5 测量误差及其处理的基本知识
第5章测量误差基本知识讲课教案
一.产生测量误差的原因
产生测量误差的三大因素: 仪器原因 仪器精度的局限,轴系残余误差,等。 人的原因 判断力和分辨率的限制,经验,等。 外界影响 气象因素(温度变化,风,大气折光)
有关名词: 观测条件: 上述三大因素总称为观测条件 等精度观测:在上述条件基本相同的情况下进行的各 次观测,称为等精度观测。
19
区别错误与误差的阀值
随机变量X在区间(x1x2) 之间的概率为
P(x1 X x2)
x2 x1
f (x)dx
x1, x2 (,)
f (x)dx 1 则函数 f ( x) 是连续型随 机变量X的分布密度函数
5
如何处理含有偶然误差的数据?
例如: 对同一量观测了n次
观测值为 l1,l2,l3,….ln
如何取值?
如何评价数据的精度?
6
三.偶然误差的特性
1.偶然误差的定义:
设某一量的真值为X,对该量进行了n次观测,
得n个观测值 l1,l2, ,ln,则产生了n个真误 差 1,2,,n:
i Xli
(5-1-1)
2.4
14
概率
如果函数 f ( x)是连续型 随机变量X的分布密度函数
P(x1 X x2)
x2 x1
f (x)dx
x1, x2 (,)
பைடு நூலகம்
f (x)dx 1
15
正态分布
f (x)
1
e
(
x ) 2 2
2
2
x
0
若 0, 1
则 f (x)
1
(x)2
e 2
2
16
两组观测值中误差图形的比较:
第五章 测量误差的基本知识
在测量工作中,如某个误差超过了容许误差,则相应 观测值应舍去重测。
3.相对误差
绝对误差值与观测值之比,称为相对误差。在某 些测量工作中,有时用中误差还不能完全反映测量精度, 例如测量某两段距离,一段长200m,另一段长100m, 它们的测量中误差均为±0.2m,为此用观测值的中误差 与观测值之比,并将其分子化为1,即用1/K表示,称为 相对误差。
180°00ˊ00"
0
0
179°59ˊ57"
-3
9
180°00ˊ01"
+1
1
24
130
m2
2 3.6 10
两组观测值的误差绝对值相等 m1 < m2,第一组的观测成果的精度高于第二组观测成
果的精度
2.容许误差
容许误差又称极限误差。根据误差理论及实践证明, 在大量同精度观测的一组误差中,绝对值大于两倍中误差 的偶然误差,其出现的可能性约为5%;大于三倍中误差 的偶然误差,其出现的可能性仅有3‰,且认为是不大可 能出现的。因此一般取三倍中误差作为偶然误差的极限误 差。
全微分
dZ Kdx
得中误差式 mZ K 2mx2 Kmx
例:量得 1:1000 地形图上两点间长度l =168.5mm0.2mm,
计算该两点实地距离S及其中误差ms: 解:列函数式 S 1000 l
求全微分 dS 1000dl
mS 1000ml 1000 0.2 200mm 0.2m
测量误差=观测值-真值
观测误差来源于仪器误差、人的感官能力和外界环境 (如温度、湿度、风力、大折光等)的影响,这三方面的 客观条件统称观测条件。
测量误差及其处理的基本知识
第五章 测量误差及其处理的基本知识1、测量误差的来源有哪些?什么是等精度测量?答:测量误差的来源有三个方面:测量仪器的精度,观测者技术水平,外界条件的影响。
该三个方面条件相同的观测称为等精度观测。
2、什么是系统误差?什么是偶然误差?它们的影响是否可以消除?答:系统误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均相同,或按一定规律变化的误差。
偶然误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均不固定,或看上去没有一定规律的误差。
系统误差的影响采取恰当的方法可以消除;偶然误差是必然发生的,不能消除,只能削弱偶然误差的影响。
3、举出水准测量、角度测量及距离测量中哪些属于系统误差?答:水准仪的i 角误差,距离测量时钢尺的尺长误差,经纬仪的视准轴误差、横轴误差和竖盘指标差等都属于系统误差。
4、评定测量精度的指标是什么?何种情况下用相对误差评定测量精度?答:测量中最常用的评定精度的指标是中误差,其绝对值越大精度越低。
当误差大小与被量测量的大小之间存在比例关系时,采用相对误差作为衡量观测值精度的标准。
例如距离丈量,采用往返丈量的相对误差作为评定精度的指标。
所谓相对中误差(简称相对误差)就是中误差之绝对值(设为|m|)与观测值(设为D )之比,并将分子化为1表示K =||/1||m D D m = 。
