双向DC-DC变换器原理图(原创)
DCDC直流变换器
第一章绪论本章介绍了双向DC/DC变换器(Bi-directionalDC/DCConverter,BDC)的基本原理概述、研究背景和应用前景,并指出了目前双向直流变换器在应用中遇到的主要问题。
1.1双向DC/DC变换器概述所谓双向DC/DC变换器就是在保持输入、输出电压极性不变的情况下,根据具体需要改变电流的方向,实现双象限运行的双向直流/直流变换器。
相比于我们所熟悉的单向DC/DC变换器实现了能量的双向传输。
实际上,要实现能量的双向传输,也可以通过将两台单向DC/DC变换器反并联连接,由于单向变换器主功率传输通路上一般都需要二极管,因此单个变换器能量的流通方向仍是单向的,且这样的连接方式会使系统体积和重量庞大,效率低下,且成本高。
所以,最好的方式就是通过一台变换器来实现能量的双向流动,BDC就是通过将单向开关和二极管改为双向开关,再加上合理的控制来实现能量的双向流动。
1.2双向直流变换器的研究背景在20世纪80年代初期,由于人造卫星太阳能电源系统的体积和重量很大,美国学者提出了用双向Buck/Boost直流变换器来代替原有的充、放电器,从而实现汇流条电压的稳定。
之后,发表了大量文章对人造卫星应用蓄电池调节器进行了系统的研究,并应用到了实体中。
1994年,香港大学陈清泉教授将双向直流变换器应用到了电动车上,同年,F.Caricchi等教授研制成功了用20kW水冷式双向直流变换器应用到电动车驱动,由于双向直流变换器的输入输出电压极性相反,不适合于电动车,所以他提出了一种Buck-Boost级联型双向直流变换器,其输入输出的负端共用。
1998年,美国弗吉尼亚大学李泽元教授开始研究双向直流变换器在燃料电池上的配套应用。
可见,航天电源和电动车辆的技术更新对双向直流变换器的发展应用具有很大的推动力,而开关直流变换器技术为双向DC/DC变换器的发展奠定了基础。
1994年,澳大利亚FelixA.Himmelstoss发表论文,总结出了不隔离双向直流变换器的拓扑结构。
双向DCDC变换器
双向DCDC变换器1、什么是双向DCDC在储能系统、以及汽车动力系统中,存在既需要向负载供电,又存在给电池等放电的情况,我们也把这种电流反向馈入电源侧的模式称为馈电,也称这种能量可以双向流动的开关变换器为双向变换器(Bi_direactional DC/DC Converter)。
同样其也分为隔离与非隔离。
之前我们介绍的变换器均只有一个开关管,且只能实现电流的单一反向流动,所以其能量也是单相传递。
其实从理论上来说,比如buck电路正向来看是降压,反向看其实就是升压电路,所以我们只需要让该电路能够正向实现降压,反向实现升压就可以变成双向变换器。
比较简单一点的话就是用一个单向buck电路与boost电路进行并联,但是成本有点高。
下面我们就通过buck电路和boost电路合并成双向变换器:上图通过传统的buck电路和boost电路合成最终的双向buck电路,这个电路算是非常经典的双向DCDC电路了,并且在目前也是应用非常广泛的。
如果不进行同步整流情况下,buck模式打上管子储能,下管关闭,通过下管二极管实现续流,电流从左向右流动实现降压效果。
同样反向boost模式,下管导通使得电感储能,通过上管的反向二极管实现续流,所以两个开关管之间要留有足够的死区时间,避免短路直通,损坏器件。
然而其具体工作在buck模式还是boost模式需要根据占空比和两侧电压大小来确定,且对于双向buck电路电流没有断续模式,同样也是遵循电感的伏秒平衡和电容的安秒平衡。
其他双向电路也是由对应的单相升降压复合而成。
2、DCDC开环与闭环控制DCDC的开环控制就是通过输出固定的占空比,根据电压传输比例进行开环的电压电流输出模式。
而闭环控制是通过输出的电流电压反馈调节占空比,最终使得输出电压或者电流稳定在目标值附近。
DCDC常用的直接控制电压的单环和电压电流双闭环控制,而电压电流双闭环控制由于稳定性和抗干扰能力强被广泛使用,通常是电压作为外环,电流作为内环。
双向全桥dc-dc变换器建模与调制方法的研究
双向全桥dc-dc变换器建模与调制方法的研究全文共四篇示例,供读者参考第一篇示例:双向全桥DC-DC变换器是一种常见的功率电子拓扑结构,广泛应用于电力系统中的直流电-直流电转换。
它能实现双向能量流传输,具有高效率、高稳定性和快速响应的特点。
但是在实际应用中,由于电力系统的复杂性和双向全桥DC-DC变换器自身的非线性特性,其建模和调制方法一直是一个研究热点和挑战。
一、双向全桥DC-DC变换器的基本原理与结构双向全桥DC-DC变换器是由两个全桥逆变器和一个LC滤波器组成的,其基本结构如下图所示。
通过控制全桥逆变器的开关器件,可以实现能量的双向传输。
当需要从直流侧向交流负载供电时,将控制信号输入到逆变器,逆变器将直流电压转换成交流电压,并通过滤波器输出给负载;当需要将交流负载中的能量反馈到直流侧时,同样可以通过逆变器将交流电压转换成直流电压,再通过滤波器输出给直流侧。
1. 传统建模方法双向全桥DC-DC变换器的建模方法可以分为传统方法和基于深度学习的方法。
传统方法主要是基于电路方程的数学模型,包括控制部分和电气部分两个子系统。
电气部分的建模可以采用平均值模型、时域模型或频域模型等不同方法。
这些模型通常是基于理想元件和理想环境下的假设条件,不能完全准确地描述实际工作状况。
2. 深度学习建模方法近年来,随着深度学习技术的发展,基于深度学习的建模方法逐渐受到关注。
深度学习可以通过大量数据的学习和训练,构建出更为复杂和精确的模型,能够更好地拟合实际工作状况。
对于双向全桥DC-DC变换器建模而言,深度学习方法可以更好地处理其非线性特性和复杂动态响应,提高建模的准确性和适用性。
传统的双向全桥DC-DC变换器调制方法主要包括PWM调制和谐波消除调制。
PWM调制是通过调节逆变器的开关器件的占空比,控制输出波形的幅值和频率;谐波消除调制则是通过消除输出波形中的谐波成分,提高输出波形的质量。
基于深度学习的调制方法可以进一步提高双向全桥DC-DC变换器的调制精度和性能。
数字控制双向半桥DC-DC变换器的设计
1
1.1
随着科技和生产的发展,双向DC-DC变换器的需求逐渐增多。人们对它的研究越来越感兴趣。本章简单介绍了双向DC-DC变换器的原理和用途。针对双向DC-DC变换器的研究现状,阐明了开展双向DC-DC变换器研究的目的和意义。
1.2 双向
