻短弹簧(与a 、b 不连接),静止放置在平台上;D .细线烧断后,a 、b 瞬间被弹开,向相反方向运动;E .记录滑块a 通过光电门时挡光片的遮光时间t ;F .小球b 从平台边缘飞出后,落在水平地面的B 点,用刻度尺测出平台距水平地面的高度h 及平台边缘铅垂线与B 点之间的水平距离s ;G .改变弹簧压缩量,进行多次测量.(1)用游标卡尺测量挡光片的宽度,如图乙所示,则挡光片的宽度为________ mm. (2)针对该实验装置和实验结果,同学们做了充分的讨论.讨论结果如下:①该实验要验证“动量守恒定律”,则只需验证a 、b 弹开后的动量大小相等,即________=________(用上述实验所涉及物理量的字母表示);②若该实验的目的是求弹簧的最大弹性势能,则弹簧的弹性势能为________(用上述实验所涉及物理量的字母表示);③改变弹簧压缩量,多次测量后,该实验小组得到x a 与1t 2的关系图像如图丙所示,图线的斜率为k ,则平台上A 点左侧与滑块a 之间的动摩擦因数大小为________(用上述实验数据字母表示).答案 (1)3.80 (2)①m a dt m b sg 2h②m a d 22t 2+m b s 2g 4h ③d 22kg解析 (1)挡光片的宽度d =3 mm +16×0.05 mm =3.80 mm.(2)①要验证“动量守恒定律”,则应该验证m a v a =m b v b ,由滑块a 通过光电门可求v a =d t ,由b 球离开平台后做平抛运动,根据h =12gt 2,s =v b t ,整理可得v b =sg2h,因此需验证的表达式为m a dt=m b sg 2h ;②弹性势能大小为E p =12m a v a 2+12m b v b 2,代入数据整理得E p =m a d 22t2+m b s 2g 4h ;③根据动能定理可得μmgx a =12m v a 2,而v a =d t ,联立整理得x a =d 22μg ·1t 2,故k =d 22μg ,可得平台A 点左侧与滑块a 之间的动摩擦因数μ=d 22kg.课时精练1.(2023·云南省昆明一中高三检测)某实验小组在进行“验证动量守恒定律”的实验,入射球与被碰球半径相同、质量不等,且入射球的质量大于被碰球的质量.(1)用游标卡尺测量直径相同的入射球与被碰球的直径,测量结果如图甲所示,则直径为________cm;(2)实验中,直接测定小球碰撞前、后的速度是不容易的,但是可以通过仅测量________(填选项前的字母),间接地解决这个问题;A.小球开始释放高度hB.小球抛出点距地面的高度HC.小球做平抛运动的水平位移D.小球的直径(3)实验装置如图乙所示,先不放B球,使A球从斜槽上某一固定点C由静止滚下,再把B 球静置于水平槽前端边缘处,让A球仍从C处由静止滚下.记录纸上的O点是铅垂线所指的位置,M、P、N分别为落点的痕迹,未放B球时,A球落地点是记录纸上的________点;放上B球后,B球的落地点是记录纸上的________点;(4)释放多次后,取各落点位置的平均值,测得各落点痕迹到O点的距离:OM=13.10 cm,OP=21.90 cm,ON=26.04 cm.用天平称得入射小球A的质量m1=16.8 g,被碰小球B的质量m2=5.6 g.若将小球质量与水平位移的乘积作为“动量”,请将下面的表格填写完整.(结果保留三位有效数字)OP/m OM/m ON/m 碰前“总动量”p/(kg·m)碰后“总动量”p′/(kg·m)0.219 00.131 00.260 4 3.68×10-3______根据上面表格中的数据,你认为能得到的结论是____________________________;(5)实验中,关于入射小球在斜槽上释放点的高低对实验影响的说法中正确的是________.A.释放点越低,小球受阻力越小,入射小球速度越小,误差越小B.释放点越低,两球碰后水平位移越小,水平位移测量的相对误差越小,两球速度的测量越准确C.释放点越高,两球相碰时,相互作用的内力越大,碰撞前后动量之差越小,误差越小D.释放点越高,入射小球对被碰小球的作用力越大,轨道对被碰小球的阻力越小答案(1)2.14(2)C(3)P N(4)3.66×10-3在实验误差允许范围内,可认为系统在碰前和碰后的“动量”守恒(5)C解析(1)球的直径d=21 mm+4×0.1 mm=21.4 mm=2.14 cm.(2)小球离开轨道后做平抛运动,因为小球抛出点的高度相等,它们在空中的运动时间相等,小球的水平位移与小球抛出的初速度成正比,可以用小球的水平位移代替其初速度,所以C 正确.(3)A球和B球相撞后,B球的速度增大,A球的速度减小,所以碰撞后A球的落地点距离O 点最近,B球的落地点距离O点最远,所以P点是未放B球时A球的落地点,N点是放上B 球后B球的落地点.(4)碰后“总动量”p′=m1OM+m2ON=0.016 8×0.131 0 kg·m+0.005 6×0.260 4 kg·m ≈3.66×10-3 kg·m则可知碰撞前、后“总动量”近似相等,在实验误差允许范围内,可认为系统在碰前和碰后的“动量”守恒.(5)入射小球的释放点越高,入射球碰撞前的速度越大,相撞时内力越大,阻力的影响相对越小,可以较好地满足动量守恒的条件,也有利于减小测量水平位移时的相对误差,从而使实验的误差减小,C正确.2.某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前端粘有橡皮泥,推动小车A使之做匀速运动.然后与原来静止在前方的小车B相碰并粘合成一体,继续做匀速运动,他设计的具体装置如图甲所示.在小车A后连着纸带,电磁打点计时器所用的电源频率为50 Hz,长木板下垫着小木片用以补偿阻力.(1)若已得到打点纸带,测得各计数点间距如图乙所示,A为运动起始的第一点,则应选________段来计算A车的碰前速度,应选________段来计算A车和B车碰后的共同速度.(以上两空均选填“AB”“BC”“CD”或“DE”)(2)已测得小车A 的质量m 1=0.40 kg ,小车B 的质量m 2=0.20 kg ,由以上测量结果可得,碰前总动量为______ kg·m/s ;碰后总动量为____ kg·m/s(结果保留小数点后3位).由上述实验结果得到的结论是:________________________________________________________.答案 (1)BC DE (2)0.420 0.417 A 、B 碰撞过程中,在误差允许范围内,系统动量守恒 解析 (1)小车A 碰前运动稳定时做匀速直线运动,所以选择BC 段计算A 碰前的速度;两小车碰后粘在一起仍做匀速直线运动,所以选择DE 段计算A 和B 碰后的共同速度.