常见递推数列通项公式的求法典型例题及习题
利用几类经典的递推关系式求通项公式练习
利用几类经典的递推关系式求通项公式1.在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5,则m =( )A .9B .10C .11D .122.已知S n 为等比数列{a n }的前n 项和,a 1=2,若数列{}1+a n 也是等比数列,则S n 等于( )A .2nB .3nC .2n +1-2D .3n -13.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .114.在等比数列{a n }中,若公比q =4,且前3项之和等于21,则该数列的通项公式a n =________.5.设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0(n ∈N *),则数列{a n }的通项a n =________.6.已知数列{a n }满足a 1=1,a n +1=a n 3a n +1,则a n =_______ 7.已知数列{a n }满足a 1=2,a n +1=2a n -1,则a n =________.8.已知数列{a n }中,a 1=1,a n +1=3a n +3n ,则a n =________.9.已知数列{a n }满足条件na n +1=(n +1)a n +2n 2+2n ,n ∈N *,a 1=1,设b n =a n +n .(1)求数列{b n }的通项公式;(2)求和:S =1b 2-2+1b 3-2+…+1b n -2.10.已知数列{a n }中,a 1=5且a n =2a n -1+2n -1(n ≥2且n ∈N *).(1)证明:数列⎩⎨⎧⎭⎬⎫a n -12n 为等差数列; (2)求数列{a n }的前n 项和S n .数列的求和1.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=A .33B .72C .84D .1892.若等比数列的前n 项和是48,前2n 项和为60,则前3n 项的和为( )A .183B .108C .75D .633.设等差数列{a n }的前n 项和为S n ,若a 2+a 5+a 8=15,则S 9=( )A .18B .36C .45D .604.数列1,1+2,…,1+2+22+…+2n -1的前n 项和为S n ,则S n 等于( ) A .2n B .2n +1-n -2 C .2n +1-n D .2n -n5.等比数列{a n }中,a 1=512,公比q =-12,用Πn 表示它的前n 项之积:Πn =a 1·a 2·…·a n ,则Πn 中最大的是( )A .Π11B .Π10C .Π9D .Π86.若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…a 10=( )A .15B .12C .-12D .-157.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________.8.如图K9-4-1,它满足:(1)第n 行首尾两数均为n ;(2)图中的递推关系类似杨辉三角,则第n (n ≥2)行的第2个数是________.12 23 4 34 7 7 45 11 14 11 5…图K9-4-19.(20XX 年山东)已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n .(1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .10.(20XX 年“江南十校”联考)数列{a n }满足a 1=1,a n +1=2n +1a n a n +2n (n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫2n a n 是等差数列; (2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n .。
(完整版)常见递推数列通项公式的求法典型例题及习题
常见递推数列通项公式的求法典型例题及习题【典型例题】[例1] b ka a n n +=+1型。
(1)1=k 时,}{1n n n a b a a ⇒=-+是等差数列,)(1b a n b a n -+⋅= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1比较系数:b m km =- ∴1-=k b m∴}1{-+k b a n 是等比数列,公比为k ,首项为11-+k b a∴11)1(1-⋅-+=-+n n k k b a k b a ∴1)1(11--⋅-+=-k bk k b a a n n [例2] )(1n f ka a n n +=+型。
(1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。
例:已知}{n a 满足11=a ,)1(11+=-+n n a a n n 求}{n a 的通项公式。
解:∵111)1(11+-=+=-+n n n n a a n n∴n n a a n n 1111--=-- 112121---=---n n a a n n213132---=---n n a a n n ……312123-=-a a 21112-=-a a对这(1-n )个式子求和得:n a a n 111-=- ∴ n a n 12-=(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1∴ ⎩⎨⎧=--=-b A B k a A k )1()1( 解得:1-=k a A ,2)1(1-+-=k a k b B∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列∴ 11)(-⋅++=++n n k B A a B An a∴B An k B A a a n n --⋅++=-11)( 将A 、B 代入即可 (3)nq n f =)((≠q 0,1)等式两边同时除以1+n q 得q q a q k q a n n n n 111+⋅=++ 令n n n q a C =则q C q k C n n 11+=+ ∴ }{n C 可归为b ka a n n +=+1型[例3] n n a n f a ⋅=+)(1型。
题型最全的递推数列求通项公式的习题
高考递推数列题型分类归纳解析各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
我现在总结出几种求解数列通项公式的方法,希望能对大家有帮助。
类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例1. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
变式: 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,…….(I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。
例1:已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。
例2:已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a 。
变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩ 12n n =≥类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。
