文科高考圆锥曲线和真题
高三数学文科圆锥曲线大题训练(含答案)
高三数学文科圆锥曲线大题训练(含详细解答)1.已知椭圆22:416C xy.(1)求椭圆C 的离心率;(2)设椭圆C 与y 轴下半轴的交点为B ,如果直线10y kx k 交椭圆C 于不同的两点,E F ,且,,B E F 构成以EF 为底边,B 为顶点的等腰三角形,判断直线EF 与圆2212xy的位置关系.1.解:(I)由题意,椭圆C 的标准方程为221164xy,所以2222216,4,12从而a b ca b ,因此4,23ac,故椭圆C 的离心率32c ea............4分(II)由221,416y kx xy得22148120kxkx ,由题意可知0. ..............5分设点,E F 的坐标分别为1122,,,x y x y ,EF 的中点M 的坐标为,M M x y ,则1224214Mx x k x k,1221214My y y k......................7分因为BEF 是以EF 为底边,B 为顶点的等腰三角形,所以BM EF , 因此BM 的斜率1BMk k. ............... ...........................................8分又点B 的坐标为0,2,所以222122381440414M BMMy kkk kx kk,..........10分即238104k kkk ,亦即218k,所以24k,....................12分故EF 的方程为2440x y................ ...........................................13分又圆2212xy的圆心0,0O 到直线EF 的距离为42223218d, 所以直线EF 与圆相离.....................14分2.已知椭圆的中心在坐标原点O ,长轴长为22,离心率22e,过右焦点F 的直线l 交椭圆于P ,Q 两点.(1)求椭圆的方程;(2)当直线l 的斜率为1时,求POQ 的面积;(3)若以,OP OQ 为邻边的平行四边形是矩形,求满足该条件的直线l 的方程.2.解:(1)由已知,椭圆方程可设为222210x y a b ab.--------1分∵长轴长为22,离心率22e,∴1,2b c a .所求椭圆方程为2212xy.----------- 4分(2)因为直线l 过椭圆右焦点1,0F ,且斜率为1,所以直线l 的方程为1yx .设1122,,,P x y Q x y ,由2222,1,x yyx 得23210yy,解得1211,3y y .∴1212112223POQ S OFy y y y .--------------9分(3)当直线l 与x 轴垂直时,直线l 的方程为1x ,此时POQ 小于90,,OP OQ 为邻边的平行四边形不可能是矩形.当直线l 与x 轴不垂直时,设直线l 的方程为1yk x .由2222,1,x y yk x 可得2222124220k x k x k.∴22121222422,1212kkx x x x k k.11(1)y k x ,22(1)y k x 212212ky y k因为以,OP OQ 为邻边的平行四边形是矩形0OP OQuu u r uuu r.由221212222201212kkOP OQx x y y k kuu u r uuu r 得22k,2k .所求直线的方程为2(1)yx .----------------14分3.在平面直角坐标系xOy 中,椭圆C :22221(0)xy ab ab的一个顶点为(2,0)A ,离心率为63.(1)求椭圆C 的标准方程;(2)直线l 过点A ,过O 作l 的平行线交椭圆C 于P ,Q 两点,如果以PQ 为直径的圆与直线l 相切,求l 的方程.3. 解:(1)依题意,椭圆的焦点在x 轴上,因为2a,63c a,所以263c,22243b ac.所以椭圆的方程为223144xy .…………4分(2)依题意,直线l 的斜率显然存在且不为0,设l 的斜率为k ,则可设直线l 的方程为(2)y k x ,则原点O 到直线l 的距离为2|2|1k dk.设11(,)P x y ,22(,)Q x y ,则2234y kx xy消y得22(31)4kx.可得2222(,)3131k P kk,2222(,)3131k Q kk.因为以PQ 为直径的圆与直线l 相切,所以1||2PQ d ,即||OP d .所以22222222|2|()()()31311k k kk k,解得1k .所以直线l 的方程为20xy或20x y .………14分4.已知离心率为32的椭圆2222:1(0)xy C a bab与直线2x 相交于,P Q 两点(点P在x 轴上方),且2PQ .点,A B 是椭圆上位于直线PQ 两侧的两个动点,且APQ BPQ .(1)求椭圆C 的标准方程;(2)求四边形APBQ 面积的取值范围.4.解:(1)由已知得32e,则12b a,设椭圆方程为22221(0)4xy b bb由题意可知点(2,1)P 在椭圆上,所以224114bb.解得22b.故椭圆C 的标准方程为22182xy.………4分(2)由题意可知,直线PA ,直线PB 的斜率都存在且不等于0.因为APQ BPQ ,所以PAPB k k .设直线PA 的斜率为k ,则直线:1(2)PA y k x (0k).由2248(12),xyy kx k 得222(14)8(12)161640k xk k x k k ……(1).依题意,方程(1)有两个不相等的实数根,即根的判别式0成立.即222264(12)4(14)161640k k k kk ,化简得216(21)0k ,解得12k.因为2是方程(1)的一个解,所以2216164214Akkx k.所以2288214Akkx k.当方程(1)根的判别式0时,12k,此时直线PA 与椭圆相切.由题意,可知直线PB 的方程为1(2)y k x .同理,易得22228()8()288214()14Bk k kkx k k.由于点,A B 是椭圆上位于直线PQ 两侧的两个动点,APQ BPQ ,且能存在四边形APBQ ,则直线PA 的斜率k 需满足12k.设四边形APBQ 面积为S ,则112222APQBPQABS SSPQ x PQx 2222188288221414B A k k k k PQ x x kk21614k k由于12k,故216161144k Skkk.当12k时,144k k,即110144kk ,即04S .(此处另解:设t k ,讨论函数1()4f t t t 在1,2t时的取值范围.222141()4t f t tt,则当12t时,()0f t ,()f t 单调递增.则当12t 时,()(4,)f t ,即S 0,4.)所以四边形APBQ 面积S 的取值范围是0,4.………14分5.