5、观测值中误差如何计算?答:设在相同条件下对某量进行了n 次观测,得一组观测值L 1、L 2、……Ln ,x 为观测值的算术平均值, i v 表示观测值改正数,即11L x v -=22L x v -=......n n L x v -=则中误差 []1-±=n vv m6、算术平均值及其中误差如何计算?答:设对某量进行n 次等精度观测,观测值为i L (i =1、2……n ),其算术平均值为x : []nL n L L L x n =+++=......21 ; 算术平均值中误差nm m x ±= ,其中m 为观测值的中误差。
测量学第5章测量误差的基本知识
之差称为真误差,用Δ 表示。设三角形内角和的观测值为li,真值为X,则
三角形的真误差可由下式求得
用式(5.1)算得358个三角形内角和的真误差,现将358个真误差按3″为一 区间,并按绝对值大小进行排列,按误差的正负号分别统计出在各区间的误
差个数k,并将k除以总个数n(本例n=358)误差来看,其误差的出现在数
值大小和符号上没有规律性,但观察大量的偶然误差就会发现其存在着一定 的统计规律性,并且误差的个数越多这种规律性就越明显。下面以一个测量
实例来分析偶然误差的特性。
某测区在相同的观测条件下观测了358个三角形的内角,由于观测值存在误 差,故三角形内角之和不等于理论值180°(也称真值)。观测值与理论值
值(有界性);
②绝对值较小的误差出现的概率大,绝对值大的误差出现的概率小(单峰性); ③绝对值相等的正、负误差出现的概率大致相等(对称性);
④当观测次数无限增加时,偶然误差算术平均值的极限为零(补偿性)。即
式中,“[]”为总和号,即
为了更直观地表达偶然误差的分布情况,还可以用图示形式描述误差分布, 图5.1就是按表5.1的数据绘制的。其中以横坐标表示误差正负与大小,纵坐
1)仪器及工具由于测量仪器制造和仪器校正不完善,都会使测量结果产生测
量误差。 2)观测者由于观测者的技术水平和感觉器官鉴别能力的限制,使得在安置仪
器、瞄准目标及读数等方面都会产生误差。
3)外界条件观测过程所处的外界条件,如温度、湿度、风力、阳光照射等因 素会给观测结果造成影响,而且这些因素随时发生变化,必然会给观测值带
第5章 测量误差的基本知识
1.观测误差
测量误差的基本知识
§5-1 概述
在各项测量工作中,对同一个量进行多次重复的观测 其结果是不一致的;对若干个量进行观测,如果知道 这几个量所构成的某个函数应等于某个理论值,而实 际上用观测值计算的函数值与理论值不相符(如三角 形的内角和)。这就是存在观测误差的原因。
2.产生观测误差的原因
例3:水平角观测限差的制定
水平角观测的精度与其误差的综合影响有关,对于 J6光学经纬仪来说,设计时考虑了有关误差的影响, 保证室外一测回的方向中误差为±6″。实际上,顾 及到仪器使用期间轴系的磨损及其它不利因素的影 响,设计精度一般小于±6″,新出厂的仪器,其野 外一测回的方向中误差小于±6″,在精度上有所富 裕。
Δ2 0 1 49 4 1 1 64 0 9 1 130
0 -4 +3 +2 -3 24
+1 +8 0 +3 -1 24
2
中误差Biblioteka m1 2 2 .7 n
m
2
n
3 .6
1 2
n
2.4
正态分布
1 f ( x) e 2 x 0 ( x )2 2 2
1 1
√2π m 1 √2π m 2
y = f (Δ )
f 1 (Δ ) f 2 (Δ )
若 0, 1 1 则f ( x) e 2
( x) 2
2
-
-m1
+m1 +
x =Δ
m2
m2
两组观测值中误差图形的比较:
m1=2.7 m2=3.6
m1较小, 误差分布比较集中,观测值精度较高; m2较大,误差分布比较离散,观测值精度较低。
5 测量误差的基本知识
l 2r 2 1.465 9.205m
ml 2 mr=2 2 = 4(mm) l 9.205m 4(mm)
例3:Z=X+Y,Y=2X, 试根据X、Y的 中误差计算函数Z的中误差。
m
2 z
m
2 x
m
2 y
解1: m
m
y 2 z
2m
小 结
一、已知真值X,则真误差 中误差 m
i li X
[ ] n
二、真值不知,则
x l n , vi l i x
中误差
[vv] m n 1
5.5 观测值函数的中误差
1.和差函数 z x1 x2 xn
m
的中误差为
2
m m
2 1
2 2
mn
2.倍数函数 z k x 的中误差
m
k mx z
3.线性函数 z k 1 x1 k 2 x2 k n xn 的中误差为
M z ( k1m1 ) ( k 2 m 2 ) ...... ( k n m n )
5.1.3
粗差
由于观测者或记录者疏忽大意造成,如测错目标、读 错大数、记错读数等.观测结果中不允许粗差的存在。
小测试:
下列表述中的误差不属于偶然误差的是 A.角度测量时,秒值的估读误差 B.水准测量中视线未精平引起的读数误差 C.角度测量时不同测回瞄准同一目标的照准误差 D.丈量距离时的估读误差 。
x 2 x
5m
z 3 x 解 2: mz 3mx
考虑哪种解法正确,为什么?