双向DC-DC变换器可广泛的应用于直流不停电电源系统、航天电源系统、混合电动汽车中的辅助动力供应系统、直流电机驱动系统及其它应用场合[1-3]。在这些需要能量双向流动的场合,两侧都是直流电压源或直流有源负载,它们的电压极性保持不变,希望能量双向流动,也就是电流的双向流动。这就需要双向DC-DC变换器。其结构如图1-1(a)所示,在两个直流电压源之间有一个双向DC-DC变换器,用于控制其间的能量传输[4]。I1和I2分别是V1和V2的平均输入电流。双向DC-DC变换器可以根据实际需要来控制能量的流动方向,即可以使能量从V1传输到V2(此时I1为负,而I2为正),也可以使能量从V2传输到V1(此时I1为正,而I2为负)。用通常的单向DC-DC变换器也可以实现能量的双向流动,但是这时就需要将两个单向DC-DC变换器反并联,因为通常的单向DC-DC变换器中主功率传输通路上一般都有二极管这个环节,因此能量经由变换器流动的方向只能是单向的。其结构图如图 1-1(b)所示,单向DC-DC变换器①被用来控制处理从V1到V2的能量流动,当需要能量反向流动时就使用单向DC-DC变换器②。与采用两个单向DC-DC变换器反并联来达到能量双向传输的方案相比,双向DC-DC变换器应用同一个变换器来控制能量的双向传输,使用的总体器件数目少,且可以更加快速地进行两个方向功率变换的切换。再者,在低压大电流场合,一般双向DC-DC变换器更有可能在现成的电路上使用同步整流器工作方式,有利于降低通态损耗。总之,双向DC-DC变换器具有效率高、体积小、动态性能好和成本低等优势。
双向DC-DC变换器研究
双向DC-DC变换器摘要:双向DC/DC变换器是一种可以实现“一机两用”的设备,可用其得到能量的双向传输,并且在有些需要能量双向流动的场合,双向DC/DC变换器可大幅度减轻系统的体积、重量以及成本价值,有着重要的研究意义。
首先介绍的是双向DC/DC变换器的概念、应用场合以及其研究现状,并在此基础上分析了电压—电流型双向全桥DC/DC变换器;Buck充电模式时,高压侧开关有驱动信号,低压侧开关管驱动信号封锁,仅用功率开关管的体二极管整流;此时电路为电压型全桥结构;Boost放电模式时,低压侧开关管有驱动信号,高压侧开关管驱动信后封锁,仅用功率开关管的体二极管整流;此时电路为电流型全桥结构。
然后,分别对buck充电模式和boost放电模式的工作原理进行了分析。
最后利用Proteus软件分别对buck充电模式和boost放电模式的开环和闭环进行了仿真,给出了各部分的波形图,最后得出的仿真结果和理论一致。
关键词:双向DC-DC变换器 Buck充电模式 Boost放电模式目录前言 (3)1.方案论证 (4)1.1方案一 (6)1.2 方案二 (6)1.3 方案选择 (7)2.电路设计和原理 (7)2.1 5V电压源电路设计 (7)2.2 0.1s (8)2.2.1 引脚及功能表 (9)2.2.2 (10)2.3 计数电路设计 (11)2.4电路设计 (13)2.5显示电路设计 (14)2.6控制电路设计 (15)3.软件仿真调试 (15)3.1 软件介绍 (15)3.2 调试步骤及方法 (16)4.故障分析及解决方法 (17)5.总结与体会 (18)附录: (20)A、总体电路图 (20)B、元器件清单 (20)C、元器件功能与管脚 (21)D、参考文献 (24)前言当您电池的最后一焦耳电能被耗尽时,功耗和效率就将真正呈现出新含义。
以一款典型的手机为例,即使没有用手机打电话,LCD屏幕亮起、显示时间及正在使用的网络运营商等任务也会消耗电力。
双向DCDC变换器.
双向DC-DC变换器摘要:双向DC-DC变换器是能够根据能量的需要调节能量双向传输的直流到直流的变换器。
本文阐述的双向DC-DC变换器通过集成运放加三极管组成的恒流源实现实现电池的充电功能以及由TL494组成的升压电路实现对电池的放电功能,LCD液晶屏用于显示充电电池的充电电流,并且能够自动转换变换器充放电工作模式。
此作品电路简单,效率较高,性能稳定;可以满足题目的要求,可适用于直流不停电系统、太阳能电池变换器、电动汽车等方面。
关键词:双向DCDC变换器;恒流源;TL494一、方案论证与比较:恒流源方案比较:方案一:由晶体三极管组成的恒流源,利用三极管集电极电压变化对电流影响,并在电路中采用电流负反馈来提高输出电流的恒定。
由于晶体管参数受温度变化影响,要采用温度补偿及稳压措施,增加电路的复杂性且输出电流不便调节。
方案二:集成运算放大器和MOS管组成的压控型恒流源,利用运放来驱动功率管MOSFET的导通程度,获得相应的输出电流在采样电阻上产生的采样电压作为反馈电压送到运放的反相输入端,并与同相输入端的给定电压进行比较,依此对MOS管的驱动电压进行调整,达到对功率管的导通电流进行调整的目的;采用放大器负反馈构成的恒流源,可以获得较高精度、较大的电流输出。
因此本设计采用方案二。
DC-DC升压电路方案比较:方案一:结构如下图所示,可以实现输出端与输入端的隔离,适合于输入电压与输出电压之比远大于一或远小于一的情形,但由于采用多次变换,电路中的损耗较大,效率低,而且结构复杂。
直流交流交流直流逆变电路变压器整流电路滤波器图1—1方案二:用Boost升压电路,拓扑结构如图1-2所示。
开关的导通和关断受到外部PWM信号控制,电感L将交替的储存和释放能量,电感L储能后使电压泵升,而电容C可将输出电压保持住,输出电压与输入电压的关系为u0=(Ton+Toof),通过改变PWM控制信号的占空比可以实现相应输出电压的变化。
DC-DC工作原理介绍精品课件
(2)开关器件的通态电阻为零,电压降为零。断态电阻为无限 大,漏电流为零;
(3)电路中的电感和电容均为无损耗的理想储能元件; (4)线路阻抗为零。电源输出到变换器的功率等于变换器的输
出功率。
VS IS VO IO
6
2. 降压原理 对开关管T加驱动信号VG ,开关周期为TS
-
i VO O
G
V g
D
iL
L C
i
CC
R
i
o
o
buck 电路图
3.1.1 电路结构和降压原理
1.理想的电力电子变换器 2.降压原理 3.控制方式 4.输出电压LC滤波
Buck变换器电路
全控型开关管
续流二极管
LC输出滤波 负载
5
1. 理想的电力电子变换器
为获得开关型变换器的基本工作特性,简化分析,假 定的理想条件是:
脉宽 不变,改变开关频率或周期。
Q:为什么实际应用中广泛采用PWM方式?