例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:(2006,重庆,文,14)在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________ 变式:(2006. 福建.理22.本小题满分14分) 已知数列{}n a 满足*111,21().n n a a a n N +==+∈ (I )求数列{}n a 的通项公式; (II )若数列{b n }滿足12111*444(1)(),n n b b b b n a n N ---=+∈证明:数列{b n }是等差数列;(Ⅲ)证明:*122311...().232n n a a a n nn N a a a +-<+++<∈ 类型4 nn n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。
利用递推关系式求数列的通项公式(有答案绝对好精品)
利用递推关系式求数列的通项公式数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
本文给出了求数列通项公式的常用方法。
◆一、直接法根据数列的特征,使用作差法等直接写出通项公式。
例1. 根据下列数列的前几项,说出数列的通项公式:1、1,3,7,15,31,………2、2,6,12,20,30,………3、21212,1,,,,3253………4、1,-1,1,-1………5、1、0、1、0……… ◆二、公式法①利用等差数列或等比数列的定义求通项②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解.(注意:求完后一定要考虑合并通项)例2.①已知数列{}n a 的前n 项和n S 满足21n S n n =+-,求数列{}n a 的通项公式.②已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式。
◆三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
也可以猜想出规律,然后正面证明。
例3.(2002年北京春季高考)已知点的序列*),0,(N n x A n n ∈,其中01=x ,)0(2>=a a x ,3A 是线段21A A 的中点,4A 是线段32A A 的中点,…,n A 是线段12--n n A A 的中点,…(1) 写出n x 与21,--n n x x 之间的关系式(3≥n )。
(2) 设n n n x x a -=+1,计算321,,a a a ,由此推测{}n a 的通项公式,并加以证明。
常见递推数列通项公式的求法典型例题及习题
常见递推数列通项公式的求法典型例题及习题k=1,则an+1=an+f(n)为一阶线性递推数列,可用递推公式或特征方程求解。
例如已知a1=1,an+1=an+1/n,则有:an+1-an=1/nan-an-1=1/(n-1)an-a1=1+1/2+。
+1/n-1an=1+1/2+。
+1/n当k≠1时,设an+1+m=k(an+m),则有:an+1=kan+km-m比较系数得km-m=b,解得m=b/(k-1)an+m=b/(k-1)k^(n-1)+(a1-b/(k-1))k^n-1即为通项公式。
例2]an+1=kan+f(n)型。
当k=1时,an+1-an=f(n),若f(n)可求和,则可用累加消项的方法求得通项公式。
例如已知a1=1,an+1-an=1/(n(n+1)),则有:an+1-an=1/n-1/(n+1)an-an-1=1/1-1/2-1/2+1/3+。
+1/(n-1)-1/n-1/(n+1)an-a1=1-1/(n+1)an=2-1/n当k≠1且f(n)=an+b时,可设an+1+A(n+1)+B=k(an+An+B),解得A=a/(k-1),B=(2k-1)/(k-1)b-a,即可得通项公式。
例3]an+1=f(n)an型。
若f(n)=q(n+1)/n,则有:Cn=qCn-1Cn=q^nC0an=Cn/n!=q^nC0/n!即为通项公式。
1.已知数列 $\{a_n\}$ 中,$a_1=1$,$a_{n+1}=a_n+2a_{n-1}$,求 $a_n$。
解:根据递推式,可以列出 $a_2=3$,$a_3=7$,$a_4=15$,$a_5=31$,$a_6=63$,$a_7=127$,$\cdots$,可以猜测 $a_n=2^n-1$。
可以用数学归纳法证明:当 $n=1$ 时,$a_1=1=2^1-1$,假设 $a_k=2^k-1$,则 $a_{k+1}=a_k+2a_{k-1}=2^k-1+2\cdot 2^{k-1}-2=2^{k+1}-1$,所以 $a_n=2^n-1$。
高中数学-数列求通项公式方法汇总及经典练习(含答案)
高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。
2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。
递推数列求通项公式的常见类型及方法
递推数列求通项公式的常见类型及方法递推数列求通项即依据给出数列中相邻两项或几项的关系式,n a 与n S 的关系式等,求出通项公式,是数列中的重要内容,是高考中常见的题目.本文给出常见的类型和方法.1. )(1n f a a n n +=+.方法:叠加法. 令1,2,1-=n n,得21321(1)(2)(1)n n a a f a a f a a f n -=+=+=+-以上1-n 个式子相加,得111().n ni a a f i -==+∑ 例1.数列{}n a 中,)2(1,1211≥-+==-n n n a a a n n ,求数列{}n a 的通项. 解: 令n n ,,3,2 =,得212322121221331n n a a a a a a n n -=+-=+-=+-n n a a n -++-+-+=∴22211331221 11111223(1)111111(1)()()223112.a n n n n n =+++⨯⨯-=+-+-++--=- 2. )(1n f a a n n =+. 方法:累积法. 令1,2,1-=n n,得21321(1)(2)(1).n n a a f a a f a a f n -===-以上1-n 个式子求积,得)(111i f a a n i n-=∏+=. 例2. 数列{}n a 中,)2()11(,2121≥⋅-==-n a na a n n ,求数列{}n a 的通项.解: 由题1212)1)(1()11(--+-=-=n n n a nn n a n a ,令1,2,1-=n n ,得 21232212132243(1)(1)n n a a a a n n a a n -⨯=⨯=-+= 2221)1)(1(342231n n n a a n +-⋅⋅⨯⋅⨯⋅=∴ 11121.n a n n n +=⋅⋅+= 3. )0,1(1≠≠+=+q p q pa a n n . 方法一:配凑法.1().n n a p a λλ+-=-方法二:待定系数法.令)(1λλ-=-+n n a p a 比较已知得,.1q p q pλλλ-==- λ是方程q px x +=的根. q px x +=是特征方程.方程三: 两根同除以1+n p ,得111++++=n n n n n p q p a p a 转化为类型1. 例3(07.全国) 数列{}n a 中, ,3,2,1),2)(12(,21=+-==n a a a n n ,求数列{}n a 的通项. 解法一: )2)(12(1+-=+n n a a {}为公比的等比数列为首项,是以数列122222)2)(12(211--=--∴--=-∴+a a a a n n nn n na )12(2)12)(22(21-⨯=--=-∴- 故 2)12(2+-⨯=n n a解法二:令))(12(1λλ--=-+n n a a)12(2)12(-=--∴λλ 解得2=λ下同解法一.