8.3完全平方公式与平方差公式优质课获奖教学设计
完全平方公式与平方差公式(公开课)
8.3完全平方公式与平方差公式(公开课)完全平方公式(第1课时)教学目标1、知识目标:理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。
2、能力目标:渗透建模、化归、换元、数形结合等思想方法,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力。
3、情感目标:培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。
教学重点与难点完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于计算的一种重要依据,因此,本节教学的重点与难点如下:本节的重点是体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。
本节的难点是从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平一、复习回顾1、单项式的乘法法则2、多项式的乘法法则二、新课讲授1、推导两数和的完全平方公式计算(a+b)2解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b22、理解公式特征①算式:两数和的平方②结果:两个数的平方和加上这两个数积的2倍3、语言叙述(a+b)2=a2+2ab+b2用语言如何叙述4、公式(a-b)2=a2-2ab+b2教学①利用多项式乘法(a-b)2=(a-b)(a-b)②利用换元思想(a-b)2=[a+(-b)]2③利用图形5、公式中的字母含义的理解。
(学生回答)(x+2y)2是哪两个数的和的平方?(x+2y)2=( )2+2( )( )+( )2(2x-5y)2是哪两个数的差的平方?(2x+5y)2=( )2+2( )( )+( )2变式(2x-5y)2可以看成是哪两个数的和的平方?三、应用新知,体验成功1、例1教学:用完全平方公式计算(1)(a+3)2(2)(y- 1)2 (3)(-2x+t)2(4)(-3x-4y)2学生直接运用公式计算,教师板演,讲评时边口述理由,针对第(4)题(-3x-4y)2可以看成是-3x与4y差的平方,也可以看成-3x与-4y和的平方提出以下问题:(1)可否看成两数和的平方,运用两数和的平方公式来计算?(2)可否看成两数差的平方,运用两数差的平方公式来计算?(3)能不能进行符号转化?如(-3x-4y)2=(3x+4y四、练习:运用完全平方公式计算:(学生板演)○1(a+5)2②(3+x)2③(y-2)2④(7-y)2⑤(2x+3y)2⑥(-2x-3y)2五、小结提高,知识升华1、两个公式 (a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b22、两种推导方法:多项式乘法导出;图形面积导出3、公式的灵活运用六、作业布置课本P71-P72习题8.31,11。
《完全平方公式》一等奖说课稿
《完全平方公式》一等奖说课稿1、《完全平方公式》一等奖说课稿今天我说课的题目是《完全平方公式》,所选用的教材为北师大版义务教育课程标准实验教科书。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标,教学方法,教学过程四个方面加以说明。
一、教材分析1、教材的地位和作用本节教材是初中数学七年级下册第一章第八节的内容,是初中数学的重要内容之一。
一方面,这是在学习了整式的加、减、乘、除及平方差公式的基础上,对多项式乘法的进一步深入和拓展;另一方面,又为学习《因式分解》《配方法》等知识奠定了基础,是进一步研究《一元二次方程》《二次函数》的工具性内容。
鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2、学情分析从心理特征来说,初中阶段的学生逻辑思维能力有待培养,从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了多项式乘法法则、平方差公式的探索过程,对“完全平方公式”已经有了初步的认识,为顺利完成本节课的教学任务打下了基础,但对于“完全平方公式” 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
3、教学重难点根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:对公式(a+b)2=a2+2ab+b2的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释。
难点确定为:从广泛意义上理解完全平方公式的符号含义,培养学生有条理的思考和语言表达能力。
完全平方公式与平方差公式教案
完全平方公式与平方差公式教案第一章:完全平方公式介绍1.1 理解完全平方公式的概念解释完全平方公式的定义和意义强调完全平方公式的构成和特点1.2 探索完全平方公式的推导过程通过具体例子,引导学生探索完全平方公式的推导过程强调完全平方公式的推导方法和思路1.3 完全平方公式的应用提供一些应用题,让学生运用完全平方公式进行解答第二章:平方差公式的介绍2.1 理解平方差公式的概念解释平方差公式的定义和意义强调平方差公式的构成和特点2.2 探索平方差公式的推导过程通过具体例子,引导学生探索平方差公式的推导过程强调平方差公式的推导方法和思路2.3 平方差公式的应用提供一些应用题,让学生运用平方差公式进行解答第三章:完全平方公式与平方差公式的异同3.1 比较完全平方公式和平方差公式的形式引导学生观察和比较两个公式的形式和结构强调两个公式的相似之处和不同之处3.2 