11
4.输出电压LC滤波
✓直流输出电压中含有各次谐波电压,在Buck开关电路的输出 端与负载之间加接一个LC滤波电路,减少负载上的谐波电压。
滤波电感的作用:
对交流高频电压电流呈高阻抗, 对直流畅通无阻
滤波电容的作用:
对直流电流阻抗为无穷大,对 交流电流阻抗很小。
14、 抱 最 大 的 希望 ,作最 大的努 力。2020年 9月 22日星 期二上 午9时 12分41秒 09:12:4120.9.22
15、 一 个 人 炫 耀什 么,说 明他内 心缺少 什么。 。2020年 9月上 午9时 12分20.9.2209:12September 22, 2020
双向变换器工作原理
双向变换器工作原理双向变换器(bidirectional converter)是一种电子器件,用于实现直流电能在两个电路之间的双向转换。
它能够将直流电源的电能转换为适合于不同电压和电流的直流输出,并且能够在需要时将能量从负载返回到电源,实现能量的双向流动。
双向变换器的工作原理基于电力电子器件的开关控制和能量存储元件的运算。
其核心是开关电路,通常由功率场效应管(MOSFET)或者硅控整流器(SCR)等开关器件构成。
在正向变换模式下,输入直流电源的能量通过开关电路和能量存储元件转换为适合负载的电能。
在这个过程中,开关电路周期性地调整开关的通断状态,控制能量的流向和波形。
能量存储元件,例如电感和电容,存储和释放能量,并提供与负载匹配的电压和电流。
在反向变换模式下,当负载具有能源回馈能力时,双向变换器可以将能量从负载返回到电源。
在这种情况下,开关电路以相反的方式工作,将电能从负载接回,并通过能量存储元件和开关器件转换为适合电源的直流电能。
双向变换器还包含控制回路和保护电路。
控制回路负责监测和控制开关电路的工作状态,以确保稳定的变换效果和保护负载和电源。
保护电路则负责监测并防止过压、过流、过温等异常情况的发生,以确保设备的安全运行。
双向变换器的工作原理可以通过如下示意图更直观地理解:输入直流电源──── 开关电路──── 能量存储元件──── 负载↑ ↑└───────────────── 反向变换模式─────────────┘在正向变换模式下,开关电路以一定频率进行开关操作,控制能量的流动方向。
能量存储元件存储和释放能量,以匹配负载的需求。
负载从能量存储元件获得适合的电压和电流,实现能量的输出。
在反向变换模式下,当负载具有回馈能源的能力时,双向变换器可以将能量从负载返回到电源。
开关电路以相反的方式操作,将电能从负载接回,并将其转换为适合电源的直流电能。
能量存储元件负责辅助能量的存储和释放,以平衡负载和电源之间的能量流动。
双向DC-DC变换器
双向DC-DC变换器作者:何婧韦星来源:《农家致富顾问·下半月》2016年第01期摘要:本双向DC-DC变换器由DC-DC变换器主电路模块、驱动电路模块、采样电路模块等组成,配合以ST公司的STM32F407ZE单片机基于PID算法的闭环控制,所设计的变换器能够正常、稳定的运行,可以准确的完成步进值精确可调、恒流充电,恒压放电、自动充放电切换、单片机能实时调节和显示等要求。
变换器在充电模式下效率可达94.7%,在放电模式下可达97.2%。
关键字:双向DC-DC变换器;PID算法;闭环控制1 设计原理及分析根据双向DC-DC变换器的系统原理框图可知。
DC-DC变换器作为整个装置前向通道的核心,单片机作为其反馈回路的核心,在闭环控制的条件下进行升压和降压的切换,最终使输出恒定。
本综合性装置硬件电路部分由DC-DC变换主电路、驱动电路和采样电路三大部分构成闭环控制系统,以实现恒流充电、恒压放电的目的。
当装置处于充电模式时,直流电压源经DC-DC降压变换器向锂电池组充电,变换器输出电压的大小由PWM波的占空比决定。
当输入电压变化的时候,为了达到恒流的目的,由采样电路采集变换器输出电压和电流,反馈回单片机后,经预设算法,相应的改变占空比的大小,使输出电流恒定。
当装置处于放电模式时,锂电池组作为电压源,经DC-DC升压变换器向负载放电。
当输入电压变化时,为了达到恒压的目的,由采样电路实时采集负载上的电压经单片机处理后,自动适当调节其输出的PWM波占空比,使得电压恒定。
2 电路与程序设计2.1 主电路设计原理双向DC-DC变换器的主电路原理图如图1所示。
本双向DC-DC变换器分为充电和放电两种模式。
当变换器工作在充电模式时,S1、S2接通,S3关断,MOS管Q2关断,主回路可等效为BUCK降压电路,输入电压为30V,输出电压为24V。
此时,MOS管Q1栅极在PWM波的控制下进行周期性的通断。
当Q1开通时,稳压源向电感L1充电,电感中电流直线上升,能量储存于电感中;当Q1关断时,电感电流经续流二极管D2构成的回路放电,电感电流按线性规律下降,电感释放能量。
双向DC-DC变换器
Review of High Power Isolated Bi-directional DC-DC Converters for PHEV/EV DC Charging Infrastructure Yu Du Srdjan Lukic Boris Jacobson, Alex Huang (Student Member, IEEE) (Member, IEEE) (Senior Member, IEEE)(Fellow, IEEE)FREEDM Systems Center FREEDM Systems Center Raytheon Company FREEDM Systems CenterNorth Carolina State University North Carolina State University Sudbury, MA, USA North Carolina State University Raleigh, NC, USA Raleigh, NC, USA boris_s_jacobson Raleigh, NC, USAydu4@ smlukic@ @ aqhuang@Abstract—PHEV/EV DC charging infrastructure attracts more and more attention recently. High power isolated bi-directional DC-DC converters provide galvanic isolation, V2G capability and reduce the cost and footprint of the system. Maintaining high power efficiency in wide vehicle battery pack voltage range is required. Three full bridge based high power bi-directional DC-DC converters are conceptually designed for this application and their advantages and disadvantages are addressed. Experimental test bench is built and efficiency evaluation for bi-directional operation is reported.I.I NTRODUCTIONElectric power and transportation industries are two major sources for primary energy consumption on Earth. For example, according to the United States Energy Information Administration, the primary energy flow by source and sector in 2009 is shown in Fig. 1. The total energy consumption of United States in 2009 is 27.7 trillion kilowatt hours (kWh), with about 11.2 trillion kWh or 40% in electric power sector and about 7.9 trillion kWh or 29% in transportation sector. For transportation sector, 94% of the supply source is from petroleum and only 3% is from renewable energy. 72% of petroleum is used for transportation sector and about 63% of crude oil relies on import for United States in 2009 [1]. The majority of the energy sources such as petroleum, natural gas, coal are nonrenewable or not environment-friendly. The associated energy shortage, green house gas emission and energy security issues are well known.Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are considered as one of the potential solutions for these issues. Based on EPRI’s prediction, 60% of U.S. fleet will be PHEVs by 2050. With increased penetration of PHEVs and EVs, and increased capacity of the on-board battery energy storage system for extended EV range, DC charging infrastructure (Level III according to SAE J1772) becomes more and more important. Galvanic isolation is required by regulation and safety requirement which is either in low frequency (50/60Hz) or high frequency side [2]. High frequency isolation brings higher power density, lower system cost and smaller footprint, although non-isolated DC-DC converters are simpler and cheaper than the isolated DC-DC converters [2-3]. For potential V2G (vehicle-to-grid) operation which uses mass PHEV batteries as energy storage devices for grid support, bi-directional power flow is required. A few bi-directionalDC-DC converters reported in the literatures are reviewed and categorized. Three high-power isolated bi-directional DC-DC converters are studied in detail. Conceptual design is conducted and their advantages and disadvantages are analyzed for the application in DC charging infrastructure. The input is 750V and output ranges from 300V-600V with 35kW rated power. Scale down lab test bench is built and test results are reported.II.R EVIEW OF THE B I-DIRECTIONAL T OPOLGOIESA.Isolated Bi-directional Topology CategorizationIn general, the bi-directional DC-DC converter topologies that can be potentially used for high power Fig. 1: The primary energy flow by source and sector of USA in 2009 according to the U.S. Energy Information Administration [1]This work made use of ERC shared facilities supported by the National Science Foundation under Award Number EEC-0812121.applications can be categorized to current-fed, voltage-fed and the combinations of them, as shown in Fig. 2. Generally bi-directional