小测试:
有函数z1 = x1 + x2,z2 = 2x3,若mx1 = mx2 = mx3 = m,且x1,x2,x3独立,则 A.mz1>mz2 C.mz1= mz2 B.mz1<mz2 D.不确定
第5章 误差基本知识
例如:
水准仪的视准轴与水准轴不平行,则测量结果中含有i 角 误差或交叉误差。
水准尺的分划不均匀,必然产生水准尺的分划误差。
3
2、人的原因
观测者感官鉴别能力有一定的局限性。观测者的习惯 因素、工作态度、技术熟练程度等也会给观测者成果带来 不同程度的影响。
3、外界条件
例如:外界环境如温度、湿度、风力、大气折光等因素 的变化,均使观测结果产生误差。 例如:温度变化使钢尺产生伸缩阳光曝晒使水准气泡偏 移,大气折光使望远镜的瞄准产生偏差,风力过大使仪器安置 不稳定等。 人、仪器和外界环境通常称为观测条件; 观测条件相同的各次观测称为等精度观测; 观测条件不相同的各次观测称为不等精度观测。
⑤ 随着 n 的增大,m 将趋近于σ 。
17
必须指出: 同精度观测值对应着同一个误差分布,即对应着同一个标 准差,而标准差的估计值即为中误差。 同精度观测值具有相同的中误差。 例3: 设对某个三角形用两种不同的精度分别对它进行了10次 观测,求得每次观测所得的三角形内角和的真误差为
第一组: +3″, -2″, -4″,+2″,0″,-4″,+3″, +2″, -3″, -1″; 第二组: 0″, -1″, -7″,+2″,+1″,+1″,- 8″, 0″, +3″, -1″.
2
n
lim
n
n
13
•
从5-3式可以看出正态分布具有前述的偶然误差特性。即:
1.f(△)是偶函数。即绝对值相等的正误差与负误差求得 的f(△)相等,所以曲线对称于纵轴。这就是偶然误差的第三 特性。 • 2.△愈小,f(△)愈大。当△=0时,f(△)有最大值; 反之, △愈大,f(△)愈小。当n→±∞时,f(△) →0,这就是偶然误 差的第一和第二特性。 • 3.如果求f(△)二阶导数并令其等于零,可以求得曲线拐 点横坐标: △拐=± • 如果求f(△)在区间± 的积分,则误差出现在区间内 的相对次数是某个定值 ,所以当 愈小时,曲线将愈陡峭, 即误差分布比较密集;当 愈大时,曲线将愈平缓,即误差 分布比较分散。由此可见,参数 的值表征了误差扩散的特 征。
第五章 测量误差的基本知识
第七章测量误差基本知识内容:了解测量误差来源及产生的原因;掌握系统误差和偶然误差的特点及其处理方法;理解精度评定的指标(中误差、相对误差、容许误差)的概念;了解误差传播定律的应用。
重点:系统误差和偶然误差的特点及其处理方法。
难点:中误差、相对误差、容许误差的概念;误差传播定律的应用。
§ 5.1 测量误差的概念测量误差按其对测量结果影响的性质,可分为系统误差和偶然误差。
一、系统误差 (system error)1、定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。
2、特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。
二、偶然误差 (accident error)1、定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。
但具有一定的统计规律。
2、特点:(1)具有一定的范围。
(2)绝对值小的误差出现概率大。
(3)绝对值相等的正、负误差出现的概率相同。
(4)数学期限望等于零。
即:误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。
此外,在测量工作中还要注意避免粗差 (gross error) (即:错误)的出现。
偶然误差分布频率直方图§ 5.2 衡量精度的指标测量上常见的精度指标有:中误差、相对误差、极限误差。
一、中误差方差:——某量的真误差, [] ——求和符号。
规律:标准差估值(中误差 m )绝对值愈小,观测精度愈高。
在测量中,n为有限值,计算中误差 m 的方法,有:1、用真误差( true error )来确定中误差——适用于观测量真值已知时。
真误差Δ——观测值与其真值之差,有:标准差中误差(标准差估值), n 为观测值个数。
[ 例题 ] :对 10 个三角形的内角进行了观测,根据观测值中的偶然误差(三角形的角度闭合差,即真误差),计算其中误差。
《测量学》第05章 测量误差的基本知识
5.1 测量误差概述 5.2 衡量精度的标准 5.3 误差传播定律 5.4 算术平均值及其中误差 5.5 加权平均值及其中误差
5.1 测量误差概述
测量实践中可以发现, 测量实践中可以发现,测量结果 不可避免的存在误差 比如: 存在误差, 不可避免的存在误差,比如: 1.对同一量的多次观测值不相同; 对同一量的多次观测值不相同; 对同一量的多次观测值不相同 2.观测值与理论值存在差异。 观测值与理论值存在差异。 观测值与理论值存在差异
5.3 误差传播定律
阐述观测值中误差与观测值函数的中误 差之间关系的定律,称为误差传播定律 误差传播定律。 差之间关系的定律,称为误差传播定律。 一、观测值的函数 1.和差函数 2.倍函数 3.线性函数 4.-般函数