(2) 碰前小车A 的速度为v 0=BC t =0.105 05×0.02m/s =1.050 m/s 则碰前两小车的总动量为p =m 1v 0+0=0.40×1.050 kg·m/s =0.420 kg·m/s碰后两小车的速度为v =DE t =0.069 55×0.02m/s =0.695 m/s 则碰后两小车的总动量为p ′=(m 1+m 2)v =(0.40+0.20)×0.695 kg·m/s =0.417 kg·m/s由上述实验结果得到的结论是:A 、B 碰撞过程中,在误差允许范围内,系统动量守恒.3.(2023·福建福州市模拟)某地中学生助手设计了一个实验演示板做“探究碰撞中的不变量”的实验,主要实验步骤如下:①选用大小为120 cm ×120 cm 的白底板竖直放置,悬挂点为O ,并标上如图所示的高度刻度;②悬挂点两根等长不可伸长的细绳分别系上两个可视为质点的A 摆和B 摆,两摆相对的侧面贴上双面胶,以使两摆撞击时能合二为一,以相同速度一起向上摆;③把A 摆拉到右侧h 1的高度,释放后与静止在平衡位置的B 摆相碰.当A 、B 摆到最高点时读出摆中心对应的高度h 2;回答以下问题:(1)若A 、B 两摆的质量分别为m A 、m B ,则验证动量守恒的表达式为________(用上述物理量字母表示).(2)把A 摆拉到右侧的高度为0.8 m ,两摆撞击后一起向左摆到的高度为0.2 m ,若满足A 摆质量是B 摆质量的________倍,即可验证系统动量守恒,从而可以得出A 摆碰前初动能为碰后两摆损失机械能的________倍.答案 (1)m A h 1=(m A +m B )h 2(2)1 2解析 (1)由机械能守恒定律可得m A gh 1=12m A v 12,得碰前速度v 1=2gh 1,由(m A +m B )gh 2=12(m A +m B )v 22,得碰后速度v 2=2gh 2,根据动量守恒可知需要验证的表达式为m A h 1=(m A +m B )h 2.(2)把数据代入上述验证表达式可得m A =m B ,即若满足A 摆的质量是B 摆的质量的1倍,即可验证系统动量守恒;根据动量守恒定律有m A v 1=(m A +m B )v 2,根据能量守恒定律有12m A v 12=12(m A +m B )v 22+ΔE ,联立解得ΔE =14m A v 12,即A 摆碰前初动能为碰后两摆损失机械能的2倍.4.(2023·云南省昆明一中模拟)现利用图(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与连接打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.实验测得滑块A (包括弹簧片)的质量m 1=0.310 kg ,滑块B (包括弹簧片和遮光片)的质量m 2=0.108 kg ,遮光片的宽度d =1.00 cm ,打点计时器所用交流电的频率f =50.0 Hz.将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为Δt B =3.500 ms ,碰撞前后打出的纸带如图(b)所示.根据图(b)中所标数据,可分析推断出碰撞发生在________间, A 滑块碰撞前的速度为________ m/s ,B 滑块碰撞前的速度为________ m/s, A 滑块碰撞后的速度为________ m/s ,B 滑块碰撞后的速度为________ m/s.(结果保留三位有效数字)答案 EF 2.00 0 0.970 2.86解析 由于A 滑块与气垫导轨间的摩擦力非常小,所以除了碰撞过程,A 滑块运动过程因摩擦力产生的加速度非常小,在相同时间内相邻位移的差值也非常小,根据图(b)中所标数据,可看出只有EF间的位移相比相邻间的位移变化比较明显,故碰撞发生在EF间;A滑块碰撞前的速度为v A=x FGT =4.00×10-20.02m/s=2.00 m/s, B滑块碰撞前的速度为0,A滑块碰撞后的速度为v A′=x DET =1.94×10-20.02m/s=0.970 m/s,B滑块碰撞后的速度为v B′=dΔt B=1.00×10-23.500×10-3m/s≈2.86 m/s.5.某同学利用如图所示的装置进行“验证动量守恒定律”的实验,操作步骤如下:①在水平桌面上的适当位置固定好弹簧发射器,使其出口处切线与水平桌面相平;②在一块长平木板表面先后钉上白纸和复写纸,将该木板竖直并贴紧桌面右侧边缘.将小球a向左压缩弹簧并使其由静止释放,a球碰到木板,在白纸上留下压痕P;③将木板向右水平平移适当距离,再将小球a向左压缩弹簧到某一固定位置并由静止释放,撞到木板上,在白纸上留下压痕P2;④将半径相同的小球b放在桌面的右边缘,仍让小球a从步骤③中的释放点由静止释放,与b球相碰后,两球均撞在木板上,在白纸上留下压痕P1、P3.(1)下列说法正确的是________.A.小球a的质量一定要大于小球b的质量B.弹簧发射器的内接触面及桌面一定要光滑C.步骤②③中入射小球a的释放点位置一定相同D.把小球轻放在桌面右边缘,观察小球是否滚动来检测桌面右边缘末端是否水平(2)本实验必须测量的物理量有________.A.小球的半径rB.小球a、b的质量m1、m2C.弹簧的压缩量x1,木板距离桌子边缘的距离x2D.小球在木板上的压痕P1、P2、P3分别与P之间的竖直距离h1、h2、h3(3)用(2)中所测的物理量来验证两球碰撞过程中动量是否守恒,当满足关系式________时,则证明a、b两球碰撞过程中动量守恒.答案 (1)AD (2)BD (3)m 1h 2=m 1h 3+m 2h 1解析 (1)小球a 的质量一定要大于小球b 的质量,以防止入射球碰后反弹,选项A 正确;弹簧发射器的内接触面及桌面不一定要光滑,只要a 球到达桌边时速度相同即可,选项B 错误;步骤②③中入射小球a 的释放点位置不一定相同,但是步骤③④中入射小球a 的释放点位置一定要相同,选项C 错误;把小球轻放在桌面右边缘,观察小球是否滚动来检测桌面右边缘末端是否水平,选项D 正确.(2)小球离开桌面右边缘后做平抛运动,设其水平位移为L ,则小球做平抛运动的时间t =L v 0小球的竖直位移h =12gt 2 联立解得v 0=L g 2h碰撞前入射球a 的水平速度v 1=L g 2h 2碰撞后入射球a 的水平速度v 2=L g 2h 3碰撞后被碰球b 的水平速度v 3=Lg 2h 1 如果碰撞过程系统动量守恒,则m 1v 1=m 1v 2+m 2v 3即m 1·Lg 2h 2=m 1·L g 2h 3+m 2·L g 2h 1, 整理得m 1h 2=m 1h 3+m 2h 1 则要测量的物理量是:小球a 、b 的质量m 1、m 2和小球在木板上的压痕P 1、P 2、P 3分别与P 之间的竖直距离h 1、h 2、h 3,故选B 、D. (3)由以上分析可知当满足关系式m 1h 2=m 1h 3+m 2h 1时,则证明a 、b 两球碰撞过程中动量守恒.。