已知椭圆的一个顶点为)1,0(A ,焦点在x 轴上,若右焦点到直线022y x的距离为 3.(1)求椭圆的标准方程;(2)设直线0ykxm k与椭圆相交于不同的两点M 、N ,当A MA N 时,求m 的取值范围.5.解: (1)依题意可设椭圆方程为2221x ya,………….2分则右焦点F 的坐标为21,0a,由题意得212232a,解得23a,故所求椭圆的标准方程为2213xy.………………………….5分6.已知椭圆1C 的中心在坐标原点,两焦点分别为双曲线222:12xC y的顶点,直线20x y与椭圆1C 交于A ,B 两点,且点A 的坐标为(2,1),点P 是椭圆1C 上异于点A ,B 的任意一点,点Q 满足0AQ AP,0BQ BP ,且A ,B ,Q 三点不共线.(1)求椭圆1C 的方程;(2)求点Q 的轨迹方程;(3)求ABQ 面积的最大值及此时点Q 的坐标.6.(1)解法1:∵双曲线222:12xC y的顶点为1(2,0)F ,2(2,0)F , ……1分∴椭圆1C 两焦点分别为1(2,0)F ,2(2,0)F .设椭圆1C 方程为12222by ax 0a b ,∵椭圆1C 过点A (2,1),∴1224a AF AF ,得2a.……2分∴22222ba.………………………3分∴椭圆1C 的方程为22142xy.………………………4分解法2:∵双曲线222:12xC y的顶点为1(2,0)F ,2(2,0)F , …………………1分∴椭圆1C 两焦点分别为1(2,0)F ,2(2,0)F .设椭圆1C 方程为12222by ax 0ab ,∵椭圆1C 过点A (2,1),∴22211ab . ①………………………2分. ∵222ab,②………………………3分由①②解得24a, 22b .∴椭圆1C 的方程为22142x y.………………………4分(2)解法1:设点),(y x Q ,点),(11y x P ,由A (2,1)及椭圆1C 关于原点对称可得B (2,1),∴(2,1)AQxy ,11(2,1)AP x y ,(2,1)BQxy ,11(2,1)BP x y . 由0AQ AP , 得11(2)(2)(1)(1)0xx y y ,……………………5分即11(2)(2)(1)(1)xx y y .①同理, 由0BQ BP , 得11(2)(2)(1)(1)x x y y . ②……………6分①②得222211(2)(2)(1)(1)xxy y.③………………………7分由于点P 在椭圆1C 上, 则2211142xy,得221142xy , 代入③式得2222112(1)(2)(1)(1)yxy y.当2110y时,有2225x y,当2110y ,则点(2,1)P 或(2,1)P ,此时点Q 对应的坐标分别为(2,1)或(2,1),其坐标也满足方程2225xy.………………………8分当点P 与点A 重合时,即点P (2,1),由②得23yx ,解方程组2225,23,x yyx得点Q 的坐标为2,1或2,22.同理, 当点P 与点B 重合时,可得点Q 的坐标为2,1或2,22.∴点Q 的轨迹方程为2225xy, 除去四个点2,1,2,22, 2,1,2,22.………………………9分解法2:设点),(y x Q ,点),(11y x P ,由A(2,1)及椭圆1C 关于原点对称可得B (2,1),∵0AQ AP,0BQ BP,∴AQ AP,BQ BP.∴1111122y y x x12x ,①……………………5分1111122y y x x 12x . ②……………………6分①②得12222111122y y xx. (*)………………………7分∵点P 在椭圆1C 上,∴2211142x y ,得221122x y,代入(*)式得2212211112122xy xx,即2211122y x,化简得2225xy .若点(2,1)P 或(2,1)P , 此时点Q 对应的坐标分别为(2,1)或(2,1),其坐标也满足方程2225xy.………………………8分当点P 与点A 重合时,即点P (2,1),由②得23yx ,解方程组2225,23,x yyx得点Q 的坐标为2,1或2,22.同理, 当点P 与点B 重合时,可得点Q 的坐标为2,1或2,22.∴点Q 的轨迹方程为2225xy, 除去四个点2,1,2,22, 2,1,2,22.………………………9分(3) 解法1:点Q,x y 到直线:AB 20xy 的距离为23x y .△ABQ 的面积为2221(22)(11)23xy S………………………10分2xy22222xyxy .………………………11分而22222(2)()422y yxy x x(当且仅当22y x时等号成立)∴22222222522224522yS xyxyxyxxy522. ……12分当且仅当22y x时, 等号成立.由222,225,y x xy解得2,22,x y或2,22.xy………………………13分∴△ABQ 的面积最大值为522, 此时,点Q 的坐标为2,22或2,22.…14分解法2:由于22221123AB ,故当点Q 到直线AB 的距离最大时,△ABQ 的面积最大.………………………10分设与直线AB 平行的直线为20x y m ,由2220,25,x y m xy消去x ,得22542250y my c ,由223220250mm,解得522m.………………………11分若522m,则2y ,22x ;若522m,则2y ,22x.…12分故当点Q 的坐标为2,22或2,22时,△ABQ 的面积最大,其值为2222221522212SAB.………………………14分7.如图,B A,分别是椭圆C :)0(12222ba by ax 的左右顶点,F 为其右焦点,2是AF 与FB 的等差中项,3是AF 与FB 的等比中项.(1)求椭圆C 的方程;(2)已知点P 是椭圆C 上异于B A,的动点,直线l 过点A 且垂直于x 轴,若过F 作直线FQ垂直于AP ,并交直线l 于点Q .证明:B P Q ,,三点共线.7.【解析】:(1)解:F (1,0),|AF|=a+c ,|BF|=a ﹣c .由2是|AF|与|FB|的等差中项,是|AF|与|FB|的等比中项.∴,解得a=2,c=1,∴b 2=a 2﹣c 2=3.∴椭圆C 的方程为=1.(2)证明:直线l 的方程为:x=﹣2,直线AP 的方程为:y=k (x+2)(k ≠0),联立,化为(3+4k 2)x 2+16k 2x+16k 2﹣12=0,∴,∴x P =,∴y P =k (x P +2)=,∵QF ⊥AP ,∴k PF =﹣.直线QF 的方程为:y=﹣,把x=﹣2代入上述方程可得y Q =,∴Q.∴k PQ ==,k BQ =.∴k PQ =k BQ ,∴B ,P ,Q 三点共线.8.已知椭圆2222:10x y C a b ab的离心率为32,且经过点0,1.