解法三:)12(2)12()2)(12(1-+-=+-=+n n n a a a两边同除以1)12(+-n ,得nn n n n a a )12(2)12()12(11-+-=-++ 令n n n n n a a b )12()12(+=-= 则n n n b b )12(21++=+.令.1,2,1-=n n 得11223112)12(2)12(2)12(2--++=++=++=n n n b b b b b b1211)12(2)12(2)12(2-+++++++=∴n n b b2)12(2)12(1])12(1)[12(2)12(21++=+-+-+⋅++=-n nn n n n b a )12(22)12(-⨯+=-=∴.4. )0,1(,1≠≠+=+q p q pa a n n n .方法一:两边同除以1+n p ,得111++++=n nn n n n p q p a p a 转化为类型一.方法二:待定系数法.令)(11-+-=-n n n n q a p q a λλ比较已知得p q q -=λ. 例4.数列{}n a 中,)1(,23,111≥+==+n a a a n n n ,求数列{}n a 的通项. 解法一:两边同除以13+n ,得1113233++++=n nn n n n a a . 令n n n a b 3=,则1132+++=n nn n b b . 令.1,2,1-=n n 得n n n n b b b b b b 323232113223212--+=+=+= n n n b b 32323213221-++++=∴ nn n n )32(1321])32(1[31323232311322-=--=++++=- n n n a 23-=∴.解法二:令)2(3211-+⋅-=-n n n n a a λλn n n 22321=-⋅∴-λλ解得2-=λ.即)2(3211n n n n a a +=+++,所以数列{}n n a2+是以321=+a 为首项,3为公比的等比数列. .23,32n n n n n n a a -==+∴故5. )1).((1≠+=+p n f pa a n n .方法:两边同除以1+n p ,得111)(++++=n n n n n pn f p a p a 转化为类型一. 例5. 数列{}n a 中,)1(,223,111≥-+==+n n a a a n n ,求数列{}n a 的通项.解: 两边同除以13+n ,得11132233+++-+=n n n n n n a a 令n nn a b 3=,得11322++-+=n n n n b b . 利用叠加法及错位相减法,以求得2123+-=n a n n . 6.)()(1n g a n f a n n +=+.方法: 两边同除以)()2()1(n f f f ,得)()2()1()()()2()1()()2()1(1n f f f n g n f f f a n f f f a n n +=+转化为类型一 例6. (2008年河南省普通高中毕业班教学质量调研考试)数列{}n a 中,)1(2)1(22,111≥++++==+n n n a n n a a n n ,求数列{}n a 的通项. 解: 令,2)(+=n n n f 则)2)(1(2211534231)()2()1(++=+⨯+-⨯⨯⨯⨯=n n n n n n n f f f 两边同除以)()2()1(n f f f ,得)2)(1(22)1(2)1(2)2)(1(21++++++=+++n n n n n n a n n a n n 即21)1(2)1()1)(2(+++=+++n na n a n n n n 令n n na n b )1(+=,则21)1(2++=+n b b n n令.1,2,1-=n n 得2122321223222n b b b b b b n n +=⨯+=⨯+=-)32(22221n b b n +++⨯+=∴3)12)(1(]16)12)(1([212++=-++⨯+⨯=n n n n n n 312+=∴n a n . 7. )(1n f a a n n =+. 方法: 由已知)1(12+=++n f a a n n ,两式相除,得)()1(2n f n f a a n n +=+. 例7. 数列{}n a 中,)1(,)31(,211≥==+n a a a n nn ,求数列{}n a 的通项. 解: 由题2,31121==a a a ,得612=a n n n a a )31(1=+ ………..① 112)31(+++=n n n a a ……...② ②÷①得 312=+n n a a k k a a a a a a 2421231,,,,,,和+∴都是以31为公比的等比数列 当n 为奇数时,21211)31(2--⋅==n n n q a a 当n 为偶数时,22222)31(61--⋅==n n n q a a ⎪⎪⎩⎪⎪⎨⎧⋅⋅=∴--为偶数,为奇数n n a n nn 2221)31(61,)31(2. 8.n n n qa pa a +=++12. 方法一: 配凑法.)(112n n n n a a a a αβα-=-+++方法二: 待定系数法. 令)(112n n n n a a a a αβα-=-+++,比较已知得 ⎩⎨⎧==+q p αββα 得出βα, 其中βα,是方程q px x +=2的两根,方程q px x +=2是特征方程.例8. 数列{}n a 中,)1(,65,5,11221≥-===++n a a a a a n n n ,求数列{}n a 的通项.解: 令)(112n n n n a a a a αβα-=-+++比较已知得⎩⎨⎧==+65αββα 得出2,3==βα )3(23112n n n n a a a a -=-∴+++数列{}n n a a 31-+是以2312=-a a 为首项,2为公比的等比数列.则n n n a a 231=-+,即n n n a a 231+=+.下同例4. 9.)0(,1≠++=+ac b aa d ca a n n n . 方法: 不动点法. 令bax d cx x ++=………(*) 若(*)有两重根,021x x x ==,则⎭⎬⎫⎩⎨⎧-01x a n为等差数列. 若(*)有两根,21x x ≠,则⎭⎬⎫⎩⎨⎧--21x a x a nn 为等比数列. 例9.(08,洛阳三练)数列{}n a 中,n n a a a -==+21,2111,求数列{}n a 的通项. 解:令xx -=21,得1=x . 111121111111-=----=---+n n n n a a a a , 为公差的等差数列为首项,是以1-2121111111-=-=-⎭⎬⎫⎩⎨⎧-∴a a n . 1)1()1(211--=-⨯-+-=-∴n n a n 1+=∴n n a n . 例10.(07.全国)数列{}n b 中,)1(3243,211≥++==+n b b b b n nn ,求数列{}n b 的通项. 解: 令3243++=x x x ,解得2,221=-=x x , 则411)12(2223243232432222+=-+-+++++=-+-+++n n n n n n n n n n b b b b b b b b b b 数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+22n n b b 是以22222211-+=-+b b 为首项,4)12(+为公比的等比数列. 24)1(4)12()12(222222--+=+⋅-+=-+∴n n n nb b故1)12(1)12(22424-+++⋅=--n n nb .10. n n S a 与的关系.方法: ⎩⎨⎧-=-,,1n nn n S S S a 21≥=n n 可以向n a 转化,也可以向n S 转化.例11. 数列{}n a 的前n 项和,)1(12≥+=n a a S nn n ,求数列{}n a 的通项公式. 解法一: 1=n 时,1111212a a a S =+=,解得11=a )2(,1212111≥+=∴+=---n a a S a a S n n n nn n 两式相减得 11112---+-=n n n n n a a a a a ,)1(111--+-=-n n n n a a a a . 平方得 4)1()1(212122=+-+--n n n n a a a a . 数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+221n n a a 是以212121=+a a 为首项,4为公差的等差数列。