高中物理破题致胜微方法(运动学规律的灵活应用):对称法巧解运动学问题

高中物理破题致胜微方法(运动学规律的灵活应用):对称法巧解运动学问题

对称法巧解运动学问题故事引入:1928年,英国物理学家狄拉克在解自由电子相对性波动方程时,由于开平方根而得出电子的能量有正负两个解,按照通常的观念,负能解通常被舍去,但是狄拉克为了保持数学上的对称美,将这个似乎没有意义的量描述的是带正电荷的电子,也就是电子的反粒子。

正电子预言不久后就被美国的另一位物理学家安德森发现。

这种科学的对称思维,使他后来提出了完全与众不同的反物质理论。

狄拉克也因此于1933年获得诺贝尔物理学奖。

其实对称是自然界广泛存在的一种现象,它显示出了物质世界的和谐美。

具有对称性的对象其对称部分的特征完全相同,一旦确定了一部分的特征,便可推出对称部分的特征,这种解决问题的方法称为对称法。

按照利用对称的种类可分为位置分布的对称、运动轨迹的对称和物理过程的对称。

下面分别举例说明。

一、经典例题:1.在地质、地震、勘探、气象和地球物理等领域的研究中,需要精确的重力加速度g 值,g 值可由实验精确测定.近年来测g 值的一种方法叫“对称自由下落法”,它是将测g 值归于测长度和时间,以稳定的氦氖激光的波长为长度标准,用光学干涉的方法测距离,以铷原子钟或其他手段测时间,此方法能将g 值测得很准.具体做法是:将真空长直管沿竖直方向放置,自其中的O 点向上抛小球,从抛出小球至小球又落回抛出点的时间为T2;小球在运动过程中经过比O 点高H 的P 点,小球离开P 点至又回到P 点所用的时间为T1.由T1、T2和H 的值可求得g 等于( ) A. 22218H T T - B. 22214H T T - C.2218()H T T -D. 2214()H T T2. 根据对称性可以采用分段法研究匀变速直线运动使问题简单化。

3.二、练习题竖直上抛运动的对称性1. 竖直向上抛出一个物体,物体上升和下落两次痉过高度为h 处的时间间隔为t ∆,求物体抛出的初速度0v 和物体从抛出到落回原处所需的时间T 。

2.杂技演员用一只手把四只小球依次向上抛出,为了使节目能持续表演下去,该演员必须让回到手中的小球每隔一段相等的时间,再向上抛出,假如抛出的每个小球上升的最大高度都是1.25m ,则小球在手中停留的最长时间是多少?(不考虑空气阻力,g 取210m/s ,演员抛球同时即刻接球)3.一个杯子的直径为d ,高为H ,如图1所示,今有一小球在杯口沿直径方向向杯内抛出,到达杯底时的位置与抛出时的位置在同一直线上,小球与杯碰撞n 次,且是弹性碰撞,如杯壁是光滑的,求小球抛出时的初速度v 0。