圆22221:C xyab. (1)求椭圆C 的方程;(2)若直线l:0y kx m k 与椭圆C 有且只有一个公共点M ,且l 与圆1C 相交于,A B 两点,问AM BM 0是否成立?请说明理由.8.解析:(1)解:∵椭圆2222:1x y C ab过点0,1,∴21b.∵2223,2c ab c a,∴24a.∴椭圆C 的方程为2214xy.……………4分(2)解法1:由(1)知,圆1C 的方程为225xy,其圆心为原点O . ……………5分∵直线l 与椭圆C 有且只有一个公共点M ,∴方程组22,14ykx m x y(*)有且只有一组解.由(*)得222148440kxkmxm .…………6分从而2228414440km k m,化简得2214mk .①………7分228414214Mkm kmx kk,22241414M Mk m m y kx mmkk. ……9分∴点M 的坐标为224,1414km m kk. ……………10分由于0k ,结合①式知0m ,∴OMk k2211414414mk kkmk.…………11分∴OM 与AB 不垂直. ……12分∴点M 不是线段AB 的中点. ………13分∴AMBM0不成立.………14分解法2:由(1)知,圆1C 的方程为225xy,其圆心为原点O .………5分∵直线l 与椭圆C 有且只有一个公共点M ,∴方程组22,14ykx m x y(*)有且只有一组解.由(*)得222148440kxkmxm .………6分从而2228414440km k m,化简得2214mk .①………7分228414214Mkm km x kk,………………8分由于0k ,结合①式知0m ,设1122,,,A x y B x y ,线段AB 的中点为,N N N x y , 由22,5,y kx m xy消去y ,得2221250kxkmx m.…………9分∴12221N x x km x k . …………10分若N M x x ,得224114km km kk,化简得30,矛盾. ………11分∴点N 与点M 不重合. ………12分∴点M 不是线段AB 的中点. …………13分∴AMBM 0不成立.………14分9.已知抛物线C :22(0)ypx p 的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于,M N 两点,且8MN.(1)求抛物线C 的方程;(2)设直线l 为抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM PN 的最小值.9.【解析】(1)由题可知(,0)2p F ,则该直线方程为:2p yx,………1分代入22(0)ypx p得:22304pxpx,设1122(,),(,)M x y N x y ,则有123x x p …3分∵8MN,∴128x x p ,即38p p ,解得p 2∴抛物线的方程为:24yx .………5分(2)设l 方程为yxb ,代入24yx ,得22(24)0xb x b ,因为l 为抛物线C 的切线,∴0,解得1b ,∴:l 1yx ………7分由(1)可知:126x x ,121x x 设(,1)P m m ,则1122(,(1)),(,(1))PMx m y m PN x m y m 所以1212()()[(1)][(1)]PM PNx m x m y m y m 2212121212()(1)()(1)x x m x x my y m y y m 126x x ,121x x ,21212()1616y y x x ,124y y ,2212124()yy x x ,∴12121244x x y y y y 221644(1)(1)PM PN m m m m ………10分222[43]2[(2)7]14mm m 当且仅当2m 时,即点P 的坐标为(2,3)时,PM PN 的最小值为14.………12分10.已知动圆C 过定点)(2,0M ,且在x 轴上截得弦长为4.设该动圆圆心的轨迹为曲线C .(1)求曲线C 方程;(2)点A 为直线l :20xy 上任意一点,过A 作曲线C 的切线,切点分别为P 、Q ,APQ 面积的最小值及此时点A 的坐标.10.解析:(1)设动圆圆心坐标为(,)C x y ,根据题意得222(2)4x y y +-=+,(2分)化简得24x y =.(2分)(2)解法一:设直线PQ 的方程为y kx b =+,由24x y y kx bì?=?í?=+?消去y 得2440x kx b --=设1122(,),(,)P x y Q x y ,则121244x x k x x bì+=??í?=-?,且21616k b D =+(2分)以点P 为切点的切线的斜率为1112y x ¢=,其切线方程为1111()2y y x x x -=-即2111124y x x x=-同理过点Q 的切线的方程为2221124y x x x =-设两条切线的交点为(,)A A A x y 在直线20x y --=上,12x x 1Q ,解得1212224A A x x x k x x y b ì+??==???í??==-???,即(2,)A k b -则:220k b +-=,即22b k=-(2分)代入222161616323216(1)160k b k k k D =+=+-=-+>22212||1||41PQ k x x kk b=+-=++(2,)A k b -到直线PQ 的距离为22|22|1k b d k +=+(2分)3322224(22)4[(1)1]k k k =-+=-+当1k =时,APQ S D 最小,其最小值为4,此时点A 的坐标为(2,0). (4分)解法二:设00(,)A x y 在直线20x y --=上,点1122(,),(,)P x y Q x y 在抛物线24x y=上,则以点P 为切点的切线的斜率为1112y x ¢=,其切线方程为1111()2y y x x x -=-即1112y x x y =-同理以点Q 为切点的方程为2212y x x y =-(2分)设两条切线的均过点00(,)A x y ,则010101011212y x x y y x x y ì??=-??í??=-???,点,P Q 的坐标均满足方程0012y xx y =-,即直线PQ 的方程为:0012y x x y =-(2分)代入抛物线方程24x y =消去y 可得:200240x x x y -+=00(,)A x y 到直线PQ 的距离为200201|2|2114x y d x -=+(2分)33222200011(48)[(2)4]22x x x =-+=-+所以当02x =时,APQ S D 最小,其最小值为4,此时点A 的坐标为(2,0).(4分)11.已知点)1,2(A 在抛物线:2x ay 上,直线1:l 1y kx (R k ,且0k )与抛物线E 相交于C B,两点,直线AC AB,分别交直线2:l 1y 于点S ,T .