(完整版)五年级奥数.图形变换求面积问题
小学五年级奥数精讲等积变形求面积(含答案)
小学奥数精讲:等积变形求面积“三角形的面积等于底与高的积的一半”这个结论是大家熟知的,据此我们立刻就可以知道: 等底等高的两个三角形面积相等. 这就是说两个三角形的形状可以不同,但只要底与高分别相等,它们的面积就相等,当然这个问题不能反过来说成是“面积相等的两个三角形底与高一定分别相等”.另一类是两个三角形有一条公共的底边,而这条底边上的高相等,即这条底边的所对的顶点在一条与底边平行的直线上,如右图中的三角形A 1BC 与A 2BC 、A 3BC 的面积都相等。
图形割补是求图形面积的重要方法,利用割补可以把—些形状不规则的图形转换成与之面积相等但形状规则的图形,或把不易求面积的图形转换成易求面积的图形.利用添平行线或添垂线的办法,常常是进行面积割补的有效方法,利用等底等高的三角形面积相等这个性质则是面积割补的重要依据,抓住具体的图形的特点进行分析以确定正确的割补方法则是面积割补的关键.进行图形切拼时,应该有意识地进行计算,算好了再动手寻找切拼的方案.不要盲目地乱动手.本讲中.的几个例子都是经过仔细计算才切拼成功的。
例1、已知三角形ABC 的面积为1,BE = 2AB ,BC =CD ,求三角形BDE 的面积?例2、如下图,A 为△CDE 的DE 边上中点,BC=31 CD ,若△ABC(阴影部分)面积为5平方厘米,求△ABD 及△ACE 的面积.例3、 2002年在北京召开了国际数学家大会,大会会标如下图所示,它是由四个相同的直角基本概念例题分析三角形拼成(直角边长为2和3),问:大正方形面积是多少?例4、下图中,三角形ABC和DEF是两个完全相同的直角边长等于9厘米的等腰直角三角形,求阴影部分的面积.练习提高1、如图,已知平行四边形ABCD的面积是60平方分米,E、F分别是AB、AD边上的中点,图中阴影部分的面积是多少平方分米?2、右图中的长方形ABCD的长是20厘米,宽是12厘米,AF=BE,图中阴影部分的面积是多少平方厘米?3、如图,四边形ABCD 是平行四边形,DC =CE ,如果△BCE 的面积是15平方厘米,那么梯形ABED 的面积是多少平方厘米?4、正方形ABCD 的边长是12厘米,已知DE 是EC 长度的2倍,三角形DEF 的面积是多少平方厘米?CF 长多少厘米?5、如图,在平行四边形ABCD 中,AE =ED ,BF =FC ,CG =GD ,平行四边形ABCD 的面积是阴影三角形EFG 的多少倍?(4)6、一个长方形被两条直线分成四个长方形,其中三个面积分别是20平方米,25平方米和30平方米,阴影部分的面积是多少平方米?7、如右图,平行四边形ABCD 的面积是240平方厘米,如果平行四边形内任取一点0,连接AO 、BO 、CO 、DO ,三角形AOD 与三角形BOC 的面积和的21,加上三角形AOB 与三角形DOC 的面积和的31,结果是多少?8、图8-17中,三角形ABC的面积是30平方厘米,D是BC的中点,AE的长是ED的2倍,求三角形CDE的面积.9、如图,正方形的边长为10厘米,用一根铁丝弯成直角,把这根铁丝放到正方形上,使直角顶点与正方形的中心O重合,问正方形在直角内部的部分有多大面积?答案:【例题分析】例1. 4例2.三角形ABD=10平方厘米三角形ACE=15平方厘米例3. 13例4. 27【练习提高】1. 22.52. 1203. 454. 三角形DEF=24平方厘米 CF=6厘米5. 4倍6. 37.57. 1008. 59. 25。
小学数学五年级奥数每天一题--等量代换求面积
小学数学五年级奥数每天一题:等量代换求面积
例1两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。
分析与解:阴影部分是一个高为3厘米的直角梯形,然而它的上底与下底都不知道,因而不能直接求出它的面积。
因为三角形ABC与三角形DEF完全相同,都减去三角形DOC后,根据差不变性质,差应相等,即阴影部分与直角梯形OEFC面积相等,所以求阴影部分的面积就转化为求直角梯形OEFC的面积。
直角梯形OEFC的上底为10-3=7(厘米),面积为
(7+10)×2÷2=17(平方厘米)。
所以,阴影部分的面积是17平方厘米。
例2在右图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC长8厘米。
已知阴影部分的总面积比三角形EFG的面积大10平方厘米,求平行四边形ABCD的面积。
分析与解:因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD比直角三角形ECB的面积大10平方厘米,所以平行四边形ABCD的面积等于
10×8÷2+10=50(平方厘米)。
五年级奥数之图形面积
图形面积例1、右图长方形中,E、F分别为相邻两条边的中点,阴影部分是大长方形面积的几分之几?【思路导航】此题虽然没有给出任何数据,但是可以抓住“E、F”分别为相邻两条边的“中点”这个已知条件,利用面积分割的方法得出答案。
如右图把大长方形分割一下,可看出阴影部分占整个图形面积的3/8。
答:阴影部分是长方形面积的3/8。
例2、用两个如右图所示的大小相同的直角三角形,可以拼成多少种不同的四边形?【思路导航】把两个直角三角形的斜边或直角边分别相拼,就可得到不同的四边形。
两斜边相拼可拼成两个四边形;两直角边分别相拼,又可拼成两个四边形;这样共拼成以下四种四边形:答:可拼成4种四边形。
例2、直线a平行于直线b,对下列3个三角形的面积来说正确的是哪一个?[ ]A.(1)的面积最大。
B.(2)的面积最大。
C.(3)的面积最大。
D.(1)(2)(3)的面积同样大。
【思路导航】因为三角形的面积是由它的底和高决定的,只要研究这三个三角形的底和高的关系就能确定答案。
例3、如图所示的四边形的面积等于多少?ODBA13131213131212【思路导航】题目中要求的四边形既不是正方形也不是长方形,难以运用公式直接求面积.我们可以利用旋转的方法对图形实施变换:把三角形OAB绕顶点O逆时针旋转,使长为13的两条边重合,此时三角形OAB将旋转到三角形OCD的位置.这样,通过旋转后所得到的新图形是一个边长为12的正方形,且这个正方形的面积就是原来四边形的面积.因此,原来四边形的面积为1212144⨯=.(也可以用勾股定理)例4、如图,三角形ABC是等腰直角三角形,P 是三角形外的一点,其中90BPC∠=︒,10cmAP=,求四边形ABPC的面积.12 PDCBAP'PDCBA【思路导航】因为BAC ∠和BPC ∠都是直角,和为180︒,所以ABP ∠和ACP ∠的和也为180︒,可以旋转三角形APC ,使AC 和AB 重合,则四边形的面积转化为等腰直角三角形'AP P ,面积为1010250⨯÷=平方厘米.【随堂练习】1、边长是15厘米的3个正方形拼成一个长方形,这个长方形的周长是多少?2、用一块长8分米,宽4分米的长方形纸板与两块边长4分米的正方形纸板拼成一个正方形.拼成的正方形的周长是多少分米?3、两个大小相同的正方形拼成了一个长方形,长方形的周长比原来的两个正方形周长的和减少了6厘米,原来一个正方形的周长是多少厘米?4、(2007年”希望杯”第一试)右图中的阴影部分BCGF 是正方形,线段FH 长18厘米,线段AC 长24厘米,则长方形ADHE 的周长是 厘米.A CB5、如图,在长方形ABCD 中,EFGH 是正方形.已知10cm AF =,7cm HC =,求长方形ABCD 的周长.HGFE DCBA6、如右图所示,在一个正方形内画中、小两个正方形,使三个正方形具有公共顶点,这样大正方形被分割成了正方形区域甲,和L 形区域乙和丙.甲的周长为4厘米,乙的边长是甲的周长的1.5倍,丙的周长是乙的周长的1.5倍,那么丙的周长为多少厘米?EF 长多少厘米?F E A7、有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如图)的面积是45平方厘米,求这个大长方形的周长.8、右图的长方形被分割成5个正方形,已知原长方形的面积为120平方厘米,求原长方形的长与宽.9、冯大叔给儿子做玩具用8个一样大的小长方形拼图,拼出了如图甲、乙的两种图案:图案甲是一个正方形,图案乙是一个大的长方形;图案甲的中间留下了边长是2cm的正方形小洞.求小长方形的长和宽?10、用同样的长方形条砖,在一个盆的周围砌成一个正方形边框,如右图所示.已知外面大正方形的周长是264厘米,里面小正方形的面积是900平方厘米,每块长方形条砖的长是_________厘米,宽是______厘米.11、如图所示。
