10进制和60进制计数器

合集下载

北京科技大学数电实验四 Quartus II集成计数器及移位寄存器应用

北京科技大学数电实验四 Quartus II集成计数器及移位寄存器应用

北京科技大学实验报告学院:高等工程师学院专业:自动化(卓越计划)班级:自E181姓名:杨威学号:41818074 实验日期:2020 年5月26日一、实验名称:集成计数器及其应用1、实验内容与要求(1)用74161和必要逻辑门设计一个带进位输出的10进制计数器,采用同步置数方法设计;(2)用两个74161和必要的逻辑门设计一个带进位输出的60进制秒计数器;2、实验相关知识与原理(1)74161是常用的同步集成计数器,4位2进制,同步预置,异步清零。

引脚图功能表其中X。

3、10进制计数器(1)实验设计1)确定输入/输出变量输入变量:时钟信号CLK、复位信号CLRN;输出变量:计数输出QD、QC、QB、QA,进位输出RCO,显示译码输出OA、OB、OC、OD、OE、OF、OG2)计数范围:0000-10013)预置数值:00004)置数控制端LDN:计数到1001时输出低电平5)进位输出RCO:计数到1001时输出高电平画出如下状态转换表:CP QDQCQBQA0 00001 00012 00103 00114 01005 01016 01107 01117 10009 100110 0000(2)原理图截图仿真波形如下功能验证表格CLRN QD QC QB QA RCO0 0 0 0 0 01 0 0 0 1 01 0 0 1 0 01 0 0 1 1 01 0 1 0 0 01 0 1 0 1 01 0 1 1 0 01 0 1 1 1 01 1 0 0 0 01 1 0 0 1 11 0 0 0 0 04、60进制秒计数器(1)实验设计1)确定输入/输出变量输入变量:时钟信号CLK、复位信号CLRN;输出变量:计数十位输出QD2、QC2、QB2、QA2和计数个位输出QD1、QC1、QB1、QA1,进位输出RCO2)计数范围:0000 0000-0101 10013)预置数值:0000 00004)置数控制端LDN1(个位):计数到0101 1001时输出低电平5)清零端CLRN2(十位):计数到0110时输出低电平6)ENT:个位计数到1001时输出高电平7)进位输出RCO:计数到1001时输出高电平画出如下状态转换表CP QD2QC2QB2QA2QD1QC1QB1QA1CPQD2QC2QB2QA2QD1QC1QB1QA1CPQD2QC2QB2QA2QD1QC1QB1QA10 0000 0000 20 0010 0000 40 0100 00001 0000 0001 21 0010 0001 41 0100 00012 0000 0010 22 0010 0010 42 0100 00103 0000 0011 23 0010 0011 43 0100 00114 0000 0100 24 0010 0100 44 0100 01005 0000 0101 25 0010 0101 45 0100 01016 0000 0110 26 0010 0110 46 0100 01107 0000 0111 27 0010 0111 47 0100 01118 0000 1000 28 0010 1000 48 0100 10009 0000 1001 29 0010 1001 49 0100 100110 0001 0000 30 0011 0000 50 0101 000011 0001 0001 31 0011 0001 51 0101 000112 0001 0010 32 0011 0010 52 0101 001013 0001 0011 33 0011 0011 53 0101 001114 0001 0100 34 0011 0100 54 0101 010015 0001 0101 35 0011 0101 55 0101 010116 0001 0110 36 0011 0110 56 0101 011017 0001 0111 37 0011 0111 57 0101 011118 0001 1000 38 0011 1000 58 0101 100019 0001 1001 39 0011 1001 59 0101 100160 0000 0000 (2)设计原理图截图(3)实验仿真仿真波形:仿真结果表:5、实验思考题:(1)总结任意模计数器的设计方法。

数电-课程设计-60进制计数器

数电-课程设计-60进制计数器
图2十进制计数器个位2十进制计数器十位电路图3十进制计数器十位3时钟脉冲电路图4时钟脉冲电路4置数电路图5置数电路5进位电路图6进位电路6译码显示电路图7译码显示电路三绘制原理图1完整原理图图7计数器原理图2选定仪器列表仪器名称型号数量用途同步十进制计数器74ls1602片极联构成60进制计数器与门与非门非门74ls21d74ls00d74ls04d各1个辅助设计构成其他计数器共阴极显示器dcdhex2只显示数字计数电压源1个提供脉冲电压表二原理图仪器列表四测试方案测试步骤
以下两个仿真结果分别是计数器计数的仿真起点00和仿真终点59,之后计数器会自动恢复原来的00起点继续进行循环计数,并且进位输出灯会在59时发光。
图11 60进制计数器起点00图12 60进制计数器终点59
2、理论分析
本计数器由两个10进制计数器构成60进制计数器的接线图,右边的10进制计数器作为个位,左边的10进制计数器作为十位。输入端全部接地,计数开始循环一周后通过置位法自动进行归00,之后再继续循环计数。
74LS160
2片
极联构成60进制计数器
与门
与非门
非门
74LS21D
74LS00D
74LS04D
各1个
辅助设计构成其他计数器
共阴极显示器
DCD-HEX
2只
显示数字计数
电压源
1个
提供脉冲电压
表二原理图仪器列表
四、测试方案
测试步骤:
1)进入Multisim7界面
图8软件页面
2)右击空白处,选择放置元件,进入元器件选择区,选择要放置的元件,然后单击好。
图13 60进制计数器的接线图
计数器的状态转换图如下
图14计数器显示的状态转换图