(1)求a 的值;(2)若25S,求直线1l 的方程;(3)试判断以线段ST 为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.11.(1)解:∵点2,1A 在抛物线2:E x ay 上,∴4a . ……1分第(2)、(3)问提供以下两种解法:解法1:(2)由(1)得抛物线E 的方程为24xy.设点,B C 的坐标分别为1122,,,x y x y ,依题意,2211224,4xy xy ,由21,4,y kx xy 消去y 得2440xkx ,解得221,24412212kk x k k.∴12124,4x x k x x .……………2分直线AB 的斜率2111111124224ABxy x k x x ,故直线AB 的方程为12124x y x.……………3分令1y,得1822xx ,∴点S 的坐标为182,12x . ……………4分同理可得点T 的坐标为282,12x .……………5分∴121212888222222x x STx x x x 121212121288248x x xxx x x x x x kk . ……………6分∵25ST ,∴1225x x k .由221212124x x x x x x ,得22201616kk,解得2k , 或2k ,…………… 7分∴直线1l 的方程为21yx ,或21yx .……………9分(3)设线段ST 的中点坐标为0,1x ,则1212124418822222222x x x x x x x 1212444444222248k k x x x x k k . ……………10分而2ST2221212122221614kx x x x x x k kk,……………11分∴以线段ST 为直径的圆的方程为2222114xy ST k 2241kk.展开得22222414414kx x y kkk.……………12分令0x,得214y ,解得1y 或3y.……………13分∴以线段ST 为直径的圆恒过两个定点0,1,0,3.……………14分解法2:(2)由(1)得抛物线E 的方程为24xy.设直线AB 的方程为112y k x ,点B 的坐标为11,x y ,由112,1,y k x y解得122,1.x k y∴点S 的坐标为122,1k . ………2分由1212,4,y k x xy 消去y ,得2114840x k x k ,即12420x x k ,解得2x或142x k .∴1142x k ,22111114414y x k k .∴点B 的坐标为211142,441k k k . ………3分同理,设直线AC 的方程为212y k x ,则点T 的坐标为222,1k ,点C 的坐标为222242,441k kk . …………4分∵点,B C 在直线1:1l y kx 上,∴22222211212121214414414242kk kk kkk k k k k k k 121k k .∴121k k k . ………5分又211144142k k k k 1,得21111214442412k k kk kk k k k ,化简得122k k k .……………6分12121222222k k STk k k k ,…………7分∵25ST ,∴1212225k k k k .∴2212125k k k k .由2221212121212454k k k k k k k k k k ,得225124k kk ,解得2k.……8分∴直线1l 的方程为21yx ,或21yx .…… 9分(3)设点,P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ,………10分得122222110x x y y k k ,…11分整理得,224410x xy k . …12分令0x,得214y ,解得1y 或3y.……13分∴以线段ST 为直径的圆恒过两个定点0,1,0,3.…14分12.在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22(1)求椭圆C 的方程;(2)B A,为椭圆C 上满足AOB 的面积为64的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 于点P ,设OPtOE ,求实数t 的值.12.【解】(I)设椭圆C 的方程为)0(12222baby ax 由题意可得:2222222b a cecba,解得:1,2c b a 因此:椭圆C 的方程为1222yx(II)(1)当B A,两点关于x 轴对称时,设直线AB 的方程为m x,由题意可得:)2,0()0,2(m 将x m 代入椭圆方程1222yx ,得22||2m y 所以:4622||2m m S AOB ,解得:232m 或212m①又)0,()0,2(21)(21mt m t OB OA t OEt OP因为P 为椭圆C 上一点,所以12)(2mt ②由①②得:42t或342t,又知0t,于是2t或332t(2)当B A,两点关于x 轴不对称时,设直线AB 的方程为h kxy,由hkx y y x 1222得:0124)21(222hkhx xk 设),(),,(2211y x B y x A ,由判别式0可得:2221hk 此时:2212122212212122)(,2122,214kh hx x k y y kh x x kkh x x ,所以222221221221211224)(1||khk kx x x x kAB 因为点O 到直线AB 的距离21||kh d所以:222221||212112221||21kh khkkd AB SAOB46||21212222h khk③令221k n,代入③整理得:016163422h n h n 解得:24h n 或234h n ,即:22421h k 或223421h k ④又)21,212(),(21)(21222121khtk kht y y x x t OB OA t OE t OP 因为P 为椭圆C 上一点,所以1])21()212(21[22222kh kkh t ,即121222tkh⑤将④代入⑤得:42t 或342t,又知0t ,于是2t 或332t,经检验,符合题意综上所述:2t或332t13.已知点2,1P 在抛物线21:20C xpy p上,直线l 过点0,2Q 且与抛物线1C 交于A 、B 两点。
高考数学【文科】真题分类详细解析版专题10圆锥曲线(解析版)
