八年级数学第七章 一元一次不等式典型例题
一元一次不等式经典例题+习题
可编写可改正【经典例题1】1、已知 a< b,则以下不等式中不正确的选项是()<4b+4 < b+4 C. ﹣ 4a<﹣ 4b﹣4<b﹣ 42、不等式3x+ 2< 2x+ 3 的解集在数轴上表示正确的选项是()3、实数 a,b,c 在数轴上对应的点以以下列图所示,则以下式子中正确的选项是()> bc B.|a–b| = a–b C. – a < – b < c D. – a–c > – b–c【经典例题2】4、若是不等式组恰有3个整数解,则 a 的取值范围是()≤﹣ 1<﹣1 C. ﹣ 2≤ a<﹣ 1 D. ﹣ 2< a≤﹣ 15、对于 x 的不等式组有四个整数解,则 a 的取值范围是()A. ﹣<a≤﹣B. ﹣≤ a<﹣C. ﹣≤ a≤﹣D. ﹣<a<﹣6、若对于的不等式组有三个负整数解,则的取值范围是().<a<-3<a ≤-2≤ a<-3≤ a≤ -2【经典例题3】7、某商品的进价为800 元 , 销售标价为1200 元, 后出处于该商品积压, 商铺准备打折销售,要保证收益率不低于5% , 该商品最多可打( )A.9 折折 C.7 折 D.6 折可编写可改正8、在抗震救灾中,某抢险地段需实行爆破. 操作人员点燃导火线后,要在炸药爆炸前跑到400 米以外的安全地区.已知导火线的焚烧速度是厘米/ 秒,操作人员跑步的速度是 5 米 / 秒 . 为了保证操作人员的安全,导火线的长度要高出()厘米厘米厘米厘米9、某大型商场从生产基地购进一批水果,运输过程中质量损失10%,假定不计商场其他费用,若是商场要想最少获得20%的收益,那么这种水果的售价在进价的基础上应最少提高()%%【经典例题4】10、不等式﹣ 3x﹣ 1< 7 的负整数解是_________.11、某种商品的进价为15 元,销售时标价是元。
由于市场不景气销售情况不好,商铺准备降价办理,但要保证收益率不低于10%,那么该店最多降价____________元销售该商品。
初二数学一元一次不等式试题答案及解析
初二数学一元一次不等式试题答案及解析1.用适当的符号表示a是非负数:_________.【答案】a≥0.【解析】由于非负数即大于等于0,所以a≥0.故答案是:a≥0.【考点】.由实际问题抽象出一元一次不等式2.解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集.【答案】不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2【解析】先将不等式组中每一个不等式的解集求出,然后再在数轴上表示,写出满足条件的非负整数解即可试题解析:解不等式①得,x≥-1;解不等式②得,x<3;所以原不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2.【考点】1、解不等式组;2、不等式组的整数解3. 2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?【答案】(1)有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.【解析】(1)设租用甲种货车x辆,表示出租用乙种货车为(16﹣x)辆,然后根据装运的粮食和副食品数不少于所需要运送的吨数列出一元一次不等式组,求解后再根据x是正整数设计租车方案;(2)分别求出三种方案的燃油费用,比较即可得解.试题解析:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,,由①得,x≥5,由②得,x≤7,∴,5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)当x=5时,16﹣5=11,5×1500+11×1200=20700元;当x=6时,16﹣6=10,6×1500+10×1200=21000元;当x=7时,16﹣7=9,7×1500+9×1200=21300元;答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.【考点】1.一次函数的应用2.一元一次不等式组的应用.4.关于x的不等式组有四个整数解,则a的取值范围是 [ ].A.B.C.D.【答案】B.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.由(1)得x>8;由(2)得x<2-4a;其解集为8<x<2-4a,因不等式组有四个整数解,为9,10,11,12,则解得-≤a<-.故选B.考点: 一元一次不等式组的整数解.5.若(x+2)(x-3)>0,则x的取值范围是________.【答案】x>3,或x<-2.【解析】根据同号得正,异号得负列出不等式组即可求解.试题解析:由题意得:或解得:x>3,或x<-2.考点: 解一元一次不等式组.6.随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月产量范围.【答案】16000≤x≤18000.【解析】下个月的产量为x件,根据“劳动时间”和“预计下月市场对J牌产品需求量为16000件”可列不等式组求解.试题解析:设下个月的产量为x件,根据题意得,解得:16000≤x≤18000答:下个月的产量不少于16000件,不多于18000件.考点: 一元一次不等式组的应用.7.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()【答案】C【解析】根据第四象限内横坐标为正,纵坐标为负可得,解得再根据在数轴上表示不等式的解集时,小于向左,大于向右,含等号实心,不含等号空心,可得x的取值范围在数轴上可表示为C选项.【考点】解不等式组8.若>a对任意实数x恒成立,则a的取值范围是。
八年级一元一次不等式练习题(经典版)
一元一次不等式1、下列不等式中,是一元一次不等式的是 ( )A012>-x ; B 21<-; C 123-≤-y x ; D 532>+y ;2.下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 3. 下列各式中,是一元一次不等式的是( ) (1)2x<y (2)(3)(4)4.用“>”或“<”号填空.若a>b,且c ,则:(1)a+3______b+3; (2)a-5_____b-5; (3)3a____3b; (4)c-a_____c-b (5); (6)5.若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______. 二、填空题(每题4分,共20分) 1、不等式122x >的解集是: ;不等式133x ->的解集是: ; 2、不等式组⎩⎨⎧-+0501>>x x 的解集为 . 不等式组3050x x -<⎧⎨-⎩>的解集为 .3、不等式组2050x x ⎧⎨-⎩>>的解集为 . 不等式组112620x x ⎧<⎪⎨⎪->⎩的解集为 .三. 解下列不等式,并在数轴上表示出它们的解集.(1) 8223-<+x x 2. x x 4923+≥-(3). )1(5)32(2+<+x x (4). 0)7(319≤+-x (5) 31222+≥+x x (6) 223125+<-+x x(7) 7)1(68)2(5+-<+-x x (8))2(3)]2(2[3-->--x x x x (9)1215312≤+--x x (10) 215329323+≤---x x x(11)11(1)223x x -<- (12) )1(52)]1(21[21-≤+-x x x(13) 41328)1(3--<++x x (14) ⋅->+-+2503.0.02.003.05.09.04.0x x x三、解不等式组,并在数轴上表示它的解集 1. ⎩⎨⎧≥-≥-.04,012x x2.