电子技术习题解答第章触发器和时序逻辑电路及其应用习题解答

电子技术习题解答第章触发器和时序逻辑电路及其应用习题解答

第8章 触发器和时序逻辑电路及其应用习题解答8.1 已知基本RS 触发器的两输入端D S 和D R 的波形如图8-33所示,试画出当基本RS 触发器初始状态分别为0和1两种情况下,输出端Q的波形图。

图8-33 习题8.1图解:根据基本RS 触发器的真值表可得:初始状态为0和1两种情况下,Q的输出波形分别如下图所示:习题8.1输出端Q的波形图8.2 已知同步RS 触发器的初态为0,当S 、R 和CP 的波形如图8-34所示时,试画出输出端Q的波形图。

图8-34 题8.2图解:根据同步RS 触发器的真值表可得:初始状态为0时,Q的输出波形分别如下图所示:习题8.2输出端Q的波形图8.3 已知主从JK触发器的输入端CP、J和K的波形如图8-35所示,试画出触发器初始状态分别为0时,输出端Q的波形图。

图8-35 习题8.3图解:根据主从JK触发器的真值表可得:初始状态为0情况下,Q的输出波形分别如下图所示:习题8.3输出端Q的波形图8.4 已知各触发器和它的输入脉冲CP的波形如图8-36所示,当各触发器初始状态均为1时,试画出各触发器输出Q端和Q端的波形。

图8-36 习题8.4图解:根据逻辑图及触发器的真值表或特性方程,且将驱动方程代入特性方程可得状态方程。

即:(a )J =K =1;Qn +1=n Q,上升沿触发 (b)J =K =1;Qn +1=n Q, 下降沿触发 (c)K =0,J =1;Qn +1=J n Q+K Qn =1,上升沿触发 (d)K =1,J =n Q;Qn +1=J n Q+K Qn =n Qn Q+0·Qn =n Q,上升沿触发 (e)K =Qn ,J =n Q;Qn +1=J n Q+K Qn =n Qn Q+0=n Q,上升沿触发 (f)K =Qn ,J =n Q;Qn +1=J n Q+K Qn =n Qn Q+0=n Q,下降沿触发, 再根据边沿触发器的触发翻转时刻,可得当初始状态为1时,各个电路输出端Q的波形分别如图(a )、(b )、(c )、(d )、(e )和(f )所示,其中具有计数功能的是:(a )、(b )、(d )、(e )和(f )。

60进制计数器原理

60进制计数器原理

60进制计数器原理
60进制计数器是一种计数器,用于表示和记录数字,其中每
个计数位可以取0到59之间的任意整数。

其原理是通过60个
不同状态的计数位组合来表示不同的数值。

假设有一个3位的60进制计数器。

每个计数位可以取0到59
之间的值。

初始状态为000,即每个计数位都是0。

当计数器
工作时,每经过一个时钟周期,计数器的值增加1。

当某个计
数位达到59时,它会自动归零,并且将高位的计数位值加1。

当最高位达到59时,整个计数器的值将归零重新开始计数。

例如,计数器的值从0开始逐渐增加,当计数位为59时,变
为1(该位自动归零并且高位加1)。

当达到59,59时,变为1,0(最高位自动归零并且前两位加1),依此类推。

这样,60进制计数器可以按照0到59的顺序不断地计数。

60进制计数器可应用于多个领域,例如时间计数、音频处理等。

在时间计数中,可以使用60进制计数器来表示小时、分
钟和秒的值,使时间计数更加精确和方便。

例如,一个时间计数器的值为12,34,56,表示12小时、34分钟和56秒。

总而言之,60进制计数器通过组合60个不同状态的计数位来
表示数字,每个计数位可以取0到59之间的值,并且在某个
计数位达到59时会自动归零并且高位计数位加1。

这种计数
器可以应用于多个领域,用于更精确地记录和表示数字值。

60进制计数器

60进制计数器

题目60计数器60进制计数器主要内容:利用QuartusII设计一个六十进制计数器。

该电路是采用整体置数法接成的六十进制计数器。

首先需要两片74160接成一百进制的计数器,然后将电路的60状态译码产生LD′=0信号,同时加到两片74160上,在下一个计数脉冲(第60个计数脉冲)到达时,从而得到六十进制计数器。

主要要求如下:(1)每隔1个周期脉冲,计数器增1;(2)当计数器递增到60时,进位端波形发生跳变,说明计数器产生进位信号,之后计数器会自动返回到00并重新计数;(3)本设计主要设备是两片74160同步十进制计数器,时钟信号通过建立波形文件得以提供。