DC-DC converters consist of a high frequency inverter, a high frequency transformer with leakage inductance which may be either preferred or not preferred in different topologies, and a high frequency rectifier. Bi-directional DC-DC converter can be directly connected to the voltage source or the DC capacitor bank, in a voltage-fedmanner, or with additional DC inductor in between, in a current-fed manner.The major high frequency inverter and the correspondinghigh frequency rectifier topologies which can be used for bi-directional operation are shown in Fig. 3. These topologies include full-bridge inverter and rectifier, half-bridge inverter and rectifier, push-pull inverter and center-taped rectifier, L-type half-bridge inverter and current-doubler rectifier. The voltage stress of switches in full bridges are same as that inhalf bridges, but the current stress of switches is only half of that in half bridges. The rest two inverter/rectifier topologies are more suited for low voltage high current applicationsdue to the low current stress and high voltage stress of switches.B. Review of Literature Reported Isolated Bi-directional DC-DC Converters One of the widely used topology is the current-fed and voltage-fed full-bridges and its derivations [4-11], as shownin Fig. 4-9. Fig. 4 shows a typical structure of this type of converter [4]: one full bridge is connected to voltage source or DC capacitor, which is called voltage-fed, and the other full bridge is connected to current source or DC inductor, which is called current-fed. This topology was proposed to interface between the low voltage battery and high voltage DC-link for the motor drive in a hybrid vehicle. A 1.5kW prototype was built to evaluate the converter performance. However, this topology is not practical when used in high power applications, e.g. 35kW in this study. The reason isthat the transformer is not ideal and there is always leakage inductance and leakage energy stored in the transformer, which has to find some path to discharge and causes high voltage spike on switches in current-fed side during switching. When used in higher power level, this topology has been improved by several ways. Fig. 5 shows that a RCD snubber circuit is added into the current-fed side full bridge to control the switch voltage stress [5], compared to the topology in Fig. 4. In reference [6], similar approachFig. 2: Topology categorization for bi-directional DC-DC convertersbased on voltage-fed and current-fed input/output(a) Major topologies for high frequency inverter(b) The counterpart topologies for high frequency rectifierFig. 3: Major high frequency inverter and counterpart rectifier topologieswhich are used for bi-directional operationFig. 4: Bi-directional DC-DC converter based on a voltage-fed full bridgeand a current-fed full bridgewas employed to reduce the voltage stress of switches in current-fed side but lossless snubber was used instead, as shown in Fig. 6. In reference [7-9], still based on the same idea, an active clamp snubber circuit S c and C c were added into the current-fed side full bridge, as shown in Fig. 7. The addition of active clamp provides several advantages: ZVS is achieved for all the switches in current-fed side; and ZVS or ZCS is achieved for all the switches in voltage-fed side; and there is no circulating current which helps to increase the efficiency compared with conventional phase-shift controlled full bridge converter. One major disadvantage of this converter is that the voltage stress of current-fed side switches is higher than the source voltage V ds, which indicates that the topology in Fig. 7 is better suited for applications with lower source voltage in current-fed side. Fig. 8 shows one derivation of this type of topology [10]. In this topology, a half bridge was employed in voltage-fed side instead of a full bridge. In Fig. 9 a voltage-fed and current-fed half-bridge converter was reported in [11]. This topology doesn’t need snubber because S1 can act as an active clamp switch and there is no need to add additional snubbers to reduce the voltage stress of S3 and S4.Another type of topology that is widely used in industry for bi-directional operation is dual active bridges (DAB) [12-17], as shown in Fig. 10. In Fig. 10, dual active bridges consist of two voltage-fed full bridges, which are directly to interface with two DC voltage sources. Example applications of this topology can be found in energy storage systems and motor drives [13-15]. The control of dual active bridges is very flexible. For instance, either, one bridge is Fig. 10: Bi-directional DC-DC converter based on two voltage-fed fullbridgesFig. 11: Bi-directional DC-DC converter based on a voltage-fed halfbridge and a voltage-fed full bridgeFig. 12: Bi-directional DC-DC converter based on two voltage-fed halfbridgesFig. 5: Bi-directional DC-DC converter based on a voltage-fed full bridge and a current-fed full bridge with RCD snubber Fig. 6: Bi-directional DC-DC converter based on a voltage-fed full bridge and a current-fed full bridge with lossless snubberFig. 7: Bi-directional DC-DC converter based on a voltage-fed full bridge and a current-fed full bridge with active clamp Fig. 8: Bi-directional DC-DC converter based on a voltage-fed half bridge and a current-fed full bridge with active clampFig. 