⎩⎨⎧>+≤-.074,03x x4⎪⎩⎪⎨⎧+>-<-.3342,121x x x x 5.-5<6-2x <3.6.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x7.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx8⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x9..234512x x x -≤-≤-10.532(1)314(2)2x x x -≥⎧⎪⎨-<⎪⎩ 11.⎪⎩⎪⎨⎧≥--+.052,1372x x x12.⎪⎩⎪⎨⎧---+.43)1(4,1321x x x x13.14321<--<-x四.变式练习 1不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值围是( ).(A)m ≤2 (B)m ≥2(C)m ≤1(D)m ≥12. k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.3. 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .4. .已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值围.5. 已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0,求m 的取值围.6. 适当选择a 的取值围,使1.7<x <a 的整数解:(1) x 只有一个整数解; (2) x 一个整数解也没有.7. 当310)3(2k k-<-时,求关于x 的不等式k x x k ->-4)5(的解集.8. 已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.9. 当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.10. 已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值围.11. 已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.12. 关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值围.13. k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?14. 已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值围.15. 若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值围.探究: 1、 如果不等式组x a x b >⎧⎨<⎩无解,问不等式组11y a y b +≥⎧⎨+≤⎩的解集是怎样的?2、已知()()3525461x x x ++<-+,化简3113x x +--。
初二数学一元一次不等式试题答案及解析
初二数学一元一次不等式试题答案及解析1.求不等式组的整数解。
【答案】-1,0.【解析】先分别解不等式,然后根据“口诀”确定不等式组的解,然后找出整数解即可.试题解析:解不等式5+2x≥3,得:x≥-1.解不等式,得:x<1所以不等式组的解为:-1≤x<1所以整数解为:-1,0.【考点】一元一次不等式组的解法;不等式整数解.2.不等式x>x-1的非负数解的个数是()A.1B.2C.3D.无数个【答案】B.【解析】移项得:x<1,解得:x<,则不等式x>x-1的非负整数解为1,0,共2个.故选B.【考点】一元一次不等式的整数解.3.下列不等式变形正确的是()A.B.C.D.【答案】D【解析】A、若c<0,则A错误;B、由不等式的基本性质1,可知错误;C、若a<0,则C错误;D、由不等式的基本性质3,可知D正确,故选D【考点】不等式的基本性质4.解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集.【答案】不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2【解析】先将不等式组中每一个不等式的解集求出,然后再在数轴上表示,写出满足条件的非负整数解即可试题解析:解不等式①得,x≥-1;解不等式②得,x<3;所以原不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2.【考点】1、解不等式组;2、不等式组的整数解5.如果关于x的不等式组无解,那么m的取值范围是()A.m>1B.m≥1C.m<1D.m≤1【答案】D.【解析】∵关于x的不等式组无解∴3-m≥m+1解得:m≤1,故选D.【考点】解一元一次不等式组6.如果不等式(m-2)x>2-m的解集是x<-1, 则有()A.m>2B.m<2C.m=2D.m≠2【答案】B.【解析】∵(m-2)x>2-m的解集是x<-1,∴m-2<0,∴m<2.故选:B.【考点】不等式的性质.7.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?【答案】10.【解析】关系式为:4×第一层房间数<48;5×第一层房间数>48;3×第二层房间数<48;4×第二层房间数>48,把相关数值代入求整数解即可.试题解析:设第一层有客房x间,则第二层有(x+5)间,由题可得由①得:,解得:;由②得:,解得:7<x<11.∴原不等式组的解集为.∴整数x的值为x=10.答:一层有客房10间.【考点】一元一次不等式组的应用.8.关于x的不等式组有四个整数解,则a的取值范围是 [ ].A.B.C.D.【答案】B.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.由(1)得x>8;由(2)得x<2-4a;其解集为8<x<2-4a,因不等式组有四个整数解,为9,10,11,12,则解得-≤a<-.故选B.考点: 一元一次不等式组的整数解.9.已知关于x,y的方程组的解为非负数,求整数m的值.【答案】7,8,9,10.【解析】此题考查了解方程组与解不等式组,根据题意可以先求出方程组的解(解中含有字母m),然后根据x≥0,y≥0,组成关于m的不等式组,解不等式组即可求解.试题解析:解方程组可得.因为x≥0,y≥0,所以解得所以≤m≤,因为m为整数,故m=7,8,9,10.考点: 1一元一次不等式组的整数解;2.解二元一次方程组.10.下列不等式一定成立的是()A.4a>3a B.3-x<4-x C.-a>-3a D.【答案】B.【解析】A、当a=0时,4a=3a,故选项错误;B、正确;C、当a=0时,-a=-3a,故选项错误;D、当a<0时,.故选B【考点】不等式的性质.11.下列不等式变形正确的是()A.由,得B.由,得-2a>-2bC.由,得D.由,得【答案】B【解析】A错误:当c=0时,ac>bc不成立。
初二不等式计算题目20道