1方案选择与电路原理图的设计使用具有一定频率的时钟信号作为计数器的时钟脉冲作为同步控制信号,整体电路通过两片74160与其他门电路辅助等单元电路构成以实现置数进位功能。

图2.1为六十进制计数器的总体电路原理框图。

图1.1 电路原理框图1.1单元电路一:十进制计数器电路(个位)本电路采用74160作为十进制计数器,它是一个具有异步清零、同步置数、可以保持状态不变的十进制上升沿计数器。

每输入10个计数脉冲,计数器便工作一个循环,并且在进位端RCO产生一个进位输出信号。

其功能表如表2-1所示,连接方式如图2.2所示。

此片工作时进位端RCO在没有进位时RCO=0,因此第二片ENP·ENT=0,第二片不工作。

表2-1 同步十进制计数器功能表在新建好的block文件的图形编辑窗口中双击鼠标,或点击图中“符号工具”按钮,或者选择菜单Edit下的Insert Symbol命令,即可对元件进行选择。

选择元件库中的ot hers—maxplus2—74160。

点击工具栏中Orthogonal Node Tool按钮便可以对端子间进行连线,其中值得注意的是,点击工具栏中Orthogonal Bus Tool按钮可以通过总线进行连接。

1.2 单元电路二:十进制计数器(十位)本电路同样采用74160作为十进制计数器,如图2.3所示。

60进制计数器课程设计

60进制计数器课程设计

60进制计数器课程设计一、课程目标知识目标:1. 学生能够理解60进制计数器的概念,掌握其与十进制的转换方法。

2. 学生能够运用60进制计数器进行简单的加、减运算。

3. 学生了解60进制在实际生活中的应用,如时间、角度等。

技能目标:1. 学生能够独立完成60进制与十进制的转换。

2. 学生能够运用所学知识解决实际问题,如将时间、角度等转换为60进制表示。

3. 学生通过小组合作,培养团队协作能力和沟通能力。

情感态度价值观目标:1. 学生对60进制计数器产生兴趣,培养对数学的热爱。

2. 学生在探究过程中,养成独立思考、勇于尝试的良好习惯。

3. 学生通过学习,认识到数学与生活的紧密联系,增强学以致用的意识。

课程性质:本课程为数学学科的一节实践探究课,旨在帮助学生掌握60进制计数器的相关知识,提高学生的实际操作能力和解决问题的能力。

学生特点:四年级学生具有一定的数学基础,对新鲜事物充满好奇,喜欢动手操作,但注意力容易分散。

教学要求:教师需结合学生的特点,设计生动有趣的教学活动,引导学生积极参与,鼓励学生自主探究和合作交流,确保每位学生都能在课堂上有所收获。

同时,注重培养学生的情感态度价值观,使学生在学习过程中形成正确的价值观和积极的学习态度。

通过分解课程目标为具体的学习成果,为后续的教学设计和评估提供依据。

二、教学内容本节课依据课程目标,结合教材第四章《有趣的计数器》相关内容,组织以下教学大纲:1. 引言:介绍60进制计数器的基本概念,引导学生思考其在生活中的应用,如时间、角度等。

2. 知识讲解:a. 讲解60进制计数器与十进制的区别与联系。

b. 详细介绍60进制与十进制的转换方法。

c. 通过实例,展示60进制在时间、角度等方面的应用。

3. 实践操作:a. 学生独立完成60进制与十进制的转换练习。

b. 学生分组讨论,解决实际问题,如将时间、角度等转换为60进制表示。

4. 拓展延伸:a. 探讨60进制在生活中的其他应用,激发学生思考。

60进制计数器错误原因与修改方法

60进制计数器错误原因与修改方法

60进制计数器错误原因与修改方法杨艳;李继凯【摘要】在实际应用中常采用集成4位二进制计数器74LS161构成60进制计数器。

对现有教材中的一道例题采用Multisim仿真并观察结果,发现其实构成的是50进制计数器。

结合74LS161的逻辑功能表,分析了用74LS161构成60进制计数器时出现错误计数循环的原因,给出了两种修改电路设计的方法,并利用仿真实验进行验证。

结果表明设计方法是正确的。

%A 4-bit integrated binary counter 74LS161 is often used to compose a modulo -60 counter in practical application ,A circuit from the existing textbook example is simulated with Multisim .The results show the circuit is a modulo -50 counter in fact .The reasons for wrong count cycle in using 74LS161 to compose modulo-60 counter is analyzed ,based on the logic function table of 74LS161 .Two Modifi-cation methods is given and verified with simulation experiment .【期刊名称】《广东石油化工学院学报》【年(卷),期】2015(000)004【总页数】4页(P63-66)【关键词】集成计数器;60进制;Multisim【作者】杨艳;李继凯【作者单位】广东石油化工学院计算机与电子信息学院,广东茂名525000;广东石油化工学院计算机与电子信息学院,广东茂名525000【正文语种】中文【中图分类】TN79从降低成本方面考虑,集成电路的定型产品必须有足够大的批量,因此,目前常见的计数器芯片在计数进制上只做成应用较广的类型,如十进制和十六进制[1]。