五年级奥数——平面图形面积计算
年 级授课日期 授课主题 第4讲——平面图形面积计算教学内容i.检测定位本讲所指平面图形面积计算主要指多边形及其组合图形面积的计算.这些图形面积计算一般都可以转化成三角形、长方形、平行四边形和梯形的面积计算,后者的计算公式都是我们在课内已经学过并且应该熟记的.主要的技巧在于如何将一般多边形及其组合图形“转化”为基本图形.【例1】在梯形中阴影部分面积是150平方厘米,求梯形面积.分析与解 已知梯形上、下底长分别为15厘米和25厘米,令梯形高为h ,则由已知三角形面积为150平方厘米,有 h ⨯⨯=1521150,得).(20厘米=h 所以,梯形面积S 为.40020251521(平方厘米))(=⨯+⨯=S 随堂练习1如图2-4,已知平行四边形面积是48平方厘米,求阴影部分面积.【例2】如图3-4是两个完全相同的直角三角形叠在一起,求阴影部分的面积.(单位:分米)分析与解 如图3-4,由于①+②的面积和②+③的面积相等,所以可以得出:①与③的面积相等,题目要求③的面积,其实只要求①的面积即可.所以 (分米);53-8==EF23)815(÷⨯+=S2313÷⨯=).(5.19239平方分米=÷=答:阴影部分的面积是19.5平方分米.【例3】如图4-4,将长为9厘米、宽为6厘米的长方形划分成四个三角形,其面积分别为1S 、2S 、3S 、4S ,且4321S S S S +==,求4S .分析与解 设长方形面积为S ,则 )(54694321S S S S S +++==⨯=所以.184321=+==S S S S设x BE =,.y DF =则有 x S ⨯⨯==921181, .621182y S ⨯⨯== 解得 4=x ,.6=y 从而,2=EC ,.3=FC所以 332213=⨯⨯=S , ).(153184平方厘米=-=S随堂练习2如图5-4,四边形ABCD 是直角梯形,其中ADE BC AB AD ∆===厘米,且厘米,厘米,15812、CDF DEBF ∆及四边形的面积相等,求三角形EBF 的面积.【例4】如图6-4,.904625︒=∠=∠====D B CD AB CF AE 厘米,厘米,厘米,厘米,求四边形AFCE 的面积.分析与解 四边形AFCE 是不规则四边形,连结AC ,则AC 将四边形AFCE 分成两个三角形(AFC ∆、CEA ∆).这两个三角形的面积利用已知条件可求.AB 是AFC ∆底边上的高,所以 ;平方厘米)(6622121=⨯⨯=⨯⨯=∆AB FC S AFC CD 是AE CEA 底边∆上的高,所以).(10452121平方厘米=⨯⨯=⨯⨯=∆CD AE S CEA 所以, 四边形AFCE 的面积CEA AFC S S ∆∆+=).(16106平方厘米=+=随堂练习3如图7-4,四边形ABCD 中,,厘米,厘米,厘米,厘米,︒=∠=∠====901512105D B DC FC AB AE 求四边形AFCE 的面积.【例5】如图4-8,求长方形中阴影部分的面积.(单位:厘米)分析与解 阴影部分的三个三角形高相等,那么它们的面积和就是它们的底的和乘高除以 2. .75215021015(平方厘米)=÷=÷⨯答:阴影部分的面积和是75平方厘米.【例6】如图9-4,平行四边形ABCD 的边长厘米10=BC ,直角三角形BCE 的直角边CE 长为8厘米.已知阴影部分的面积比三角形FEG 的面积大10平方厘米.求CF 的长.分析与解 因为直角三角形BCE 与平行四边形ABCD 共有梯形BCFG .所以平行四边形ABCD 的面积比直角三角形BCE 的面积大10平方厘米.由已知可知CF 垂直AD ,所以,1021+⨯=⨯CE BC BC CF 即 .50108102110=+⨯⨯=⨯CF 所以.5(厘米)=CF随堂练习4如图10-4,正方形ABCD 的边长为12厘米,已知.2倍长度的是EC DE 求:(1)DEF ∆的面积;(2)CF 的长.玩一玩只剩一个如图,一个三角形的棋盘放着15个棋子,一开始随意取走一个棋子,出现一个空格.然后按以下规则开始跳棋子:棋子A 越过它的临格中的棋子B 跳到棋子B 另一侧相邻的空格中,并将B “吃”掉.按以上规则不断跳下去,每跳一步少一个棋.请问:能否跳到最后还剩一个棋子?请你玩一玩.图中的数是位子的编号,先不要看答案,自己动手画一张如图所示的棋盘,并在每个棋盘中放一枚棋子(可利用围棋子),然后按规则任意取走一个棋子,开始游戏.若有困难,可先看提示,继续游戏,最后再看方案.答案 能.先取走1号、3号、5号位置上的棋子,依次从6号、10号、14号位置中的棋子起跳,经过13步可将棋盘中13个子“吃”掉.方案1 取走1号6→1,13→6,11→13,14→12,2→9,7→2,1→4,10→3,4→3,12→14,15→13,13→6,6→1(止于1号位)方案2 取走3号10→3,13→6,7→9,2→7,11→4,15→13,12→14,3→10,4→6,10→3,1→6,14→5,6→4(止于4号位)方案3 取走5号14→5,7→9,3→8,10→3,1→6 , 2→7 ,11→4,12→14,6→13,14→12,4→13,12→14,15→13(止于13号位) ii.针对培养1. 一块玉米地的形状如图所示,它的面积是_________平方米.2. 三个正方形如图所示放置,中心都重合,它们的边长依次是1厘米、3厘米、5厘米,那么图中阴影部分的面积是__________平方厘米.3. 如图,,,610==EC BC 直角三角形EDF 的面积比直角三角形FAB 的面积小5,那么长方形ABCD 的面积是__________4. 如图,正方形ABCD 的边长是9厘米,它的内部有一个内接三角形BFE ,厘米,厘米,24==DF AE 求三角形BFE 的面积.5. 如图,四边形ABCD 的两条对角线互相垂直相交于O ,厘米,厘米,54==BD AC 求四边形ABCD 的面积.6. 如图,四边形ABCD 中,厘米,厘米,,,3745,90==︒=∠︒=∠=∠AD BC BCD D B 求四边形ABCD 的面积.7. 如图由两个完全相同的梯形重叠在一起而组成,求图中阴影部分的面积.(单位:厘米)8. 如图,求阴影部分的面积.(单位:厘米)9. 如图,长方形的长为12厘米,宽为8厘米,图中阴影部分的面积与空白部分的面积哪个大?10. 如图,三角形ABC 的周长是30厘米,三角形内一点到三角形三条边的距离都是3厘米,求三角形ABC 的面积.11. 如图,已知正方形甲的边长为5厘米,正方形乙的边长为4厘米,那么图中阴影部分的面积是多少?12. 如图,ABCD 是长为8厘米、宽为6厘米的长方形,AF 长是4厘米,求阴影部分(三角形AEF )的面积.13. 如图,长方形ABCD 与三角形EBC 重叠,已知三角形EFD 的面积比三角形ABF 的面积大6平方厘米,且厘米,厘米,64==BC CD 求ED 的长.。
五年级奥数培优教程之第5章图形专题
第四章图形第四课时------等面积转换法专题解析:几何中直接求面积很难时,可以找一个或者构造一个面积易求且面积相等的图形进行转换,从而得解。
例题1:如图所示,求阴影部分的面积(单位:厘米)。
针对性训练:1、如图所示,BE 长7厘米,长方形AEFD 面积是33平方厘米。
求CD 的长度。
2、如图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。