专题10 圆锥曲线【2013年高考真题】(2013·新课标Ⅰ文)(8)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =,则POF ∆的面积为()(A )2 (B )(C ) (D )4(2013·新课标Ⅰ文)(4)已知双曲线2222:1x y C a b-=(0,0)a b >>,则C 的渐近线方程为( )(A )14y x =± (B )13y x =± (C )12y x =±(D )y x=±(2013·新课标Ⅱ卷)10. 设抛物线C:y 2=4x 的焦点为F ,直线l 过F 且与C 交于A, B 两点.若|AF|=3|BF|,则l 的方程为( )(A )y=x-1或y=-x+1 (B )(X-1)或y=(x-1)(C )(x-1)或y=(x-1)(D )(x-1)或y=(x-1)【答案】C 【解析】由题意,可设||BF x =,则||3AF x =,设直线l 与抛物线的准线相交于点M ,则由抛物线的定义可知:||2MB x =,所以直线l 的倾斜角为60 或120 ,即直线l 的斜率为,故选C.【学科网考点定位】本小题主要考查抛物线的定义、直线方程的求解、数形结合以及转化的数学思想,考查分析问题、解决问题的能力.(2013·天津卷)11. 已知抛物线28y x =的准线过双曲线22221(0,0)x y a b a b -=>>的一个焦点, 且双曲线的离心率为2, 则该双曲线的方程为 .(2013·上海文)12.设AB 是椭圆Γ的长轴,点C 在Γ上,且π4CBA ∠=.若4AB =,BC =,则Γ的两个焦点之间的距离为 .(2013·陕西文)11. 双曲线221169x y -=的离心率为 .(2013·陕西文)8. 已知点M(a,b)在圆221:O x y +=外, 则直线ax + by = 1与圆O 的位置关系是(A) 相切(B) 相交(C) 相离(D) 不确定(2013·陕西文)7. 若点(x,y)位于曲线y = |x|与y = 2所围成的封闭区域, 则2x -y 的最小值为(A) -6(B) -2(C) 0(D) 2(2013·山东文)11. 抛物线)0(21:21>=p x py C 的焦点与双曲线222:13x C y -=的右焦点的连线交1C 于第一象限的点M ,若1C 在点M 处的切线平行于2C 的一条渐近线,则p =A.163 B.83 C.332 D. 334【答案】D【解析】画图可知被1C 在点M 处的切线平行的渐近线方程应为y x =,设2,2t M t p ⎛⎫ ⎪⎝⎭,则利用求导得(2013·辽宁文)(15)已知F 为双曲线22:1,916x y C P Q C PQ -=的左焦点,为上的点,若的长等于虚轴长的2倍,()5,0A PQ PQF ∆点在线段上,则的周长为 .(2013·辽宁文)(11)已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,F C 与过原点的直线相交于,A B 两点,4,.10,8,cos ABF ,5AF BF AB B F C ==∠=连接若则的离心率为(A )35 (B )57 (C )45 (D )67【答案】B【解析】AFB 三角形中,由余弦定理可得:222||||||2||||cos AF AB BF AB BF ABF =+-∠(2013·江西文)9.已知点A (2,0),抛物线C :24x y =的焦点F 。
高中数学文科圆锥曲线试题及解答
高中数学文科圆锥曲线试题及解答一.基础题组1. 【2013课标全国,文5】设椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ).A.13 C .12 D【答案】:D2. 【2012全国新课标,文4】设F 1,F 2是椭圆E :22221x y a b+=(a >b >0)的左、右焦点,P 为直线32a x =上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A .12 B .23 C .34 D .45【答案】C 【解析】设直线32a x =与x 轴交于点M ,则∠PF 2M =60°,在Rt △PF 2M 中,PF 2=F 1F 2=2c ,232aF M c =-,故22312cos6022a cF M PF c -︒===,解得34c a =,故离心率34e =. 3. 【2010全国新课标,文5】中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为(【答案】:D4. 【2006全国,文5】已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( )(A )23 (B )6 (C )43 (D )12答案】C5. 【2005全国,文5】抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )(A) 2(B) 3(C) 4(D) 5【答案】D6. 【2005全国,文6】双曲线22149x y -=的渐近线方程是( )(A) 23y x =±(B) 49y x =±(C) 32y x =±(D) 94y x =±【答案】C【解析】由题意知:2,3a b ==,∴双曲线22149x y -=的渐近线方程是32y x =±.7. 【2014全国,文20】(本小题满分12分)设12,F F 分别是椭圆22221(0)x y a b a b +=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .8. 【2013课标全国,文20】(本小题满分12分)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为y 轴上截得线段长为(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为2,求圆P 的方程. 【解析】:(1)设P (x ,y ),圆P 的半径为r .由题设y 2+2=r 2,x 2+3=r 2.从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1.9. 【2010全国新课标,文20】设F 1、F 2分别是椭圆E :x 2+22y b=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB|,|BF 2|成等差数列. (1)求|AB|;(2)若直线l 的斜率为1,求b 的值.即43x 2-x 1|.则89=(x 1+x 2)2-4x 1x 2=224222224(1)4(12)8(1)1(1)b b b b b b =+++---,解得b =2 10. 【2005全国,文22】 (本小题满分14分)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线, (Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (Ⅱ)当3,121-==x x 时,求直线l 的方程.即l 的斜率存在时,不可能经过焦点1(0,)8F ……………………………………8分 所以当且仅当12x x +=0时,直线l 经过抛物线的焦点F …………………………9分 (Ⅱ)当121,3x x ==-时,二.