探索完全平方公式和平方差公式的转化关系通过具体例子,引导学生探索两个公式的转化关系强调两个公式的转化方法和思路3.3 完全平方公式和平方差公式的综合应用提供一些综合应用题,让学生运用完全平方公式和平方差公式进行解答第四章:完全平方公式和平方差公式的巩固练习4.1 提供一些练习题,让学生巩固完全平方公式和平方差公式的理解和应用设计一些填空题、选择题和解答题,考察学生对两个公式的理解和掌握程度提供一些综合练习题,让学生运用两个公式解决实际问题4.2 学生自主练习和合作交流鼓励学生自主练习,巩固对两个公式的理解和应用能力组织学生进行合作交流,分享解题思路和方法第五章:完全平方公式和平方差公式的拓展应用5.1 探索完全平方公式和平方差公式的拓展性质引导学生探索两个公式的拓展性质和规律强调两个公式的拓展方法和思路5.2 提供一些拓展应用题,让学生运用完全平方公式和平方差公式进行解答设计一些具有挑战性的题目,让学生运用两个公式解决实际问题鼓励学生自主探索,发现两个公式的更多应用和拓展性质第六章:完全平方公式与平方差公式的实际应用6.1 引入实际应用场景通过生活实例引入完全平方公式和平方差公式的实际应用场景强调数学与实际生活的联系6.2 运用公式解决实际问题提供一些实际问题,让学生运用完全平方公式和平方差公式进行解决第七章:完全平方公式与平方差公式的几何意义7.1 引入几何概念解释完全平方公式和平方差公式的几何意义强调几何概念与代数公式的联系7.2 运用几何图形解释公式通过几何图形,引导学生理解完全平方公式和平方差公式的几何意义强调几何图形在理解公式中的应用方法和技巧7.3 运用公式解决几何问题提供一些几何问题,让学生运用完全平方公式和平方差公式进行解决第八章:完全平方公式与平方差公式的变形应用8.1 介绍公式的变形方法解释完全平方公式和平方差公式的变形方法强调变形方法在解决不同问题时的应用8.2 运用变形公式解决问题提供一些问题,让学生运用变形后的完全平方公式和平方差公式进行解决鼓励学生自主练习,巩固对公式变形方法和应用的理解第九章:完全平方公式与平方差公式的综合练习9.1 提供综合练习题设计一些综合练习题,涵盖完全平方公式和平方差公式的各种应用场景强调综合练习题在巩固知识和提高解题能力的重要性9.2 学生自主练习和合作交流鼓励学生自主练习,提高解题能力组织学生进行合作交流,分享解题经验和解决问题的方法第十章:完全平方公式与平方差公式的拓展研究10.1 探索公式的拓展性质引导学生探索完全平方公式和平方差公式的拓展性质和规律强调拓展研究在提高数学素养和解决问题能力的重要性10.2 开展拓展研究项目组织学生开展完全平方公式和平方差公式的拓展研究项目强调团队合作和研究成果的分享强调拓展研究对于培养学生的创新能力和发展数学思维的重要性重点和难点解析一、完全平方公式介绍难点解析:理解完全平方公式中各项的来源和含义,以及如何识别完全平方公式的特征。
初中数学初一数学下册《完全平方公式与平方差公式》教案、教学设计
(1)(x+3)^2
(2)(y-4)^2
(3)(2a+b)(2a-b)
(4)(3m-n)(3m+n)
2.变式练习题:通过一些变式题目,让学生学会将公式应用于不同场景,提高解决问题的能力。
例题:已知x+y=5,xy=6,求(x-y)^2的值。
3.综合应用题:设计一些综合应用题目,让学生将所学知识应用于解决实际问题,提高学生的综合运用能力。
5.生活实践题:让学生将所学知识联系到生活实际,感受数学在生活中的应用。
例题:某班组织一次郊游活动,共有45人参加。如果每组多安排1人,可以多分5组。请问原来每组有多少人?
在作业布置过程中,教师要关注以下几点:
1.作业难度要适中,既要保证学生对基础知识的掌握,又要适当提高学生的思维能力。
2.作业量要适当,避免给学生造成过重的负担,确保学生有足够的时间进行自主学习和休息。
讨论过程中,教师要关注以下几点:
1.激发学生的讨论热情,鼓励学生积极发表自己的观点。
2.引导学生互相交流解题方法,分享学习心得。
3.注意观察学生的讨论情况,适时给予指导和帮助。
(四)课堂练习,500字
在课堂练习阶段,教师设计不同难度的练习题,让学生进行巩固练习。练习题要涵盖完全平方公式和平方差公式的各种应用场景,包括基本题、变式题和综合应用题。
接着,教师可以引导学生回顾已学的平方运算知识,如(a+b)^2 = a^2 + 2ab + b^2,让学生尝试推导出完全平方公式:(a+b)^2 = a^2 + 2ab + b^2 = (a-b)^2 + 4ab。在此基础上,引出本节课将要学习的完全平方公式和平方差公式。
8、3完全平方公式与平方差公式第一课时
朱桥中心初中七年级数学下册教学设计课题:完全平方公式授课人:王海涛班级:七(2)班教学目标:知识技能1.理解完全平方公式的意义,准确掌握两个公式的结构特征.2.熟练运用公式进行计算.3.通过推导公式训练学生发现问题、探索规律的能力.4.培养学生用数形结合的方法解决问题的数学思想.过程与方法:通过推导公式训练学生发现问题、探索规律的能力.熟练运用公式进行计算.情感态度1.通过小组合作研究,培养学生合作交流意识和探索精神.2.培养学生用数学的意识,激发学生的学习兴趣.教学重点:(1) 体会完全平方公式的发现和推导过程;(2)掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.教学难点:准确判别要计算的代数式是哪两个数的和(或差)的平方,综合运用完全平方公式进行计算.教学过程:一、导入新课:提出问题,学生自学1.问题:根据乘方的定义,我们知道:a2=a·a,那么(a+b)2 应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?(1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;(2)(p-1)2=(p-1)(p-1)=________;(m-2)2=_______;二.探索新知:1.问题:一块边长为a米的正方形实验田,因需要将其边长增加b 米,形成四块实验田,以种植不同的新品种。