9: Bi-directional DC-DC converter based on a voltage-fed half bridge and a current-fed half bridgephase-shift controlled and the other is uncontrolled (only anti-parallel diodes conduct), or, both bridges output a square voltage waveform and the phase between two voltage square waveform can be controlled. DAB topology has several advantages: ZVS can be achieved for switches in both bridges; the number of switches is lower compared with voltage-fed and current-fed full bridges such as Fig. 7; low voltage stress of switches compared to current-fed full bridges; high efficiency can be achieved. One major disadvantage for this topology is that at light load the ratio of reactive power to active power is high and so it is difficult to achieve high efficiency in this scenario [14]. The other disadvantage is that the voltage range for optimal operation is narrow. Dual active bridges also have some derivations, such as the combination of a voltage-fed full bridge and a voltage-fed half bridge as shown in Fig. 11 [16], or the combination of two voltage-fed half bridges as shown in Fig. 12 [17].Other topologies under survey include the improved full-bridge converter with auxiliary resonant network to facilitate soft switching [18] and L-type full bridges with two inductor rectifier which is more suitable for low voltage high current applications [19, 20]. The bi-directional series resonant DC-DC converter does not fall into above categories but it is worth studying.For high power (35kW for instance) DC charging infrastructure, since the current stress of device is smaller and it is easier to achieve soft switching, three full bridge based ZVS topologies are selected for further study: the bi-directional series resonant DC-DC converter with clamped capacitor voltage, dual active full bridges (DAFB) as shown in Fig. 10, and voltage/current-fed full bridge with active clamp (VCFFB) as shown in Fig. 7.III. V OLTAGE AND C URRENT F ED F ULL -BRIDGE (VCFFB)C ONVERTER The voltage and current fed full-bridge bi-directional DC-DC converter is shown in Fig. 7. It consists of one voltage-fed full bridge S1-S4 in high voltage side, one current-fed full bridge S5-S8 with inductor L and active clamp circuit S9/C3 in low voltage side, and one high frequency transformer with the leakage inductance of L lk .The selection of the transformer turns ratio N and the leakage inductance L lk should meet the wide voltage range requirement of V s . It can be designed based on either the forward mode or reversed mode operation and then check if the design meets all the specifications. In this paper, the design is based on reversed mode operation.Based on the voltage-second balance of the inductor L, the voltage across clamp capacitor C3 is,s c V DV ⋅−=11(1)where D is defined as the ratio of simultaneous conduction time of S5-S8 to the half switching cycle. Based on the current-second balance of the clamp capacitor C3, neglect the ripple current of inductor L, the peak current through the leakage L lk is,L pk Llk I I ⋅=2_ (2)The fall time of the leakage inductor current ∆t 0 is,2)1(2)1()1(0s d s s d c TD V V N T D V V N t ⋅+−⋅=⋅−⋅−⋅=Δ (3)Where V c is the clamp capacitor voltage and T s is theswitch cycle of S5-S8. The low voltage side input current is,lks d s d L s L f ND V V V I I −−⋅==4)1( (4)where f s is the switching frequency of S5-S8.The power transferred from low voltage side to high voltage side in reversed mode is,lks c d s lk s s d s lk s d s d s L f NV V V L f N V D V V L f NDV V V V P o ⋅⋅−=⋅⋅−−=⋅⋅−−=4)1(4])1(1[4)1(22 (5)Therefore, the transformer turns ratio is,lks o s ds L f P V V V D N ⋅⋅⋅−⋅⋅−=4)1(2 (6)In order to decrease the current in leakage inductance during S5-S8 simultaneous conduction period such that ZCS can be achieved for S5-S8, based on (3),22)1(0ss dsT D T D V V N t ⋅<⋅+−⋅=Δ (7)25.1600750max_==<s d V V N (8) From (5) in order to reverse the power flow,Fig. 13: The required region of N and L lk (shaded area))1(N or 0)1(1D V V N V D V sd s d −>>−− (9)Practically there should be a minimal D to charge theinductor L, for example, D min =0.2. Based on (6), the transformer turns ratio can be calculated with different D and leakage inductance L lk . To limit the voltage stress of the switches in current fed side, the maximal clamp capacitor voltage has to be limited, for example, to 1000V if 1200V IGBTs are employed. From (1) D max is 0.4 if V s =600V and D max is 0.7 if V s =300V. The calculated transformer turns ratio N is calculated with P o =35kW and selected D for 300V and 600V battery pack voltage. The values for transformer turns ratio N and the leakage inductance L lk in the shaded area in Fig. 13 can output 35kW power in 300V-600V wide battery voltage range. Therefore, the transformer turns ratio N can be selected as 1 for simplicity and the leakage inductance should be blow 3uH, for example, L lk =2uH which is a practical value for the transformer design.The voltage stress of the current-fed side switches are shown in Fig. 14, indicating high voltage stress of S5-S9.In forward mode operation, S5-S8 are turned off with their anti-parallel diodes as rectifier. S1-S4 are modulated in thephase-shift manner to control the output power. The active-clamp circuit S9 and C3 absorb the energy in leakage inductance and limits the voltage stress of D5-D9.IV. D UAL A CTIVE F ULL -BRIDGE (DAFB) C ONVERTER The dual active bridge bi-directional DC-DC converter is shown in Fig. 10. It consists of two voltage-fed full bridges S1-S4 and S5-S8. The power transferred by the dual active full bridges is,1(2πφφπ−⋅⋅⋅⋅⋅⋅⋅=lk s sd s L f V N V P (10)where Ф is the phase shift angle in radian between the squarewave voltage outputs of the two full bridges. Define,lks dbase L f V P ⋅⋅⋅=π22 (11)sd V N V d ⋅=(12)So the normalized output power is,1(1πφφ−⋅⋅=d P pu (13)If the reactive power is defined as the product of rmscurrent and rms voltage of the leakage inductance, the ratio of reactive power to the real power is,)(6])1(4[)]2()()1()23()1[(322222πφφπφπφπφ−⋅⋅⋅−+⋅+−−+−+=d d d d d PQ (14)V s is in the wide voltage range, for example, 300V-600V. When the output power is 35kW, based on (12) the phase shift angle for 300V output is larger than 600V output. And when a maximal angle is selected for 300V V s , there exists one maximal angle for 600V V s , to regulate the power up to 35kW. For 2:1 V s range, the relationship between these two angles is,2)(22L L Hφπφππφ−−−=(15) Three pairs of maximal phase shift angles for 300V output and 600V output are selected, in the form of [phi_L,Fig.14: Clamped Capacitor Voltage in Reversed Mode OperationFig. 16: The ZVS region of the DAFB converterFig. 