能力题组1. 【2014全国,文10】设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =( )(A (B )6 (C )12 (D )C2. 【2013课标全国,文10】设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( ).A .y =x -1或y =-x +1B .y 1)x -或y =1)x -C .y 1)x -或y =1)x -D .y 1)x -或y =1)x -【答案】:C3. 【2012全国新课标,文10】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,||AB =C 的实轴长为( )A B . C .4 D .8【答案】 C【解析】设双曲线的方程为22221x y a a-=,抛物线的准线为x =-4,且||AB =A (-4,,B (-4,-),将点A 坐标代入双曲线方程得a 2=4,故a =2,故实轴长为4.4. 【2006全国,文9】已知双曲线22221x y a b-=的一条渐近线方程为43y x =,则双曲线的离心率为( )(A )53 (B )43 (C )54 (D )32【答案】A5. 【2005全国,文9】已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为( )A .43B .53C .23D .3【答案】C6. 【2012全国新课标,文20】设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为42p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.当m 的斜率为33时,由已知可设n :y =33x +b ,代入x 2=2py ,得x 2-33px -2pb =0.由于n 与C 只有一个公共点,故∆=43p 2+8pb =0,解得6p b =-. 因为m 的截距12p b =,1||3||b b =,所以坐标原点到m ,n 距离的比值为3. 当m的斜率为3-时,由图形对称性可知,坐标原点到m ,n 距离的比值为3. 三.拔高题组1. 【2010全国,文12】已知椭圆C :22x a +22y b =1(a >b >0),过右焦点F 且斜率为k (k>0)的直线与C 相交于A 、B 两点,若AF =3FB ,则k 等于( ) A ..2【答案】:B2. 【2007全国,文11】已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( )(A) 13(B)33 (C)21 (D)23【答案】:D 【解析】∵椭圆的长轴长是短轴长的2倍,∴2a b =,∴224a b =,又∵222b ac =-,∴222244()a b a c ==-,∴2234a c =,∴2234c a =,∴c e a ==3. 【2007全国,文12】设F 1,F 2分别是双曲线1922=-y x 的左右焦点,若点P 在双曲线上,且120PF PF ∙=,则12||PF PF +=( )(A)10(B)102(C)5 (D) 52【答案】:B4. 【2006全国,文11】过点(-1,0)作抛物线21y x x =++的切线,则其中一条切线为( ) (A )220x y ++= (B )330x y -+= (C )10x y ++= (D )10x y -+=【答案】D 【解析】5. 【2005全国,文10】设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )A .2D 1【答案】D【解析】22221x y a b +=,2(,0)F c ,则垂线x c =,22221c y a b +=,∴2224222222(1)()c a c b y b b a a a-=-==, ∴2||b y a =,22b PF a =,122F F c =,所以22b c a=,即a²-c²=2ac,即c²+2ac -a²=0,∴c a ==-,∴1c a =-±0<e<1,所以1c e a ==-6. 【2010全国,文15】已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)l 相交于点A ,与C 的一个交点为B ,若AM =MB ,则p =________.【答案】:27. )【2010全国,文22】已知斜率为1的直线l 与双曲线C :22x a-22y b =1(a >0,b >0)相交于B 、D 两点,且BD 的中点为M (1,3). (1)求C 的离心率;(2)设C 的右顶点为A ,右焦点为F ,|DF |·|BF |=17,证明过A 、B 、D 三点的圆与x 轴相切. 【解析】:(1)由题设知,l 的方程为y =x +2.代入C 的方程,并化简,得 (b 2-a 2)x 2-4a 2x -4a 2-a 2b 2=0,设B (x 1,y 1)、D (x 2,y 2),则x 1+x 2=2224a b a -,x 1x 2=-222224a a b b a +-, ①由M (1,3)为BD 的中点知122x x +=1,故 12×2224a b a-=1,即b 2=3a 2, ②故c 2a ,所以C 的离心率e =ca=2.故|BD |x 1-x 2|=6.连结MA ,则由A (1,0),M (1,3)知|MA |=3,从而MA =MB =MD ,且MA ⊥x 轴,因此以M 为圆心,MA 为半径的圆经过A 、B 、D 三点,且在点A 处与x 轴相切.所以过A 、B 、D 三点的圆与x 轴相切.8. 【2006全国,文22】(本小题满分12分)已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且(0).AF FB λλ=>过A 、B 两点分别作抛物线的切线,设其交点为M 。
文科圆锥曲线专题练习及答案