Z = x1 + x 2 + L + x n
Z = mx
Z = k1 x1 + k 2 x 2 + L + k n x n
mZ = ± (
∂f 2 2 ∂f ∂f 2 2 ) m1 + ( ) 2 m2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +( ) 2 mn ∂x1 ∂x2 ∂xn
5.4 算术平均值及观测值的中误差
一、求最或是值
设在相同的观测条件下对未知量观测了n次 设在相同的观测条件下对未知量观测了 次 , 观测值为l 中误差为m 观测值为 1、l2……ln,中误差为 1、m2、…mn,则 其算术平均值(最或然值、似真值) 其算术平均值(最或然值、似真值)L 为:
二、研究测量误差的目的和意义
分析测量误差产生的原因及其性质。 分析测量误差产生的原因及其性质。 确定未知量的最可靠值及其精度。 确定未知量的最可靠值及其精度。 正确评价观测成果的精度。 正确评价观测成果的精度。
测量误差的基本知识
§5.5误差传播定律的应用
一、水准测量的误差分析
每站的高差为:h = a - b ;m读≈ ±3mm
一站的高差中误差:m站 =
≈ ±4mm
线路n站,则总高差:
取3倍中误差为限差,则普通水准路线的容许误 差为 :
二、水平角观测的误差分析
用DJ6经纬仪进行测回法观测水平角,那么用盘 左盘右观测同一方向的中误差为±6 ″,
1、倍数函数:Z=kx 中误差:mz=kmx
2、和差函数 :Z=x1±x2±…±xn 中误差:mz m12 m22 ... mn2
3、线形函数 : Z=k1x1±k2x2±…±knxn 中误差:mz (k1)2 m12 (k2 )2 m22 ... (k n)2 mn2
加权平均值的中误差: M0 = = ±3.2mm
一、一般函数的中误差
设Z=f(x1,x2,…,xn),其中x1,x2,…,xn属于独立自 变量(如直接观测值),他们的中误差分别为 m1,m2,…,mn则函数Z的中误差为 :
mz
(
f x1
)
2
m12
f (
x2
) 2 m22
f ... (
xn
) 2 mn2
二、特殊函数的中误差
小结
• 正确列出函数式; • 检查观测值是否独立; • 求偏微分并代入观测值确定系数; • 套用公式求出中误差。
思考题:一个边长为l的正方形,若测量一 边中误差为ml=±1cm,求周长的中误差? 若四边都测量,且测量精度相同,均为ml, 则周长中误差是多少?
§5.4等精度直接观测值
1.算术平均值原理 假设对某量X 进行了n次等精度的独立观测,得
5.偶然误差的特性
第五章测量误差的基本知识
mC
试求 中误差
5.3等精度直接观测量的最可靠值及其中 误差
▪ 当观测次数n趋于无穷大时,算术平均值趋 于未知量的真值。当n为有限值时,通常取 算术平均值做为最可靠值。
▪ 利用观测值的改正数vi计算中误差:
m [vv] (n 1)
▪ 算术平均值中误差:
M m [vv] n n(n 1)
例:对某直线丈量了6次,丈量结果如表,求算术
▪ 4相同的观测条件下,一测站高差的中误差为 _______。
▪ 5衡量观测值精度的指标是_____、_______和 ______。
▪ 6对某目标进行n次等精度观测,某算术平均值的中 误差是观测值中误差的______倍。
▪ 7在等精度观测中,对某一角度重复观测多次,观测 值之间互有差异,其观测精度是______的。
第五章 测量误差的基本知识
第五章 测量误差基本知识
5.1 测量误差与精度 5.2误差传播定律 5.3等精度直接观测量的最可靠值及其中误 差 5.4非等精度直接观测值的最可靠值及其中 误差
第五章 测量误差基本知识
▪ 主要内容:测量误差的概念、来源、分类 与处理方法;精度概念及评定标准;误差 传播定律;观测值中误差计算;直接观测 值的最可靠值及其中误差
C.水准管轴不平行与视准轴的误差
▪ 经纬仪对中误差属( )
▪ A.偶然误差; B.系统误差; C.中误差
▪ 尺长误差和温度误差属( )
▪ A.偶然误差; B.系统误差; C.中误差
▪ 下面是三个小组丈量距离的结果,只有( 测量的相对误差不低于1/5000的要求
)组
▪ A.100m 0.025m; B.200m 0.040m; C.150m 0.035m
土木工程测量第5章测量误差的基本知识(精)
第5章测量误差的基本知识内容提示:本章主要介绍了测量误差的概念、来源、分类与处理方法,精度的概念及评定标准,误差传播定律,等精度与非等精度直接观测值的最可靠值及其中误差。
其重点内容包括误差传播定律、观测值中误差计算、直接观测值的最可靠值及其中误差。
其难点为误差传播定律及其应用。
5.1 测量误差与精度5.1.1 测量误差的概念要准确认识事物,必须对事物进行定量分析;要进行定量分析必须要先对认识对象进行观测并取得数据。
在取得观测数据的过程中,由于受到多种因素的影响,在对同一对象进行多次观测时,每次的观测结果总是不完全一致或与预期目标(真值)不一致。
之所以产生这种现象,是因为在观测结果中始终存在测量误差的缘故。