(如图)a b(1)四块面积分别为:、、、 ;b(2)两种形式表示实验田的总面积:①整体看:边长为的大正方形,S= ;a a ②部分看:四块面积的和,S= 。
a b总结:通过以上探索你发现了什么?〖点拨方法〗数形结合,正方形的面积可以分开算,也可以合起来算. 〖设计说明〗从现实生活中的数学情景出发,培养学生对数学的热爱和运用数学的能力.2.问题:如果将该正方形田地的边长缩减b 米,则其边长又为多少?面积呢?要求:让学生分组动手拼图:用手头的彩色纸,在原有的正方形广场上,拼出现在的广场,探究其面积的不同表示方法及其内在联系,体会完全平方公式的几何背景。
沪科版数学七年级下册8.3《完全平方公式与平方差公式》教学设计
沪科版数学七年级下册8.3《完全平方公式与平方差公式》教学设计一. 教材分析《完全平方公式与平方差公式》是沪科版数学七年级下册第八章第三节的内容。
本节内容主要介绍完全平方公式和平方差公式的概念及其应用。
这两个公式是初中学段数学的重要知识点,也是解决代数问题的重要工具。
本节内容承上启下,为后续学习二次函数、一元二次方程等知识打下基础。
二. 学情分析七年级的学生已经掌握了有理数的运算、整式的乘法等基础知识,具备一定的逻辑思维能力和解决问题的能力。
但学生对完全平方公式和平方差公式的理解和应用还不够深入,需要通过本节课的学习,让学生熟练掌握这两个公式,并能够运用到实际问题中。
三. 教学目标1.知识与技能:让学生掌握完全平方公式和平方差公式的概念及其应用。
2.过程与方法:通过探究、合作、交流的方式,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.完全平方公式和平方差公式的记忆和理解。
2.如何将公式运用到实际问题中,解决相关问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究、发现规律。
2.运用合作学习法,让学生在小组内讨论、交流,共同解决问题。
3.运用实例讲解法,让学生通过具体例子,理解并掌握公式的应用。
六. 教学准备1.准备相关的教学PPT,展示完全平方公式和平方差公式的推导过程及应用实例。
2.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾已学的有理数的运算、整式的乘法等知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示完全平方公式和平方差公式的推导过程,让学生直观地感受公式的来源和意义。
同时,给出一些应用实例,让学生初步了解公式的应用。
3.操练(10分钟)学生在小组内讨论,如何运用完全平方公式和平方差公式解决实际问题。
教师巡回指导,解答学生遇到的疑问。
4.巩固(10分钟)教师出示一些练习题,让学生独立完成。
七年级数学下册《完全平方公式与平方差公式》教案、教学设计
(二)教学设想
1.创设情境,导入新课
-通过生活中的实例,如土地面积的测量、房屋面积的估算等,引出完全平方公式与平方差公式的概念。
-通过实际问题的解决,激发学生的学习兴趣,为新课的学习做好铺垫。
2.自主探究,合作交流
-引导学生回顾整式乘法和因式分解的知识,为新课的学习搭建知识框架。
-设计有针对性的课后作业,巩固学生对完全平方公式与平方差公式的掌握。
-采用多元化的评价方式,关注学生的个体差异,鼓励学生发挥潜能。
7.教学反思
-教学结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略。
-注重教学方法的创新,提高课堂教学的趣味性和实效性。
四、教学内容与过程
(一)导入新课,500字
1.总结完全平方公式和平方差公式的推导过程。
2.举例说明这两个公式在实际问题中的应用。
3.分析这两个公式在解题过程中的优势和局限性。
讨论结束后,各小组汇报讨论成果,其他小组进行补充和评价。我在这个过程中,适时给予指导和引导,帮助学生深入理解公式。
(四)课堂练习,500字
在课堂练习阶段,我会设计不同难度的题目,让学生运用完全平方公式和平方差公式进行解题。练习题包括以下类型:
在本章节的学习中,学生需要在已有知识的基础上,进一步探究完全平方公式与平方差公式的规律,并将其应用于解决实际问题。此时,学生可能面临以下挑战:
1.对完全平方公式与平方差公用公式解题时,可能会出现符号错误、计算失误等问题,需要教师耐心指导,帮助学生提高运算准确性和解题技巧。
-选择两道课后习题,运用完全平方公式与平方差公式进行因式分解,并解释每一步的推导过程。
完全平方公式与平方差公式的教案
完全平方公式与平方差公式的教案完全平方公式与平方差公式的教案「篇一」平方差公式的优秀教案篇一:平方差公式的教案编者按:由中国教育部国际交流司与师范司,以及东芝公司共同举办的首届“东芝杯·中国师范大学师范专业理科大学生教学技能创新实践大赛”20xx年11月30日在北京落下帷幕。
在参加数学模拟授课、教案评比、即席演讲三项决赛的12所师范大学中,华南师范大学的林佳佳夺得冠军(三项均列第一),北京师范大学的郗鹏获亚军,南京师范大学的朱嘉隽获季军。
三名获奖选手每人除了获奖励高级笔记本电脑一台之外,并获得免费赴日进行短期访学。
本刊刊登获得第一名的教案,以飨读者。
【课题】 15.2.1 平方差公式【教材】人教版八年级数学上册第151页至153页. 【课时安排】 1个课时. 【教学对象】八年级(上)学生.【授课教师】华南师范大学林佳佳. 【教学目标】 ? 知识与技能(1)理解平方差公式的本质,即结构的不变性,字母的可变性;(2)达到正用公式的水平,形成正向产生式:“﹙□+△﹚﹙□–△﹚”→“□2 –△2”。