数字电子技术基础课程设计实验报告

数字电子技术基础课程设计实验报告

数字电子技术课程设计(数字时钟逻辑电路的设计与实现)学院:信息学院班级:学号:姓名:刘柳指导教师:楚岩课设时间:2009年6月21日—2009年6月26日一摘要数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。

诸如按时自动打铃,时间程序自动控制,定时启闭路灯,定时开关烘箱,通断动力设备,甚至各种定时电气的的自动启用等。

这些都是以数字时钟作为时钟源的。

数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

目前,数字钟的功能越来越强,并且有多种专门的大规模集成电路可供选择。

经过了数字电路设计这门课程的系统学习,特别经过了关于组合逻辑电路与时序逻辑电路部分的学习,我们已经具备了设计小规模集成电路的能力,借由本次设计的机会,充分将所学的知识运用到实际中去。

二主要技术指标1.设计一个有时、分、秒(23小时59分59秒)显示的电子钟2.该电子钟具有手动校时功能三方案论证与选择要想构成数字钟,首先应选择一个脉冲源——能自动地产生稳定的标准时间脉冲信号。

而脉冲源产生的脉冲信号的频率较高,因此,需要进行分频,使高频脉冲信号变成适合于计时的低频脉冲信号,即“秒脉冲信号”(频率为1HZ)。

经过分频器输出的秒脉冲信号到计数器中进行计数。

将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。

“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。

“时计数器”采用24进制计时器,可实现对一天24小时的累计。

此时需要分别设计60进制,24进制计数器,各计数器输出信号经译码器到数字显示器,使“时”、“分”、“秒”得以数字显示出来。

值得注意的是:任何计时装置都有误差,因此应考虑校准时间电路。

60进制计数器实验报告

60进制计数器实验报告

60进制计数器实验报告60进制计数器实验报告引言:计数器是一种常见的电子设备,用于记录和显示数字。

在日常生活中,我们常见的计数器是十进制计数器,即由0到9的数字循环计数。

然而,在某些特殊的应用场景中,十进制计数器可能不够灵活。

本实验旨在设计和实现一种60进制计数器,以满足特定需求。

实验目的:1. 设计并实现60进制计数器电路;2. 验证60进制计数器的功能和准确性;3. 探讨60进制计数器的应用价值。

实验原理:十进制计数器是通过使用4位二进制计数器和逻辑门电路来实现的。

同样地,60进制计数器可以通过使用更多位的二进制计数器和逻辑门电路来实现。

在本实验中,我们使用6位二进制计数器和逻辑门电路来构建60进制计数器。

实验材料:1. 74LS74型D触发器芯片 x 62. 74LS00型与非门芯片 x 23. 74LS08型与门芯片 x 14. 连线材料5. 示波器6. 电源实验步骤:1. 根据电路原理图,连接各个芯片和逻辑门,确保连接正确无误。