这种观测量之间的差值或观测值与真值之间的差值,称为测量误差(亦称观测误差)。
用l代表观测值,X代表真值,则有Δ=l-X (5-1)式中Δ就是测量误差,通常称为真误差,简称误差。
一般说来,观测值中都含有误差。
例如,同一人用同一台经纬仪对某一固定角度重复观测多次,各测回的观测值往往互不相等;同一组人,用同样的测距工具,对同一段距离重复测量多次,各次的测距值也往往互不相等。
又如,平面三角形内角和为180 ,即为观测对象的真值,但三个内角的观测值之和往往不等于180 ;闭合水准测量线路各测段高差之和的真值应为0,但经过大量水准测量的实践证明,各测段高差的观测值之和一般也不等于0。
这些现象在测量实践中普遍存在,究其原因,是由于观测值中不可避免地含有观测误差的缘故。
5.1.2 测量误差的来源为什么测量误差不可避免?是因为测量活动离不开人、测量仪器和测量时所处的外界环境。
不同的人,操作习惯不同,会对测量结果产生影响。
另外,每个人的感觉器官不可能十分完善和准确,都会产生一些分辨误差,如人眼对长度的最小分辨率是0.1mm,对角度的最小分辨率是60"。
测量仪器的构造也不可能十分完善,观测时测量仪器各轴系之间还存在不严格平行或垂直的问题,从而导致测量仪器误差。
J05
5 测量误差的基本知识§5-1 测量误差及其分类研究测量误差的来源、性质及其产生和传播的规律,解决测量工作中遇到的实际问题而建立起来的概念和原理的体系,称为测量误差理论。
在实际的测量工作中发现:当对某个确定的量进行多次观测时,所得到的各个结果之间往往存在着一些差异,例如重复观测两点的高差,或者是多次观测一个角或丈量若干次一段距离,其结果都互有差异。
另一种情况是,当对若干个量进行观测时,如果已经知道在这几个量之间应该满足某一理论值,实际观测结果往往不等于其理论上的应有值。
例如,一个平面三角形的内角和等于180︒,但三个实测内角的结果之和并不等于180︒,而是有一差异。
这些差异称为不符值。
这种差异是测量工作中经常而又普遍发生的现象,这是由于观测值中包含有各种误差的缘故。
任何的测量都是利用特制的仪器、工具进行的,由于每一种仪器只具有一定限度的精密度,因此测量结果的精确度受到了一定的限制。
且各个仪器本身也有一定的误差,使测量结果产生误差。
测量是在一定的外界环境条件下进行的,客观环境包括温度、湿度、风力、大气折光……等因素。
客观环境的差异和变化也使测量的结果产生误差。
测量是由观测者完成的,人的感觉器官的鉴别能力有一定的限度,人们在仪器的安置、照准、读数……等等方面都会产生误差。
此外,观测者的工作态度、操作技能也会对测量结果的质量(精度)产生影响。
一.观测值与误差1.观测值:测量的结果(l)2.误差:测量(仪器、过程、方法),人,自然条件。
l与观测值的差值3.真值:也叫理论值(找不到的测量对象理论值)【X】4.观测:测量的过程5.观测条件:观测者、测量仪器和观测时的外界条件是引起观测误差的主要因素(观测条件相同的各次观测,称为等精度观测。
观测条件不同的各次观测,称为非等精度观测)二.误差来源:观测值中存在观测误差有下列三方面原因:1、观测者由于观测者的感觉器官的鉴别能力的局限性,在仪器安置、照准、读数等工作中都会产生误差。
工程测量第五篇(测量误差的基本知识)课件
系统误差在相同条件下多次测量时, 误差的大小和符号保持不变或按一定 的规律变化。
可预测性
系统误差可以通过一定的方法预测或 估计,并可进行修正。
稳定性
系统误差通常具有一定的稳定性,即 误差的大小和符号在一定时间内变化 较小。
规律性
系统误差通常具有一定的规律性,可 以通过数学模型或统计分析方法进行 描述和预测。
真实值
被测量的客观存在的值, 但实际上无法准确获得。
误差的表示方法
绝对误差、相对误差和引 用误差。
测量误差的来源差
人为误差
测量设备的精度限制、 老化、磨损等引起的误差。
温度、湿度、气压、风 速等环境因素对测量结
果的影响。
由于测量方法的局限性、 不完善或实施不当引起 的误差。
PART 02
随机误差
随机误差的特点
01
02
03
04
随机性
随机误差的产生无法预测,每 次测量结果都可能不同。
独立性
随机误差之间相互独立,一个 误差的出现不影响其他误差。
分布规律性
随机误差通常服从正态分布, 即大多数误差接近平均值,极
值误差较少。
大小性
随机误差的大小通常与测量精 度有关,测量精度越高,随机
2023 WORK SUMMARY
工程测量第五篇(测量 误差的基本知识)课件
REPORTING
CATALOGUE
• 测量误差概述 • 随机误差 • 系统误差 • 粗大误差
PART 01
测量误差概述
测量误差的定义
01
02
03
测量误差
在测量过程中,由于各种 因素的影响,使得测量结 果与被测量的真实值之间 存在一定的差异。
第五章 测量误差的基本知识
一般情况下,只要是观测值必然含有误差。 一般情况下,只要是观测值必然含有误差。
5.1 测量误差的来源及分类
二、测量误差产生的原因
1. 仪器误差 2. 观测误差 3. 外界条件的影响 观测条件