过程与方法(1)使学生经历公式的.独立建构过程,构建以数的眼光看式子的数学素养;(2)培养学生抽象概括的能力;(3)培养学生的问题解决能力,为学生提供运用平方差公式来研究等周问题的探究空间。
? 情感态度价值观纠正片面观点: ?数学只是一些枯燥的公式、规定,没有什么实际意义!学了数学没有用?体会数学源于实际,高于实际,运用于实际的科学价值与文化价值。
【教学重点】 1.平方差公式的本质的理解与运用;2.数学是什么。
【教学难点】平方差公式的本质,即结构的不变性,字母的可变性。
【教学方法】讲练结合、讨论交流。
【教学手段】计算机、PPT、flash。
【教学过程设计】二、教学过程设计第 2 页第 3 页第 4 页篇二:平方差公式优秀教案教学目标:一、知识与技能1、参与探索平方差公式的过程,发展学生的推理能力2、会运用公式进行简单的乘法运算。
完全平方公式与平方差公式教案
8.3完全平方公式与平方差公式一、教学目标:(一)知识与能力:①学会推导完全平方公式:( a±b)2=a2±2ab+b2.②了解公式的几何背景,会用公式进行简单计算.(二)过程与方法:在观察交流、归纳总结中培养学生的语言表达能力,逻辑思维能力.(三)情感态度与价值观:培养学生积极思考,敢于表达自己观点;进一步体会数形结合的数学思想和方法.二、教学重点:对公式( a±b)2=a2±2ab+b2的理解三、教学难点:①对完全平方公式的运用;②对公式中字母所表示的广泛含义的理解和正确运用.四、教学方法:讲授法五、课型:新授六、课时:1课时七、教学过程:(一)导入新课:请同学们回忆多项式乘法法则并用多项式的乘法法则计算:①(a+b)2=②(a-b)2=说明:①乘法公式实际是几个特殊形式的多项式乘法结果,让学生知道公式的来历.②多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.(二)新课讲解:总结:上述两个公式可以直接用于计算.我们把①和②称为完全平方公式.思考:你能用语言表述这两个公式吗?语言叙述:完全平方公式的语言叙述:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.平方差公式语言叙述:两个数的和与这两个数差的积,等于这两个数的平方差.说明:由学生自己总结乘法公式的特点,并用自己的语言叙述出来,让学生记忆深刻.学生看黑板,教师在黑板上用割补法演示完全平方公式几何意义.说明:利用图形的变换直观的说明乘法公式的几何意义,加深对乘法公式的理解,并体会了数形结合的数学思想方法.应用举例:例1:利用乘法公式计算:(1)(2x+y)2(2)(3a-2b) 2说明:此例题强化完全平方公式的应用,利用课件用“↓”符号比较直观的指出公式中字母a、b分别表示什么.※字母a、b可以是数字,也可以是整式.(三)课堂练习:计算:(1)(3x+1)2 (2)(a-3b) 2(3)(2x+y/2)2(4)(-2x+3y) 2(四)课堂小结:这节课我们复习了多项式乘法法则,学习完全平方的两个公式;同学们不仅要记住这两个公式,还要会灵活运用;需要强调的是公式中字母a、b既可以表示数,又可以表示单项式多项式.要符合特征才能用公式.有些题目需要变形后才能用公式.(五)作业布置:P71 第1题(六)板书设计8.3完全平方公式与平方差公式一、计算①(a+b)2=② (a-b) 2=二、完全平方公式:①(a+b)2=a2+2ab+b2②(a-b)2=a2-2ab+b2内容:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.注意:⑴公式中的a和b不仅可以是数字,还可以是单项式和多项式。
沪科版数学七年级下册8.3《完全平方公式与平方差公式》教学设计
沪科版数学七年级下册8.3《完全平方公式与平方差公式》教学设计一. 教材分析《完全平方公式与平方差公式》是沪科版数学七年级下册第八章第三节的内容。
本节内容主要介绍完全平方公式和平方差公式的概念及其应用。
这两个公式是初等代数中的重要公式,对于学生后续学习代数运算和解决实际问题具有重要意义。
教材通过具体的例子引导学生探究和发现这两个公式,并加以巩固和应用。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的运算、整式的乘法等基础知识。
但部分学生对于抽象的公式的理解和应用仍有困难,需要通过具体的例子和实际操作来加深理解。
同时,学生对于探究式学习方法已经有了一定的了解和经验,可以通过自主学习、合作学习等方式来掌握本节内容。
三. 教学目标1.知识与技能:使学生理解和掌握完全平方公式和平方差公式的概念及其应用。
2.过程与方法:培养学生通过探究、发现、总结数学规律的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。
四. 教学重难点1.重点:完全平方公式和平方差公式的理解和应用。
2.难点:完全平方公式和平方差公式的推导过程及应用。
五. 教学方法1.采用探究式学习方法,引导学生通过自主学习、合作学习发现和总结完全平方公式和平方差公式。
2.通过具体例子和实际应用,帮助学生理解和掌握公式的运用。
3.采用讲解、示范、练习等多种教学手段,为学生提供丰富的学习资源和支持。
六. 教学准备1.准备相关例题和练习题,以便进行课堂练习和巩固。
2.准备多媒体教学设备,以便进行讲解和展示。
七. 教学过程1.导入(5分钟)通过回顾之前学过的有理数运算、整式乘法等知识,引导学生进入本节课的学习。
2.呈现(15分钟)展示完全平方公式和平方差公式的定义和表达式,引导学生理解公式的含义。
3.操练(20分钟)让学生通过自主学习、合作学习等方式,探究完全平方公式和平方差公式的推导过程。