数列递推通项式的大题题型(答案版)
数列通项公式的十种求法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+ ,即得数列{}n a 的通项公式。
数列通项公式的十种求法(非常经典)
数列通项公式的十种求法(1)公式法(构造公式法)例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
(2)累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
递推数列求通项公式的典型方法
递推数列求通项公式的典型方法1、 a n+1=a n +f (n )型 累加法:a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+ a 1 =f (n-1)+f (n-2)+…f (1)+ a1例1 已知数列{a n }满足a 1=1,a n+1=a n +2n (n ∈N *), 求a n 解: a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+ a 1 =2n-1+2n-2+…+21+1=2n -1(n ∈N *)例 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n则,211112-+=a a 312123-+=a a413134-+=a a ,……,nn a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=2、)(1n g a ann =+型累积法:112211.....a a aa a a a a n n n n n ---=所以()()()()11...321a g n g n g n g a n ---=∴例2:已知数列{a n }满足()*1N n n a ann ∈=+,.11=a 求n a解:112211...a a aa a a a a n n n n n ---==()()()()!11...321-=---n n n n ()()+∈-=∴N n n a n !1例2 设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题). 解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=- 逐项相乘得:n a a n 11=,即n a =n1. 3.q pa a n n +=+1型(p,q 为常数)方法:(1)⎪⎪⎭⎫⎝⎛-+=-++111p q a p p q a n n ,再根据等比数列的相关知识求n a . (2)()11-+-=-n n n n a a p a a 再用累加法求n a .(3)111++++=n n n n n p qp a p a ,先用累加法求n n p a 再求n a 例3.已知{}n a 的首项a a =1(a 为常数),()2,21≥∈=+-n N n a a n n ,求n a解 设()λλ-=--12n n a a ,则1-=λ ()1211+=+∴-n n a a{}1+∴n a 为公比为2的等比数列。
用递推公式求数列通项公式的方法及数列求和的方法精讲与练习(含答案)
数列的通项公式的求法 一、观察法(即猜想法,不完全归纳法)观察各项的特点,关键是找出各项与项数n 的关系例1:根据数列的前4,写出它的一个通项公式:9,99,999,9999,......二、公式法若已知数列的前n 项和与项数n 的关系,求数列的通项公式可用公式法求解。
)1()2(111==≥-=-n S a n S S a n n n例2:}{n a 的前n 项和n S ,求}{n a 的通项公式。
三、由递推公式求数列通项法对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊的数列。
1.迭加法已知递推关系)(),(*1N n n f a a n n ∈=-+例3 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
变式:已知数列{}n a 满足1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
2.迭乘法 已知递推关系是)(),(*1N n n f a a nn ∈=+ 例4:已知数列}{n a 中,n n a nn a a 1,211+==+,求}{n a 的通项公式。
变式:已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
3、待定系数法例5 已知数列{}n a 满足112356n n n a a a +=+⨯=,,求数列{}n a 的通项公式。
变式: 已知数列{}n a 满足1135241n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
4、数学归纳法例6 已知数列{}n a 满足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式。
解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得 2122322243228(11)88224(211)(213)9925258(21)248348(221)(223)252549498(31)488480(231)(233)49498181a a a a a a +⨯=+=+=⨯+⨯+⨯+⨯=+=+=⨯+⨯+⨯+⨯=+=+=⨯+⨯+⨯ 由此可猜测22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论。
由递推公式求数列通项公式常见题型及解法
由递推公式求数列通项公式常见题型及解法对于由递推公式所确定的数列通项公式问题,通常可通过对递推公式变形,转化成等差数列或等比数列加以解决,也可以通过构造法把问题转化后予以解决.下面分类举例说明.一,%+l=%+-厂(n)型累加法:%=(一%~1)+(n一l一%一2)+…+(oa一.I)+nl=-厂(n一1)+_厂(n一2)+…+f(1)+01.例1在数列{}中,已知+=,=2,求通项公式.解:已知递推式化为…_l__一:+%+12+I’又tan(a+c)=号,tanAtanC=2+厂,tanA+tanC=3+,/一.由IanA+tanc=+,[tanAtanC=2+,v/3.解得tanA=1,tanC=2+,/丁或tanA=2+,/,tanC=1.所以A=45.,B=60.,C=75.或A=75o.B=60..C=45..当=45咐,.=8c==8,6=Ac=每=4,c=4+4_当=75.时,.=8,b=4,厂一(x/一1),c=8(,/一1).【解题反思】此题将三角形,正弦定理,三角形内角和,方程思想等知识巧妙24基础教育论坛[2011年第2期j即一--1=1,%+1’所以一1=1,l:1,啦Z啦Z111111啦劬一2’’一l一2n’将以上(n一1)个式子相加,得1一1=_2211l+..’1,—_22”‘即an=争++寺++…+一(一一.21一所以=一=.2练习:已知数列{%}满足n.=1,+.=n+2n(孔∈N).求血,结合,对学生的综合能力的运用是一个很大的考验,只有熟练掌握了三角的基本公式和基本方法技巧,才能运用自如,完整解答问题.