2. 将电源接入电路,注意电压和接线的正确性。

3. 使用示波器观察计数器输出的波形,并检查是否按照预期进行计数。

实验结果:经过实验,我们成功地设计并实现了60进制计数器。

计数器在每个时钟脉冲的作用下,能够准确地按照60进制进行计数,并输出相应的波形。

通过示波器观察,我们可以清晰地看到计数器的计数过程,以及在达到最大计数值后的溢出现象。

实验讨论:60进制计数器的设计和实现为特定领域的计数需求提供了解决方案。

例如,在时间测量中,60进制更符合人们对时间的感知和使用习惯。

此外,60进制计数器还可以应用于音乐节拍器、航天导航等领域,提供更灵活和精确的计数方式。

然而,60进制计数器也存在一些限制和挑战。

首先,由于60不是2的幂次,所以构建60进制计数器的硬件复杂度较高。

其次,60进制计数器在数字显示和数据传输方面需要进行转换,增加了额外的工作量和成本。

结论:通过本实验,我们成功地设计并实现了60进制计数器。

60进制计数器进位信号和归零逻辑

60进制计数器进位信号和归零逻辑

60进制计数器进位信号和归零逻辑
在传统的计数系统中,我们经常使用十进制计数器,即使用0-9的数字进行计数。

然而,在某些特定的应用场景中,十进制计数器可能不够灵活。

这时,我们可以考虑使用其他进制计数器,如60进制计数器。

在60进制计数器中,我们使用的数字从0到59,而不再是0到9。

这意味着我们可以更精确地计数,并且可以在更长的时间段内进行计数,而不需要进行进位。

那么,进位信号和归零逻辑在60进制计数器中是如何工作的呢?
首先,我们需要确定计数器的位数。

在十进制计数器中,我们通常使用10位二进制数字进行计数,而在60进制计数器中,我们需要使用更多的位数,以便能够表示60个不同的数字。

当一个位达到60时,它就需要进位了。

进位信号会被发送给下一位,使其加1。

这个过程类似于十进制计数器中的进位操作,只不过进位的基数变成了60。

当最高位达到60时,我们可以选择两种方式来处理。

一种方式是忽略进位,继续递增最高位。

这意味着我们可以计数到最高位达到59,
然后归零重新计数。

另一种方式是将最高位的进位信号发送给其他系统,以触发一些特定的操作。

归零逻辑也是十分重要的。

当我们需要将计数器归零时,我们需要将所有位的值都设置为0。

这可以通过将每一位的进位信号发送给下一位来实现,直到最低位。

总之,60进制计数器的进位信号和归零逻辑与十进制计数器类似,只不过进位的基数变成了60。

这使得60进制计数器可以更灵活地进行计数,并且适用于一些特定的应用场景。

电子秒表74160

电子秒表74160

电子秒表一、设计任务与要求1、设计部分由0.1s位、s个位、s十位和min个位四个计数器组成。

技术范围:0-10min,精度为0.1s。

2、秒表具有清零、计时、暂停三种工作状态。

用两个按键控制,按键1第一次按下时计时开始,第二次按下时清零;按键二第一次按下时暂停,第二次按下时继续计时。

3、脉冲源可通过555多谐振荡器提供。

4、每隔30s蜂鸣器响一声(每次响1s)。

二、总体框图1、结构框图总体框图,如图2-1。

图2-1 总体框图2、设计方案(1)十进制、六十进制电路方案一:可用74LS160、161、162、163实现计数功能,只能实现加法;方案二:用74LS190、191、192、193实现计数功能,可以加可以减,可以 进位、可以借位。

电子秒表只需要实现加法,用不到减法和借位,所以此处选择方案一中的74LS160计数器。

(2)暂停功能电路方案一:用SR 触发器,SR 触发器属低电平直接触发的触发器,有直接置位,复位的功能。

可使其在停止后能够依然保留数字而不马上归零;方案二:用D 触发器,D 触发器具有保持功能,不会因为前后的变化而改变,因此可以通过它实现“单开关保持清零功能”。

SR 触发器自己比较熟悉,所以选择方案一用SR 触发器实现暂停功能。

(3)脉冲源通过555定时器改装的多谐振荡器发出的脉冲频率要更准确,所以用555多谐振荡器设计一个10HZ 电路,即精度为0.1s 。

(4)蜂鸣器部分 通过组合逻辑电路实现。

三、选择器件1、数码管数码管是一种由发光二极管组成的断码型显示器件,如图3-1。

图3-1 数码管管脚图数码管里有八个小LED 发光二极管,通过控制不同的LED 的亮灭来显示出不同的字形。

数码管又分为共阴极和共阳极两种类型,其实共阴极就是将八个LED 的阴极连在一起,让其接地,这样给任何一个LED 的另一端高电平,它便能点亮。

而共阳极就是将八个LED 的阳极连在一起。

2、555定时器555 定时器是一种模拟和数字功能相结合的中规模集成器件。

60进制计数器实验报告

60进制计数器实验报告
五、整体电路及实现
电容充电时间:tp1=0.7(R1+R2)C
电容放电时间:tp2=0.7R2 C
电路振荡周期:T=tp1+tp2=0.7(R1+2R2)C
电路震荡频率:f=1/T
由此得到振荡周期为1s的脉冲信号。
产生的脉冲信号波形如下图所示:
(2)74LS161的16进制改10进制(低位)
(3)74LS161的16进制改6进制(高位)
(2)、确定使用74LS161芯片的个数。74LS161有16个状态,十进制计数器有10个状态,只用一片74LS161就可以实现模为10的计数器。实现六十进制,需要两片74LS161芯片。
(3)、确定输出状态。计数器应从0000状态开始计数,当低位第十个脉冲出现时,即1010状态出现时立即返回0000状态。高位第六个脉冲出现时,即0110状态出现时立即返回0000状态。
三、逻辑功能表
74LS161逻辑功能表
输入
输出
CR
LD
CTP
CTT
CP
D3
D2
D1
D0
Q3
Q2
Q1
Q0
0
*
*
*
*
*
*
*
*
L
L
L
L
1
0
*
*

D3
D2
D1
D0
D3
D2
D1
D0
1
1
*
0

*
*
*
*
保持
1
1
0
*
*
*
*
*
*
保持
1
1
1

计数器实验报告

计数器实验报告

实验4计数器及其应用一、实验目的1、学习用集成触发器构成计数器的方法2、掌握中规模集成计数器的使用及功能测试方法二、实验原理计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。