在探究过程中,引导学生发现公式的特点和规律。
完全平方公式与平方差公式教案
完全平方公式与平方差公式教案一、教学目标:1. 让学生掌握完全平方公式和平方差公式的概念及运用。
2. 培养学生运用公式解决实际问题的能力。
3. 引导学生发现数学规律,提高学生的数学思维能力。
二、教学内容:1. 完全平方公式:(a±b)²= a²±2ab+b²2. 平方差公式:(a±b)(a∓b) = a²±b²三、教学重点与难点:1. 教学重点:完全平方公式和平方差公式的记忆与运用。
2. 教学难点:完全平方公式和平方差公式的推导过程。
四、教学方法:1. 采用讲解法,引导学生理解完全平方公式和平方差公式的含义。
2. 运用例题,让学生通过实践掌握公式的运用。
3. 组织小组讨论,培养学生合作学习的能力。
五、教学步骤:1. 导入新课:通过复习平方根的概念,引导学生进入平方公式的学习。
2. 讲解完全平方公式:讲解完全平方公式的推导过程,让学生理解公式的含义。
3. 讲解平方差公式:讲解平方差公式的推导过程,让学生理解公式的含义。
4. 例题讲解:运用例题,让学生掌握公式的运用。
5. 课堂练习:布置练习题,让学生巩固所学知识。
6. 总结与拓展:总结完全平方公式和平方差公式的运用,引导学生发现数学规律,提高学生的数学思维能力。
7. 课后作业:布置课后作业,巩固所学知识。
六、教学评估:1. 课堂练习环节,观察学生对完全平方公式和平方差公式的掌握情况。
2. 通过课后作业的完成情况,评估学生对课堂所学知识的巩固程度。
3. 组织小型测验,检验学生对完全平方公式和平方差公式的运用能力。
七、教学反馈:1. 根据学生的课堂表现和作业完成情况,及时给予反馈,指出学生的优点和不足。
2. 对学生在学习中遇到的问题,进行个别辅导,帮助他们解决问题。
3. 鼓励学生在课堂上积极提问,解答他们的疑问。
八、教学调整:1. 根据学生的学习情况,调整教学进度和教学方法。
《平方差公式》优质教学设计
《平方差公式》优质教学设计《平方差公式》优质教学设计例1一、教材分析本节课选自人教版八年级上册第14章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全平方公式提供了方法.因此,平方差公式作为初中阶段的第一个公式,在教学中具有很重要地位,同时也是最基本、用途最广泛的公式之一.二、学情分析1.学生的知识技能基础:学生在前面的学习中,已经学习了整式的有关内容,并经历了用字母表示数量关系的过程,有了一定的符号感.经过一个学期的培养,学生已经具备了小组合作、交流的能力.学生刚学过多项式的乘法,已具备学习并运用平方差公式的知识结构,通过创造问题情境,让学生承担任务,在探究相应问题中,建立并运用公式,从而使拓展学生知识技能结构成为可能.通过实际问题的探究,学生已感受到多项式乘法运算的重要性,同时,具备了对式的运算基础“快”“准”的积极心理,学生已具备学习公式的知识与技能结构,通过新课程教学的实施,培养学生具有独立探索、合作交流的习惯.2.学生活动经验基础:学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;另外,数学公式中字母具有高度概括性、广泛应用性.三、教学目标1.知识目标:经历平方差公式的探索及推导过程,掌握平方差公式的结构特征并能熟练应用.2.能力目标:运用公式进行简单的运算,获得一些数学活动的经验,进一步增强学生的符号感、推理和归纳能力及解决问题的能力.3.情感目标:让学生经历“特殊到一般再到特殊”(即:特例─归纳─猜想─验证─用数学符号表示—解决问题)这一数学活动过程,积累数学活动的经验,体会数学的简洁美和数形结合的思想方法.培养他们合情推理和归纳的能力以及在解决问题过程中与他人合作交流的意识.通过几方面的合力,提高学生归纳概括、逻辑推理等核心素养水平.四、教学重难点教学重点:体会公式的发现和推导过程,理解公式的本质和结构特征,能用自己的语言说明公式及其特点;并会运用公式进行简单的计算.教学难点:从广泛意义上理解公式中的字母含义,具体问题要具体分析,会运用公式进行计算.五、信息技术应用思路1.本课运用了信息技术辅助教学,主要使用的技术有:PPT课件、几何画板.2.使用几何画板技术,演示利用动态绘图软件研究周期性快速切换、更改周期,形象演示图形变化,利用面积法推导平方差公式;在导入、难点突破、练习巩固等环节使用信息技术.3.预期效果:激发学生学习兴趣;找准并突破难点;提高课堂学习效率.整个教学过程用PPT节约了时间,使课容量适中;多媒体更能吸引学生的注意力,更利于课堂的完整.六、教学过程设计(一)创设情境,导入课题问题1:美丽壮观的城市广场,是人们休闲旅游的地方,已经成为现代化城市的一道风景线.某城市广场呈长方形,长为1003米,宽997米.你能用简便的方法计算出它的面积吗?看谁算得快:师生活动:学生欣赏图片,感受生活中的数学问题,并进行生活中的数学向数学模型转换.信息技术支持:PPT演示由现实中的实际问题入手,创设情境,从中挖掘蕴含的数学问题.(二)探索新知,尝试发现问题2:时代中学计划将一个边长为m米的正方形花坛改造成长(m+1)米,宽为(m-1)米的长方形花坛.你会计算改造后的花坛的面积吗?计算下列多项式的积,你能发现什么规律?(1)(m+1)(m-1)= ;(2)(5+x)(5-x)= ;(3)(2x+1)(2x-1)= .师生活动:学生在教师的引导下,通过小组讨论探究,进行多项式的乘法,计算出结论.信息技术支持:PPT动画演示.结论是一个平方减去另一个平方的形式,效果十分鲜明.(三)总结归纳,发现新知问题3:依照以上三道题的计算回答下列问题:(1)式子的左边具有什么共同特征?(2)它们的结果有什么特征?(3)能不能用字母表示你的发现?问题4:你能用文字语言表示所发现的规律吗?教师提问,学生通过自主探究、合作交流,发现规律:两个数的和与这两个数的差的积,等于这两个数的平方差.