三,有益的启示《考试说明》明确提出:要在”突出数学基础知识,基本技能,基本思想方法的考查”的同时,”重视数学基本能力和综合能力的考查”,”注重数学应用意识和创新意识的考查”,由此可见,坚持和加强在知识的交汇点处命题势在必行.在知识的交汇处命题,一方面数学学科知识之间的纵横交融,渗透综合的鲜明特点,将正,余弦定理与向量,解析几何,立体几何,数列,不等式,数列,方程等重要知识有效交汇于一体;另一方面,可有效考查学生的各类方法技能和重要数学思想的合理运用,把对学生的数学思维能力和综合应用能力的考查融合在对学生双基考二,+l=_厂(n)?型累积法:=—旦L?上…??塑?c—l(一2nl.,所以=-厂(n一1(n一2(n一3)一1)01.例2求数列.t=_『1,%=_}.%一(n≥2)的通项公式.解:当n≥2时,=堕?盟?a4…??L.al0l啦%一1【即%=面可×}:一4,l2—1’当n=l,=}=所以r(n∈N+)?查之中,因此我们必须高度重视,积极应对.数学知识交汇题,一般具有背景清晰且内涵丰富,新颖脱俗且思路灵活的特点,这就需要我们在熟练掌握数学基础知识和基本技能的基础上,深刻理解题意, 洞察内在联系,准确选择方法,要依据题设条件,合理进行变换,灵活进行转化,严谨完善解题.正弦定理,余弦定理在高考中,一般不单设试题,而是融于其他知识当中去考查,学生学习中应重视四大数学思想方法的培养.在运用定理时,要注重与其他知识的交汇,多角度联想,观察和分析问题,教师要教给学生学习的方法, 让学生学会学习,真正做到与其他知识融会贯通,切实提高学生分析问题,解决问题的能力,,促进其思维能力的发展和提高.练习:已知数列{吼}满足土上_=n (11,∈N+),ot=l,求n,1.三,%+I--,pa~+叮型方法:1)+小t?),.’,再根据等比数列的相关知识求(2)+.~%=p(%一an一)再用累加法求.(争一,先用累加法求争,再求?例3在数列{}中,a.=1,当n≥2时,有%=3一1+2,求.解法1:设+A=3(%l+A),即有=3~1+2A,对比=3l+2,得A=1.于是%+I=3(1+1),数列{+}是以a.+l=2为首项,以3为公比的等比数列,所以有=2?3一1.解法2:由已知递推式,得%+l=3%+2,%=3a.一l+2(n≥2).上述两式相减,得%+l~:3(%一%一1),因此,数列{%+.一nJl}是以o.2一a=4. 为首项,以3为公比的等比数列.所以+l一=4?3’,即3一%=4?3,所以%=2?3’1.练习:已知{}的首项n.=n(a为常数),;2a.一1(n∈N+,n≥2),求‰四,%+l=p%+/(n)型例4设数列{}满足,a=1,=一一J+2n一1(n≥2),求通项公式%.解:设6=+An,+曰,则%=b一An—B,%一l=6一l—A(一1)一B,所以b一An—B=an=1[6-I--A(n一1)一B]+2n一1,即b=1b—j+(A+2)n+(}A+一-).设所以b=16且b=%一4n+6.厶由于il6}是以3为首项,以为公比的等比数列,所以有b=3丁._由此得:一;:十4n.6.【说明】通过引入一些尚待确定的系数转化命题结构,经过变形与比较,把问题转化成基本数列(等差或等比数列). 五,+f:p%+q型例5已知b≠O,b≠士1,伪=,=了’+-+(n≥2),写出用/1,和b表示%的通项公式,解:将已知递推式两边乘以(1+6)”,得(1+6)=6(1+6)’an+l+,又设‰=(1+6),于是,原递推式化为n=bxT,仿类型三,可解得%=b—b=‘故%:.【说明】对于递推式+.=p+g,可两边除以q’,得争+上争’争,引入辅助数列6争,得n+争6n+,然后可归结为类型三.g六,+2p%+j+口型方法:待定系数法,设%+.一衄(一一%),构造等比数列.例6已知数列{}中,=1啦=2,+=++,求%.解:在%+2=%+l+两边减去+l,得%+2一+I:一一(+l一).所以{%+一%{是以02一n.=l为首项,以一为公比的等比数列.所以%+一=(一})..令E式=1,2,3,:一.(一1),再把这(n一1)个等式累加,得%一o=1 (一})+(_丁1)+?+(一})一=囊[1(一】.以;1哼((一}-11..t:,线性分式型..例7.(倒数法)已知数列{}中,a.: },+J=打,求{}的通项公式-解:j一::+2,所以{}是以为-NN,公差为2的等差数列,即l_:丁5+2(一1):,jj所以丁?练习:已知数列{}中,a.=1,=精,求{%}的通项公式?解.=}:击,所以f专}是以1为首项,公差为2的等差数列.所以=l+2(一1)_2,卜l,即Sn?所以=一一丁一1一=一fl(,n=1),删{2n1一2n3(.1一一…等差,等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试学生灵活运用知识的能力,这个”灵活”往往集中在”转化”的水平上.转化的目的是化陌生为熟悉,当然首先是等差,等比数列,根据不同的递推公式,采用相应的变[2011年第2期]基础教育论坛●_’r4:=A得解Il,l0一扛一2++A一2A一2。
由递推公式求通项公式练习
高三数学——由数列的递推公式求通项公式课堂例题:例题1. 已知数列{a n }满足a 1=1,a n +1-a n =1n +2+n +1,求a n .例题2. 已知数列{a n }满足a 1=1,a n +1a n= nn +1,求a n .反馈练习:1.已知数列{a n }中,a 1=1,a n =a n -1+3n (n ∈N 且n ≥2),则通项a n = .2. 已知数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n = ________.3. 已知数列{a n }中,a 1=1,a n +1a n=2n ,则通项a n = ________.4.已知数列{a n }满足a 1=254,a n +1-a n =2n ,当n =________时,a nn 取得最小值.课堂例题:例题3. (1)已知a 1=1,a n =3a n -1+2,则a n = ;(2)已知a 1=1,a n =a n -13a n -1+1(n ∈N 且n ≥2),求a n 。
例题4.已知数列{a n }中,a 1=2,前n 项和S n ,若S n =n 2a n ,求a n .反馈练习:1. 已知数列{a n }中,a 1=1,a n =23a n -1+1 (n ∈N 且n ≥2),则a n =________.2. 已知数列{a n }中,a 1=1,a n =2a n -1+2n (n ∈N 且n ≥2),则a n =________.3. 已知数列{a n }中,a 1=1,a n =2a n -1a n -1+2(n ∈N 且n ≥2),则a n =________.高考演练:1.(2018,全国卷Ⅰ,17)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. ⑴求123b b b ,,;⑵判断数列{}n b 是否为等比数列,并说明理由; ⑶求{}n a 的通项公式.2.(2017,全国卷Ⅲ,17)(12分)设数列{}n a 满足123(21)2n a a n a n +++-=.(1)求{}n a 的通项公式;3.(2016,全国卷Ⅲ,17)(本小题满分12分)已知各项都为正数的数列满足,.(I )求;(II )求的通项公式.4. (2014,大纲卷,17)(本小题满分10分) 数列{}n a 满足12212,2,22n n n a a a a a ++===-+. (1)设1n n n b a a +=-,证明{}n b 是等差数列; (2)求{}n a 的通项公式.{}n a 11a =211(21)20n n n n a a a a ++---=23,a a {}n a。
数列通项公式的完整求法,还有例题详解
一.观察法之答禄夫天创作例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,……∴通项公式为:110-=n n a(2);122++=n n n a n(3);12+=n a n (4)1)1(1+⋅-=+n na n n .点评:关键是找出各项与项数n的关系。