一元一次不等式与不等式组1.某同学在解不等式组的过程中,画的数轴除不完整外,没有其他问题.则他解的不等式组可能是()A.B.C.D.2.不等式组的解集在数轴上表示为()A.B.C.D.3.不等式组的解集是()A.x<3B.x≥2C.2<x<3D.2≤x<34.不等式组的解集是x<1,则a的取值范围是()A.a=1B.a=2C.a=3D.a=﹣35.关于x的不等式组无解,则a的取值范围是()A.a>﹣B.a≥﹣C.a<D.a≤6.下列式子一定成立的是()A.若ac2=bc2则a=bB.若ac>bc,则a>bC.若a>b则ac2>bc2D.若a<b,则7.下列结论正确的是()A.如果a>b,c>d,那么a﹣c>b﹣dB.如果a>b,那么C.如果a>b,那么D.如果,那么a<b8.)不等式组的解集是()A.x≥1B.x≤1C.x>1D.x<19.不等式组的解集在数轴上表示正确的是()A.B.C.D.10.光明文具店销售某品牌钢笔,当它的售价为14元/支时,月销量为180支,若每支钢笔的售价每涨价1元,月销量就相应减少15支,设每支钢笔涨价后的售价为x元/支,若使该种钢笔的月销量不低于105支,则x应满足的不等式为()A.180﹣15x≥105B.180﹣(x﹣14)≤105C.180+15(x+14)≥105D.180﹣15(x﹣14)≥10511.不等式3x﹣1>﹣4的最小整数解是.12.如图,在数轴上,点A,B分别表示数1,﹣2x+3.则x的取值范围是.13.直线l1:y=kx+b与直线l2:y=﹣3x在同一平面直角坐标系中的图象如图所示,则关于x的不等式﹣3x>kx+b的解集为.14.已知关于x的不等式组恰好有两个整数解,则实数a的取值范围是.15.临近端午,某超市准备购进某品牌的白粽、豆沙粽、蛋黄粽,三种品种的粽子共1000袋(每袋均为同一品种的粽子),其中白粽每袋12个,豆沙粽每袋8个,蛋黄粽每袋6个.为了推广,超市还计划将三个品种的粽子各取出来,拆开后重新组合包装,制成A、B两种套装进行特价销售:A套装为每袋白粽4个,豆沙粽4个;B套装为每袋白粽4个,蛋黄粽2个,取出的袋数和套装的袋数均为正整数.若蛋黄粽的进货量不低于总进货量的,则豆沙粽最多购进袋.16.我市大力发展乡村旅游产业,全力打造客都美丽乡村”,其中“客家美景、客家文化、客家美食”享誉全省,游人络绎不绝.去年我市某村村民抓住机遇,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮收入是住宿收入的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的收入各为多少万元?(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?17.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.18.学校准备购置一批教师办公桌椅,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求一套A型桌椅和一套B型桌椅的售价各是多少元;(2)学校准备购进这两种型号的办公桌椅200套,平均每套桌椅需要运费10元,并且A 型桌椅的套数不多于B型桌椅的套数的3倍.请设计出最省钱的购买方案,并说明理由.19.某商店计划一次购进两种型号的手机共110部,销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元,其中A型手机的进货量不超过B型手机的2倍,且商店最多购进B型手机50台.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)设购进B型手机n部,销售手机的总利润为y元,怎么进货才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<70)元.若商店保持两种手机的售价不变,请设计出手机销售总利润最大的进货方案.20.某校其中九年级的3个班学生的捐款金额如下表:吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:三班学生平均每人捐款的金额大于49元,小于50元.请根据以上信息,帮助吴老师解决下列问题:(1)求出二班与三班的捐款金额各是多少元;(2)求出三班的学生人数.。
初二数学一元一次不等式知识点及经典例题
一元一次不等式重点:不等式的性质和一元一次不等式的解法。
难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。
知识点一:不等式的概念1.不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
符号语言表示为:如果,那么。
基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。
符号语言表示为:如果,并且,那么(或)。
基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。
符号语言表示为:如果,并且,那么(或)要点诠释:(1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;(2)要理解不等式的基本性质1中的“同一个整式”的含义不仅包括相同的数,还有相同的单项式或多项式;(3)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”;(4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。
一元一次不等式知识点及典型例题
一元一次不等式考点一、不等式的概念 (3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法考点二、不等式基本性质 (3~5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立; 考点三、一元一次不等式 (6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x 项的系数化为1 考点四、一元一次不等式组 (8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
(完整版)《一元一次不等式组的应用》典型例题
《一元一次不等式组的应用》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题7一条铁路线上E,,A,,各站之间的路程如图所示,单位为千米.一BDC列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题8某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题9某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三类:A,BA类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题10有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题11大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。
一元一次不等式与一元一次不等式组典型例题
一元一次不等式与一元一次不等式组的解法知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b≤0,则a 不大于b ;⑤若ab >0或0a b>,则a 、b 同号;⑥若ab <0或0ab <,则a 、b 异号。