文科圆锥曲线1.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【答案】C【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题.【解析】∵△21F PF 是底角为030的等腰三角形, ∴322c a =,∴e =34,∴0260PF A ∠=,212||||2PF F F c ==,∴2||AF =c ,2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =;则C 的实轴长为( )()A ()B ()C 4 ()D 8【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题.【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:222x y a -=,将4x =代入等轴双曲线方程解得y =,∵||AB =a =2,∴C 的实轴长为4,故选C.3.已知双曲线1C :22221(0,0)x y a b a b -=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 2x y =(B) 2x y = (C)28x y = (D)216x y = 考点:圆锥曲线的性质解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知a b 3=,此题应注意C2的焦点在y 轴上,即(0,p/2)到直线x y 3=的距离为2,可知p=8或数形结合,利用直角三角形求解。
4.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += 【命题意图】本试题主要考查了椭圆的方程以及性质的运用。
高考文科数学圆锥曲线专题训练
高考文科数学圆锥曲线专题训练用时:60分钟一、选择题1. θ是任意实数,则方程4sin 22=+θy x 所表示的曲线不可能是 A. 椭圆 B. 双曲线 C. 抛物线 D. 圆2. 已知椭121)(1222=-+t y x 的一条准线方程是8=y ,则实数t 的值是 A. 7或-7B. 4或12C. 1或15D. 03. 双曲线1422=+ky x 的离心率)2,1(∈e ,则k 的取值范围为 A. )0,(-∞ B. (-12,0) C. (-3,0) D. (-60,-12)4. 以112422=-y x 的焦点为顶点,顶点为焦点的椭圆方程为 A.1121622=+y xB.1161222=+y x C.141622=+y xD.116422=+y x 5. 抛物线28mx y =的焦点坐标为 A. )0,81(mB. )321,0(mC. )321,0(m±D. )0,321(m±6. 已知点A (-2,1),x y 42-=的焦点为F ,P 是x y 42-=的点,为使PF PA +取得最小值,P 点的坐标是 A. )1,41(-B. )22,2(-C. )1,41(-- D. )22,2(-- 7. 已知双曲线的渐近线方程为043=±y x ,一条准线方程为095=-y ,则双曲线方程为A.116922=-x yB.116922=-y x C.125922=-x yD.125922=-y x8. 抛物线2x y =到直线42=-y x 距离最近的点的坐标为 A. )45,23(B. )1,1(C. )49,23(D. )4,2(9. 动圆的圆心在抛物线x y 82=上,且动圆与直线02=+x 相切,则动圆必过定点 A. (4,0) B. (2,0) C. (0,2) D. (0,-2)10.中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为 12575D. 17525C.1252752B. 1752252A.22222222=+=+=+=+y x y x y x y x二、填空题11. 到定点(2,0)的距离与到定直线8=x 的距离之比为22的动点的轨迹方程为_______. 12.双曲线2222=-my mx 的一条准线是1=y ,则=m ___________.13. 已知点(-2,3)与抛物线)0(22>=p px y 的焦点距离是5,=p ____________. 14.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_______________. 三、解答题15. 已知双曲线的中心在原点,过右焦点F (2,0)作斜率为53的直线,交双曲线于M 、N 两点,且MN =4,求双曲线方程。
(完整版)圆锥曲线高考真题
(完整版)圆锥曲线⾼考真题(1)求M 的⽅程(2)C ,D 为M 上的两点,若四边形ACBD 的对⾓线CD ⊥AB ,求四边形ACBD 的⾯积最⼤值.2.设1F ,2F 分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上⼀点且2MF 与x 轴垂直,直线1MF 与C 的另⼀个交点为N.(1)若直线MN 的斜率为34,求C 的离⼼率;(2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .3.已知椭圆C :,直线不过原点O 且不平⾏于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1) 证明:直线OM 的斜率与的斜率的乘积为定值;(2)若过点(),延长线段OM 与C 交于点P ,四边形OAPB 能否平⾏四边⾏?若能,求此时的斜率,若不能,说明理由.4.已知抛物线C :22y x = 的焦点为F ,平⾏于x 轴的两条直线12,l l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的⾯积是△ABF 的⾯积的两倍,求AB 中点的轨迹⽅程.5.已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的⽅程.6.已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上⼀点,且FP FA FB ++=0u u u r u u u r u u u r .证明:FA u u u r,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.7.已知椭圆2222:1(0)x y C a b a b +=>>的离⼼率为,且经过点(0,1),圆22221:C x y a b +=+。
(完整word版)圆锥曲线近五年高考题(全国卷)文科
4.已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2B. 26 C. 25 D. 1 10.已知抛物线C :x y =2的焦点为F ,()y x A00,是C 上一点,x F A 045=,则=x 0( )A. 1B. 2C. 4D. 8 20.已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当OM OP =时,求l 的方程及POM ∆的面积2014(新课标全国卷2)(10)设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB =(A )3(B )6 (C )12 (D )(12)设点0(x ,1)M ,若在圆22:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C )⎡⎣ (D ) ⎡⎢⎣⎦20.设F 1 ,F 2分别是椭圆C :12222=+by a x (a>b>0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N 。