例2:如图梯形的上底AB 长20厘米,下底DC 长30厘米,高15厘米,求阴影部分的面积。
C DAB E46III考点归纳1、如图,E是平行四边形ABCD底边BC的中点,阴影部分的面积是 3.1平方厘米,则平行四边形的面积是多少平方厘米?2、如图,E、F分别是平行四边形ABCD相邻两边的中点,求阴影部分的面积(单位:厘米)?3、如图,已知四条线段的长分别是:AB=2cm,CE=6cm,CD=5cm,AF=4cm,并且有两个直角。
求四边形ABCD的面积。
例3:如图,已知AB=BC=6厘米,三角形BCE的面积比三角形ADE的面积大3平方厘米,则AD 长是多少厘米?1、如图,四边形ABCG、DEFG是长方形,那么三角形BCM的面积与三角形DEM的面积之差是多少(单位:厘米)?2、如图,三角形ABC的面积为36平方厘米,延长BA到E,D是AC的中点,A是BE的三等分点,求三角形ADE的面积。
3、如图,在三角形ABC中,DC:BC=2:5,BO:OE=4:1,求AE:EC的比是多少?自我检测1、如图,由两个完全一样的直角三角重叠在一起,则阴影部分的面积为。
(单位:厘米)2、图中,ABCD是正方形,三角形DEF面积比三角形ABF的面积大6平方厘米,CD长4厘米。
则DE的长度为厘米。
3、如图是一块长方形草地。
长方形长12米,宽8米。
中间有三条宽2米的道路,一条是长方形,另两条是平行四边形。
求有草部分(阴影部分)的面积。
4、图中四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积为6平方厘米,求三角形CDH 的面积5、如图正方形ABCD的边长是4厘米,CG是3厘米,长方形DEFG的长DG是5厘米,那么它的宽DE是多少厘米?第四章图形第六课时------等底等高法考点归纳等底等高解三角形面积问题例1:图中长方形的长为12厘米,宽为6厘米。
小学五年级数学思维专题训练—图形变换(含答案解析)
小学五年级数学思维专题训练—图形变换1、如下图所示,两个正方形的中心相同.其对应边成45度角,若两个阴影三角形的面积分别为36平方厘米和50平方厘米,则其中较小正方形的面积为多少平方厘米.2、下图中等腰直角三角形ABC的面积是9平方厘米,阴影正方形MNPQ的MV一边在斜边BC上,P.Q两点分别在直角边AC、AB上,求阴影正方形MNPQ的面积.3、一个长方形和一个等腰直角三角形如下图放置,图中6块的面积分别为1、1、1、1、2、长方形的面积是4、如下图所示,若将正方形ABCD各边三等分,延长等分点作出正方形MNPQ,则正方形ABCD的面积:正方形MNPQ的面积= .5、如右图所示,在长方形ABCD中.E.F.G分别是BC、CD、DA上的点,且使得四边形AEFG是直角梯形,∠GAE=45°,GF:AE=2:3。
如果梯形AEFG的面积是15平方匣米,那么长方形ABCD的面积是平方厘米6、下图中正六边形ABCDEF的面积是54. AP=2PF.CQ=2BQ,求阴影四边形CEPQ的面积·7、一张面积为7. 17平方厘米的平行四边形纸片WXYZ放在另一张平行四边形纸片EFGH上面,如下图所示,得出A、C、B、D四个交点.并且AB∥EF,CD∥WX.问纸片EFGH的面积是多少平方厘米?说明理由.8、如下图所示,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米?9、如下图所示,已知一个正八边形中最长的对角线等于a,最短的对角线等于b,这个正八边形的面积等于。
10、如右图所示,正十二边形和中心白色的正六边形的边民均为12,图中阴影部分的面积是11、一如右图所示,则四边形ABCD的面积是A.30 B.31C.32 D.3312、求下图正方形的面积,并写出思考过程13、如下图所示,点E是正方形ABCD的CD边上的一点,以BE为一条直角边作等腰直角三角形BEF,斜边BF交AD于G,已知AG=5厘米,GD=15厘米。
五年级奥数图形与面积
图形与面积转化的方法大体上分两点:(1)利用平移、旋转、弦图、割补法、差不变等技巧解题(2)利用五大模型之高相等面积比=底的比(关键高相等:同一个三角形等高、平行线间的三角形等高)(3)利用五大模型之相似三角形:相似三角形在我们小学的学习过程中常用的就是金字塔和沙漏。
(4)等积变形:两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比1、一点引两条直线分别与两组边平行,见右图。
所分得的四①过矩形内部的个小矩形,其面积满足这样的规律:2、梯形的对角线讲梯形分成的四个三角形有:ab=cd,且c=d对称、旋转、平移、割补等技巧将其转换0、按照图中的样子,在一个平行四边行纸片上割去了甲、乙两个直角三角形,已知甲三角形的两条直角边分别为2厘米和4厘米,乙三角形的两条直角边分别为3厘米和6厘米,求图中阴影部分的面积。
(11)1、有红、黄、绿三块大小一样的正方形纸片,放在一个底面为正方形的盒内,它们之间相互叠合(见下图)。
已知露在外面的部分中,红色面积是20,黄色面积是14,绿色面积是10。
求正方形盒底的面积。
【】2、如图,在正方形ABCD中,红色,绿色正方形的面积分别是52和13,且红、绿两个正方形有一个顶点重合。
黄色正方形的一个顶点位于红色正方形两条对角线的交点,另一顶点位于绿色正方形两条对角线的交点,求黄色正方形面积。
【】3、在正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA边的中点(如图),连接线段AF、BG、CH、DE,由这四条线段在正方形中围成的小正方形的面积占大正方形面积的几分之几?【1/5】4、如图正方形ABCD的边长是5,E,F分别是AB和BC的中点,求四边形BFGE的面积是多少?【5】5、已知正方形的面积是120平方厘米,B、E为正方形边上的中点,求题中阴影部分的面积是多少平方厘米?【14】6、有一个长方形,它的长是宽的4倍,对角线长34厘米,求这个长方形面积。
五年级奥数正方形长方形面积问题
长方形、正方形的面积专题简析:长方形的面积=长×宽,正方形的面积=边长×边长。
掌握并能运用这两个面积公式,就能计算它们的面积。
但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。
这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。
例题1已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?分析从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A和B 的面积相等。
因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A和B的面积,再用A或B的面积除以2就是小正方形的边长。
求到了小正方形的边长,计算大、小正方形的面积就非常简单了。
挑战自我1、有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
2、正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?3、把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形。
求这个正方形的边长是多少分米?例题2一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。
分析因为A E×CE=6,DE×EB=35,把两个式子相乘A E×CE×DE×EB=35×6,而CE×EB=14,所以AE×DE=35×6÷14=15。
挑战自我1、下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。
五年级奥数等积变换求面积