任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x1+1>2 B.x 2>9 C.2x +y ≤5D.21(x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .a 与6的和小于5; x 与2的差小于-1;1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:a __________b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a .2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A 、ab >0B 、a b >C 、a -b >0D 、a +b >01.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-6): (这类试题在中考中很多见)1.(2010湖北随州)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥ 2.(2010福建宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来. 3.(20XX 年绵阳市)12(1)1,1.23x x x -->⎧⎪⎨-≥⎪⎩此类试题易错知识辨析(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集:当0a >时,b x a >(或b x a<) 当0a <时,bx a <(或b x a >)当0a <时,b x a <(或b x a>) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <15 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠27.如果不等式(a -3)x <b 的解集是x <3-a b,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6D.无数个2.不等式4x -41141+<x 的最大的整数解为( ) A.1B.0C.-1D.不存在|x |<37的整数解是________.不等式|x |<1的解集是________.已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A.x <2B.x >-2C.当a >0时,x <2D.当a >0时,x <2;当a <0时,x >21. 若x +y >x -y ,y -x >y ,那么(1)x +y >0,(2)y -x <0,(3)xy ≤0,(4)yx<0中,正确结论的序号为________。
一元一次不等式知识点及典型例题
一元一次不等式 考点一、不等式的概念 1、不等式:用不等号表示不等关系的式子,叫做不等式。
例 判断如下各式是否是一元一次不等式? word-x≥5 2x-y<02x 34x 5x22 x532、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数二 不等式的解 :的值,都叫做这个不等式的解。
三 不等式的解集:3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简 例 判断如下说法是否正确,为什么?称这个不等式的解集。
X=2 是不等式 x+3<2 的解。
X=2 是不等式 3x<7 的解。
不等式 3x<7 的4、求不等式的解集的过程,叫做解不等式。
解是 x<2。
X=3 是不等式 3x≥9 的解5、用数轴表示不等式的方法四 一元一次不等式:考点二、不等式根本性质例 判断如下各式是否是一元一次不等式1、不等式两边都加上〔或减去〕同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以〔或除以〕同一个正数,不等号的方向不变。
-x<5 2x-y<02x 3x22 x 5 ≥3x3、不等式两边都乘以〔或除以〕同一个负数,不等号的方向改变。
例 五.不等式的根本性质问题4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运 例 1 指出如下各题中不等式的变形依据算改变。
②如果不等式乘以 0,那么不等号改为等号所以在题目中,要求出乘以的 数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的1〕由 3a>2 得 a> 2 32) 由 3+7>0 得 a>-7数就不等为 0,否如此不等式不成立; 考点三、一元一次不等式3〕由-5a<1 得 a>- 1 54)由 4a>3a+1 得 a>11、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是 1, 例 2 用>〞或<〞填空,并说明理由且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
八年级下第七章一元一次不等式
乳源桂头中学八年级数学单元测验(完成时间为45分钟,满分100分)第七章一元一次不等式八年级()班姓名:评分:一、填空题(每小题5分,共30分)1、解一元一次不等式的一般步骤是:去分母、去括号、、、系数化为1。
2、当函数中的一个变量的值确定时,可以利用来解,当函数中的变量取值在某个范围内时,可以利用来解。
3、不等式2-a < 0的解集是。
4、已知2-a和3-2a的值的符号相反,那么a的取值范围是:5、当x的取值为2-x时,方程4x+y=1中y取值范围是:1≤<。
6、把47个苹果分给若干个学生,如果每个学生分5个苹果,则有一个学生不足3个。
问有学生人。
二、选择题(每小题5分,共30分)7、方程x-(2x-a)=2的解是正数,则a的取值范围是()A、a < 2B、a <-2C、a >2D、a >-28、“a 是非负数”的数学表达式是( )A 、a>0B 、0||≥aC 、0≤aD 、0≥a9、不等式m x <+13的正整数解是1、2、3,则整数m 的最大值是( )A 、13B 、12C 、11D 、1010、解集为32≥x 的一元一次不等式是( )A 、5324+≥+x B 、423≥+xC 、13223-≥+x xD 、5325+≥-x 11、某品牌电脑的成本为2400元,标价为2980元,如果商店要以利润不低于5%的售价打折销售,是低可打( )折出售A 、7折B 、7.5折C 、 8折D 、8.5折12、不等式组⎩⎨⎧>->+021042x x 的整数解是( ) A 、221-<<x B 、212<<-x C 、2->x D 、21<x三、解答题(每小题10分,共40分)13、某小商店购进数学用具50件,每件成本为0.80元,现以每件1元的价格销售,问这家商店至少销售多少件数学用具,销售收入才能超过成本?14、求不等式组⎩⎨⎧-≥--<-741452x x x x 的自然数解。
初二数学一元一次不等式知识点及经典例题
一元一次不等式重点:不等式的性质和一元一次不等式的解法。
难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。