如果使用的仪器是同一个精密等级, 如果使用的仪器是同一个精密等级,操作人员有相同 的工作经验和技能,工作环境的自然条件(气温、 的工作经验和技能,工作环境的自然条件(气温、风 湿度等等)基本一致,则称为相同的观测条件 相同的观测条件。 力、湿度等等)基本一致,则称为相同的观测条件。
i
正态分布曲线
图中有斜线的长方形 面积就代表误差出现 在某区间的频率。 在某区间的频率。
-21 -15 -18 -12 -9 -6 -3 0 +3 +9 +15 +21 +6 +12 +18 +24
x=∆
-24
误差分布频率直方图
5.2 偶然误差的基本特性
误差分布图
在一定的观测条件下得到一组独立的误差, 在一定的观测条件下得到一组独立的误差,对应着一种确定 的分布。 同时无限缩小误差区间, 的分布。当误差个数 n → ∞ ,同时无限缩小误差区间,上图 中的各矩形的顶边折线就成为一条光滑的连续曲线。 中的各矩形的顶边折线就成为一条光滑的连续曲线。 这条曲线称为误差分布曲线也称为 正态分布曲线。 正态分布曲线。曲线上任意一点的 纵坐标y 的函数, 纵坐标y均为横坐标 ∆ 的函数,其 函数形式为:
5.3 衡量观测值精度的指标
1、中误差
中误差不同于各个观测值的真误差, 中误差不同于各个观测值的真误差,它是衡量一组观 测值精度的指标, 测值精度的指标,它的大小反映出一组观测值的离散 程度。中误差m值小,表明误差的分布较为密集, 程度。中误差m值小,表明误差的分布较为密集,各 观测值间的差异较小,这组观测的精度就高;反之, 观测值间的差异较小,这组观测的精度就高;反之, 中误差m值较大,表明误差的分布较为离散, 中误差m值较大,表明误差的分布较为离散,观测值 之间的差异也大,这组观测的精度就低。 之间的差异也大,这组观测的精度就低。 说明:中误差越小,观测精度越高。 说明:中误差越小,观测精度越高。
《测量学》第五章测量误差基本知识
系统误差的来源与消除方法
总结词
系统误差的来源主要包括测量设备误差、环境因素误差和测量方法误差。消除系统误差的方法包括校准设备、改 进测量方法和采用适当的修正公式。
详细描述
系统误差的来源多种多样,其中最常见的是测量设备误差,如仪器的刻度不准确、零点漂移等。此外,环境因素 如温度、湿度和气压的变化也可能导致系统误差。为了消除这些误差,可以采用定期校准设备、选择适当的测量 方法和采用修正公式等方法。
相对测量法
通过比较被测量与标准量之间 的差异来得到被测量的值,并 评估误差。
组合测量法
将被测量与其他已知量进行组 合,通过测量组合量来得到被
测量的值,并评估误差。
测量结果的表示与处理
测量结果的表示
测量结果应包括被测量的值、单位、 测量不确定度以及置信区间等。
异常值的处理
在数据处理过程中,如果发现异常值, 应进行识别、判断和处理,以确保测 量结果的准确性和可靠性。
测量学第五章 测量误差 基本知识
contents
目录
• 测量误差概述 • 系统误差 • 随机误差 • 粗大误差 • 测量误差的估计与处理
测量误差概述
01
测量误差的定义
测量误差
在测量过程中,由于受到测量仪器、 环境条件、操作者技能等因素的影响 ,使得测量结果与被测量的真实值之 间存在一定的差异。
不确定度的评定方法
不确定度的传递
不确定度的评定方法包括A类评定和B类评 定,其中A类评定基于统计分析,B类评定 基于经验和信息。
在多个量之间存在函数关系时,需要将各 个量的不确定度传递到最终的测量结果中 ,以确保最终结果的准确性和可靠性。
THANKS.
数据修约
根据测量不确定度对数据进行修约, 以确保数据的完整性和一致性。
物理实验中的测量误差和处理方法
物理实验中的测量误差和处理方法一、测量误差的概念1.测量误差:在物理实验中,由于测量工具、测量方法、测量者等因素的限制,导致测量值与真实值之间存在差异,这种差异称为测量误差。
2.误差与错误:误差是指测量值与真实值之间的差异,而错误是指在实验过程中由于操作不规范、判断失误等原因导致的偏离真实值的结果。
误差是不可避免的,而错误是可以避免的。
二、测量误差的分类1.系统误差:由于实验仪器、测量方法等原因导致的误差,具有规律性和稳定性。
2.随机误差:由于测量过程中各种偶然因素的影响导致的误差,具有不确定性。
3.粗大误差:由于操作不规范、读数不准确等原因导致的明显偏离真实值的误差。
三、测量误差的减小方法1.选择合适的测量工具:选用精确度较高的测量工具,以减小测量误差。
2.改进测量方法:采用合适的测量方案,减小实验操作对测量结果的影响。
3.多次测量求平均值:进行多次测量,求得平均值,可以减小随机误差的影响。
4.误差分析:对实验数据进行误差分析,找出误差来源,有针对性地采取减小误差的措施。
5.数据处理:合理处理实验数据,如插值、外推等方法,以减小误差对实验结果的影响。
四、测量误差的评价1.绝对误差:测量值与真实值之间的差的绝对值。
2.相对误差:绝对误差与真实值的比值,用于评价测量精度。
3.误差限:在一定概率水平下,测量值与真实值之间的最大可能的差值。
4.置信区间:在一定概率水平下,真实值落在测量值附近的范围。
五、实验数据处理方法1.列表法:将实验数据进行整理,制作成表格,便于分析和处理。
2.描点法:在坐标系中,将实验数据对应的坐标点连接起来,形成曲线,分析数据规律。