师生活动:学生在教师的引导下,通过小组讨论探究,归纳平方差公式的语言叙述.式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,信息技术支持:PPT和几何画板演示,培养了学生的探究意识和合情推理的能力以及概括总结知识的能力.(四)数形结合,几何说理问题5:在边长为a的正方形中剪去一个边长为b的小正方形,然后把剩余的两个长方形拼成一个长方形,你能用这两个图形的面积说明平方差公式吗?提示:a2-b2与(a+b)(a-b)都可表示该图形的面积.师生活动:通过学生小组合作,完成剪拼游戏活动,利用这些图形面积的相等关系,进一步从几何角度验证了平方差公式的正确性,渗透了数形结合的思想.信息技术支持:PPT演示,进一步利用动画的演示巩固对平方差公式的理解程度,培养了学生的应用意识.(五)剖析公式,发现本质1.左边是两个二项式相乘,其中“a与a”是相同项,“b与-b”是相反项;右边是二项式,相同项与相反项的平方差,即(a+b)(a-b)=a2-b2.2.让学生说明以上四个算式中,哪些式子相当于公式中的a和b,明确公式中a和b的广泛含义,归纳得出:a和b可能数或代表式.师生活动:在认清公式的结构特征的基础上,进一步剖析a、b的广泛含义,抓住概念的核心.信息技术支持:通过PPT练习实现了知识向能力的转化,让学生主动尝试运用所学知识寻求解决问题.(六)巩固运用,内化新知问题6:判断下列算式能否运用平方差公式计算:(1)(2x+3a)(2x–3b);(2)(-m+n)(m-n).问题7:利用平方差公式计算:(1)(3x +2y)(3x-2y);(2)(-7+2m2)(-7-2m2).师生活动:学生经过思考、讨论、交流,进一步熟悉平方差公式的本质特征,掌握运用平方差公式必须具备的条件.信息技术支持:PPT展示书写步骤,有利于节省时间,提高效率,规范学生书写.(七)拓展应用,强化思维问题8:利用平方差公式计算情景导航中提出的问题:即:1003×997=(1000+3)(1000-3)=10002-32=1000000-9=999991.问题9:小明家有一块“L”形的自留地,现在要分成两块形状、面积相同的部分,种上两种不同的蔬菜,请你来帮小明设计,并算出这块自留地的面积.师生活动:设计此组题旨在从正反两方面灵活运用平方差公式,由结果追溯算式中的相同项和相反项,关键在于理解公式结构特征,同时训练了学生逆向思维能力.信息技术支持:PPT展示书写步骤,有利于节省时间.(八)总结概括,自我评价问题10:这节课你有哪些收获?还有什么困惑?提示:从知识和情感态度两个方面加以小结.师生活动:使学生对本节课的`知识有一个系统全面的认识,分组讨论后交流.信息技术支持:PPT演示,复习、巩固本节课的知识,在掌握基础知识的前提下,增加提高练习,适当增加灵活度,进一步深化对知识的理解.(九)课后作业1.必做题:课本P36习题2.1A组1、2.2.选做题:课本P36习题2.1B组1、2.作业分层处理有较大的弹性,体现作业的巩固性和发展性原则,尊重学生的个体差异.七、教学反思1.本节课通过与学生生活紧密联系问题及多媒体图画设计引入,激发了学生学习兴趣,同时在教学中以学生自主探究为主,为不同学生设计练习,有利于提升了学生的自信心.2.多媒体的应用能使学生充分体验到教育信息技术的优点,在操作过程中体会学习的快乐,特别是操作简单,学习效率大大提升,在学习过程中使教学软件与本节课的教学内容紧密结合在一起,使学生的思维始终关注学科本质.3.信息技术的应用,便于及时发现问题,反馈教学,使教与学更有层次性、针对性、实效性.教师要善于抓住这个契机,充分利用多媒体技术,利用图形结合功能,降低难度,增强直观性.信息技术的应用大大提高了课堂效率.《平方差公式》优质教学设计例21.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解;(重点)2.掌握平方差公式的应用.(重点、难点)一、情境导入1.教师引导学生回忆多项式与多项式相乘的法则.学生积极举手回答.多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.二、合作探究探究点:平方差公式【类型一】直接应用平方差公式进行计算利用平方差公式计算:(1)(3x-5)(3x+5);(2)(-2a-b)(b-2a);(3)(-7m+8n)(-8n-7m);(4)(x-2)(x+2)(x2+4).解析:直接利用平方差公式进行计算即可.解:(1)(3x-5)(3x+5)=(3x)2-52=9x2-25;(2)(-2a-b)(b-2a)=(-2a)2-b2=4a2-b2;(3)(-7m+8n)(-8n-7m)=(-7m)2-(8n)2=49m2-64n2;(4)(x-2)(x+2)(x2+4)=(x2-4)(x2+4)=x4-16.方法总结:应用平方差公式计算时,应注意以下几个问题:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a和b可以是具体的数,也可以是单项式或多项式.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】应用平方差公式进行简便运算利用平方差公式计算:(1)2013×1923;(2)13.2×12.8.解析:(1)把2013×1923写成(20+13)×(20-13),然后利用平方差公式进行计算;(2)把13.2×12.8写成(13+0.2)×(13-0.2),然后利用平方差公式进行计算.解:(1)2013×1923=(20+13)×(20-13)=400-19=39989;(2)13.2×12.8=(13+0.2)×(13-0.2)=169-0.04=168.96.