知识点一:不等式的概念1. 不等式:用“<〞(或“≤〞),“>〞(或“≥〞)等不等号表示大小关系的式子,叫做不等式.用“≠〞表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠〞读作“不等于〞,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>〞读作“大于〞,它表示左边的数比右边的数大;③“<〞读作“小于〞,它表示左边的数比右边的数小;④“≥〞读作“大于或等于〞,它表示左边的数不小于右边的数;⑤“≤〞读作“小于或等于〞,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数〞、“非正数〞、“不大于〞、“不小于〞等数学术语的含义。
知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
符号语言表示为:如果,那么。
基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。
符号语言表示为:如果,并且,那么〔或〕。
基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。
符号语言表示为:如果,并且,那么〔或〕要点诠释:(1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;(2)要理解不等式的基本性质1中的“同一个整式〞的含义不仅包括相同的数,还有相同的单项式或多项式;(3)“不等号的方向不变〞,指的是如果原来是“>〞,那么变化后仍是“>〞;如果原来是“≤〞,那么变化后仍是“≤〞;“不等号的方向改变〞指的是如果原来是“>〞,那么变化后将成为“<〞;如果原来是“≤〞,那么变化后将成为“≥〞;(4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。
一元一次不等式(组)常考题(8种类型40道)—2024学年八年级数学(8种类型40道)(解析版)
一元一次不等式(组)常考类型分类训练(8种类型40道) 【类型一 在数轴上表示解集】1.在数轴上表示不等式2x ≥−的解集,正确的是( )A .B .C .D .【答案】C【分析】根据在数轴上表示不等式解集的方法利用排除法进行解答.【详解】解:不等式2x ≥−中包含等于号,∴必须用实心圆点,∴可排除A 、B , 不等式2x ≥−中是大于等于,∴折线应向右折,∴可排除D .故选:C .“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.2.不等式()238x +≥的解集在数轴上表示正确的是( )A .B .C .D .【答案】D【分析】先求出不等式的解集,再在数轴上表示出解集即可.【详解】解:()238x +≥,∴628x +≥,解得:1x ≥,在数轴上表示如图:;故选D.【点睛】本题考查求不等式的解集,在数轴上表示不等式的解集,解题的关键是正确的求出不等式的解集.3.不等式解集<2x−表示到数轴正确的是()A.B.C.D.【答案】D【分析】根据数轴上表示一元一次不等式的解集的方法:大于在右边,小于在左边,等于是实心,不等式空心进行判断即可得到答案;【详解】解:已知<2x−,则在数轴上表示该解集如图所示:,故选:D;【点睛】本题考查在数轴上表示一元一次不等式的解集,特别注意实心圆点与空心圆圈的区别.A.21xx≥⎧⎨≤⎩B.21xx<⎧⎨≥⎩C.21xx>⎧⎨<⎩D.21xx>⎧⎨≤⎩【答案】D【分析】根据不等式组解集的数轴表示方法,判断即可.【详解】解:由图示可看出,从2−出发向右画出的线且2−处是空心圆,表示2x>−;从1出发向左画出的线且1处是实心圆,表示1x≤,表示的不等式组的解集为:21 xx>−⎧⎨≤⎩故选:D【点睛】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(,>≥向右画;,<≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≤”,“≥”要用实心圆点表示;“<”,“>”要用空心圆点表示.解题的关键是熟练掌握相关基础知识. 5.一个不等式的解集在数轴上表示如图所示,则这个不等式可能是( )A .1x <−B .1x ≤−C .1x >−D .1x ≥− 【答案】C【分析】根据在数轴上表示不等式解集的方法解答即可.【详解】解:∵1−处是空心圆点,且折线向右,故这个不等式的解集为1x >−,∴这个不等式可能是1x >−.故选:C .【点睛】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”和空心点与实心点的区别是解答此题的关键.【答案】C【分析】根据一元一次不等式的定义逐一判断即可求解.【详解】解:A 、21>不是一元一次不等式,故A 选项不符合题意;B 、1x y <+是二元一次不等式,故B 选项不符合题意;C 、31x ≠是一元一次不等式,故C 选项符合题意;D 、12x >不是一元一次不等式,故D 选项不符合题意, 故选C .【点睛】本题考查了一元一次不等式的定义,熟练掌握其定义是解题的关键.【答案】B【分析】根据一元一次不等式的定义逐项判断即可.【详解】A .2122x ≥,指数为未知数,不是一元一次不等式,不符合题意; B .5x −>,符合一元一次不等式的定义,符合题意;C .431x+≥,分母含有未知数,不是一元一次不等式,不符合题意; D .30x y +<,有两个未知数,不是一元一次不等式,不符合题意.故选B .【点睛】本题考查一元一次不等式的定义.掌握含有一个未知数,未知数的次数是1,未知数的系数不为0,左右两边为整式的不等式,叫做一元一次不等式是解题关键.8.下列不等式中,属于一元一次不等式的是( )A .83>B .2x y ≥C .623x x <−D .23410x +≤ 【答案】C【分析】根据一元一次不等式的定义求解即可.【详解】解:A 、没有未知数,故本选项不符合题意;B 、含有两个未知数,故本选项不符合题意;C 、含有一个未知数,次数为1,不等式两边是整式,故本选项符合题意;D 、含有一个未知数,但未知数的次数是2,故本选项不符合题意;故选:C .【点睛】本题考查了一元一次不等式的定义,理解一元一次不等式的定义是解题的关键.【答案】D 【分析】一元一次不等式的定义:只含有一个未知数,并且未知数的最高次数是1,左右两边都是整式的不等式,叫做一元一次不等式,据此判断即可.【详解】解:A 、113x+>的左边不是整式,故不是一元一次不等式,不符合题意; B 、29x >的未知数的最高次数是2次,故不是一元一次不等式,不符合题意;C 、()310x y −<中含有两个未知数,故不是一元一次不等式,不符合题意;D 、285x +≤是一元一次不等式,符合题意,故选:D .【点睛】本题考查一元一次不等式的定义,理解一元一次不等式的定义满足的条件是解答的关键.10.下列式子:()174>;()2321≥+x x ;()31x y +>;()4232x x +>,是一元一次不等式的有( )A .1个B .2个C .3个D .4个【答案】A【分析】根据一元一次不等式的定义:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式,逐个判断即可.【详解】解:()174>,不含未知数,不是一元一次不等式; ()2321≥+x x ,符合一元一次不等式的定义,是一元一次不等式;()31x y +>,含有两个未知数,不是一元一次不等式;()4232x x +>,未知数的最高次数为2,不是一元一次不等式;∴一元一次不等式有:(2),只有1个,故选:A .