等积变换求面积“三角形的面积等于底与高的积的一半”这个结论是大家熟知的,据此我们立刻就可以知道:等底等高的两个三角形面积相等.这就是说两个三角形的形状可以不同,但只要底与高分别相等,它们的面积就相等,当然这个问题不能反过来说成是“面积相等的两个三角形底与高一定分别相等”.另一类是两个三角形有一条公共的底边,而这条底边上的高相等,即这条底边的所对的顶点在一条与底边平行的直线上,如右图中的三角形A1BC与A2BC、A3BC的面积都相等。
图形割补是求图形面积的重要方法,利用割补可以把—些形状不规则的图形转换成与之面积相等但形状规则的图形,或把不易求面积的图形转换成易求面积的图形.利用添平行线或添垂线的办法,常常是进行面积割补的有效方法,利用等底等高的三角形面积相等这个性质则是面积割补的重要依据,抓住具体的图形的特点进行分析以确定正确的割补方法则是面积割补的关键.进行图形切拼时,应该有意识地进行计算,算好了再动手寻找切拼的方案.不要盲目地乱动手.本讲中.的几个例子都是经过仔细计算才切拼成功的。
例1、已知三角形ABC的面积为1,BE=2AB,BC=CD,求三角形BDE的面积?例2、如下图,A为△CDE的DE边上中点,BC=31CD,若△ABC(阴影部分)面积为5平方厘米,求△ABD及△ACE的面积.基本概念例题分析例3、 2002年在北京召开了国际数学家大会,大会会标如下图所示,它是由四个相同的直角三角形拼成(直角边长为2和3),问:大正方形面积是多少?例4、下图中,三角形ABC和DEF是两个完全相同的直角边长等于9厘米的等腰直角三角形,求阴影部分的面积.1、如图,已知平行四边形ABCD的面积是60平方分米,E、F分别是AB、AD边上的中点,图中阴影部分的面积是多少平方分米?2、右图中的长方形ABCD的长是20厘米,宽是12厘米,AF=BE,图中阴影部分的面积是多少平方厘米?练习提高3、如图,四边形ABCD是平行四边形,DC=CE,如果△BCE的面积是15平方厘米,那么梯形ABED的面积是多少平方厘米?4、正方形ABCD的边长是12厘米,已知DE是EC长度的2倍,三角形DEF的面积是多少平方厘米?CF长多少厘米?5、如图,在平行四边形ABCD中,AE=ED,BF=FC,CG=GD,平行四边形ABCD的面积是阴影三角形EFG的多少倍?(4)6、一个长方形被两条直线分成四个长方形,其中三个面积分别是20平方米,25平方米和30平方米,阴影部分的面积是多少平方米?7、如右图,平行四边形ABCD 的面积是240平方厘米,如果平行四边形内任取一点0,连接AO 、BO 、CO 、DO ,三角形AOD 与三角形BOC 的面积和的21,加上三角形AOB 与三角形DOC 的面积和的31,结果是多少?8、图8-17中,三角形ABC 的面积是30平方厘米,O 是BC 的中点,AE 的长是ED 的2倍,求三角形CDE 的面积.9、如图,正方形的边长为10厘米,用一根铁丝弯成直角,把这根铁丝放到正方形上,使直角顶点与正方形的中心O 重合,问正方形在直角内部的部分有多大面积?。
(完整版)小学奥数五年级面积问题
第一讲 直线型面积的计算内容概述我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。
我们的面积及周长都有相应的公式直接计算。
如下表:对于不规则图形的面积及周长计算,我们大都是由规则图形转化而来的!在实际问题的研究中,我们还会常常用到以下结论:① 等底等高的两个三角形面积相等.②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如下图,ACD ∆和BCD ∆夹在一组平行线之间,且有公共底边CD 那么BCD ACD S S ∆∆=;反之,如果BCD ACD S S ∆∆=,则可知直线AB 平行于CD 。
例题精讲【例1】 你有多少种方法将任意一个三角形分成(1)2个面积相等的三角形;C DB(2)3个面积相等的三角形;(3)4个面积相等的三角形。
【例2】在学习三角形时,很多同学都听说过中位线,所谓中位线就是三角形两边中点的连线。
如右图所示,D、E、F分别是AB、AC、BC边的中点,根据定义可知DE、DF、EF就是三角形ABC的中线。
那么请你说明:(1)DE与BC平行(2)DE= 1/2 BC(3)S△ADE= 1/4 S△ABC【例3】如右图,D是BC上任意一点,请你说明S1:S4 =S2:S3 =BD:DC【例4】(06年三帆中学培训试题)将三角形ABC的BA边延长1倍到点D,CB边延长2倍到点E,AC边延长3倍到点F,问三角形DEF的面积是多少?( S△ABC =1)【例5】(06年三帆中学培训试题)把矩形分成4个不同的三角形,绿色三角形的面积是矩形面积的15%,黄色三角形的面积是21cm2求矩形面积.【例6】(小学数学报试题)如右图,在梯形ABCD中,AC与BD是对角线,其交点O,求证:△AOB与△COD面积相等.【例7】(小学数学夏令营五年级组试题)如图20-4,四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积为6平方厘米,求三角形CDH的面积。
五年级奥数图形面积
图 形 面 积【基本原则】各种具有一定综合性的直线形面积问题,重点是需要利用同底或同高的两三角形的面积相除的商等于对应高或对应底相除的商这一性质的问题,其中包括四边形和梯形被两条对角线分割而成的4个小三角形之间的面积关系.【典型例题】1.图16-1中三角形ABC 的面积是180平方厘米,D 是BC 的中点,AD 的长是AE 长的3倍, EF 的长是BF 长的3倍.那么三角形AEF 的面积是多少平方厘米?【分析与解】ABD ,ABC 等高,所以面积的比为底的比,有12ABD ABCS BD SBC ==,所以ABD S=1122ABCS ⨯=⨯180=90(平方厘米).同理有13ABE ABDAE SS AD=⨯=×90=30(平方厘米),34AFE ABEFE S S BE=⨯=×30=22.5(平方厘米).即三角形AEF 的面积是22.5平方厘米.2.如图16-2,把四边形ABCD 的各边都延长2倍,得到一个新四边形EFGH 如果ABCD 的面积是5平方厘米,则EFGH 的面积是多少平方厘米?【分析与解】 方法一:如下图,连接BD ,ED ,BG ,有EAD 、ADB 同高,所以面积比为底的比,有2EADABDABDEA SS SAB==.同理36EAHEADEADABD AHSS SSAD===.类似的,还可得6FCGBCDSS=,有()66EAHFCGABDBCDABCD SSSSS +=+==30平方厘米.连接AC ,AF ,HC ,还可得6EFBABCSS=,6DHGACDSS=,有()66EFBDHGABCACDABCD SSSSS +=+==30平方厘米.有四边形EFGH 的面积为EAH,FCG,EFB,DHG,ABCD 的面积和,即为30+30+5=65(平方厘米.)方法二:连接BD ,有EAH 、△ABD 中∠EAD+∠BAD=180°又夹成两角的边EA 、AH ,AB 、AD 的乘积比,EA AHAB AD⨯⨯=2×3=6,所以EAHS=6ABDS.类似的,还可得FCGS =6BCDS,有EAHS+FCGS=6(ABDS+BCDS)=6ABCD S =30平方厘米.连接AC ,还可得EFB S =6ABC S,DHG S=6ACDS,有EFBS+DHG S=6(ABC S+ACDS)=6ABCD S=30平方厘米.有四边形EFGH 的面积为△EAH ,△FCG ,△EFB ,△DHG ,ABCD 的面积和,即为30+30+5=65平方厘米.评注:方法二用到了一个比较重要的性质,若两个三角形的某对夹角相等或互补(和为180°),那么构成这个角的两边乘积的比为面积比.这个原则,我们可以在中学数学中的三角部分学到,当然我们也可以简单的利用比例性质及图形变换来说明,有兴趣的同学可以自己试试.3.图16-3中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷.那么最大的一个三角形的面积是多少公顷?【分析与解】 方法一:如下图所示,为了方便叙述,将某些点标上字母.因为△ADE 、△DEC 高相同,所以面积比为底的比,有ADE DECS S=AEEC,所以ADE S =AEEC×6.同理有ABE BCES S=AEEC,所以ABE S =AEEC×7.所以有△ADE 与△ABE 的面积比为6:7.又有它们的面积和为52-(6+7)=39(公顷.)所以ADE S=767+×39=18(公顷),ABE S =767+×39=21(公顷.)显然,最大的三角形的面积为21公顷.方法二:直接运用例2评注中的重要原则,在△ABE ,△CDE 中有∠AEB=∠CED ,所以△ABE ,△CDE 的面积比为(AE ×EB):(CE ×DE).同理有△ADE ,△BCE 的面积比为(AE ×DE):(BE ×EC). 所以有ABES×CDE S=ADES×BCES,也就是说在所有凸四边形中,连接顶点得到2条对角线,有图形分成上、下、左、右4个部分,有:上、下部分的面积之积等于左右部分的面积之积. 即ABE S×6=ADE S×7,所以有△ABE 与△ADE 的面积比为7:6,ABE S=767+×39=21公顷,ADE S=667+×39=18公顷. 显然,最大的三角形的面积为21公顷.评注:在方法二中,给出一个很重要的性质:在所有凸四边形中,连接顶点得到2条对角线,有图形分成上、下、左、右4个部分,有:上、下部分的面积之积等于左右部分的面积之积.希望大家牢牢记住,并学会在具体问题中加以运用.4. 如图16-4,已知.AE=15AC ,CD=14BC ,BF=16AB ,那么DEF ABC 三角形的面积三角形的面积等于多少?【分析与解】 如下图,连接AD ,BE ,CF.有△ABE ,△ABC 的高相等,面积比为底的比,则有ABE ABCSS=AEAC,所以ABE S =AEAC×ABC S =15ABCS同理有AEF S=AFABABE S ,即=AEF S=15×56ABC S =16ABC S . 类似的还可以得到CDE S =14×45ABC S =15ABC S ,BDF S =16×13ABC S =18ABC S .所以有DEF S =ABC S -(AEF S +CDE S +BDF S )=(1-16-15-18)ABC S =61120ABC S . 即DEF ABC 三角形的面积三角形的面积为61120.5.如图16-5,长方形ABCD 的面积是2平方厘米,EC=2DE ,F 是DG 的中点.阴影部分的面积是多少平方厘米?【分析与解】 如下图,连接FC ,△DBF 、△BFG 的面积相等,设为x 平方厘米;△FGC 、△DFC 的面积相等,设为y 平方厘米,那么△DEF 的面积为13y 平方厘米.BCD S=2x+2y=1,BDE S=x+13y=l ×13=13.所以有x+y=0.53x+y=1⎧⎨⎩①②.比较②、①式,②式左边比①式左边多2x ,②式右边比①式右边大0.5,有2x=0.5,即x=0.25,y=0.25.而阴影部分面积为y+23y=53×0.25=512平方厘米.评注:将这种先利用两块独立的图形来表达相关图形的面积,再根据已知条件列出一个二元一次方程组,最终求出解的方法称为“凌氏类蝶形法”.类蝶形问题必须找好两块独立的图形,还必须将边的比例关系转化为面积的比例关系.类似的还有一道题:△ABC 中,G 是AC 的中点,D 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已△ABM 的面积比四边形FCGN 的面积大1.2平方厘米,则△ABC 的面积是_______平方厘米? 有兴趣的同学可以自己试试.6.如图16-6,已知D 是BC 中点,E 是CD 的中点,F 是AC 的中点.三角形ABC 由①~⑥这6部分组成,其中②比⑤多6平方厘米.那么三角形ABC 的面积是多少平方厘米?【分析与解】 因为E 是DC 中点,F 为Ac 中点,有AD=2FE 且阳平行于AD ,则四边形ADEF 为梯形.在梯形ADEF 中有③=④,②×⑤=③×④,②:⑤=A 2D :F 2E =4.又已知②-⑤=6,所以⑤=6÷(4-1)=2,②=⑤×4:8,所以②×⑤=④×④:16,而③=④,所以③=④=4,梯形ADEF 的面积为②、③、④、⑤四块图形的面积和,为8+4+4+2=18.有△CEF 与△ADC 的面积比为CE 平方与CD 平方的比,即为1:4.所以△ADC 面积为梯形ADEF 面积的44-1=43,即为18×43=24.因为D 是BC 中点,所以△ABD 与△ADC 的面积相等,而△ABC 的面积为△ABD 、△ADC 的面积和,即为24+24=48平方厘米.三角形ABC 的面积为48平方厘米.评注:梯形中连接两条对角线.则分梯形为4部分,称之为:上、下、左、右.如下图:运用比例知识,知道:①上、下部分的面积比等于上、下边平方的比. ②左、右部分的面积相等.③上、下部分的面积之积等于左、右部分的面积之积.7.图16-7是一个各条边分别为5厘米、12厘米、13厘米的直角三角形.如图16-8,将它的短直角边对折到斜边上去与斜边相重合,那么图16—8中的阴影部分(即未被盖住的部分)的面积是多少平方厘米?【分析与解】 如下图,为了方便说明,将某些点标上字母.有∠ABC 为直角,而∠CED=∠ABC ,所以∠CED 也为直角.而CE=CB=5.△ADE 与△CED 同高,所以面积比为底的比,及ADE CEDS S=AE EC =13-55=85,设△ADE 的面积为“8”,则△CED 的面积为“5”.△CED 是由△CDB 折叠而成,所以有△CED 、△CDB 面积相等,△ABC 是由△ADE 、△CED 、△CDB 组成,所以ABC S=“8”+“5”+“5”=“18”对应为12×5×12=30,所以“1”份对应为53,那么△ADE的面积为8×53=1313平方厘米. 即阴影部分的面积为1313平方厘米.8.如图16-9,在一个梯形内有两个三角形的面积分别为10与12,已知梯形的上底长是下底长的23.那么余下阴影部分的面积是多少?【分析与解】 不妨设上底长2,那么下底长3,则上面部分的三角形的高为10÷2×2=10,下面部分的三角形的高为12÷3×2=8,则梯形的高为lO+8=18.所以梯形的面积为12×(2+3)×18=45,所以余下阴影部分的面积为45-10-12=23.评注:这道题中上下底、梯形的高都不确定,但是余下阴影部分的面积却是确定的值,所以面积值与上下底、高的确定值无关,所以可以大胆假设,当然也可以谨慎的将上底设为2x 下底为3x .9.图16-10中ABCD 是梯形,三角形ADE 面积是1.8,三角形ABF 的面积是9,三角形BCF 的面积是27.那么阴影部分面积是多少?【分析与解】 设△ADF 的面积为“上”,△BCF 的面积为“下”, △ABF 的面积为“左”,△DCF 的面积为“右”.左=右=9;上×下=左×右=9×9=81,而下=27,所以上=81÷27=3.△ADE 的面积为1.8,那么△AEF 的面积为1.2,则EF :DF=AEF S :AEDS=1.2:3=0.4.△CEF 与△CDF 的面积比也为EF 与DF 的比,所以有ACES=0.4×ACDS=0.4×(3+9)=4.8.即阴影部分面积为4.8.10.如图16-11,梯形ABCD 的上底AD 长为3厘米,下底BC 长为9厘米,而三角形ABO 的面积为12平方厘米.则梯形ABCD 的面积为多少平方厘米?【分析与解】 △ADD 与△BCO 的面积比为AD 平方与BC 平方的比,即为9:81=19.而△DCO 与△ABO 的面积相等为12,又BCOS ABOS×DCOS=ADOS×BCOS=12×12=144,因为144÷9=4×4,所以ADO S=4,则BCOS=4×9=36,而梯形ABCD 的面积为△ADO 、△BCO 、△ABO 、△CDO 的面积和,即为4+36+12+12=64平方厘米.即梯形ABCD 的面积为64平方厘米.11.