计数器种类很多。

按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。

根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。

根据计数的增减趋势,又分为加法、减法和可逆计数器。

还有可预置数和可编程序功能计数器等等。

目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器。

使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。

1、中规模十进制计数器CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如图5-9-1所示。

图5-9-1 CC40192引脚排列及逻辑符号图中LD—置数端 CP U—加计数端 CP D—减计数端CO—非同步进位输出端BO—非同步借位输出端D0、D1、D2、D3—计数器输入端Q0、Q1、Q2、Q3—数据输出端 CR—清除端CC40192的功能如表5-9-1,说明如下:表5-9-1当清除端CR为高电平“1”时,计数器直接清零;CR置低电平则执行其它功能。

当CR 为低电平,置数端LD 也为低电平时,数据直接从置数端D 0、D 1、D 2、D 3 置入计数器。

当CR 为低电平,LD 为高电平时,执行计数功能。

执行加计数时,减计数端CP D 接高电平,计数脉冲由CP U 输入;在计数脉冲上升沿进行 8421 码十进制加法计数。

执行减计数时,加计数端CP U 接高电平,计数脉冲由减计数端CP D 输入,表5-9-2为8421码十进制加、减计数器的状态转换表。

表5-9-2加法计数减计数2、计数器的级联使用一个十进制计数器只能表示0~9十个数,为了扩大计数器范围,常用多个十进制计数器级联使用。

60计数器工作原理

60计数器工作原理

60计数器工作原理
60计数器是一种数字电路元件,用于实现60进制的计数功能。

其工作原理如下:
1. 输入信号:60计数器通常有一个时钟输入信号。

当时钟信
号的一个脉冲到达时,计数器会按照特定的规则进行计数。

2. 初始化:计数器在初始状态下一般为0,即所有计数位上都
为0。

3. 计数规则:60计数器通常由多个计数位组成,每个计数位
都有两种状态:0和1。

当计数器接收到一个时钟脉冲时,它
会根据特定的规则将计数位递增,并将进位(carry out)信号
传递到高位。

4. 进位规则:在60计数器中,当最低位计数位达到其最大值(59时),它会产生一个进位信号。

这个进位信号会传递给
高位计数位,引起它们进行递增。

5. 循环:当最高位计数位达到其最大值时(59时),它也会
产生一个进位信号。

这个进位信号又会传递到最低位计数位,从而形成一个循环。

整个计数器会在0到59之间循环计数。

6. 外部控制:60计数器通常还有一些控制信号,如使能信号
和复位信号。

使能信号可以控制计数器的启用与禁用,而复位信号可以将计数器的状态重置为初始状态。

通过上述工作原理,60计数器可以实现60进制的计数功能,用于计时、频率分频、时钟同步等应用。

60进制计数器原理

60进制计数器原理

60进制计数器原理60进制计数器是一种特殊的计数器,它可以用于表示60进制的数字。

在日常生活中,我们常常使用60进制计数器来表示时间,比如小时、分钟和秒。

在这篇文档中,我们将介绍60进制计数器的原理及其应用。

首先,让我们来了解一下60进制计数器的基本原理。

60进制计数器是一种基于60进制的数字系统,它由60个不同的数字组成,分别是0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F、G、H、I、J、K、L、M、N、O、P、Q、R、S、T、U、V、W、X、Y、Z、a、b、c、d、e、f、g、h、i、j、k、l、m、n、o、p、q、r、s、t、u、v、w、x、y、z、!、?、@、#、$、%。

这些数字可以组合成任意大小的数字,用来表示时间、角度、经纬度等。

接下来,让我们来看一下60进制计数器的应用。

在日常生活中,我们经常使用60进制计数器来表示时间。

例如,一天有24小时,每小时有60分钟,每分钟有60秒。

这种时间表示方法就是基于60进制计数器的原理。

另外,60进制计数器还可以用于表示角度。

在几何学和航海领域,我们经常使用60进制计数器来表示角度。

例如,一圈360度可以被表示为60进制的数值,这样可以更加方便地进行计算和测量。

除了时间和角度之外,60进制计数器还可以应用于其他领域。

在计算机科学中,我们经常使用60进制计数器来表示数据存储地址。

在地理信息系统中,我们也可以使用60进制计数器来表示经纬度。

总的来说,60进制计数器在各个领域都有着广泛的应用。

综上所述,60进制计数器是一种基于60进制数字系统的计数器,它可以用于表示时间、角度、数据存储地址等。

通过了解60进制计数器的原理及其应用,我们可以更好地理解其在日常生活和各个领域中的重要性和作用。

希望本文可以帮助您更好地理解60进制计数器,并在实际应用中发挥其作用。

数电课程设计(60进制计数器设计)

数电课程设计(60进制计数器设计)

目录摘要: (2)1设计题目 (2)1.1设计要求 (2)2题目分析 (2)3设计思路与原理 (3)3.1 LED简介 (3)3.2 芯片74290及六十进制计数器的设计 (4)3.3 三十九进制计数器 (6)4电路图的仿真 (7)4.1六十进制计数器的仿真 (7)4.2三十九进制计数器的仿真 (8)5仪器列表 (9)6心得体会 (9)7参考文献 (10)摘要:要获得N进制计数器,常用的方法有两种:一是用时钟触发器和门电路来设计:二是用集成计数器来构成。