3.图像法:利用数学软件或绘图工具,绘制实验数据的图像,分析数据特征。
4.数学模型法:根据实验数据,建立合适的数学模型,对实验结果进行预测和分析。
六、实验报告的撰写1.实验目的:明确实验的目的和意义。
2.实验原理:介绍实验原理和相关的物理概念。
3.实验器材:列出实验中使用的器材和仪器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、人的原因
观测者感官鉴别能力有一定的局限性。观测者的习惯 因素、工作态度、技术熟练程度等也会给观测者成果带来 不同程度的影响。
3、外界条件
例如:外界环境如温度、湿度、风力、大气折光等因素 的变化,均使观测结果产生误差。 例如:温度变化使钢尺产生伸缩阳光曝晒使水准气泡偏 移,大气折光使望远镜的瞄准产生偏差,风力过大使仪器安置 不稳定等。 人、仪器和外界环境通常称为观测条件; 观测条件相同的各次观测称为等精度观测; 观测条件不相同的各次观测称为不等精度观测。
可以看出:
误差符号始终不变,具有规律性。 误差大小与所量直线成正比,具有累积性。 误差对观测结果的危害性很大。
6
例
•
2:
在厘米分划的水准尺上估读毫米时,有时估读过大,有时 估过小,每次估读也不可能绝对相等,其影响大小,纯属偶 然。 • 大气折光使望远镜中目标成像不稳定,则瞄准目标有时偏左、 有时偏右。 可以看出: ① 从个别误差来考察,其符号、数值始终变化,无任 何规律性。 ② 多次重复观测,取其平均数,可抵消一些误差的影响。
⑤ 随着 n 的增大,m 将趋近于σ 。
18
必须指出: 同精度观测值对应着同一个误差分布,即对应着同一个标 准差,而标准差的估计值即为中误差。 同精度观测值具有相同的中误差。 例3: 设对某个三角形用两种不同的精度分别对它进行了10次 观测,求得每次观测所得的三角形内角和的真误差为
第一组: +3″, -2″, -4″,+2″,0″,-4″,+3″, +2″, -3″, -1″; 第二组: 0″, -1″, -7″,+2″,+1″,+1″,- 8″, 0″, +3″, -1″.
km
km
f () d
分别以k=1,2,3代入上式,可得: P(︱△︱≤m)=0.683=68.3℅ P(︱△︱≤2m)=0.955=95.5℅ P(︱△︱≤3m)=0.997=99.7℅ 由此可见:偶然误差的绝对值大于2倍中误差的约占误差 总数的5℅,而大于3倍的误差仅占误差总数的0.3℅。 由于一般情况下测量次数有限,3倍中误差很少遇到, 故以2倍中误差作为允许的误差极限,称为“容许误差”, 或 称为“限差”即△容=2m
2
例如: DJ6型光学经纬仪基本分划为1′,难以确保分以下 估读值完全准确无误。 使用只有厘米刻划的普通钢尺量距,难以保证厘米 以下估读值的准确性。 ②仪器构造本身也有一定误差。
例如: 水准仪的视准轴与水准轴不平行,则测量结果中 含有i 角误差或交叉误差。 水准尺的分划不均匀,必然产生水准尺的分划误 差。
20
三、相对误差
在某些测量工作中,对观测值的精度仅用中误差来衡量 还不能正确反映观测的质量。 例如: 用钢卷尺量200米和40米两段距离,量距的中误 差都是±2cm,但不能认为两者的精度是相同的,因为量距 的误差与其长度有关。 为此,用观测值的中误差与观测值之比的形式来描述观 测的质量。即m/L来评定精度,通常称此比值为相对中误差。 相对中误差又可要求写成分子为1的分式,即 1 。 N 上例为 K1= m1/L1=1/10000, K2= m2/L2=1/2000 可见: 前者的精度比后者高。 与相对误差相对应,真误差、中误差、容许误差都称为 绝对误差。
9
5.1.2 偶然误差的特性
若△i= Li – X
误差区间 ) d ″ ( △ 0 ~3 3 ~6 6 ~9 9~12 12~15 15~18 18~21 21~24 >24 ∑ 负 误 差 个数 k 45 40 33 23 17 13 6 4 0 181 频率 n / k 0.126 0.112 0.092 0.064 0.047 0.036 0.017 0.011 0 0.505
(i=1,2,3,· · · ,358)
正 误 差 个数 k 46 41 33 21 16 13 5 2 0 177 频率 n / k 0.128 0.115 0.092 0.059 0.045 0.036 0.014 0.006 0 0.495 91 81 66 44 33 26 11 6 0 358 合 个数 k 计 频率 n / k 0.245 0.227 0.184 0.123 0.092 0.072 0.031 0.017 0 1.000
阐述观测值中误差与观测值函数中误差之间关系的 定律,称为误差传播定律。
22
一、倍数的函数 设有函数:
z kx
Z为观测值的函数,K为常数,X为观测值,已知其 中误差为mx,求Z的中误差mZ。 设x和z的真误差分别为△x和△z则: z k x
若对x 共观测了n次,则: zi k xi 将上式平方,得: 2 zi k 2 2 xi 求和,并除以n,得
4
三、测量误差的分类
先作两个前提假设:
① 观测条件相同.