如图16-12,BD ,CF 将长方形ABCD 分成4块,红色三角形面积是4平方厘米,黄色三角形面积是6平方厘米.问:绿色四边形面积是多少平方厘米?【分析与解】 连接BF ,四边形BCDF 为梯形,则BFE 的面积与黄色CDE 的面积相等为 6.6636FEDBCEBFECDESSSS⨯=⨯=⨯=,所以3649BCES=÷=.9615BCDBECCDES S S=+=+=.又因为BD 是长方形ABCD 的对角线,15ABDBCDS S==所以FED15411ABDS SS =-=-=绿色四边形ABEF 红色.绿色四边形面积为11平方厘米.12.如图16-13,平行四边形ABCD 周长为75厘米.以BC 为底时高是14厘米;以CD 为底时高是16厘米.求平行四边形ABCD 的面积.【分析与解】 因为平行四边形面积等于底与对应高的积,所以有14×BC=16 ×CD ,即BC :CD=8:7,而2(BC+CD)=75,所以BC=20,以BC 为底,对应高为14,20×14=280,所以平行四边形ABCD 的面积为280平方厘米.13.如图16-14,一个正方形被分成4个小长方形,它们的面积分别是110平方米、15平方米、310平方米和25平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?【分析与解】为了方便叙述,将某些点标上字母,如下图:大正方形的面积为32111105510+++=,所以大正方形的边长应为1. 上面两个长方形的面积之比为32:105=3:4,所以IG=47.下面两个长方形的面积之比为11:510=2:l,所以IG=13.那么LI=4157321-=,那么阴影小正方形的面积为55252121441⨯=.14.图16-15中外侧的四边形是一边长为10厘米的正方形,求阴影部分的面积.【分析与解】如下图所示,所以阴影部分在图中为四边形EFGH.设阴影部分面积为“阴”平方厘米,正方形内的其他部分面积设为“空”平方厘米.DGH 、HMG 的面积相等,GCF 与GPF ;FBE 与 EOF ,HAE 与HNE 这3对三角形的面积也相等.阴一空=2×3=6,阴+空=lO ×10=100. 阴=(6+100)÷2=53.即阴影部分的面积为53平方厘米.15.如图16-16,长方形被其内的一些直线划分成了若干块,已知边上有3块面积分别是13,35,49.那么图中阴影部分的面积是多少?【分析与解】 如下图所示,为了方便叙述,将部分区域标上序号,设阴影部分面积为“阴”:(49+①+35)+(13+②)= 12矩形的面积, ①+阴+②=12矩形的面积. 比较上面两个式子可得阴影部分的面积为97.。
完整版)五年级奥数平面图形面积计算
完整版)五年级奥数平面图形面积计算五年级奥数第六讲——平面图形面积的计算一、知识要点1.基本平面图形特征及面积公式正方形:特征:四条边相等,四个角都是直角,有四条对称轴。
面积公式:S=边长的平方长方形:特征:对边相等,四个角都是直角,有二条对称轴。
面积公式:S=长×宽平行四边形:特征:两组对边平行且相等,对角相等,相邻的两个角之和为180°,容易变形。
面积公式:S=底边×高三角形:特征:两边之和大于第三条边,两边之差小于第三条边,三个角的内角和是180°,具有稳定性。
面积公式:S=底边×XXX÷2梯形:特征:只有一组对边平行,中位线等于上下底和的一半。
面积公式:S=(上底+下底)×高÷22.基本解题方法:由两个或多个简单的基本几何图形组合成的组合图形,要计算这样的组合图形面积,先根据图形的基本关系,再运用分解、组合、平移、割补、添辅助线等几种方法将图形变成基本图形分别计算。
典型例题】例1】已知平行四边形的面积是28平方厘米,求阴影部分的面积。
例2】求图中阴影部分的面积。
例3】如图所示,甲三角形的面积比乙三角形的面积大6平方厘米,求CE的长度。
例4】两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?练与拓展】1.计算下面图形的面积。
2.下面的梯形中,阴影部分面积是150平方厘米,求梯形的面积。
3.正方形ABCD的边长是12厘米,已知DE是EC长度的2倍,求三角形DEF的面积和CF的长。
4.平行四边形ABCD的边长BC=10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米,求CF的长。
5.正方形ABCD的面积是100平方厘米,AE=8厘米,请计算以下图形的面积。
1.在一块长80米、宽30米的长方形地上,修了宽为2米和3米的两条小路,求草地的面积。
五年级奥数巧求表面积例题、试题及答案
巧求表面积教学目标掌握长方体和正方体的特征、表面积和体积计算公式,并能运用公式解决一些实际问题。
教学过程一、例题讲解我们已经学习了长方体和正方体,知道长方体或正方体六个面面积的总和叫做长方体或正方体的表面积。
如果长方体的长用a 表示、宽用b 表示、高用h 表示,那么,长方体的表面积=(ab +ah +bh )×2。
如果正方体的棱长用a 表示,则正方体的表面积=6a 2。
对于由几个长方体或正方体组合而成的几何体,或者是一个长方体或正方体组合而成的几何形体,它们的表面积又如何求呢?涉及立体图形的问题,往往可考查同学们的看图能力和空间想象能力。
小学阶段遇到的立体图形主要是长方体和正方体,这些图形的特点都是可以从六个方向去看,特别是求表面积时,就是上下、左右和前后六个方向(有时只考虑上、左、前三个方向)的平面图形的面积的总和。
有了这个原则,在解决类似问题时就十分方便了。
例1 在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(下图),求这个立体图形的表面积.( 例1图) (例2图)分析 我们把上面的小正方体想象成是可以向下“压缩"的,“压缩"后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面。
这样这个立体图形有表面积就可以分成这样两部分:上下方向:大正方体的两个底面;侧面: 小正方体的四个侧面 大正方体的四个侧面。
解:上下方向:5×5×2=50(平方分米) 侧面:5×5×4=100(平方分米)4×4×4=64(平方分米) 这个立体图形的表面积为:50+100+64=214(平方分米)答:这个立体图形的表面积为214平方分米。
例2 下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为21厘米的正方体小洞,第三个正方体小洞的挖法与前两个相同,棱长为14厘米.那么最后得到的立体图形的表面积是多少平方厘米?分析 这道题的难点是洞里的表面积不易求.在小洞里,平行于上下表面的所有面的面积和等于边长为1厘米的正方形的面积,这个边长为1厘米的正方形再与图中阴影部分的面积合在一起正好是边长为2厘米的正方体的上表面的面积。
【人教版】五年级上册奥数试题:平面图形面积
平面图形1、 和差法:分割、合并、倍数比2、 运动法:3、 等积变换法:等底、等高则等积;等积、等高则等底;等积、等底则等高。
例1、求阴影部分的面积。
例2、大、小两个正方形的边长分别是8厘米和6厘米, 求阴影部分的面积。
例3、两个相同的直角三角形如图重叠在一起, 求阴影部分的面积。
例4、求阴影部分面积。
例5、图中长方形ABCD 中AB=5厘米,BC=8厘米。
三角形DEF (甲)的面积 比三角形ABF (乙)的面积大8平方厘米。
求DE 的长。
3cm4cm6cm5cm2cm12cm甲ABCDEF乙AD B C 10cm 10cm24cm45° E5cm例6、在三角形ABC 中,DC=2BD ,CE=3AE ,三角形ADE 的面积是 8平方厘米。
求三角形ABC 的面积。
例7、四边形ABCD 中,AC 和BD 互相垂直,AC=20厘米,BD=15厘米。
求四边形的面积。
例8、在四边形ABCD 中,∠C=45°,∠B=90°,∠D=90°, AD=4cm ,BC=12cm 。