【点睛】本题考查了一元一次不等式的定义,能熟记一元一次不等式的定义是解此题的关键,不等式的左右两边只含有同一个未知数,并且所含未知数的项的最高次数是1,这样的不等式叫一元一次不等式.A .0a b x <<,B .0a b x <>,C .0a b x ><,D .0a b x >>,【答案】A【分析】先根据不等式基本性质一,a x b x +<+两边同时减去x 得到a b <,再根据不等式基本性质三把a b <两边同时乘以x ,得到ax bx >,由此确定x 范围即可得到答案.【详解】解:根据不等式基本性质一,不等式a x b x +<+两边同时减去x ,得到:a b <,据不等式基本性质三,把不等式a b <两边同时乘以x ,得到ax bx >,所以<0x ,故选:A .【点睛】本题考查的是不等式的基本性质,特别注意不等式基本性质三:不等式两边同时乘以(或除以)同一个负数,不等号的方向改变.【答案】B【分析】利用不等式的性质,不等式的性质1是:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;不等式的性质2是:不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的性质3是:不等式的两边都乘(或除以)同一个负数,不等号的方向改变,逐项进行分析判断即可. 【详解】解:A 、由x y >,得22x y >,故本选项成立,不符合题意;B 、由x y >,得11x y −>−,故本选项不成立,符合题意;C 、由x y >,得33x y >,故本选项成立,不符合题意; D 、由x y >,得x y −<−,进而得44x y −<−,故本选项成立,不符合题意.故选:B .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键,注意不等式的性质1是:不等式的两边都加(或减)同一个数或式子,不等号的方向不变,不等式的性质2是:不等式的两边都乘(或除以)同一个正数,不等号的方向不变,不等式的性质3是:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.A .66m >−B .10m +>C .12m −<D .55m −>【答案】D【分析】根据不等式的性质分析判断即可.【详解】解:A 、在1m >−两边都乘上6可得,66m >−,故正确,此选项不符合题意;B 、在1m >−两边都加上1可得,10m +>,故正确,此选项不符合题意;C 、在1m >−两边都乘上1−可得,1m −<,再在1m −<的两边都加上1可得12m −<,故正确,此选项不符合题意;D 、根据不等式性质3可知,1m >−两边同乘以5−时,可得55m −<,故错误,此选项符合题意. 故选:D .【点睛】本题主要考查了不等式的基本性质.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.【答案】D 【分析】根据不等式的基本性质逐项判断即可. 【详解】解:A.若x y >,0z <,则xz yz <,原结论错误,不符合题意;B.若43x y z z<,0z <,则34x y >,原结论错误,不符合题意; C.若x y <,0z <,则x y z z>,原结论错误,不符合题意; D.若x y >,则x z y z +>+,结论正确,符合题意;故选:D .【点睛】本题考查的是不等式的基本性质,不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式两边都乘(或除以)同一个负数,不等号的方向改变.A .33a b −>−B .33c d −<−C .11a c −>−D .0b d −>【答案】C【分析】依据实数a ,b ,c ,d 在数轴上的对应点的位置,即可得到a ,b ,c ,d 的大小关系,进而利用不等式的基本性质得出结论.【详解】解:a b <,33a b −<−∴,故A 选项错误; c d <,33c d ∴−>−,故B 选项错误;a c <,11a c ∴−>−,故C 选项正确;b d <,0b d ∴−<,故D 选项错误;故选:C .【点睛】本题考查了实数与数轴,观察数轴,逐一分析四个选项的正误是解题的关键.【类型四 列一元一次不等式】16.某超市花费350元购进苹果100千克,销售中有5%的正常损耗,为避免亏本(其它费用不考虑),售价至少定为多少元/千克?设售价为x 元/千克,根据题意所列不等式正确的是( ) A .()10015%350x −≥B .()10015%350x +<C .()10015%350x −>D .()10015%350x +> 【答案】A【分析】售价为x 元/千克,因为销售中有5%的水果正常损耗,故100千克苹果损耗后的质量为()10015%⨯−,根据题意列出不等式即可.【详解】解:设售价为x 元/千克,根据题意得:()10015%350x −≥.故选:A .【点睛】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价≥进价”列出不等式是解题关键.17.某工人计划在15天内加工408个零件,最初三天中每天加工24个零件,要想在规定时间内超额完成任务,若设从第4天开始每天至少加工x 个零件,依题意可列出式子为( )【答案】B【分析】设从第4天开始每天至少加工x 个零件,根据在规定时间内超额完成任务,即15天内加工的零件数大于408个,列出不等式即可.【详解】解:设从第4天开始每天至少加工x 个零件,根据题意得, ()243153408x ⨯+−>, 故选:B【点睛】此题考查了一元一次不等式的应用,根据不等关系正确列出不等式是解题的关键.18.小明从学校图书馆借到一本有108页的图书,计划在10天之内读完.如果开始2天每天只读8页,那么他以后几天里平均每天至少要读多少页?设以后几天里平均每天要读x 页,根据题意可列不等式为( )A .()102108x −≥B .()102108x +≥C .()10228108x −+⨯≥D .()10228108x ++⨯≥【答案】C 【分析】根据前2天读的页数和后面8天读的页数的和要大于等于书的总页数进行求解即可.【详解】解:设以后几天里平均每天要读x 页,由题意得,()10228108x −+⨯≥,故选C . 【点睛】本题主要考查了一元一次不等式的实际应用,正确理解题意找到不等关系是解题的关键.19.某学校举行“创新杯”篮球比赛,比赛方案规定:每场比赛都要分出胜负,每队胜1场积2分,负1场积1分,每只球队在全部8场比赛中积分不少于12分,才能获奖.小明所在球队参加了比赛并计划获奖,设这个球队在全部比赛中胜x 场,则x 应满足的关系式是( )A .()2812x x +−≥B .()2812x x +−≤C .()2812x x −−≥D .212x >【答案】A【分析】由题意,胜一场得2x 分,负一场得(8)x −分,由不等关系:每只球队在全部8场比赛中积分不少于12分,列出不等式即可.【详解】解:由题意,胜一场得2(8)x −分,则得不等式:()2812x x +−≥,故答案为:A .【点睛】本题考查了列一元一次不等式,关键是找到不等关系.20.某业主贷款9万元购进一台机器生产甲,乙两种产品.已知甲产品的销售净利润是每个5元,乙产品的销售净利润是每个6元,2个甲产品和1个乙产品组成一套销售,设销售x 套能赚回这台机器的贷款,则x 满足的关系是( ) A .25690000x x ⨯+≥B .25690000x x ⨯+≤C .()25690000x x +≥D .()25690000x x +≤ 【答案】A【分析】根据题意,利用甲产品利润+乙产品利润不低于90000列不等式即可.【详解】解:设销售x 套能赚回这台机器的贷款,根据题意,得25690000x x ⨯+≥,故选:A .