15: The selection of the transformer turns Ratio Nphi_H] such as [0.60, 0.27], [0.90, 0.36] and [1.20, 0.43]. And the ratio of the reactive to real power Q/P is described in Fig. 15 in terms of different transformer turns ratio N. N is selected such at the reactive power in the circuit is same at 300V and 600V V s at 35kW condition. It can be found that the transformer turns ratio N should be around 2. It can be also found that the selection of N to minimize the reactive power for either 600V or 300V V s will greatly increase the reactive power at the other output voltage. Therefore, the required leakage inductance is,)(3.261(2uH P f V N V L s s d lk =−⋅⋅⋅⋅⋅⋅⋅=φφ (16)The ZVS boundary for S1-S4 can be determined by,04)2(0=⋅⋅⋅⋅⋅−⋅−⋅=lks dL f d d V I πφππ (17) The ZVS boundary for S5-S8 can be determined by,04)2(1=⋅⋅⋅⋅⋅−⋅⋅+⋅=lks dL f d d d V I ππφπ (18) Based on (11) and (13), P base is 68kW and the normalized power rating P (pu) is 0.515. When V s is 600V, primary side switches S1-S4 loses the ZVS condition in the full load range and there is no problem with S5-S8. When V s is 300V, secondary side switches S5-S8 loses ZVS below half load and there is no problem with S1-S4. The zero voltage switching (ZVS) operation of the dual active full bridge converter based on the charging specifications is shown in Fig. 16. It can be found that ZVS condition is lost for high V s voltage and light load range.The transformer primary and secondary winding current stress is shown in Fig. 17, which is an indication of the current stress of components in the circuit. The current stress is similar at heavy load for 300V and 600V V s . However, at light load condition, there is a lot of circulating current in the circuit, which will dramatically decrease the light load efficiency. Also, the circulating current at 600V V s is much higher than that of 300V. It should be noted that the output V-I characteristic of dual active full bridges is a current source.V.B I -DIRECTIONAL S ERIES R ESONANTC ONVERTERWITH C LAMPED C APACITOR V OLTAGEFig. 18 shows a bi-directional series resonant DC-DC converter with clamped capacitor voltage. Reference [21]-[26] describe the design of the power stage and the phase-shift modulation strategy for the reversed mode operation. For 35kW power rating, the resonant inductor L1 and L2 is 11.6uH each, which can utilize the high frequency transformer leakage inductance. The resonant capacitor is 0.9uF. The transformer turns ratio is N1:N1:N2=1:1:2.The transformer primary and secondary winding RMS current, which is an indication of the current stress of the components in the circuit, is shown in Fig. 19. Compared with the dual active full bridges, when V s is 300V, the current stress of the secondary side is similar to that of dual active full-converter in forward mode. In reverse mode, the current stress increases about 20%. The current stress in the primary side is almost two times as that in dual active bridges. However, when V s is 600V, the primary side current stress of resonant converter is similar to that in dual active bridge at full load but lower at light load. The secondary side current stress of resonant converter is much lower than that in dual active full-bridge converter. There is much smaller circulating current at light load for the bi-directional resonantFig. 17: The transformer winding current stressFig. 19: The current stress of the transformer windingsFig. 18: bi-directional series resonant DC-DC converter with clampedcapacitor voltageconverter. It should be noted that the current stress in T1 and T2 is similar in forward mode and might be different in reverse mode operation due to the modulation strategy.ZVS can be obtained in the wide V s voltage and load range, and ZVS is lost at light load conditions. The output V-I characteristic of bi-directional series resonant DC-DC converter is dual-slope shape, which is voltage source at normal load range and current source when output current is higher. This feature intrinsically limits the short circuit current in load side when there is a fault.VI.S UMMARY OF THE H IGH P OWER B I-DIRECTIONALDC-DC T OPOLOGIESAll three high-power isolated bi-directional DC-DC converters can be used in the PHEV/EV DC charging infrastructure. But they have pros and cons in terms of the number of components, voltage and current stress, light loadcirculating current, soft switching range, output faulttolerance, control complexity, etc. which should be considered for the specific application. They are compared inTable I.To evaluate the performance of the high power isolated bi-directional DC-DC converters, a 20kW scale down experimental test bench is built and shown in Fig. 20. A Rogowski coil is inserted into the IGBT setup with copper DC-bus plates to accurately measure the switching loss ofthe converter. The IGBT under test is APTGF300A120G (1200V/300A) and the tested turn-off energy at 85°C with 50nF capacitor snubber and without the snubber is plotted inFig. 21. With 50nF capacitor snubber the turn-off loss can be reduced by about 40%.The power loss model was built for each of the components in the power stage, such as IGBT conduction loss, switching loss (measured by Rogowski coil), diode conduction and turn-off loss, winding and core loss of inductors and transformer, driver loss, capacitor loss and cable loss. The accuracy of the efficiency calculation was verified by the efficiency test results of 20kW experiment prototype. The loss model is used to estimate the 35kW efficiency for DAFB and bi-directional resonant converter.Table I: Summary of the Three DC-DC ConvertersVCFFBDAFBResonant Switchingfrequency (kHz)50 50 50 ConstantfrequencyYes Yes Yes CirculatingcurrentNo Yes No Number ofIGBTs9 8 8 Number ofDiodes9 8 12 Voltage Stress ofS1-S4 (V)750 750 750 Voltage Stress ofS5-S8 (V)920 600 600 Resonant/Seriesinductor (uH)2.0 26.3 2*11.6 Resonantcapacitor (uF)0 0 0.9 Output filterinductor (uH)100 0 0Soft switching ZCS/ZVS ZVS ZVSShort-circuitcurrent limitNo Yes Yes Voltage stress High Low LowForward Output V-I characteristic VoltagesourceCurrentsourceDual V-IslopesControl complexity Moderate Simple ComplexFig. 