二、公式法:当已知条件中有a n 和s n 的递推关系时,往往利用公式:a n =1*1(1)(2,)n n s n s s n n N -=⎧⎪⎨-≥∈⎪⎩来求数列的通项公式。
例1: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式;解:(1)∵a 1=f (d -1) = (d -2)2,a 3 = f (d +1)= d 2,∴a 3-a 1=d 2-(d -2)2=2d ,∴d =2,∴a n =a 1+(n -1)d = 2(n -1);又b 1= f (q +1)= q 2,b 3=f (q -1)=(q -2)2,∴2213)2(q q b b -==q 2,由q ∈R ,且q ≠1,得q =-2,∴b n =b ·qn -1=4·(-2)n -1例 2. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( )(A)122-=n a n (B)42+=n a n (C)122+-=n a n(D)102+-=n a n解析:设等差数列的公差位d ,由已知⎩⎨⎧==+⋅⋅+12348)()(3333a d a a d a , 解得⎩⎨⎧±==243d a ,又{}n a 是递减数列, ∴2-=d,81=a ,∴=--+=)2)(1(8n a n 102+-n ,故选(D)。
由递推公式求通项的9种方法经典总结
由递推公式求通项的9种方法1.a n +1=a n +f (n )型把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1).[例1] 已知数列{a n }满足a 1=12,a n +1=a n +1n 2+n,求a n . [解] 由条件,知a n +1-a n =1n 2+n =1n (n +1)=1n -1n +1,则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n , 所以a n -a 1=1-1n. 因为a 1=12,所以a n =12+1-1n =32-1n. 2.a n +1=f (n )a n 型把原递推公式转化为a n +1a n=f (n ),再利用累乘法(逐商相乘法)求解,即由a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1=f (n -1),累乘可得a n a 1=f (1)f (2)…f (n -1).[例2] 已知数列{a n }满足a 1=23,a n +1=n n +1·a n,求a n . [解] 由a n +1=n n +1·a n ,得a n +1a n =n n +1, 故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ×n -2n -1×…×12×23=23n .即a n =23n . 3.a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型对于此类问题,通常采用换元法进行转化,假设将递推公式改写为a n +1+t =p (a n +t ),比较系数可知t =q p -1,可令a n +1+t=b n +1换元即可转化为等比数列来解决.[例3] 已知数列{a n }中,a 1=1,a n +1=2a n +3,求a n .[解] 设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故递推公式为a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以b 1=4为首项,2为公比的等比数列.所以b n =4×2n -1=2n +1,即a n =2n +1-3. 4.a n +1=pa n +q n (其中p ,q 均为常数,pq (p -1)≠0)型(1)一般地,要先在递推公式两边同除以q n +1,得a n +1qn +1=p q ·a n q n +1q ,引入辅助数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,再用待定系数法解决;(2)也可以在原递推公式两边同除以pn +1,得a n +1p n +1=a n p n +1p ·⎝ ⎛⎭⎪⎫q p n ,引入辅助数列{b n }⎝ ⎛⎭⎪⎫其中b n =a n p n ,得b n +1-b n =1p ⎝ ⎛⎭⎪⎫q p n ,再利用叠加法(逐差相加法)求解.[例4] 已知数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1,求a n . [解] 法一:在a n +1=13a n +⎝⎛⎭⎫12n +1两边乘以2n +1,得2n +1·a n +1=23(2n ·a n )+1. 令b n =2n ·a n ,则b n +1=23b n +1, 根据待定系数法,得b n +1-3=23(b n -3). 所以数列{b n -3}是以b 1-3=2×56-3=-43为首项, 以23为公比的等比数列. 所以b n -3=-43·⎝⎛⎭⎫23n -1,即b n =3-2⎝⎛⎭⎫23n .于是,a n =b n 2n =3⎝⎛⎭⎫12n -2⎝⎛⎭⎫13n . 法二:在a n +1=13a n +⎝⎛⎭⎫12n +1两边乘以3n +1,得 3n +1a n +1=3n a n +⎝⎛⎭⎫32n +1.令b n =3n ·a n ,则b n +1=b n +⎝⎛⎭⎫32n +1.所以b n -b n -1=⎝⎛⎭⎫32n ,b n -1-b n -2=⎝⎛⎭⎫32n -1,…, b 2-b 1=⎝⎛⎭⎫322.将以上各式叠加,得b n -b 1=⎝⎛⎭⎫322+…+⎝⎛⎭⎫32n -1+⎝⎛⎭⎫32n . 又b 1=3a 1=3×56=52=1+32, 所以b n =1+32+⎝⎛⎭⎫322+…+⎝⎛⎭⎫32n -1+⎝⎛⎭⎫32n =1·⎣⎡⎦⎤1-⎝⎛⎭⎫32n +11-32=2⎝⎛⎭⎫32n +1-2, 即b n =2⎝⎛⎭⎫32n +1-2.故a n =b n 3n =3⎝⎛⎭⎫12n -2⎝⎛⎭⎫13n . 5.a n +1=pa n +an +b (p ≠1,p ≠0,a ≠0)型这种类型一般利用待定系数法构造等比数列,即令a n +1+x (n +1)+y =p (a n +xn +y ),与已知递推式比较,解出x ,y ,从而转化为{a n +xn +y }是公比为p 的等比数列.[例5] 设数列{a n }满足a 1=4,a n =3a n -1+2n -1(n ≥2),求a n .[解] 设递推公式可以转化为a n +An +B =3[a n -1+A (n -1)+B ],化简后与原递推式比较,得⎩⎪⎨⎪⎧2A =2,2B -3A =-1,解得⎩⎪⎨⎪⎧A =1,B =1. 令b n =a n +n +1.(*)则b n =3b n -1,又b 1=6,故b n =6·3n -1=2·3n , 代入(*)式,得a n =2·3n -n -1.6.a n +1=pa r n (p >0,a n >0)型这种类型一般是等式两边取对数后转化为a n +1=pa n +q 型数列,再利用待定系数法求解.[例6] 已知数列{a n }中,a 1=1,a n +1=1a ·a 2n(a >0),求数列{a n }的通项公式. [解] 对a n +1=1a ·a 2n的两边取对数, 得lg a n +1=2lg a n +lg 1a. 令b n =lg a n ,则b n +1=2b n +lg 1a. 由此得b n +1+lg 1a =2⎝⎛⎭⎫b n +lg 1a ,记c n =b n +lg 1a,则c n +1=2c n , 所以数列{c n }是以c 1=b 1+lg 1a =lg 1a为首项,2为公比的等比数列. 所以c n =2n -1·lg 1a. 