求四边形ABCD 的面积。
例9、AF=2cm,AB=4cm,CD=5cm,DE=8cm,∠B=∠E=90°。
求四边形ACDF 的面积。
例10、已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大10平方厘米。
求大、小正方形的面积各数多少平方厘米。
ABCDC45°AB CDABCDEF 4cm8cm2cm练习1、图中两个正方形的边长是10厘米和7厘米,求阴影部分的面积(如图)练习2、如下图,在三角形ABC中,AD=BD,CE=3BE。
若三角形BED的面积是1平方厘米,则三角形ABC的面积是多少平方厘米?练习3、三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. A B长40厘米, BC长多少厘米.练习4、在右图中(单位:厘米),两个阴影部分面积的和是平方厘米.练习5、ABC是等腰直角三角形. D是半圆周的中点,BC是半圆的直径,已知:AB=BC=10,那么阴影部分的面积是多少?练习6、已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积. C②①A B121520A10DCB练习7、右图中三角形是等腰直角三角形, 阴影部分的面积是 (平方厘米).练习8、如右图,阴影部分的面积是 .练习9、如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π练习10、ABC 是等腰直角三角形. D 是半圆周的中点, BC 是半圆的直径,已知: AB =BC =10,那么阴影部分的面积是多少?练习11、在四边形ABCD 中,∠C=135°,∠D=90°。
五年级奥数:图形与面积
图形与面积转化的方法大体上分两点:(1)利用平移、旋转、弦图、割补法、差不变等技巧解题(2)利用五大模型之高相等面积比=底的比(关键高相等:同一个三角形等高、平行线间的三角形等高)(3)利用五大模型之相似三角形:相似三角形在我们小学的学习过程中常用的就是金字塔和沙漏。
(4)等积变形:两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比1、一点引两条直线分别与两组边平行,见右图。
所分得的四①过矩形内部的个小矩形,其面积满足这样的规律:2、梯形的对角线讲梯形分成的四个三角形有:ab=cd,且c=d对称、旋转、平移、割补等技巧将其转换0、按照图中的样子,在一个平行四边行纸片上割去了甲、乙两个直角三角形,已知甲三角形的两条直角边分别为2厘米和4厘米,乙三角形的两条直角边分别为3厘米和6厘米,求图中阴影部分的面积。
(11)1、有红、黄、绿三块大小一样的正方形纸片,放在一个底面为正方形的盒内,它们之间相互叠合(见下图)。
已知露在外面的部分中,红色面积是20,黄色面积是14,绿色面积是10。
求正方形盒底的面积。
【51.2】2、如图,在正方形ABCD中,红色,绿色正方形的面积分别是52和13,且红、绿两个正方形有一个顶点重合。
黄色正方形的一个顶点位于红色正方形两条对角线的交点,另一顶点位于绿色正方形两条对角线的交点,求黄色正方形面积。
【29.25】3、在正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA边的中点(如图),连接线段AF、BG、CH、DE,由这四条线段在正方形中围成的小正方形的面积占大正方形面积的几分之几?【1/5】4、如图正方形ABCD的边长是5,E,F分别是AB和BC的中点,求四边形BFGE的面积是多少?【5】5、已知正方形的面积是120平方厘米,B、E为正方形边上的中点,求题中阴影部分的面积是多少平方厘米?【14】6、有一个长方形,它的长是宽的4倍,对角线长34厘米,求这个长方形面积。
五年级上册奥数面积计算(例题含答案)
第十四讲面积计算在小学阶段学习的各种平面图形之间有着密切的联系.我们把平面图形之间的转化方法及它们的面积、周长公式归纳如下图:计算图形的面积要用面积公式,对于一些复杂的图形有意识地运用运动变化的观点,将平面图形简单地变动位置,可以化繁为简,化难为易,从而获得最佳解法。
例1 已知三角形ABC的面积为1,BE=2AB,BC=CD,求三角形BDE的面积?分析利用已给的线段间的比例关系、已给的三角形的面积以及三角形的面积公式,设法把三角形BDE划分成一些与三角形ABC的面积成相应比例的三角形.这样,三角形BDE的面积就能求得了。
解:见上图,连结CE.对于三角形ABC与三角形BEC,分别把AB和BE可知,S△BEC =2S△ABC=2.显然,三角形BEC和三角形CED是两个等底(BC=CD)、等高的三角形,因此S△CED =S△BEC=2。
这样,S△BDE =S△BEC+S△CED=4。
例2 求右图中阴影部分的面积.(大圆直径为2,单位:厘米)。
分析:解题时可以先将图形下半部分翻转拼接为下图.然后将图中的小圆移至中心从图中不难看出求原图中阴影部分的面积就是求一个圆环的面积。
解:大圆半径:2÷2=1(厘米)小圆半径:1÷2=0.5(厘米)阴影面积:3.14×(12-0.52)=2.355(平方厘米)答:阴影部分的面积是2.355平方厘米.例3 如下图.在图中三角形ABE、ADF和四边形AECF的面积相等,求三角形AEF的面积。
分析三角形AEF的面积等于四边形AECF的面积减去三角形ECF的面积.因为长方形ABCD的面积等于三角形ABE、ADF和四边形AECF的面积和,长方形ABCD的长、宽分别为9厘米和6厘米,因此很容易求出它的面积.所以解题关键在于求出三角形ECF的面积。
EC的长度.同理可以求出FC的长度.这样三角形ECF的面积可以求出,使问题得解。
解:长方形ABCD的面积:9×6=54(平方厘米);四边形AECF及三角形ABE、AFD的面积相等,是:EC的长度:9-18×2÷6=3(厘米);FC的长度:6-18×2÷9=2(厘米);三角形AEF的面积:18-3×2÷2=15(平方厘米)。
五年级奥数专题-不规则图形面积计算含解析
不规则图形面积计算我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
一、例题与方法指导例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
思路导航:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF 与四边形AECF的面积彼此相等,求三角形AEF的面积.思路导航:∵△ABE 、△ADF 与四边形AECF 的面积彼此相等,∴四边形 AECF 的面积与△ABE 、△ADF 的面积都等于正方形ABCD 的13。
在△ABE 中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2, ∴△ECF 的面积为2×2÷2=2。
所以S △AEF=S 四边形AECF-S △ECF=12-2=10(平方厘米)。
例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
思路导航:在等腰直角三角形ABC 中∵AB=10∵EF=BF=AB-AF=10-6=4,∴阴影部分面积=S △ABG-S △BEF=25-8=17(平方厘米)。
例4 如右图,A 为△CDE 的DE 边上中点,BC=CD ,若△ABC (阴影部分)面积为5平方厘米.求△ABD 及△ACE 的面积.B C思路导航:取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等高,所以它们的面积相等,都等于5平方厘米.∴△ACD的面积等于15平方厘米,△ABD的面积等于10平方厘米。
(完整版)五年级图形面积奥数题
五年级图形1.如图,阴影部分是正方形,则长方形的周长是厘米.2.下图两个正方形的边长分别是8厘米和6厘米,求阴影部分的面积?3.用四个相同的长方形拼成个面积为49平方厘米的大正方形,每个长方形的周长是多少厘米?4.将一个大长方形如下图分割为16个小长方形。