当要得到一些进制数大的计数器时,用时钟触发器和门电路来实现就显的很复杂。

我们就可以用集成计数器来构成,当然集成计数器是厂家已定型的产品,其函数关系已被固化在芯片中,状态分配以及编码我们自己是不可以更改的,而且多为纯自然态序编码,因而利用清零端或置数控制端,让电路跳过某些状态而获得N进制的计数器。

1设计题目60进制计数器的设计1.1设计要求(1)要求学生掌握74系列的芯片和LED的原理和使用方法。

(2)熟悉集成电路的使用方法,能够运用所学的知识设计一规定的电路。

1.2设计任务(1)完成一个60进制的计数器。

(2)LED显示从00开始,各位计数从0—9,逢10 进1,是为计数0—5。

59显示后,又从00重新开始计数。

2题目分析要实现60进制的计数器,单用一片计数器无法实现,我们可以利用级联方式获得大容量的N进制计数器,60进制的计数器就可以由六进制和十进制计数器级联起来构成。

CP 3设计思路与原理 3.1 LED 简介LED 是一种显示字段的显示器件,7个发光二极管构成七笔字形“8”,一个发光二极管构成小数点。

七段发光管分别称为a 、b 、c 、d 、e 、f ,g ,构成字型“8”,如图(a )所示,当在某段发光二极管上施加一定的电压时,某些段被点亮发光。

不加电压则变暗,为了保护各段LED 不被损坏,需外加限流电阻。

信号源 计数器数码显示器十进制计数器(个位)六进制计数器(十位)其真值表如下。

电子技术基础实验课程设计-用74LS161设计六十进制计数器

电子技术基础实验课程设计-用74LS161设计六十进制计数器

电子技术基础实验课程设计用74LS161设计六十进制计数器学院:班级:姓名:学号:电气工程学院电自1418用74LS161设计六十进制计数器摘要计数器是一个用以实现计数功能的时序部件,它不仅可用来及脉冲数,还常用作数子系统的定时、分频和执行数字运算以及其它特定的逻辑功能。

目前,无论是TTL还是CMOS 集成电路,都有品种较齐全的中规模集成计数器。

使用者只要借助于器件手册提供的功能和工作波形图以及引出端的排列,就能正确运用这些器件。

计数器在现代社会中用途中十分广泛,在工业生产、各种和记数有关电子产品。

如定时器,报警器、时钟电路中都有广泛用途。

在配合各种显示器件的情况下实现实时监控,扩展更多功能。

利用两片74LS161分别作为六十进制计数器的高位和低位,分别与数码管连接。

把其中的一个通过一个与门器件构成一个十进制计数器,另一个芯片构成六进制计数器。

十进制计数器(个位)和六进制计数器(十位)均采用反馈清零法利用两个74LS161构成。

当个位计数器从1001计数到0000时,十位计数器要计数一次,可通过两芯片之间级联实现。

使用200HZ时钟信号作为计数器的时钟脉冲。

根据设计基理可知,计数器初值为00,按递增方式计数,增到59时,再自动返回到00。

关键字:60进制,计数器,74LS161,级联目录第1章概述 (1)1.1 计数器设计目的 (1)1.2 计数器设计组成 (1)第2章六十进制计数器设计描述 (2)2.1 74LS161的功能 (2)2.2 方案框架 (3)第3章六十进制计数器的设计与仿真 (4)3.1 基本电路分析设计 (4)3.2 计数器电路的仿真 (6)第4章总结 (8)第1章概述计数器是一个用以实现计数功能的时序部件,它不仅可用来及脉冲数,还常用作数子系统的定时、分频和执行数字运算以及其它特定的逻辑功能。

计数器种类很多。

按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。

60进制计数器课程设计

60进制计数器课程设计

60进制计数器设计 (2)绪论 (3)1.1设计背景 (3)1.2设计思想 (3)2器件介绍 (4)2.1电阻 (4)2.2电容 (5)2.3 555秒发生器 (5)2.4 74ls00 (7)2.574ls90 (7)2.674ls48 (8)3软件仿真 (9)3.1 555仿真图 (9)3.2 60进制仿真图 (10)3.3 仿真图 (10)4焊接方法 (12)4.1焊接方法 (12)4.2 注意事项 (13)4.3调试 (13)4.4实际图 (14)5总结 (18)6致谢 (20)7 参考文件 (21)60进制计数器设计摘要:60进制计数器的设计是以数电和模电为基础,结合模电里面的置零方法,利用了555芯片、74ls00、74ls48、74ls90以及显示管和各种电阻电容组成的。