方法总结:熟记平方差公式的结构并构造出公式结构是解题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第13题【类型三】运用平方差公式进行化简求值先化简,再求值:(2x-y)(y+2x)-(2y+x)(2y-x),其中x=1,y=2.解析:利用平方差公式展开并合并同类项,然后把x、y的值代入进行计算即可得解.解:(2x-y)(y+2x)-(2y+x)(2y-x)=4x2-y2-(4y2-x2)=4x2-y2-4y2+x2=5x2-5y2.当x=1,y=2时,原式=5×12-5×22=-15.方法总结:利用平方差公式先化简再求值,切忌代入数值直接计算.变式训练:见《学练优》本课时练习“课堂达标训练”第14题【类型四】平方差公式的几何背景如图①,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图②),利用这两幅图形的面积,可以验证的乘法公式是______________.解析:∵左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),∴a2-b2=(a+b)(a-b),即可以验证的乘法公式为(a+b)(a-b)=a2-b2.方法总结:通过几何图形面积之间的数量关系可对平方差公式做出几何解释.变式训练:见《学练优》本课时练习“课堂达标训练”第9题【类型五】平方差公式的实际应用王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续原价租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?解析:根据题意先求出原正方形的面积,再求出改变边长后的面积,然后比较二者的大小即可.解:李大妈吃亏了,理由如下:原正方形的面积为a2,改变边长后面积为(a +4)(a-4)=a2-16.∵a2>a2-16,∴李大妈吃亏了.方法总结:解决实际问题的关键是根据题意列出算式,然后根据公式化简解决问题.三、板书设计1.平方差公式两数和与这两数差的积,等于它们的平方差.即(a+b)(a-b)=a2-b2.2.平方差公式的运用学生通过“做一做”发现平方差公式,同时通过“试一试”用几何方法证明公式的正确性.通过这两种方式的演算,让学生理解平方差公式.本节教学内容较多,因此教材中的练习可以让学生在课后完成。
完全平方公式与平方差公式教案
完全平方公式与平方差公式教案第一章:完全平方公式简介1.1 学习目标了解完全平方公式的概念和意义。
学会使用完全平方公式进行计算。
1.2 教学内容完全平方公式的定义:对于任意实数a和b,有(a+b)^2 = a^2 + 2ab + b^2。
完全平方公式的推导过程。
完全平方公式的应用示例。
1.3 教学活动通过实例引入完全平方公式的概念。
引导学生通过观察和思考推导完全平方公式。
让学生通过练习题应用完全平方公式进行计算。
第二章:完全平方公式的应用2.1 学习目标学会使用完全平方公式解决实际问题。
能够运用完全平方公式进行二次方程的求解。
2.2 教学内容完全平方公式在实际问题中的应用示例。
利用完全平方公式求解二次方程的方法。
2.3 教学活动通过实际问题引入完全平方公式的应用。
引导学生运用完全平方公式解决实际问题。
让学生通过练习题求解二次方程。
第三章:平方差公式的介绍3.1 学习目标了解平方差公式的概念和意义。
学会使用平方差公式进行计算。
3.2 教学内容平方差公式的定义:对于任意实数a和b,有(a-b)(a+b) = a^2 b^2。
平方差公式的推导过程。
平方差公式的应用示例。
3.3 教学活动通过实例引入平方差公式的概念。
引导学生通过观察和思考推导平方差公式。
让学生通过练习题应用平方差公式进行计算。
第四章:平方差公式的应用4.1 学习目标学会使用平方差公式解决实际问题。
能够运用平方差公式进行二次方程的求解。
4.2 教学内容平方差公式在实际问题中的应用示例。
利用平方差公式求解二次方程的方法。
4.3 教学活动通过实际问题引入平方差公式的应用。
引导学生运用平方差公式解决实际问题。
让学生通过练习题求解二次方程。
第五章:完全平方公式与平方差公式的综合应用5.1 学习目标学会综合运用完全平方公式和平方差公式解决实际问题。
能够灵活运用两个公式进行计算和求解问题。
5.2 教学内容完全平方公式和平方差公式的综合应用示例。
实际问题中综合运用两个公式的方法。
八年级上数学人教版《 平方差公式、完全平方公式》教案
《平方差公式、完全平方公式》教案一、教学目标1.掌握平方差公式和完全平方公式的结构特征,能够运用这两个公式进行简单的运算。
2.理解公式中的字母含义,掌握公式的逆向运用。
3.培养学生观察、归纳、推理的思维能力,并体会公式在解决实际问题中的运用。
二、教学内容及重难点1.教学内容(1)平方差公式:两数和乘两数差,等于两数平方差;积化和差变两项,完全平方不是它。
(2)完全平方公式:首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。
2.教学重点(1)掌握平方差公式和完全平方公式的结构特征。
(2)能够运用公式进行简单的运算。
3.教学难点(1)理解公式中的字母含义,掌握公式的逆向运用。
(2)运用公式解决实际问题。
三、教学方法及手段1.复习导入:复习整式的加减法运算规则,引出本节课的课题——平方差公式和完全平方公式。
2.探究新知:通过举例和图示,引导学生观察、分析、归纳平方差公式和完全平方公式的结构特征,并尝试用自己的语言描述这两个公式的意义。
3.讲解示范:通过例题解析,引导学生掌握公式的运用方法,并强调公式的逆向运用,加深学生对公式的理解。
4.练习巩固:设计多个练习题,让学生自主完成并检查他们的掌握情况,及时反馈并纠正错误。