20: Lab test bench of isolated bi-directional DC-DC ConvertersFig. 21: The measured IGBT turn-off loss with and without capacitorsnubber at 85°C by Rogowski coil for switching loss estimationFig. 22: Estimated efficiency of DAFB and resonant Converters at35kW in wide voltage rangeThe evaluated efficiency at 35kW full load of both forward and reverse mode operation for DAFB and resonant DC-DC converters in both forward and reverse mode operation is shown in Fig. 22. 94.5%-97.5% efficiency can be obainted in 300V-600V battery side voltage range at full load condition.A CKNOWLEDGMENTThis work is sponsored by Raytheon Company and the authors wish to acknowledge Raytheon for the financial support. This work is also supported by the Advanced Transportation Energy Center (ATEC) and Future Renewable Electric Energy Delivery and Management (FREEDM) Systems Center at North Carolina State University, and made use of ERC shared facilities supported by the National Science Foundation under Award Number EEC-0812121.R EFERENCES[1]U.S. Energy Information Administration. Annual energy review 2009(/aer). Technical report, Office of Energy Markets andEnd Use, U.S. Department of Energy, aug. 2010.[2] D. Aggeler, F. Canales, H. Zelaya-De La Parra, A. Coccia, N.Butcher and O. Apeldoorn, “Ultra-fast DC-charge infrastructures forEV-mobility and future smart grids,” in IEEE 2010 PES InnovativeSmart Grid Technologies Conference Europe, pp.1-8, Ocb.2010.[3]N.H. Kutkut, D.M. Divan, D.W. Novotny and R.H. Marion, “DesignConsiderations and topology selection for a 120-kW IGBT converterfor EV fast charging,” in IEEE Transactions on Power Electronics,vol.13, no.1, pp.169-178, Jan.1998.[4]Garcia, O.; Flores, L.A.; Oliver, J.A.; Cobos, J.A.; de la Pena, J., “Bi-directional DC-DC Converter For Hybrid Vehicles”, Power Electronics Specialists Conference, 2005. PESC '05. IEEE 36th, 16-16 June 2005 Page(s):1881 – 1886[5]Lizhi Zhu, “A Novel Soft-Commutating Isolated Boost Full-bridgeZVS-PWM DC-DC Converter for Bi-directional High Power Applications”, Power Electronics Specialists Conference, 2004.PESC 04. 2004 IEEE 35th Annual, Volume 3, 20-25 June 2004 Page(s):2141 - 2146 Vol.3[6]Eun-Soo Kim; Kee-Yeon Joe; Hae-Young Choi; Yoon-Ho Kim;Yong-Hyun Cho;, “An Improved Soft Switching Bi-directional PSPWM FB DC/DC Converter, Industrial Electronics Society, 1998.IECON '98. Proceedings of the 24th Annual Conference of the IEEEVolume 2, 31 Aug.4 Sept. 1998 Page(s): 740 - 743 vol.2[7]K. Wang, C. Y. Lin, L. Zhu, D. Qu, F. C. Lee, and J. S. Lai, “Bi-directional DC/DC Converters for Fuel Cell Systems,” in Proc. IEEEPower Electron. Transport., 1998, pp. 47–51.[8]Kunrong Wang, Fred C. Lee, and Jason Lai, “Operation Principles ofBi-directional Full-bridge DC/DC Converter with Unified Soft-switching Scheme and Soft-starting Capability”, Applied Power Electronics Conference and Exposition, APEC 2000. Fifteenth Annual IEEE Volume: 1, On page(s): 111-118 vol.1[9]R. Li, A. Pottharst, N. Fröhleke, J. Böcker, K. Witting, M. Dellnitz,O. Znamenshchykov, R. Feldmann, “Design and Implementation of aHybrid Energy Supply System for Railway Vehicles”, Applied PowerElectronics Conference and Exposition, 2005. APEC 2005. TwentiethAnnual IEEE Volume:1, On page(s): 474- 480 Vol. 1[10]Su-Jin Jang, Tae-Won Lee, Won-Cbul Lee, Chung-Yuen Won, “Bi-directional DC to DC Converters for Fuel Cell Generation System”,Power Electronics Specialists Conference, 2004. PESC 04. 2004IEEE 35th Annual Volume 6, 20-25 June 2004 Page(s):4722 - 4728 Vol.6[11]Hui Li, Fang Z. Peng, Jack S. Lawler, “A Natural ZVS High-powerBi-directional DC-DC Converter with Minimum Number of Devices”, IEEE Transactions on Industry Applications, Vol. 39, No.2, March/April 2003, Page(s): 525-535[12]R.W. De Doncker, D.M. Divan, and M.H. Kheraluwala, “PowerConversion Apparatus for DC/DC Conversion Using Dual Active Bridges,” U.S. Patent, No. 5,027,264.[13]H. L. Chan, K. W. E. Cheng and D. Sutanto, “A Fhase-ShiftControlled Bi-directional DC-DC Converter”, SCS’99, July6-7, page(s): 319-322[14]Shigenori Inoue, Hirofumi Akagi, “A Bi-Directional DC/DCConverter for an Energy Storage System”, Applied Power Electronics Conference, APEC 2007 - Twenty Second Annual IEEE Publication Date: Feb. 25 2007-March 1, 2007 On page(s): 761-767[15]Shigenori Inoue and Hirofumi Akagi, “Voltage Control of a Bi-Directional Isolated DC/DC Converter for Medium-Voltage Motor Drives”, Power Conversion Conference - Nagoya, 2007. PCC '07 Publication Date: 2-5 April 2007 On page(s): 1244-1250[16]Richard Morrison, Michael Egan, “A New Single Transformer,Power Factor Corrected UPS Design”, Applied Power Electronics Conference and Exposition, 1998. APEC '98. Conference Proceedings 1998., Thirteenth Annual Volume 1, 15-19 Feb. 1998 Page(s):237 - 243 vol.1[17]Xinyu Xu, Ashwin M Khambadkone, Ramesh Oruganti, “A Soft-Switched Back-to-Back Bi-directional DC/DC Converter with a FPGA based Digital Control for Automotive applications”, Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE, Page(s): 262-267[18]Tiecheng Sun, Xueqin Zhu, Hongpeng Liu, Lian Liang and PengGao, “A Novel ZVS PWM FB DC/DC Converter Using Auxiliary Resonant Net”, Power Electronics and Motion Control Conference, 2006. EPE-PEMC 2006. 12th InternationalPublication Date: Aug. 30 2006-Sept. 1, 2006 On page(s): 728-732[19]L.A. Flores1, O. García, J.A. Oliver, J.A. Cobos, “High-FrequencyBi-Directional DC/DC Converter Using Two Inductor Rectifier”, IEEE Industrial Electronics, IECON 2006 - 32nd Annual Conference on 6-10 Nov. 2006 Page(s):2793 – 2798[20]K. Wang, C. Y. Lin, L. Zhu, D. Qu, F. C. Lee, J. S. Lai, “Bi-directional DC to DC Converters for Fuel Cell Systems”, Power Electronics in Transportation, 1998, 22-23 Oct. 1998 Page(s): 47 – 51 [21] B. S. Jacobson and R. A. DiPerna, “Series Resonant Converter withClamped Tank Capacitor Voltage,” in IEEE 1990 Applied Power Electronics Conference and Exposition, pp.137-146, Mar.1990. [22] B. S. Jacobson and R. A. DiPerna, “Design of a Series ResonantConverter with Clamped Capacitor Voltage and Anti-Cross-Conduction Inductors,” in IEEE 1998 Applied Power Electronics Conference and Exposition, vol.2, pp.829 – 833, Feb.1998.