② 对某一量进行一系列的直接观测在此基础上 分析出现的误差的数值 、符号及变化规律。
5
•
先看两个实例:
例1:用名义长度为30米而实际长度为30.04米的钢尺量距。 丈量结果见下表5-1: 表5-1
尺段数 观测值 真实长度 真误差 一 30 30.04 -0.04 二 60 60.08 -0.08 三 90 90.12 -0.12 四 120 120.16 -0.16 五 150 150.20 -0.20 · · · · · · · · · · · · N 30 n 30.04n -0.04 n
n
lim
n
n
(5 4)
lim
n
2
n
lim
n
n
(5 5)
14
• 从5-3式可以看出正态分布具有前述的偶然误差特性。 即:
•
1.f(△)是偶函数。即绝对值相等的正误差与负误差求得 的f(△)相等,所以曲线对称于纵轴。这就是偶然误差的第三 特性。 • 2.△愈小,f(△)愈大。当△=0时,f(△)有最大值; 反之, △愈大,f(△)愈小。当n→±∞时,f(△) →0,这就是偶然误 差的第一和第二特性。 • 3.如果求f(△)二阶导数并令其等于零,可以求得曲线拐 点横坐标: △拐=± • 如果求f(△)在区间± 的积分,则误差出现在区间内 的相对次数是某个定值 ,所以当 愈小时,曲线将愈陡峭, 即误差分布比较密集;当 愈大时,曲线将愈平缓,即误差 分布比较分散。由此可见,参数 的值表征了误差扩散的特 征。 1 y f () e 2 2 15
1 y f () 2
e
2 2
2
(5-3)
为标准差,标准差的平方为 2 方差。
方差为偶然误差平方的理论平均值:
13
正态分布曲线的数学方程式为 :
1 y f () 2
e
2 2
2
(5-3)
2
lim
2 n
1 2 n
2 2 2
例如:读错、记错、算错、瞄错目标等。 错误是观测者疏大意造成的,观测结果中不允许有错误。 一旦发现,应及时更正或重测。
8
(二) 测量误差的处理原则
• 在观测过程中,系统误差和偶然误差总是同时产生。 • 系统误差对观测结果的影响尤为显著,应尽可能地加以改 正、抵消或削弱。 • 对可能存在的情况不明的系统误差,可采用不同时间的多 次观测,消弱其影响。 • 消除系统误差的常用的有效方法: • ① 检校仪器:使系统误差降低到最小程度。 • ② 求改正数:将观测值加以改正,消除其影响。 • ③ 采用合理的观测方法:如对向观测。 • 研究偶然误差是测量学的重要课题。 • 消除或削弱偶然误差的有效方法: • ① 适当提高仪器等级。 • ② 进行多余观测,求最或是值。
第五章 测量误差及其处理的基本知识
本章主要内容如下:
• 测量误差及其产生的原因 • 测量误差的分类与处理原则 • 偶然误差的特性 • 精度评定的指标 • 误差传播定律及其应用
1
§5-1 测量误差概述
一、观测误差 当对某观测量进行观测,其观测值与真值(客观存 在或理论值)之差,称为测量误差。 用数学式子表达: △i = Li – X (i=1,2…n) L —观测值 X—真值 二、测量误差的来源 测量误差产生的原因很多,但概括起来主要有 以下三个方面: 1、仪器的原因 ① 仪器结构、制造方面,每一种仪器具有一定的 精确度,因而使观测结果的精确度受到一定限制。
10
从表中可以归纳出偶然误差的特性 ⑴ 在一定观测条件下的有限次观测中,偶然误差 的绝对值不会超过一定的限值; ⑵ 绝对值较小的误差出现的频率大,绝对值较大 的误差出现的频率小; ⑶ 绝对值相等的正、负误差具有大致相等的频率; ⑷ 当观测次数无限增大时,偶然误差的理论平均 值趋近于零。 1 2 n 用公式表示为: lim lim 0 n n n n 实践表明:观测误差必然具有上述四个特性。而 且,当观测的个数愈大 时,这种特性就表现得愈明 显。 11
7
引进如下概念: 1.系统误差 ---- 在相同的观测条件下,对某一量进行一系列 的观测,如果出现的误差在符号和数值上都相同,或按一 定的规律变化,这种误差称为“系统误差”。 系统误差 具有规律性。 2.偶然误差---在相同的观测条件下,对某一量进行一系列 的观测,如果误差出现的符号和数值大小都不相同,从表面 上看没有任何规律性,这种误差称为“偶然误差”。 个别偶然误差虽无规律,但大量的偶然误差具有统计规律。 3.粗差----观测中的错误叫粗差。
2 2
最大纵坐标点:
1 2
17
§5-2 评定精度的标准
一.中误差
误差△的概率密度函数为: 标准差
2
f ( )
1 2
2 e 2
lim
n