【点睛】本题考查了列一元一次不等式,理解题意,找到不等量关系是解答的关键.【答案】C 【分析】分当3221x x −<+和当3221x x −≥+两种情况,根据所给的新定义列出对应的不等式进行求解即可.【详解】解:当3221x x −<+,即12x >时, ∵()()32*211x x −+<,∴321x −<,∴1x >,∴当1x >时,满足题意;当3221x x −≥+,即12x ≤时, ∵()()32*211x x −+<,∴211x +<,∴0x <,∴当0x <时,满足题意;综上所述,不等式()()32*211x x −+<的解集为1x >或0x <,故选C .【点睛】本题主要考查了解一元一次不等式,新定义下的实数运算,正确利用分类讨论的思想建立不等式求解是解题的关键.【答案】B【分析】根据题目所给新运算的运算法则,将3x ⊗化为代数式,再求解不等式即可.【详解】解:根据题意可得:333245x x x x ⊗=−+−=−,∵32x ⊗≤,∴452x −≤, 解得:74x ≤,符合条件是正整数解有:1.故选:B .【点睛】本题主要考查了求一元一次不等式的正整数解,解题的关键是正确理解题意,根据题目所给新运算,列出不等式求解. (ab b a =<77x =,则A .10x >−B .11x >−C .10x <−D .11x < 【答案】A【分析】根据()a b b a b =<,把12773x −=转化为不等式,解不等式可得答案; 【详解】解:由题意12773x−=则1273x −<, 所以1221x −<,所以10x >−,故选:A . 【点睛】本题考查了新定义和不等式的解法,把新定义转化为不等式是解题的关键. 24.定义一种新运算:当a b >时,*a b ab b =+;当a b <时,*a b ab b =−.若()3*20x +>,则x 的取值范围是( )A .11x −<<或2x <−B .2x <−或12x <<C .21x −<<或1x >D .2x <−或2x >【答案】C【分析】分当32x >+,即1x <时,当32x <+,即1x >时,两种情况根据题目所给的新定义建立关于x 的不等式进行求解即可.【详解】解:当32x >+,即1x <时,3*(2)0x +>,3(2)(2)0x x ∴+++>,3620x x ∴+++>,2x ∴>−,21x ∴−<<;当32x <+,即1x >时,3*(2)0x +>,3(2)(2)0x x ∴+−+>,240x ∴+>,2x ∴>−,1x ∴>;综上所述,2<<1x −或1x >,故选:C .【点睛】本题主要考查了新定义下的实数运算,解一元一次不等式,正确理解题意并利用分类讨论的思想求解是解题的关键.A .1个B .2个C .3个D .4个 【答案】D【分析】对于①根据定义计算即可判断;由()3,5T x −=,得方程()32345x −+⨯−−=,求解即可判断②;由()()3,5,24T x T x ⎧−<⎪⎨≤⎪⎩,得不等式组()323452244x x x ⎧−+⨯−−<⎨+−≤⎩,求解即可判断③;由()(),02T m n n =≠−,得240mn m +−=,求得42m n =+,根据m 、n 都是整数,可得24n +=±或22n +=±或21n +=±,解得2n =或6−或0或4−或1−或3−,即可求得所有满足条件的m 、n 的值,即可判断④.【详解】解:①()3,535234156417T =⨯+⨯−=+−=,故①正确;②()3,5T x −=,即()32345x −+⨯−−=,解得5x =−,故②正确;③()()3,5,24T x T x ⎧−<⎪⎨≤⎪⎩,即()323452244x x x ⎧−+⨯−−<⎨+−≤⎩,解得52x x >−⎧⎨≤⎩,即52x -<£,故③正确; ④∵()(),02T m n n =≠−,∴240mn m +−=, ∴42m n =+, ∵m 、n 都是整数,∴24n +=±或22n +=±或21n +=±,∴2n =或6−或0或4−或1−或3−,∴满足题意的m 、n 的值可以为:21n m =⎧⎨=⎩,61n m =−⎧⎨=−⎩,02n m =⎧⎨=⎩,42n m =−⎧⎨=−⎩,14n m =−⎧⎨=⎩,34n m =−⎧⎨=−⎩,共6组,故④正确;综上所述,正确有4个,故选:D【类型六 一元一次不等式(组)的整数解】26.不等式3753x x +≥−的正整数解 .【答案】1,2,3,4,5【分析】先求出不等式的解集,进而求解.【详解】解:解不等式3753x x +≥−,得5x ≤,∴不等式3753x x +≥−的正整数解为;1,2,3,4,5;故答案为:1,2,3,4,5.【点睛】本题考查了一元一次不等式的整数解,正确求得不等式的解集是关键.【答案】6【分析】先求出不等式的解集,然后再求出不等式的非负整数解即可.【详解】解:21502x −−≤, 去分母得:21100x −−≤,移项合并同类项得:211x ≤,未知数系数化为1得: 5.5x ≤,∴非负整数解有5、4、3、2、1、0共6个.故答案为:6.【点睛】本题主要考查了解不等式,求不等式的非负整数解,解题的关键是熟练掌握解不等式的一般步骤,得出不等式的解集.【答案】3、2、1、0【分析】先根据不等式的性质,求不等式的解集,再根据题意,写出非负整数解即可.【详解】解:124x x −≥−,移项,得:241x x −≥−+,合并同类项,得:3x −≥−,化系数为1,得:3x ≤,∴该不等式的非负整数解有:3、2、1、0.故答案为:3、2、1、0.【点睛】本题主要考查了解一元一次不等式,解题的关键是掌握不等式的性质,以及解一元一次不等式的步骤.【答案】2x =【分析】先解出一元一次不等式组的解集为1 2.5x −<≤,然后即可得出最大整数解.【详解】解不等式250x −≤,得 2.5x ≤;解不等式10x −−<,得1x >−.∴不等式组的解集为1 2.5x −<≤.∴最大整数解为2x =.故答案为:2x =.【点睛】本题考查一元一次不等式组的解法,解题的关键是正确掌握解一元一次不等式组的步骤.【答案】6【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集,然后可求出不等式组的所有整数解,由此即可得.【详解】解:123122x x −<⎧⎪⎨+≤⎪⎩①②, 解不等式①得:1x >−,解不等式②得:3x ≤,则不等式组的解集为13x −<≤,所以它的所有整数解为0,1,2,3,所以它的所有整数解的和为01236+++=,故答案为:6.【点睛】本题考查了求一元一次不等式组的整数解,熟练掌握一元一次不等式组的解法是解题关键.【答案】5x <,在数轴上表示出解集见解析【分析】根据不等式的性质求出不等式的解集,根据不等式组解集在数轴上表示出解集即可.【详解】解:11134x x +−−<, ()()411231x x +−<−,441233x x +−<−,解得:5x <;在数轴上表示【点睛】本题主要考查对不等式的性质,解一元一次不等式,在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式的解集是解此题的关键.【答案】2x ≤− 【分析】按照解不等式的基本步骤计算即可.【详解】解:由213436x x −−≤, 去分母,得()22134x x −≤−,去括号,得4234x x −≤−,解得2x ≤−.【点睛】本题考查了一元一次不等式的解法,熟练掌握解不等式的基本步骤是解题的关键.【答案】2x ≥−,见解析【分析】去分母,去括号系数化为1即可求出解集,再在数轴上表示即可得.【详解】解:98163x x +−≥−, 2(98)412x x +−≥−,1816412x x +−≥−,1428x ≥−,2x ≥−,解集表示在数轴上的表示:. 