[23] B. S. Jacobson, J. McGainty and P. C. Thomas, “Method andApparatus for a Power System for Phased-Array Radar,” in United States Patent, 6856283, Feb.2005.[24]T. Kato and G. C. Verhgese, “Efficient Numerical Determination ofBoundaries between Operating Modes of a Power Converter,” in IEEE 1992 Workshop on Computers in Power Electronics, pp. 205 – 216, Aug.1992.[25]T.T.J. Ho, G.C. Verghese, C. Osawa, B.S. Jacobson and T. Kato,“Dynamic modeling, simulation and control of a series resonant converter with clamped capacitor voltage,” in IEEE 1994 Power Electronics Specialists Conference, vol.2, pp.1289-1296, Jun.1994. [26]Y. Du, X. Bian, S.M. Lukic, B.S. Jacobson and A.Q. Huang, “ANovel Wide Voltage Range Bi-directional Series Resonant Converter with Clamped Capacitor Voltage,” in IEEE 2009 Annual Conference of Industrial Electronics, pp.82-87, Nov.2009.。
双向dcdc拓扑结构
双向dcdc拓扑结构(最新版)目录1.双向 dcdc 拓扑结构的概述2.双向 dcdc 拓扑结构的工作原理3.双向 dcdc 拓扑结构的应用场景4.双向 dcdc 拓扑结构的优缺点5.双向 dcdc 拓扑结构的发展前景正文一、双向 dcdc 拓扑结构的概述双向 dcdc 拓扑结构,全称为双馈直流 - 直流变换器拓扑结构,是一种在电力电子领域广泛应用的变换器拓扑结构。
该结构主要由两个直流- 直流变换器组成,通过双向电力电子开关实现两个变换器之间的双向能量流动。
二、双向 dcdc 拓扑结构的工作原理双向 dcdc 拓扑结构主要由两个直流 - 直流变换器组成,分别为正向变换器和反向变换器。
正向变换器将输入电压转换为正向输出电压,反向变换器将输入电压转换为反向输出电压。
通过控制两个变换器的开关,可以实现能量的双向流动。
三、双向 dcdc 拓扑结构的应用场景双向 dcdc 拓扑结构在电力电子领域具有广泛的应用,如分布式发电系统、储能系统、电动汽车充电系统等。
在这些应用中,双向 dcdc 拓扑结构可以实现直流电压的双向调节和能量管理,提高系统的整体效率和稳定性。
四、双向 dcdc 拓扑结构的优缺点双向 dcdc 拓扑结构具有以下优点:1.能实现直流电压的双向调节,满足不同应用场景的需求;2.系统效率高,损耗小;3.结构简单,易于实现和控制。
然而,双向 dcdc 拓扑结构也存在一些缺点:1.系统存在两个变换器,成本相对较高;2.控制策略较为复杂,需要考虑两个变换器之间的协同控制。
五、双向 dcdc 拓扑结构的发展前景随着电力电子技术的不断发展,双向 dcdc 拓扑结构在分布式发电、储能系统等领域的应用将越来越广泛。
双向DC-DC变换器1
双向DC-DC变换器摘要:本系统为双向DC-DC变换器,实现电池的充放电功能能。
系统采用Buck/Boost双向DC/DC主拓扑,以STM32为控制核心,通过PI调节实现双向电压变换和稳流功能,并能够实现充电与放电过程的按键切换与自动切换。
同时,该系统实现恒流充电功能,充电电流0.05A步进可调,并能够实时显示两侧电压、充放电电流,显示误差小,充放电电流纹波峰峰值低,放电效率高达96.5%,充电效率高达98.6%,并具有过充保护及自动恢复功能。
关键词: Buck/Boost 双向DC/DC变换PI1.系统方案1.1方案论证与比较1.1.1主拓扑方案●方案一:采用非隔离性DC/DC双向变换拓扑。
电路简单,体积较小,适用于电压差较小的情况。
●方案二:采用隔离性DC/DC双向变换拓扑。
适用于电压差较大的情况。
两侧电气隔离,可靠性较高。
变压器的使用可以使电压电流在大范围内变换,有效地保证了低电压或低电流输入实现大电压或大电流输出。
综合考虑,由于双向DC-DC变换器中,稳压源电压与电池电压相差不大,故采用非隔离性DC/DC双向变换拓扑结构,电路简单,可实现性高。
1.1.2采样与驱动方案●方案一:不带隔离的采样与驱动电路。
此种方案电路结构较为简单,能减小辅助电源设计的工作量。
但由于没有隔离,所以系统稳定性和安全性较差。
●方案二:带隔离的采样与驱动电路。
此种方案将主电路与控制电路隔离,提高了系统稳定性与可靠性,但是因增加了额外的隔离电源而对系统带来额外的效率损失,不能够很好的满足题目要求。
综合考虑,由于本题只涉及直流而未涉及到交流,并且是否隔离对题目影响不大,所以选择方案一。
1.1.3控制方案1.2总体方案描述系统包括双向DC/DC变换电路、辅助电源、反馈控制、测量和显示五个部分。
其中DC/DC双向变换电路是核心部分,控制电路主要利用STM-32来实现,系统通过电池电压、电流采样反馈,并利用PI算法调节Buck/Boost双向变换电路开关管的占空比,从而实现恒流充电功能。
推挽全桥双向直流变换器的研究
推挽全桥双向直流变换器的研究1 引言随着环境污染的日益严重和新能源的开发,双向直流变换器得到了越来越广泛的应用,像直流不停电电源系统,航天电源系统、电动汽车等场合都应用到了双向直流变换器。
越来越多的双向直流变换器拓扑也被提出,不隔离的双向直流变换器有Bi Buck/Boost、Bi Buck-Boost、Bi Cuk、Bi Sepic-Zeta;隔离式的双向直流变换器有正激、反激、推挽和桥式等拓扑结构。
不同的拓扑对应于不同的应用场合,各有其优缺点。
推挽全桥双向直流变换器是由全桥拓扑加全波整流演变而来。
推挽侧为电流型,输入由蓄电池供给,全桥侧为电压型,输入接在直流高压母线上。
此双向直流变换器拓扑适用在电压传输比较大、传输功率较高的场合。
本文分析了推挽全桥双向直流变换器的工作原理,通过两种工作模式的分析,理论上证明了此拓扑实现能量双向流动的可行性,并对推挽侧开关管上电压尖峰形成原因进行了分析,提出了解决方法,在文章的最后给出了仿真波形和实验波形。
2 工作原理图1为推挽全桥双向DC/DC变换器原理图。
图2给出了该变换器的主要波形。
变换器原副边的电气隔离是通过变压器来实现的,原边为电流型推挽电路,副边为全桥电路,该变换器有两种工作模式:(1)升压模式:在这种工作模式下S1 、S2 作为开关管工作; S3,S4 ,S5 ,S6 作为同步整流管工作,整流方式为全桥整流,这种整流方式适用于输出电压比较高,输出电流比较小的场合。
由于电感L 的存在S1、S2 的占空比必须大于0.5。
(2)降压模式:在这种工作模式下S3,S4,S5,S6 作为开关管工作,S1 、S2 作为同步整流管工作,整流方式为全波整流。
分析前,作出如下假设:所有开关管、二极管均为理想器件;所有电感、电容、变压器均为理想元件;,;2.1 升压工作模式在升压工作模式下,原边输入为电流型推挽电路,副边输出为全桥整流电路。
S1 ,S2 作为开关管工作,S3 ,S4,S5,S6 作为同步整流管工作。
双向DCDC变换器设计
用于锂电池化成系统的桥式DC/DC变换器 (2)1引言 (3)2 双向H桥DC/DC变换器拓扑分析 (4)2.1 双向DC/DC变换器 (4)2.2 双向H桥DC/DC变换器结构分析 (4)2.2 双向H桥DC/DC变换器工作状态分析 (5)2.2.1 正向工作状态模型分析 (5)2.2.2 反向工作状态模型分析 (8)3 硬件电路分析设计 (11)3.1 器件参数选择分析 (11)3.1.1 主开关管的选择 (11)3.1.2 滤波电感参数的计算 (11)3.2 硬件电路分析设计 (12)3.2.1 驱动电路分析设计 (12)4 系统结构与控制 (18)4.1 系统结构 (18)4.2 控制系统结构 (18)4.3 DC/DC变换器控制方法 (19)4.3.1 电压控制模式 (20)4.3.2 电流控制模式 (20)4.4 软件设计 (21)5 实验调试与结果分析 (22)5.1 实验平台搭建 (22)5.2 样机调试 (23)5.2.1 供电电源调试 (23)5.2.2 驱动信号调试 (24)5.2.3 单片机程序,VB工程调试 (25)5.2.4 保护与采样电路测试 (25)5.2.4 开环、闭环测试 (28)5.3 小结 (30)6 总结 (31)7 辞 (32)参考文献 (33)用于锂电池化成系统的桥式DC/DC变换器摘要:随着锂电池在生活中各个方面的广泛普及,锂电池在生产过程中重要的化成环节逐渐成为关注的焦点。
本文主要设计介绍了使用于锂电池化成系统的桥式变换器部分,包含计算机监控、DC/DC双向变换器。
双向DC/DC变换器通过调节MOSFET的占空比,实现对锂电池的智能充放电。
本文对双向DC/DC变换器的工作原理进行了分析,并通过样机对预期功能进行验证。
关键字:电池化成;双向DC/DC变换器;实验分析Abstract:As the lithium battery becomes more and more popular in every aspects of our life, battery formation, a critical process in battery production, draws plenty of attention. This paper introduces a full bridge converter, which used in a formation energy feedback system of lithium battery, including a PC monitor and a DC/DC bi-directional converter. The bi-directional DC/DC converter system can realize the intelligent charging and discharging of the lithium batteries by adjusting the duty ratio of MOSFET. The working principle of DC/DC bi-converter was analyzed, and the experimental prototype function was validated through experiments.Keywords: battery formation; DC/DC bi-directional converter; experimental analysis1引言进如21世纪以来,随着环境问题、能源问题与社会发展问题的矛盾日益突出,发展节能减排的绿色经济以成为全社会关注的焦点。
双向直流直流变换器(原创)
双向直流直流变换器(原创)这个事我在实验室做报告的ppt,和大家分享一下。
这里主要介绍了双向直流变换器的类型,怎样把单向的变换成双向的,还主要讲了级联型的双向直流变换器的工作原理和仿真。
这里仿真结果是不太正确的,想要仿真结果的可以私下联系双向直流-直流变换器报告人:刘士华这个事我在实验室做报告的ppt,和大家分享一下。
这里主要介绍了双向直流变换器的类型,怎样把单向的变换成双向的,还主要讲了级联型的双向直流变换器的工作原理和仿真。
这里仿真结果是不太正确的,想要仿真结果的可以私下联系目录1双向直流变换器及其分类2正极性输出的双向buck/boost直流变换器3Simulink仿真4接下的任务这个事我在实验室做报告的ppt,和大家分享一下。
这里主要介绍了双向直流变换器的类型,怎样把单向的变换成双向的,还主要讲了级联型的双向直流变换器的工作原理和仿真。
这里仿真结果是不太正确的,想要仿真结果的可以私下联系双向直流变换器及其分类双向直流变换器直流变换器只能将能量从一个方向传到另一个方向,双向直流变换器则可实现能量的双向传输。
双向DC/DC电路搭配不同的能量储存单元,不但能够提高能量储存系统的灵活性和效率,同时也改善了系统的动态性能。
双向DC/DC变换器正逐步被使用在各种能量系统中,包括混合动力车、燃料电池系统、可再生能源系统等。
例如具有双向功能的充电器在供电网正常时用于向蓄电池充电,一旦供电网供电中断,该电器可将电池电能返回电网,向电网短时应急供电。
控制直流电动机的变换器也应是双向的,电动机工作时,将电能从电源送到电动机,电动机旋转,带动设备工作,制动时电机能量通过变换器返回电源。
这个事我在实验室做报告的ppt,和大家分享一下。
这里主要介绍了双向直流变换器的类型,怎样把单向的变换成双向的,还主要讲了级联型的双向直流变换器的工作原理和仿真。
这里仿真结果是不太正确的,想要仿真结果的可以私下联系双向直流变换器及其分类在电动车的应用中,双向DC/DC变换器搭高能量密度的能量储存单元(如超级电容),可以吸收电机制动的能量。