河北省邢台市育才中学人教A版高中物理奥赛辅导一轮复习三 微元法 练习(附答案)$826278

河北省邢台市育才中学人教A版高中物理奥赛辅导一轮复习三  微元法   练习(附答案)$826278

高中奥林匹克物理竞赛解题方法三、微元法针对训练1.某地强风的风速为v ,设空气的密度为ρ,如果将通过横截面积为S 的风的动能全部转化为电能,则其电功率为多少?2.如图3—19所示,山高为H ,山顶A 和水平面上B 点的水平距离为s.现在修一条冰道ACB ,其中AC 为斜面,冰道光滑,物体从A 点由静止释放,用最短时间经C 到B ,不计过C 点的能量损失.问AC 和水平方向的夹角θ多大?最短时间为多少?3.如图3—21所示,在绳的C 端以速度v 匀速收绳从而拉动低处的物体M 水平前进,当绳AO 段也水平恰成α角时,物体M 的速度多大?4,如图3—22所示,质量相等的两个小球A 和B 通过轻绳绕过两个光滑的定滑轮带动C 球上升,某时刻连接C 球的两绳的夹角为θ,设A 、B 两球此时下落的速度为v ,则C 球上升的速度多大?5.质量为M 的平板小车在光滑的水平面上以v 0向左匀速运动,一质量为m 的小球从高h 处自由下落,与小车碰撞后反弹上升的高度仍为h.设M>>m ,碰撞弹力N>>g ,球与车之间的动摩擦因数为μ,则小球弹起后的水平速度可能是( ) A .gh 2 B .0 C .gh 22 D .v 0 6.半径为R 的刚性球固定在水平桌面上.有一质量为M 的圆环状均匀弹性细绳圈,原长 2πa ,a =R/2,绳圈的弹性系数为k (绳伸长s 时,绳中弹性张力为ks ).将绳圈从球的正 上方轻放到球上,并用手扶着绳圈使其保持水平,并最后停留在某个静力平衡位置.考 虑重力,忽略摩擦.(1)设平衡时弹性绳圈长2πb,b=a2,求弹性系数k;(用M、R、g表示,g为重力加速度)(2)设k=Mg/2π2R,求绳圈的最后平衡位置及长度.7.一截面呈圆形的细管被弯成大圆环,并固定在竖直平面内,在环内的环底A处有一质量为m、直径比管径略小的小球,小球上连有一根穿过环顶B处管口的轻绳,在外力F作用下小球以恒定速度v沿管壁做半径为R的匀速圆周运动,如图3—23所示.已知小球与管内壁中位于大环外侧部分的动摩擦因数为μ,而大环内侧部分的管内壁是光滑的.忽略大环内、外侧半径的差别,认为均为R.试求小球从A点运动到B点过程中F做的功W F.8.如图3—24,来自质子源的质子(初速度为零),经一加速电压为800kV的直线加速器加速,形成电流为1.0mA 的细柱形质子流.已知质子电荷e=1.60×10-19C.这束质子流每秒打到靶上的质子数为.假设分布在质子源到靶之间的加速电场是均匀的,在质子束中与质子源相距l 和4l的两处,各取一段极短的相等长度的质子流,其中质子数分别为n1和n2,则n1: n2.9.如图3—25所示,电量Q均匀分布在一个半径为R的细圆环上,求圆环轴上与环心相距为x的点电荷q所受的力的大小.10.如图3—26所示,一根均匀带电细线,总电量为Q,弯成半径为R的缺口圆环,在细线的两端处留有很小的长为△L的空隙,求圆环中心处的场强.11.如图3—27所示,两根均匀带电的半无穷长平行直导线(它们的电荷线密度为η),端点联线LN 垂直于这两直导线,如图所示.LN 的长度为2R.试求在LN 的中点O 处的电场强度.12.如图3—28所示,有一均匀带电的无穷长直导线,其电荷线密度为η.试求空间任意一点的电场强度.该点与直导线间垂直距离为r.13.如图3—29所示,半径为R 的均匀带电半球面,电荷面密度为δ,求球心O 处的电场强度.14.如图3—30所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L 的区域内,现有一个边长为a (a <L ),质量为m 的正方形闭合线框以初速v 0垂直磁场边界滑过磁场后,速度变为v (v <v 0),求:(1)线框在这过程中产生的热量Q ;(2)线框完全进入磁场后的速度v ′.15.如图3—31所示,在离水平地面h 高的平台上有一相距L 的光滑轨道,左端接有已充电的电容器,电容为C ,充电后两端电压为U 1.轨道平面处于垂直向上的磁感应强度为B 的匀强磁场中.在轨道右端放一质量为m 的金属棒,当闭合S ,棒离开轨道后电容器的两极电压变为U 2,求棒落在离平台多远的位置.16.如图3—32所示,空间有一水平方向的匀强磁场,大小为B ,一光滑导轨竖直放置,导轨上接有一电容为C 的电容器,并套一可自由滑动的金属棒,质量为m ,释放后,求金属棒的加速度a .答案1.321v S ρ 2.θ=60°)223(2hs g h + 3.)cos 1/(x v + 4.2cos /θv 5.CD 6.(1)R Mg 22)12(π+ (2)绳圈掉地上,长度为原长 7.22v m mgR πμ+ 8.6.25×1015,2:1 9.2322)(x R QqxK + 10.32R l Q K ρ∆ 11.Rk λ2 12.r k λ2 13.σπR 2 14.2),(210220v v v v v m +='- 15.g hm u u CBL 2)(21- 16.22L CB m mga +=。