【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,解题的关键是掌握一元一次不等式的解法.34.解不等式531x x −≥+,并把它的解集在数轴上表示出来.【答案】1x ≥,见解析【分析】根据移项,合并同类项,系数化为1的步骤求出不等式解集,然后根据在数轴上表示不等式解集的方法把解集表示出来即可.【详解】解:移项得:513x x −≥+,合并同类项得:44x ³,系数化为1得:1x ≥,把解集在数轴上表示出来如图:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式解集,在表示解集时,>,≥向右画;<,≤向左画,≥,≤要用实心圆点表示;<,>要用空心圆点表示.【答案】135x ≤−,数轴见详解 【分析】不等式去分母,去括号,移项合并,将x 系数化为1,求出解集,表示在数轴上即可.【详解】314123x x −−−≤ ()()633214x x −−≤−63928x x −+≤−83296x x −≤−−513x ≤−135x ≤−, 表示在数轴上,如图,【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,能根据不等式的性质求出不等式的解集是解此题的关键. 【类型八 解一元一次不等式组】36.解不等式组()2401211x x +<⎧⎨−−≥−⎩,并把解集在数轴上表示出来. 【答案】<2x −;见解析【分析】分别解出一元一次不等式的解集,并在数轴上表示出来,根据找一元一次不等式组的解集的规律即可求解.【详解】解:()2401211x x +<⎧⎪⎨−−≥−⎪⎩①②,解不等式①得:<2x −,解不等式②得:2x ≤,将不等式的解集在数轴上表示出来为:∴原不等式组的解集为:<2x −.【点睛】本题考查了解一元一次不等式组及解集在数轴上表示,熟练掌握一元一次不等式的解法及找一元一次不等式组的解集的规律是解题的关键.37.解不等式组:211841x x x x −>+⎧⎨+>−⎩,并把解集在数轴上表示出来. 【答案】23x <<【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,最后将解集在数轴上表示出来即可.【详解】211841x x x x −>+⎧⎨+>−⎩①②解不等式①,得2x >,解不等式②,得3x <,∴该不等式组的解集为:23x <<该解集在数轴上表示为:【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集,正确的计算是解题的关键.【答案】12x << 【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】()()13554436x x x x +−⎧>⎪⎨⎪+<+⎩①② 解不等式①,去分母得,13x x +>−移项,合并同类项得,22x >系数化为1得,1x >;解不等式②,去括号得,416318x x +<+移项,合并同类项得,2x <故不等式组的解集为:12x <<.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【答案】14x <≤,见解析 【分析】求出每个不等式的解集,找出公共部分即可得到不等式组的解集,再把解集表示在数轴上即可.【详解】解:1(2)121223x x x ⎧−≤⎪⎪⎨++⎪>⎪⎩①② 解不等式①得,4x ≤,解不等式②得,1x >,∴不等式组的解集是14x <≤,在数轴上表示如下:【点睛】此题考查了一元一次不等式组的解法和在数轴上表示不等式的解集,熟练掌握一元一次不等式组的解法是解题的关键.【答案】21x −<≤,详见解析【分析】分别解不等式组中的两个不等式,再在数轴上表示两个不等式的解集,利用数轴确定两个解集的公共部分,即可得到不等式组是解集.【详解】解:()3112317x x x x −⎧−≤+⎪⎨⎪−−<⎩①② 解不等式①得1x ≤,解不等式②得2x >−,在数轴上表示不等式的解集如下:∴不等式组的解集为21x −<≤【点睛】本题考查的是解一元一次不等式组,在数轴上表示不等式组的解集,掌握解不等式组的方法与步骤是解本题的关键.。
八年级数学第七章 一元一次不等式典型例题
一元一次不等式
O x y l 1l 2
-13(第12题图)解:设有x 间宿舍;则有(4x +19)名学生 根据题意;得 ⎩⎨⎧<--+>--+6)1(6)194(,
0)1(6)194(x x x x 解不等式组;得 ⎪⎪⎩
⎪⎪⎨
⎧><219,2
25x x 即225219<<x 又因为x 为正整数;
所以12,11,10=x
57,53,4994=+x . 答:可能有10间宿舍;49名学生;
或11间宿舍;53名学生;
或12间宿舍;57名学生.
注:本题也可列不等式组
⎩⎨⎧≤--+≥--+5
)1(6)194(,1)1(6)194(x x x x (你知道为什么吗?)
10.直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示;求关于x 的不等式21k x k x b >+的解集. 解:由函数图象可知
关于x 的不等式21k x k x b >+的解集是:
1-<x
注:b x k x k +12、对应了两函数的函数值(点的纵坐标);所以“函数值较大”在图象上就反映为“图象在上面”.
9.用若干辆载重量为8吨的汽车运一批货
物;若每辆汽车只装4吨;则剩下20吨货
物;若每辆汽车装满8吨;则最后一辆汽车不满也不空.有多少辆汽车?多少吨货物?
解:
注意:“不满也不空”所表示的不等关系.
10.如图;一次函数11y x 与反比例函数2
2
y x
的图象交于点A 、B ;求当12
y y 的x 的取值范围. 解:
注意:可以类似地得出
21y y <时;x 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式
O x y l 1l 2
-13(第12题图)解:设有x 间宿舍,则有(4x +19)名学生 根据题意,得 ⎩⎨⎧<--+>--+6)1(6)194(,
0)1(6)194(x x x x 解不等式组,得 ⎪⎪⎩
⎪⎪⎨
⎧><219,2
25x x 即225219<<x 又因为x 为正整数,
所以12,11,10=x
57,53,4994=+x . 答:可能有10间宿舍,49名学生;
或11间宿舍,53名学生;
或12间宿舍,57名学生.
注:本题也可列不等式组
⎩⎨⎧≤--+≥--+5
)1(6)194(,1)1(6)194(x x x x (你知道为什么吗?)
10.直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,求关于x 的不等式21k x k x b >+的解集. 解:由函数图象可知
关于x 的不等式21k x k x b >+的解集是:
1-<x
注:b x k x k +12、对应了两函数的函数值(点的纵坐标),所以“函数值较大”在图象上就反映为“图象在上面”.
9.用若干辆载重量为8吨的汽车运一批货
物,若每辆汽车只装4吨,则剩下20吨货
物;若每辆汽车装满8吨,则最后一辆汽车不满也不空.有多少辆汽车?多少吨货物?
解:
注意:“不满也不空”所表示的不等关系.
10.如图,一次函数11y x =--与反比例函数22
y x
=-
的图象交于点A 、B ,求当12y y >的x 的取值范围. 解:
注意:可以类似地得出
21y y <时,x 的取值范围.。