所以b n =c n -lg 1a =2n -1·lg 1a -lg 1a=lg ⎣⎡⎦⎤a ·⎝⎛⎭⎫1a 2n -1=lg a 1-2n , 即lg a n =lg a 1-2n ,所以a n =a 1-2n .7.a n +1=Aa n Ba n +C(A ,B ,C 为常数)型 对于此类递推数列,可通过两边同时取倒数的方法得出关系式[例7] 已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n =1,2,3,…,求{a n }的通项公式. [解] ∵a n +1=3a n 2a n +1,∴1a n +1=23+13a n,∴1a n +1-1=13⎝⎛⎭⎫1a n -1. 又1a 1-1=23, ∴⎩⎨⎧⎭⎬⎫1a n -1是以23为首项,13为公比的等比数列, ∴1a n -1=23·13n -1=23n , ∴a n =3n 3n +2. 8.)(1n f a a n n =++型 由原递推关系改写成),()1(2n f n f a a n n -+=-+然后再按奇偶分类讨论即可例8.已知数列{}n a 中,,11=a .21n a a n n =++求n a 解析:.21n a a n n =++2212+=+++n a a n n ,故22=-+n n a a 即数列{}n a 是奇数项和偶数项都是公差为2的等差数列,⎩⎨⎧∈≥-=∴*,1,1,N n n n n n n a n 且,为偶数为奇数 9.)(1n f a a n n =⋅+型将原递推关系改写成)1(12+=+⋅+n f a a n n ,两式作商可得,)()1(2n f n f a a n n +=+然后分奇数、偶数讨论即可 例9.已知数列{}n a 中,,2,311n n n a a a =⋅=+求{}n a 解析:⎪⎩⎪⎨⎧∈≥⋅⋅=+-N n n n n a n n n ,1,231,23221,为偶数为奇数。
由数列递推公式求通项公式的常用方法
21世纪,信息技术在各行各业都在运用,它已和人们的学习生活息息相关,掌握不好信息知识和信息技能,就难以高效地工作和生活。
初中信息技术的开设,引导着我们每个教学者探究如何采取适当的教学方法激发学生主动学习,提高信息技术的教学质量、提升学生素质。
一、编好导学案,培养学生独立探究的品质什么样的导学案才叫好的导学案?一要能激发学习动机,在学案中创设特定的情境和启发性的问题,引导学生积极思考和主动探索,能和实践紧密结合。
二要针对不同类型的信息课,设计不同的形式的导学案,新授课的导学案要着重关注学生的最近发展区,问题设计情境化,有启发性和探究性。
习题课的导学案应着重帮助学生总结解答典型问题的基本方法和基本思路,复习课导学应帮助学生梳理知识体系。
设计导学时要充分考虑学生在学习过程中可能会遇到的问题和困难,考虑怎样去帮助学生克服困难,导学思考题,要求将学习目标问题化、情境化。
能力训练题,每个知识点学完后,要给予适当的题目进行训练,但题目应少而精,要有利于学生巩固基础知识,突出易混淆的和需注意的知识点;能力提高题,主要是针对掌握程度好的学生设计的,这部分题目的设置可以多链接学生的疑点。
学生对每一项应该完成的任务都必须掌握和理解,才开始学习新的任务,这样才能保证收到效果。
比如,初中“网络课件构件设计”导学案设计。
①学习对象设计包括中哪五个环节?(内容结构设计、内容呈现设计、SCOS 设计、内容编序设计和元数据设计)。
②每个设计的方案是什么?(如:内容呈现设计,在画面中应该尽量删除无用的背景和多余的细节。
元数据设计,SCORM 中的元数据包括Assets 元数据、SCOS 元数据、学习活动元数据、内容组织元数据和内容聚合元数据。
元数据设计时可参照SCORM。
定义的九大类元数据元素及其应用情况,其中“M”为必选项,“O”为可选项,“NP”为不选项。
)导学案为提高课堂效益架设了一座快捷的桥梁,导学让学生在课前有一定的时间构思,在课堂上学生参与、学生创新潜质更易发挥。
求数列通项公式的十种方法(例题+详解)
求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n na a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
二、利用{1(2)1(1)n n S S n S n n a --≥==例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式;解:22(1)4231a n a d S n n n n =-+∴=-=-=--23435T S n n n n n ∴=+=--……2分 当1,35811n T b ===--=-时当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2)当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3三、累加法例3 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
递推式求数列通项公式常见类型及解法
递推式求数列通项公式常见类型及解法递推数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列给 予解决,由于递推数列的多变性,这里介绍总结一些常见类型及解法。
一、公式法(涉及前n 项的和) 已知)(n f s n =⎩⎨⎧≥----=-----=⇒-)2()1(11n S S n S a n n n 注意:已知数列的前n 项和,求通项公式时常常会出现忘记讨论1=n 的情形而致错。
例1.已知数列}a {n 前n 项和1322-+=n n S n ,求数列}a {n 的通项公式。
解:当n=1时,411==s a ,当2≥n 时,14]1)1(3)1(2[)132(221+=--+---+=-=-n n n n n s s a n n n ,15114a ≠=+⨯⎩⎨⎧≥+==∴)2(,14)1(,4n n n a n练习:已知数列}a {n 前n 项和12+=n n S ,求数列}a {n 的通项公式。
答案:⎩⎨⎧≥==-)2(,2)1(,31n n a n n 二、作商法(涉及前n 项的积)已知)(......321n f a a a a n =⨯⨯⨯⎪⎩⎪⎨⎧≥----=----=⇒)2()1()()1().1(n n f n f n f a n例2.已知数列}a {n 中的值试求时53232,2,11a a n a a a n a n +=⋅⋅⋅⋅⋅⋅⋅≥=。
解:当2≥n 时,由2321n a a a a n =⋅⋅⋅⋅⋅⋅⋅⋅,可得21321)1(-=⋅⋅⋅⋅⋅⋅⋅⋅-n a a a a n则22)1(-=n na n16614523222253=+=+∴a a三、累加法(涉及相邻两项的差)已知)(1n f a a n n =-+112211)......()()(a a a a a a a a n n n n n +-+-+-=⇒--- 例3.已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见递推数列通项公式的求法典型例题及习题【典型例题】[例1] b ka a n n +=+1型。
(1)1=k 时,}{1n n n a b a a ⇒=-+是等差数列,)(1b a n b a n -+⋅= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1比较系数:b m km =- ∴1-=k b m∴}1{-+k b a n 是等比数列,公比为k ,首项为11-+k b a∴11)1(1-⋅-+=-+n n k k b a k b a ∴1)1(11--⋅-+=-k bk k b a a n n [例2] )(1n f ka a n n +=+型。
(1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。
例:已知}{n a 满足11=a ,)1(11+=-+n n a a n n 求}{n a 的通项公式。