高中奥林匹克物理竞赛解题方法 七 对称法 上

高中奥林匹克物理竞赛解题方法 七 对称法 上

七、对称法方法简介由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中. 应用这种对称性它不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法. 利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题.赛题精析例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A ,抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度.解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理, 效果上相当于小球从A ′点水平抛出所做的运动. 根据平抛运动的规律:⎪⎩⎪⎨⎧==2021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h 代入后可解得:hg s y g x v 2320== 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛射角θ.解析:小球的运动是斜上抛和斜下抛等三段运动组成, 若按顺序求解则相当复杂,如果视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解.物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有 ⎩⎨⎧==⎪⎩⎪⎨⎧-==0221sin cos 200y d x gt t v y t v x 落地时θθ图7—1代入可解得20202arcsin 2122sin v dg v dg ==θθ所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可.由题意作图7—3, 设顶点到中心的距离为s ,则由已知条件得 a s 33=由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为v v v 2330cos ==' 由此可知三角形收缩到中心的时间为 v a v s t 32='=此题也可以用递推法求解,读者可自己试解.例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R. 槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v .解析:在水平面参考系中建立水平方向的x 轴和y 轴.由系统的对称性可知中心或者说槽整体将仅在x 轴方向上运动。

河北省邢台市育才中学人教A版高中物理奥赛辅导一轮复习十二 类比法 练习(附答案)$826799

河北省邢台市育才中学人教A版高中物理奥赛辅导一轮复习十二 类比法  练习(附答案)$826799

十二、类比法针对训练1.宇航员站在一星球表面上的某高处,沿水平方向抛出一个小球,经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L. 若抛出时的初速度增大到2倍,则抛出点与落地点之间的距离为L 3. 已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G . 求该星球的质量M.2.如图12—9所示,有一半径为R 的接地导体球,在距离球心a 处放有一点电荷Q ,由于静电感应,球的表面出现感应电荷,求点电荷Q 和导体球之间的相互作用力.3.如图12—10所示,如果导体球不接地,且与外界绝缘,带电量为q ,则点电荷Q 和导体球之间的作用力大小是多少?4.已知,F C C F C C C C F C C C C μμμ3,2,110876549321==========,试求如图12—11所示的电路中,A 、B 间的等效电容C AB .5.电容器网络如图12—12所示,各电容器以F μ为单位的电容量数值已在图中标出,试求A 、B 两点间的等效电容C AB .6.许多电容量都为C 的电容器组成一个多级网络,如图12—13所示.(1)问在最后一级右边的电容器上并联一个多大的电容C ',可使整个网络的总电容也等于C ?(2)如不加C ',但无限增加级数,问整个网 路的总电容是多少?(3)当电路中的级数足够多时,如果在最后一级右边的电容器上并联一个任意大小的电容x C ,问整个网路的总电容是多少?7.将焦距为f 的一块透镜沿其表面的垂直方向切割成两部分.如图12—14所示,把两块半透镜移开一小段距离,如果在透镜的一方距离f l >处放置一个单色点光源,问在透镜的另一方距H 处的屏幕上,将出现多少条干涉条纹? 8.将焦距cm f 20=的凸薄透镜从正中切去宽度为a 的小部分,如图12—15所示,再将剩下两半粘在一起,构成一个“粘合透镜”,见图12—15甲中D=2cm. 在粘合透镜一侧的中心轴线上距镜20cm 处,置一波长m 6105.0-⨯=λ的单色点光源S ,另一侧垂直于中心轴线处放置屏幕,见图12—15—乙. 屏幕上出现干涉条纹,条纹间距.2.0cm x =∆试问:(1)切去部分的宽度a 是多少?(2)为获得最多的干涉条纹,屏幕应离透镜多远?十二、类比法1.223/32Gt LR 2.2222)(R a aR kQ - 3.22222)()(R a aR kQ a q Q a R kQ --+ 4.F C AB μ9.2= 5.F C AB μ6=6.(1)C C 215-=' (2)C C '=总 (3)C C 215-=' 7.])([)(2tf f t H t H L N --+∆=λ(注:将“两块半透镜移开一小段距离”后加“L ∆”.在“f t > 处放置一个”与“单色点光源”之间加“波长为λ的”.)8.(1)m a 3105.0-⨯= (2)m d 4=。