利用74ls90可以实现制数功能,可以单独制成十进制。

利用74ls00(与非门)与74ls90可以制成6进制,再利用74ls48和显示管就可以在基于EWB的软件平台上完成该设计。

本设计采用较为常用的74系列芯片,及555芯片实现了信号灯与信号脉冲同步实现、同步控制,进而提高了整个系统的稳定性、独立性。

在实际生活中我们用60进制的有钟表的秒分进制。

随着我国科学技术与高科技的发展,对于仪器精度的要求更加的高,为了满足中国高科技的发展需求研究高精度计数器对于我国的航天、电子等业务具有很大的作用.关键字:60进制 555芯片 74ls00 74ls48 74ls90绪论1.1设计背景计数器是一个用以实现计数功能的时序部件,它不仅可用来及脉冲数,还常用作数子系统的定时、分频和执行数字运算以及其它特定的逻辑功能。

目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器。

使用者只要借助于器件手册提供的功能和工作波形图以及引出端的排列,就能正确运用这些器件。

计数器在现代社会中用途中十分广泛,在工业生产、各种和记数有关电子产品。

60进制计数器

60进制计数器

电子技术基础实验课程设计60进制计数器一、实验目的(一)掌握中规模集成计数器74LS161的引脚图和逻辑功能。

(二)熟悉555集成定数器芯片的引脚图。

(三)利用构成60进制计数器。

(四)在60进制计数器。

管脚介绍1为它的管脚排列图,集成芯片74LS161的CLR 是异步清零端(低电平有效),LOAD 是异步预置数控制端(低电平有效)。

CLK 是时钟脉冲输入端,RCO 是进位输出端,ENP 、ENT 是计数器使能端,高电平有效。

A 、B 、C 、D 是数据输入端;QA 、QB 、QC 、QD 是数据输出端。

图174LS161管脚排列图(二)集成计数器74LS161功能介绍由表1可知,74LS161具有以下功能:1.异步清零。

当CLR=0时,无论其他各输入端的状态如何,计数器均被直接置“0”。

2.同步预置数。

当CLR=1、LOAD=0且在CP 上升沿作用时,计数器将ABCD 同时置入QA 、QB 、QC 、QD,使QA 、QB 、QC 、QD=ABCD 。

3.保持(禁止)。

CLR=LOAD=1且ENP 、ENT=0时,无论有无CP 脉冲作用,计数器都将保持原有的状态不变(停止计数)。

4.计数。

CLR=LOAD=ENP=ENT=1时,74LS161处于计数状态。

表174LS161功能表学期: 2015-2016(一) 班级: 电自1418 姓名: 张垚 学号: 日期:四、用555定时器构成多谐振荡器(一)多谐振荡器的构成由555定时器构成的多谐振荡器如图1所示,R1,R2和C是外接定时元件,电路中将高电平触发端(THR 脚)和低电平触发端(TRI脚)并接后接到R2和C的连接处,将放电端(DIS脚)接到R1,R2的连接处。

(二)工作原理由于接通电源瞬间,电容C来不及充电,电容器两端电压为低电平,小于(1/3)Vcc,故高电平触发端与低电平触发端均为低电平,输出为高电平,放电管V1截止。

这时,电源经R1,R2对电容C充电,使电压按指数规律上升,当上升到(2/3)Vcc时,输出为低电平,放电管V1导通,把从(1/3)Vcc上升到(2/3)Vcc由于放电管V1导通,电容C通过电阻R2和放电管放电,电路进人第二暂稳态,其维持时间的长短与电容的放电时间有关,随着C的放电,下降,当下降到(1/3)Vcc时,输出为高电平,放电管V1截止,Vcc再次对电容C制作60进制计数器,先要确定使用芯片个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十进制计数器 LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY CNT10 IS PORT (CLK,RST,EN : IN STD_LOGIC; CQ : OUT STD_LOGIC_VECTOR(3 DOWNTO 0); COUT : OUT STD_LOGIC ); END CNT10; ARCHITECTURE behav OF CNT10 IS BEGIN PROCESS(CLK, RST, EN) VARIABLE BEGIN IF RST = '1' THEN =>'0') ; --计数 ELSIF CLK'EVENT AND CLK='1' THEN IF EN = '1' THEN IF CQI < 9 THEN --允许计数, ELSE --大于 9, END IF; END IF; END IF; IF CQI = 9 THEN COUT <= '1'; --计数大 于 9,输出进位信号 ELSE COUT <= '0'; --将计数值向端口 END IF; CQ <= CQI; 输出 END PROCESS; END behav; CQI := (OTHERS =>'0'); CQI := CQI + 1; CQI := (OTHERS CQI : STD_LOGIC_VECTOR(3 DOWNTO 0);
ห้องสมุดไป่ตู้
六十进制计数器源程序 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity cnt60 is port(clk,rst,en:in std_logic; cq:out std_logic_vector(7 downto 0); cout:out std_logic); end cnt60; architecture behav of cnt60 is begin process(clk,rst,en) variable cqi:std_logic_vector(7 downto 0); begin if rst='1' then cqi:=(others=>'0'); elsif clk'event and clk='1' then if en='1' then if cqi<59 then cqi:=cqi+1; else cqi:=(others=>'0'); end if; end if; end if; if cqi=59 then cout<='1'; else cout<='0'; end if; cq<=cqi; end process; end behav;
相关文档
最新文档