5.小结提升:总结本节课学习的内容,强调公式的运用方法和注意事项,并引导学生体验公式在解决实际问题中的运用。
四、教学评价及反馈1.评价方式:采用口头提问、板演、小组讨论等多种形式进行评价,关注学生的参与度和表现。
2.反馈方式:及时给予学生正面的反馈和建设性的意见,帮助他们认识自己的不足并努力改进。
同时也要鼓励他们发挥自己的优点和特长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《完全平方公式与平方差公式》第一课时(沪科版七年级下册8.3)
教
学
设
计
授课人:黄保健
时间:2019 -5- 18
8.3完全平方公式与平方差公式第一课时教学设计
一、内容和内容解析
1、内容:
沪科版七年级下册8.3完全平方公式与平方差公式第一课时
2、内容解析
教材的地位与作用:本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。
它是在学生学习了代数式的概念、整式的加减法、幂的运算和多项式的乘法以及平方差公式后进行学习的,其地位和作用主要体现在以下几个方面:
1、整式是初中代数研究范围内的一块重要内容,整式的运算又是整式中的一大主干,乘法公式则是在学习了单项式乘法、多项式乘法之后来进行学习的;一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,乘法公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。
2、乘法公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算的重要基础,同时也具有培养学生严密的逻辑推理能力的功能。
3、公式的发现与验证给学生体验规律发现的基本方法和基本过程提供了很好的模式。
学情分析:针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,类比、动手画图方式展开教学,同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分发展。
边启发,边探索边归纳,突出以学生为主体的探索性学习活动,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,由一般到特殊,将所学的知识用于实践。
二、教学目标、重点、难点
1、教学目标:
(1)知识与技能目标:掌握两数和(或差)的完全平方公式,会利用公式进行简单的计算及应用,了解公式的几何意义。
.
(2)过程与方法目标:经历两数和的完全平方公式的探索归纳过程,体会由特殊到一般的思想方法,提高学生的观察能力及语言概括能力;感受数与形的相互结合。
(3)情感态度和价值观:探索两数和的完全平方公式的过程,激发学生探究欲望,增强学习积极性。
2、教学重点:两数和(或差)的完全平方公式的探索过程及应用。
3、教学难点:公式中的a和b的意义,学生错将(a+b)2等于a2+b2.
三、教学方法选择
1、教学方法:课标中指出数学教学应从学生实际出发,引导学生获得知识形成技能.本节课采用探究与讲授相结合的教学方式,通过对多项式乘法的类比学习,通过计算、语言归纳、动手画图、等方式引导学生积极参与思考,面向全体学生、分层次教学,激发学生的学习兴趣,体会探究的成就感.
2、教学手段:采用多媒体投影。
四、课前准备
教具准备教师准备PPT课件三角尺
五、教学过程设计
(一)[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,你会计算下列各题吗? (x+2)2=_______________,(x-2)2=_______________,
〈三〉、运用公式,解决问题
①; ② ;
③ .
(2)练习:运用完全平方公式计算:(学生板演) ①;②;③;
④;⑤;⑥.
3. 公式的应用例2:运用完全公式计算
10404
4
40010000221002100)2100(102)1(2
222
=++=+⨯⨯+=+=10000)199(1
99299)2(2
2=+=+⨯+ 〈四〉、[学生小结]
你认为完全平方公式在应用过程中,需要注意那些问题?
(1) 公式右边共有3项。
(2) 两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
〈五〉、练习填空
(1)(-3a+2b )2=________________________________ (2)(-5-m) 2 =__________________________________
(3)(-0.5m+2n) 2=_______________________________
(4)(mn-3)2=__________________________________
〈六〉、自我评价
[小结] 通过本节课的学习,你有什么收获和感悟?
本节课,我们自己通过计算、分析结果,总结出了完全平方公式。
在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
六、板书设计:
七、教后反思
本节课上学生体会了数形结合及转化的数学思想,并知道猜想的结论必须要加以验证;授课思维流畅,知识发生发展过渡自然,学生容易得到一些结论但在老师的引导下又使问题的探讨得以不断深入,学生思考积极、气氛活跃,教学效果较好。
人人都能积极参与。
先从代数式的几何意义出发,激发学生的图形观,利用拼图的方法,使学生在动手的过程中发现规律,并通过小组合作,探究归纳公式,然后强调数值的计算,使学生掌握公式的计算技巧。
从而突出以学生为主体的探索性学习原则。
让学生自编符合完全平方公式和平方差公式结构的计算题,从而有效地将两类公式区分开,深刻认识公式的结构特征,并大大激发了学生的学习积极性。