高中物理大一轮复习第七章物理思想方法回放七讲义课件大纲人教.ppt

高中物理大一轮复习第七章物理思想方法回放七讲义课件大纲人教.ppt

=02.4 m/s=5 m/s.
在t=0时刻,x1=1 m处的质点正处于波峰位置,Q点位于x2
=5
m处,因此要使Q点第一次出现波峰,所需时间t=
s v

5-1 5
s=0.8 s,故选A.
答案 A
பைடு நூலகம்
当n=0时,v2最小,有 v2=14·Δλt=14×00..254 m/s=0.12 m/s 综上所述,该波传播速度的最小值为0.12 m/s.
答案 0.12 m/s
例4 一列简谐横波在t=0时的波形图如图3所示,传播方向
自左向右,已知t=1.1 s时,P点出现第三次波峰,则在Q点
第一次出现波峰需经过
在波的传播问题中,由于不确定的因素造成的多解问题和 由于条件的限制而造成的极值问题,都需要借助数学知识 来解决.因此,遇到该类问题时,应加强数理结合思想的 应用.
例3 一列横波沿x轴传播,如图2所示,实线为某一时刻的 波形图,经过0.5 s后其波形如虚线所示,求该波传播速度 的最小值.
图2
解析 若该列横波沿x轴正方向传播,则在Δt时间内传播的
()
A.0.8 s C.0.5 s
图3
B.1.2 s D.1.0 s
解析 由题图可知,波长为2 m,由“上下坡法”可知P点
在t=0时刻的振动方向向下,从此时刻起到第一次出现波峰
P点需做
3 4
次全振动,又做了两次全振动才第三次出现波
峰,共用时间114T=1.1 s,所以,周期T=0.4 s,波速v=Tλ
60°=
BC 2
=1 m,故小球发生微小振动的周期为:T=2π l′g =2 s.
答案 2 s
例 2 一物体在某行星表面受到的万有引力是它在地球表面 受到的万有引力的14.在地球上走时准确的摆钟搬到此行星上

2024年河北省中考数学一轮复习课件:图形的对称、平移与旋转

2024年河北省中考数学一轮复习课件:图形的对称、平移与旋转
方向平移至△O′A′B′的位置,此时点 A′的横坐标为 3,则点 B′的坐标为
( A

A.(4,
C.(4,3)

B.(3,3)
D.(3,2)
题型解法
对应练习
练习一 [2023·衡水桃城区三模]如图,在
ABCD中,AD>AB,∠ABC 为
锐角,将△ABC 沿对角线AC 边平移,得到△A′B′C′,连接 AB′和C′D,若
求解.
折叠与四 与平行四边形、矩形、菱形、正方形结合,往往利用其特殊性质解题;
边形结合 若为一般四边形,则可通过构造特殊的三角形或四边形求解.
最短路线
根据轴对称性,把要求的某些线段集中在一起,根据“两点之间,线段
最短”来解决.
对应练习
练习一 [2023·廊坊安次区二模]如图 1 为一张正三角形纸片 ABC,其中
D 是 BC 边上一点,线段 DA 绕点 D 顺时针旋转 90°得到 DE,连接 AE,若 F
是 AE 的中点.
(1)当点 F 在 AC 上时,BD=______;
(2)CF 的最小值为 ______.
题型解法
等腰直角
三角形旋
转模型
等边三角
形旋转模

如图,在△ABC 中,∠ACB=90°,AC=
BC,P 为△ABC 内一点,将△APC 绕点
B

练习二 [2023·邢台三中模拟]如图,有八个点将圆周八等分,其中连接相
邻的两个等分点,得到四条相等的弦(实线表示),若再连接以等分点为端点的
一条弦,使所得的整个图形是轴对称图形,则这条弦是 ( A )
A. ①或③
B. ①或②
C. ②或④
D. ③或④

2021届一轮复习 物理解题方法导练 对称法1(含解析)

2021届一轮复习 物理解题方法导练 对称法1(含解析)

物理解题方法导练:对称法1.如图所示,在竖直平面内固定个半径为R的绝缘圆环,有两个可视为点电荷的相同的带负电的小球A和B套在圆环上,其中小球A可沿圆环无摩擦的滑动,小球B固定在圆环上和圆心O的连线与水平方向的夹角为45°.现将小球A由静止释放,则下列说法中正确的有()A.小球A运动到圆环最低点Q的过程中电势能先增大后减小B.小球A速度最大处位于Q点的左端C.小球A恰好可以运动到P点D.小球到达圆环最低点Q时的速度大小为2gR2.如图所示,弹簧下面挂一质量为m的物体,物体在竖直方向上做振幅为A的简谐运动,当物体振动到最高点时,弹簧正好处于原长,弹簧在弹性限度内,则物体在振动过程中A.弹簧的弹性势能和物体动能总和不变B.物体在最低点时的加速度大小应为2gC.物体在最低点时所受弹簧的弹力大小应为mgD.弹簧的最大弹性势能等于2mgA3.如图所示,x轴垂直穿过一个均匀分布着正电荷的圆环。

且经过圆环的圆心O。

关于x轴上的电场强度和电势,下列说法确的是()A.O点的电势一定为零B .O 点的电场强度一定为零C .从O 点沿x 轴正方向,电场强度一直减小,电势一直升高D .从O 点沿x 轴正方向,电场强度一直增大,电势一直降低4.悬挂在竖直方向上的弹簧振子,周期T=2s ,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是( )A .t=1.25s 时,振子的加速度为正,速度也为正B .t=1.7s 时,振子的加速度为负,速度也为负C .t=1.0s 时,振子的速度为零,加速度为负的最大值D .t=1.5s 时,振子的速度为零,加速度为负的最大值5.如图,一束单色光射入一玻璃球体,入射角为60°.己知光线在玻璃球内经一次反射后,再次折射回到空气中时与入射光线平行.此玻璃的折射率为A .B .1.5C .D .26.如图所示,a 、b 、c 为三根与纸面垂直的固定长直导线,其截面位于等边三角形的三个顶点上,bc 连线沿水平方向,导线中通有恒定电流,且2a b c I I I ==,电流方向如图中所示。