图上已标出部分小长方形的面积。
那么,A长方形的面积是多少?5.如图,三个面积都是20平方厘米正方形,放在一个大正方形的盒内,它们之间互相叠合,一共把大正方形盖住40平方厘米,求大正方形的面积.6.正方形的边长为10,四边形ABCD的面积的面积是6,求阴影部分的面积。
7.正方形边长是6cm, 长方形的长是8cm,求长方形宽?8.长方形ABCD中, 四边形AHEP=12cm2, S△FBP=7cm2, S△HGD=3cm2,求四边形EFCG的面积。
9.如图,长方形中,长和宽分别是8cm和4cm, S△HBF与 S△DEP的面积和是10cm2,求四边形ABCD的面积. 10.长方形的长是10米,宽是8米,ABCD分别在四条边上,且C比B低4米,D在A的右边3米,四边形ABCD的面积?11.长方形的长是10米,宽是8米,ABCD分别在四条边上,且B比D低4米, C在A的左边1米,四边形ABCD的面积?12.长方形ABCD周长为16米,在它的每条边上各画一个以该边为边长的正方形,已知这四个正方形的面积和是68平方米,求长方形ABCD的面积13.正方形边长是10cm,BF⊥AE,BF=8cm,求AE长,(18)14.如下图,甲乙丙丁四个长方形拼成一个大正方形,已知甲乙丙丁四个长方形面积的和是48cm2,四边形ABCD的面积是40cm2,求甲乙丙丁四个长方形周长的总和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形变换求面积问题
一、平移:将图形沿着一个方向移动一段距离。
平移变换 把图形中的某一个线段或者一个角移动到一个新的位置,使图形中分散的条件紧密地结合到一起。
一般有2种方法:
1.平移已知条件
2.平移所求问题,把所求问题转化,其实就是逆向证明。
几何题多数都是逆向思考的。
二、旋转:将某图形绕着一个固定点转动到另一个位置,以此重新组合图形。
旋转变换把平面图形绕旋转中心,旋转一个定角,使分散的条件集中在一起。
在遇到关于等腰三角形、正三角形、正方形等问题时,是经常用到的思维途径
三、对称(也可理解为翻折):某图形对于某条线对称的图形
通过作关于某一直线或一点的对称图,把图形中的图形对称到另一个位置上,使分散的条件集中在一起。
当出现以下两种情况时,经常考虑用此变换:
1.出现了明显的轴对称、中心对称条件时。
2.出现了明显的垂线条件时。
【例 1】右图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是
平行四边形,它们的宽都是2,求草地部分的面积(阴影部分)有多大?
【巩固】如图所示,一个正十二边形的边长是1厘米,空白部分是等边三角形,一共有12个.请算出阴
影部分的面积.
【例 2】如图所示,梯形中,平行于,又,,.试求梯形
ABCD AB CD 4BD =3AC =5AB CD +=
D C
B
A
【巩固】如下图,六边形中,,,,且有平行于,平行
ABCDEF AB ED =AF CD =BC EF =AB ED AF 于,平行于,对角线垂直于,已知厘米,厘米,请问六边形
CD BC EF FD BD 24FD =18BD =的面积是多少平方厘米?
ABCDEF
【例 3】如图2,六边形为正六边形,为对角线上一点,若、的面积为与,
ABCDEF P CF PBC PEF 34则正六边形的面积是_____________。
ABCDEF E
e
o d
f o
【巩固】正六边形的面积是2009平方厘米,分别是正六边形各边的123456A A A A A A 123456B B B B B B 、、、、、
中点;那么图中阴影六边形的面积是____________平方厘米。
A 3
【例 4】如下左图,有两个大小相同的完全重叠在一起的正方形,现在以点为中心转动一个正方
P 形.当厘米,厘米,厘米时(如下右图),求右图中的两个正方形相重叠部
5AB =13BC =12CA =分的面积(注意,图的尺寸不一定准确)。
P
【巩固】如图,在直角三角形中有一个正方形,已知厘米,厘米,求阴影部分的面积.
10BD =7DC =
【例 5】四边形ABCD 中,AB=30,AD=48,BC=14,CD=40.又已知∠ABD+∠BDC=900,求四边形ABCD 的面积.
D
C
B
A
【巩固】如图,在三角形ABD 中,当AB 和CD 的长度相等时,请求出“?”所示的角是多少度,给出过程.
D
C
A B
30°
40°
【例 6】如图所示的四边形的面积等于多少?
o
r s o 13
13
12
12
【巩固】如图,三角形是等腰直角三角形,是三角形外的一点,其中,,
ABC P 90BPC ∠=︒10cm AP =求四边形的面积.
ABPC P
D
C
B
A
【例 7】如图所示,中,,,,以为一边向外作正方形
ABC ∆90ABC ∠=︒3AB =5BC =AC ABC ∆,中心为,求的面积.
ACDE O OBC ∆
【巩固】如图,直角梯形中,,,,,将腰以为中心逆时
ABCD AD BC ∥AB BC ⊥2AD =3BC =CD D 针旋转至,连接、,则的面积是_______。
90︒ED AE CE ADE ∆E
D
C
B
A
【例 8】如图,正方形和有一个公共点,试比较三角形和三角形的面积.
ABCD DEFG D ADG
CDE G
F
E
D
C
B
A
【巩固】如图,以正方形的边为斜边在正方形内作直角三角形,,、交
AB ABE 90AEB ∠=︒AC BD 于.已知、的长分别为、,求三角形的面积.
O AE BE 3cm 5cm
OBE
【例 9】如图,已知,,,,则
4cm AB AE ==BC DC =90BAE BCD ∠=∠=︒10cm AC =_______。
S ABC ACE CDE S S ∆∆∆++=2
cm E
D
C
B
A
【巩固】如图,在中,,求“?”的度数.
ABD ∆AB CD =
g o o d
f o
40°
30°
D
C
B
A
【例 10】如图,正方形有三个顶点分别在的三条边上,.求正方形的面
PQRS ABC ∆BQ QC =PQRS 积.
【巩固】下图三角形是等腰三角形,,.三角形是正三角形,点在
ABC AB AC =120BAC ∠=︒ADE D 边上,.当三角形的面积是时,三角形的面积是多少?
BC :2:3BD DC =ABC 250cm ADE E
C
B
A
课堂检测
【随练1】 如下图,△ABC 是边长为1的等边三角形,△BCD 是等腰三角形BD=CD ,顶角
∠BDC=1200,∠MDN=600,求△AMN 的周长.
120°
60°M B
D
C
N
A
【随练2】 若干个大小相同的正五边形如右图排成环状,下图中所示的只是3个五边形.那么要完成这一
圈共需___________个正五边形.
家庭作业
【作业1】 如图所示的四边形中,,,厘米,连接对角
ABCD 45A C ∠=∠=°105ABC ∠=°15AB CD ==线,.求四边形的面积.
BD 30ABD ∠=︒ABCD D
C
B
A 【作业2】 如图,ABCD 是矩形,BC =6cm , AB=10cm ,AC 和BD 是对角线,图中的阴影部分以C 为轴旋转一周,
则阴影部分扫过的立体的体积是多少立方厘米?(π取3.14)
【作业3】 一个半径为1厘米的圆盘沿着一个半径为4厘米的圆盘外侧做无滑动的滚动,当小圆盘的中心
围绕大圆盘中心转动90度后(如图2),小圆盘运动过程中扫出的面积是
___
___平方厘米。
(=3.14)
【作业4】 按照图中的样子,在一平行四边形纸片上割去了甲、乙两个直角三角形.已知甲三角形两条直
角边分别为和,乙三角形两条直角边分别为和,求图中阴影部分的面积.
2cm 4cm 3cm 6cm
【作业5】 在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中
实用标准文案。