解:∵111)1(11+-=+=-+n n n n a a n n∴n n a a n n 1111--=-- 112121---=---n n a a n n213132---=---n n a a n n ……312123-=-a a 21112-=-a a对这(1-n )个式子求和得:n a a n 111-=- ∴ n a n 12-=(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1∴ ⎩⎨⎧=--=-b A B k a A k )1()1( 解得:1-=k a A ,2)1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列∴ 11)(-⋅++=++n n k B A a B An a∴B An k B A a a n n --⋅++=-11)( 将A 、B 代入即可 (3)nq n f =)((≠q 0,1)等式两边同时除以1+n q 得q q a q k q a n n n n 111+⋅=++ 令n n n q a C =则q C q k C n n 11+=+ ∴ }{n C 可归为b ka a n n +=+1型[例3] n n a n f a ⋅=+)(1型。
(1)若)(n f 是常数时,可归为等比数列。
(2)若)(n f 可求积,可用累积约项的方法化简求通项。
例:已知:311=a ,11212-+-=n n a n n a (2≥n )求数列}{n a 的通项。
解:1235375325212321212122332211+=⋅--⋅--⋅+-=⋅⋅⋅-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴1211231+=+⋅=n n a a n[例4]11--+⋅⋅=n n n a m a m k a 型。
考虑函数倒数关系有)11(11m a k a n n+=- ∴ m k a k a n n +⋅=-111 令n n a C 1=则}{n C 可归为b ka a n n +=+1型。
练习:1. 已知}{n a 满足31=a ,121+=+n n a a 求通项公式。
解:设)(21m a m a n n +=++ m a a n n +=+21 ∴ 1=m ∴ }1{1++n a 是以4为首项,2为公比为等比数列∴ 1241-⋅=+n n a ∴121-=+n n a 2. 已知}{n a 的首项11=a ,n a a n n 21+=+(*N n ∈)求通项公式。
解:)1(21-=--n a a n n )2(221-=---n a a n n )3(232-=---n a a n n …… 2223⨯=-a a1212⨯=-+a an n n a a n -=-+++=-21)]1(21[2Λ∴12--=n n a n 3. 已知}{n a 中,nn a n na 21+=+且21=a 求数列通项公式。
解:)1(231422413211122332211+=⋅--⋅--⋅-⋅+-=⋅⋅⋅-----n n n n n n n n n n a a a a a a a a a a n n n n n n ΛΛ∴ )1(21+=n n a a n ∴ )1(4+=n n a n 4. 数列}{n a 中,n n nn n a a a +⋅=+++11122,21=a ,求}{n a 的通项。
解:n n n n n a a a 111221++++= ∴ 112111+++=n n n a a设n n a b 1=∴ 1121+++=n n n b b ∴ nn n b b 211+=-∴n n n b b 211=-- 12121---=-n n n b b 23221---=-n n n b b ……32321=-b b21221=-+b b n n b b 212121321+++=-Λnn 2121211])21(1[2112-=--=- ∴ nn n n b 212212121-=+-= ∴122-=nnn a5. 已知:11=a ,2≥n 时,12211-+=-n a a n n ,求}{n a 的通项公式。
解:设])1([211B n A a B An a n n +-+=++- B A An a a n n 212121211---=-∴ ⎪⎪⎩⎪⎪⎨⎧-=--=-12121221B A A 解得:⎩⎨⎧=-=64B A ∴ 3641=+-a ∴ }64{+-n a n 是以3为首项,21为公比的等比数列 ∴ 1)21(364-⋅=+-n n n a ∴ 64231-+=-n a n n【模拟试题】1. 已知}{n a 中,31=a ,nn n a a 21+=+,求n a 。
2. 已知}{n a 中,11=a ,231+=-n n a a (2≥n )求n a 。
3. 已知}{n a 中,11=a ,n n n a a 221+=-(2≥n )求n a 。
4. 已知}{n a 中,41=a ,144--=n n a a (2≥n )求n a 。
5. 已知}{n a 中,11=a ,其前n 项和n S 与n a 满足1222-=n nn S S a (2≥n ) (1)求证:}1{n S 为等差数列 (2)求}{n a 的通项公式6. 已知在正整数数列}{n a 中,前n 项和n S 满足2)2(81+=nn a S(1)求证:}{n a 是等差数列 (2)若n b 3021-=n a ,求}{n b 的前n 项和的最小值【试题答案】1. 解:由n n n a a 21+=+,得112--+=n n n a a ∴ 112--=-n n n a a2212---=-n n n a a ……212=-+a a∴ 2221)21(211-=--=--n n n a a ∴12221+=+-=nn n a a 2. 解:由231+=-n n a a 得:)1(311+=+-n n a a∴ 3111=++-n n a a 即}1{+n a 是等比数列113)1(1-⋅+=+n n a a ∴ 13213)1(111-⋅=-⋅+=--n n n a a3. 解:由nn n a a 221+=-得12211=---n n n n a a∴ }2{n n a 成等差数列,)1(212-+=n a n n ∴ 122--⋅=n n n n a4. 解:nn n n a a a a )2(24221-=-=-+ ∴ 2121)2(2211-+=-=-+n n n n a a a a (1≥n ) ∴ 2121211=---+n n a a (1≥n )设21-=n n a b即)1(211≥=-+n b b n n∴ }{n b 是等差数列 ∴ 221)1(21211n n a a n =⋅-+-=- 22+=n a n5. 解:(1)12221-=--n n n n S S S S ∴ 112--=-n n n n S S S S2111=--n n S S ∴ }1{n S 是首项为1,公差为2的等差数列 ∴ 121-=n S n(2)121-=n S n ∴ )2(384211212)121(222≥+--=--⋅-=n n n n n a n又 ∵ 11=a ∴⎪⎩⎪⎨⎧≥+--==)2(3842112n n n n a n6. 解:(1)2111)2(81+==a S a ∴ 21=a2≥n 时,2121)2(81)2(81+-+=-=--n n n n n a a S S a整理得:0)4)((11=--+--n n n n a a a a∵ }{n a 是正整数数列 ∴ 01≠+-n n a a ∴ 41=--n n a a ∴ }{n a 是首项为2,公差为4的等差数列 ∴ 24-=n a n(2)31230)24(21-=--=n n b n∴ }{n b 为等差数列 ∴n n S n 302-= ∴ 当15=n 时,n S 的最小值为2251530152-=⨯-如有侵权请联系告知删除,感谢你们的配合!。