河北省邢台市2024高三冲刺(高考物理)人教版质量检测(备考卷)完整试卷

河北省邢台市2024高三冲刺(高考物理)人教版质量检测(备考卷)完整试卷

河北省邢台市2024高三冲刺(高考物理)人教版质量检测(备考卷)完整试卷一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题在物理学发展的进程中,人们通过对某些重要物理实验的深入观察和研究,获得正确的理论认识。

下列图示的实验规律对应的说法正确的是( )A.图甲是用多种频率的光进行光电效应实验,所得到的光电流与所加电压的关系,a光的频率最大B.图乙是卢瑟福进行α粒子散射图景,卢瑟福通过实验分析数据后提出核式结构模型C.图丙是黑体反射电磁波的强度与波长的关系,温度升高,所有反射的电磁波的强度都随温度升高而增大D.图丁是衰变过程随时间的变化规律,说明每个半衰期发生衰变的原子核数量相同第(2)题如图所示,一直角支架固定在竖直面内,一轻质细绳a的一端A点挂一灯笼,另一端固定于支架水平部分的B点,另一轻质细绳b一端固定于支架水平部分的C点,另一端连接一轻质光滑滑钩,滑钩钩住轻质细绳a中间部分的O点,系统处于平衡状态,细绳b与竖直方向的夹角为。

不计空气对灯笼的影响,在细绳a的端点从B点缓慢移动到D点过程中,下列说法正确的是( )A.细绳a上的拉力逐渐变大B.细绳a上的拉力先变大再变小C.夹角α不变D.细绳b上的拉力逐渐变大第(3)题一个物体在10N合外力的作用下,产生了5m/s2的加速度,若使该物体产生8 m/s2的加速度,所需合外力的大小是( )A.12N B.14N C.16N D.18N第(4)题如图所示,质量为的足够长的木板静止在粗糙水平地面上,在长木板上方右侧有质量为的物块,竖直墙面在长木板的右端,物块与木板、木板与地面间的动摩擦因数均为,某时刻对木板施加水平向右、大小的恒定拉力,作用1s后撤去,物块和木板始终未与竖直墙面碰撞,重力加速度,设最大静摩擦力等于滑动摩擦力。

下列说法正确的是( )A.外力F做的功为4JB.整个运动过程用时C.整个运动过程摩擦生热8JD.初始时,木板与墙的距离至少为第(5)题一定质量的理想气体从状态A缓慢经过状态B、C、D再回到状态A,其压强p与体积V的关系图像如图所示,下列说法正确的是( )A.A→B过程中气体对外界做的功等于吸收的热量B.A→B过程中气体对外界做的功小于吸收的热量C.B→C过程中气体分子在单位时间内对单位面积容器壁的平均碰撞次数不断增加D.B→C过程中气体分子在单位时间内对单位面积容器壁的平均碰撞次数不变第(6)题如图所示,(甲)→(乙)→(丙)→(丁)→(甲)过程是交流发电机发电的示意图,线圈的ab边连在金属滑环K上,cd边连在金属滑环L上,用导体制成的两个电刷分别压在两个滑环上,线圈在匀速转动时可以通过滑环和电刷保持与外电路连接。

2023届高考物理一轮复习知识点精讲与2022高考题模考题训练专题130对称法(解析版)

2023届高考物理一轮复习知识点精讲与2022高考题模考题训练专题130对称法(解析版)
故粒子在 场中时间
粒子在 场中时间
(3)如图所示,由粒子运行的周期性以及与板碰撞遵循反射定律,有如下结果:
,( )或 ,( )
4.(2022广东汕头模拟)如图所示,PQ、MN是相互平行、间距为L的长直边界,在两边界外侧都存在匀强磁场,方向均垂直于纸面向内,右侧磁场的磁感应强度为B。一质量为m、电荷量为 的带电粒子从MN边界的O点以大小为 的初速度垂直于边界沿纸面射入右侧磁场区,一段时间后粒子再次经过O点,这过程中粒子有两次进入左侧磁场区运动。不计粒子的重力。
A.相邻位置运动员重心的速度变化相同
B.运动员在A、D位置时重心的速度相同
C.运动员从A到B和从C到D的时间相同
D.运动员重心位置的最高点位于B和C中间
【参考答案】A
【解题思路】根据题述,每次曝光的时间间隔T相等,运动员做斜抛运动,只受重力作用,由牛顿第二定律,可知斜抛运动的加速度为重力加速度g,由g= ,相邻位置,△t=T,相邻位置运动员重心的速度变化△v=gT,即相邻位置运动员重心的速度变化△v相同,选项A正确;AD位置处于同样高度,由斜抛运动的对称性可知,运动员在A、D位置时重心的速度大小相等,方向不同,选项B错误;由题图可知C位置是斜抛运动的最高点,所以运动员从A到B的时间小于从C到D的时间,选项CD错误。
A. B.
C. D.
【参考答案】AD
【名师解析】
带电粒子从C点射出磁场,轨迹如图所示
由几何关系得
解得
带电粒子从D点射出磁场,轨迹如图所示
由几何关系得 是菱形,所以粒子的轨迹半径
所以粒子在磁场中运动的轨迹半径满足
由洛伦兹力提供向心力得
解得从A点射出的粒子的比荷满足
故选AD。
2.(2022河北唐山三模)如图为控制高能粒子在不同位置发生正碰的装置。关于y轴对称间距为 的直线边界 和 之间有两个有界匀强磁场。两磁场的边界 在x轴上方,与x轴距离h可调。 下方磁场垂直纸面向里, 上方磁场垂直纸面向外,磁感应强度均为B。高速正、负电子分别从 和 磁场边界上沿x轴以相同速率同时进入磁场。调节电子速率和h,控制正负电子在y轴不同位置发生正碰,碰撞时速度与y轴垂直。已知电子质量为m、电荷量大小为e、不计粒子间的相互作用力和重力。求:

高中物理竞赛试题解题方法:对称法2(2021年整理)

高中物理竞赛试题解题方法:对称法2(2021年整理)

高中物理竞赛试题解题方法:对称法2(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中物理竞赛试题解题方法:对称法2(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中物理竞赛试题解题方法:对称法2(word版可编辑修改)的全部内容。

高中物理竞赛试题解题方法:对称法例8:一无限长均匀带电细线弯成如图7—8所示的平面图形,其中AB 是半径为R 的半圆孤,AA ′平行于BB ′,试求圆心O 处的电场强度.解析:如图7-8-甲所示,左上14圆弧内的线元△L 1与右下直线上的线元△L 3具有角元△θ对称关系。

△L 1电荷与△L 3电荷在O 点的场强△E 1与△E 3方向相反,若它们的大小也相等,则左上与右下线元电场强度成对抵消,可得圆心处场强为零.设电荷线密度为常量λ,因△θ很小,△L 1电荷与△L 3电荷可看做点电荷,其带电量 λθλ321L q R q ∆=∆=当θθθλθcos cos ,2⋅∆=∆R q 有很小时又因为 ,cos cos ,2222222211R R K R R Kr q K E R q K E θλθθθλ∆=⋅∆==∆=∆ 与△E 1的大小相同,且△E 1与△E 2方向相反,所以圆心O 处的电场强度为零.例9:如图7—9所示,半径为R 的半圆形绝缘线上、下14圆弧上分别均匀带电+q 和-q,求圆心处的场强。

解析:因圆弧均匀带电,在圆弧上任取一个微小线元,由于带电线元很小,可以看成点电荷。

用点电荷场强公式表示它在圆心处的分场强,再应用叠加原理计算出合场强。

由对称性分别求出合场强的方向再求出其值. 在带正电的圆孤上取一微小线元,由于圆弧均匀带电,因而线密度2q Rλπ=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京天梯志鸿教育科技有限责任公司七、对称法
针对训练
1.从距地面高19.6m处的A点,以初速度为5.0m/s沿水平方向
投出一小球. 在距A点5.0m处有一光滑墙,小球与墙发生弹性碰撞(即入射角等于反射角,入射速率等于反射率),弹回后掉到地面B处. 求:B点离墙的水平距离为多少?
2.如图7—17所示,在边长为a的正方形四个顶点上分别固定电量均为Q的四个点电荷,在对角线交点上放一个质量为m,电量为q (与Q同号)的自由点电荷. 若将q沿着对角线移动一个小的距离,它是否会做周期性振动?若会,其周期是多少?
3.如图7—18所示是一个由电阻丝构成的平面正方形无穷网络,当各小段电阻丝的电阻均为R时,A、B两点之间的等效电阻为R/2,今将A,B之间的一小段电阻丝换成电阻为R′的另一端电阻丝,试
问调换后A,B之间的等效电阻是多少?
4.有一无限大平面导体网络,它由大小相同的正六角形网眼组成,如图7—19所示,所有六边形每边的电阻均为R0,求a,b两结
点间的等效电阻.
5.如图7—20所示,某电路具有8个节点,每两个节点之间都连有一个阻值为2Ω的电阻,在此电路的任意两个节点之间加上10V电压,求电路的总电流,各支路的电流以及电阻上消耗的总功率.
6.电路如图7—21所示,每两个节点间电阻的阻值为R,求A、B间总电阻R AB.
7.电路如图7—22所示,已知电阻阻值均为15Ω,求R AC,R AB,R AO各为多少欧?
8.将200个电阻连成如图7—23所示的电路,图中各P点是各支路中连接两个电阻的导线上的点,所有导线的电阻都可忽略. 现将一电动势为ε,内阻为r的电源接到任意两个P点处,然后将任一个没接电源的支路在P点处切断,发现流过电源
的电流与没切断前一样,则这200个电阻R1,R2,…,R100,r1,r2,
…,r 100应有下列的普遍关系:
,100
10033
2211r R r R r R r R ==== 这时图中 AB 导线与CD 导线之间的电压等于 .
9.电路如图7—24所示的电阻丝网络中,每一小段电阻丝的电阻
值都为R ,试求图中A 、B 两点间的等效电阻R AB .
10.如图7—25所示的四面体框架由电阻同为R 的6根电阻丝联结而成,求任意两个
顶点A 、B 间的等效电阻R AB .
11.一匀质细导线圆环,总电阻为R ,半径为a ,圆环内充满方向垂直于环面的匀强磁
场,磁场以速率K 均匀的随时间增强,环上的A 、D 、C 、三点位置对称. 电流计G 连接A 、C 两点,如图7—26所示. 若电流计内阻为R G ,求通过电流计的电流大小.
七、对称法
参考答案
1.5.0m 2.会做周期性振动,周期为
KQq
ma 23π
3.
R R R R R AB
'
+'=
4.0R R
ab
= 5.A I 40=总 节点1~8之间支路电流I 1=5A ;其他支路电流2.5A
总功率400W 6.R AB =2R 7.
Ω=Ω=Ω=8
75,15,875AO AB AC
R R R 8.0 9.
R R AB
3016= 10.2R R AB = 11.R
Rc KR a 392+π。

相关文档
最新文档