(I )若直线MN 的斜率为43,求C 的离心率; (II )若直线MN 在y 轴上的截距为2且|MN|=5|F 1N|,求a ,b 。
4.已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C 的渐近线方程为( ). A .y =14x ± B .y =13x ± C .y =12x± D .y =±x8.O 为坐标原点,F 为抛物线C :y 2=的焦点,P 为C 上一点,若|PF |=,则△POF 的面积为( ). A .2 B...421.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.2013(新课标全国卷2)5、设椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=o ,则C 的离心率为( )(A)6 (B )13 (C )12 (D)310、设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点。
圆锥曲线高考真题训练题--解答题(文科)
圆锥曲线高考真题训练题--解答题(文科)一、选择题(共12小题;共60分)1. 设椭圆的左、右焦点分别为,,是上的点,,,则的离心率为2. 已知抛物线的焦点为,是上一点,,则A. B. C. D.3. 已知是双曲线:的右焦点,是上一点,且与轴垂直,点的坐标是.则的面积为4. 已知为坐标原点,是椭圆的左焦点,,分别为的左、右顶点,为上一点,且轴.过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为5. 设,是椭圆长轴的两个端点,若上存在点满足,则的取值范围是A. B.C. D.6. 设点,若在圆上存在点,使得,则的取值范围是B. D.7. 已知椭圆的左、右顶点分别为,,且以线段为直径的圆与直线相切,则的离心率为8. 直线经过椭圆的一个顶点和一个焦点,若椭圆中心到的距离为其短轴长的心率为9. 已知,,椭圆的方程为,双曲线的方程为,与的离心率之积为,则的渐近线方程为A. B. C. D.10. 已知椭圆:的左、右顶点分别为,,且以线段为直径的圆与直线相切,则的离心率为A. B. C.11. 已知椭圆与双曲线的焦点重合,,分别为,的离心率,则A. 且B. 且C. 且D. 且12. 已知直线过点,当直线与圆有两个交点时,其斜率的取值范围是A.二、填空题(共14小题;共70分)13. 设直线与圆:相交于,两点,若,则圆的面积为.14. 已知是双曲线的右焦点,是左支上一点,,当周长最小时,该三角形的面积为.15. 设是双曲线的两个焦点,是上一点,若,且的最小内角为,则的离心率为.16. 已知点和的横坐标相同,的纵坐标是的纵坐标的倍,和的轨迹分别为双曲线和.若的渐近线方程为,则的渐近线方程为.17. 如图,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是.18. 椭圆的左、右顶点分别是,左、右焦点分别是.若成等比数列,则此椭圆的离心率为.19. 若抛物线的焦点与椭圆的右焦点重合,则该抛物线的准线方程为.20. 一个圆经过椭圆的三个顶点,且圆心在轴的正半轴上,则该圆的标准方程为.21. 已知、是椭圆的左右焦点,为椭圆上一点,且.若的面积为,则.22. 已知椭圆的左、右焦点分别为,,若椭圆上存在点使,则该椭圆的离心率的取值范围为.23. 在平面直角坐标系中,分别为椭圆的左、右、上、下顶点,为其右焦点,直线与直线相交于点,线段与椭圆的交点恰为线段的中点,则该椭圆的离心率为.24. 若椭圆的焦点在轴上,过点作圆的切线,切点分别为,,直线恰好经过椭圆的右焦点和上顶点,则椭圆方程是.25. 已知椭圆的左焦点为,与过原点的直线相交于两点,连接,若,则椭圆的离心率.26. 在平面直角坐标系中,为双曲线右支上的一个动点,若点到直线的距离大于恒成立,则实数的最大值为.三、解答题(共12小题;共156分)27. 已知抛物线的焦点为,平行于轴的两条直线,分别交于,两点,交的准线于,两点.(1)若在线段上,是的中点,证明;(2)若的面积是的面积的两倍,求中点的轨迹方程.28. 设、分别是椭圆的左、右焦点,是上一点且与轴垂直,直线与的另一个交点为.(1)若直线的斜率为的离心率;(2)若直线在轴上的截距为,且,求,.29. 在直角坐标系中,曲线与轴交于,两点,点的坐标为,当变化时,解答下列问题:(1)能否出现的情况?说明理由;(2)证明过,,三点的圆在轴上截得的弦长为定值.30. 在平面直角坐标系中,已知圆在轴上截得线段长为,在轴上截得线段长为.(1)求圆心的轨迹方程;(2)若点到直线的距离为的方程.31. 设,为曲线:上两点,与的横坐标之和为.(1)求直线的斜率;(2)设为曲线上一点,在处的切线与直线平行,且,求直线的方程.32. 已知点,圆,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积.33. 已知过点且斜率为的直线与圆交于,两点.(1)求的取值范围;(2)若,其中为坐标原点,求.34. 在直角坐标系中,直线:交轴于点,交抛物线:于点,关于点的对称点为,连接并延长交于点.(1)求;(2)除以外,直线与抛物线是否有其它公共点?说明理由.35. 已知点是椭圆的左顶点,斜率为的直线交椭圆于,两点,点在上,.(1)当时,求三角形的面积;(2)当时,证明:.36. 已知圆,圆,动圆与圆外切并与圆内切,圆心的轨迹为曲线.(1)求的方程;(2)是与圆,圆都相切的一条直线,与曲线交于,两点,当圆的半径最长时,求.37. 设为坐标原点,动点在椭圆上,过作轴的垂线,垂足为,点满足.(1)求点的轨迹方程;(2)设点在直线上,且.证明:过点且垂直于的直线过的左焦点.38. 已知椭圆的离心率为,,,,的面积为.(1)求椭圆的方程;(2)设是椭圆上的一点,直线与轴交于点,直线与轴交于点,求证:为定值.答案第一部分1. D2. C3. D4. A 【解析】,,,,中点,,.5. A【解析】假设椭圆的焦点在轴上,则时,当位于短轴的端点时,取最大值,要使椭圆上存在点满足,则,,,解得:.当椭圆的焦点在轴上时,,当位于短轴的端点时,取最大值,要使椭圆上存在点满足,则,,,解得:,所以的取值范围是.6. A 【解析】点在直线上,过作圆的两条切线,记该点对圆的张角为,则圆上存在点使得.由此知只需在直线上寻找对圆的张角等于的两点,,则线段上的点的横坐标范围即为所求.事实上,张角等于时,点与圆心及切点构成的四边形为正方形,易知.7. A 【解析】以线段为直径的圆与直线相切,所以原点到直线的距离,化为:.所以椭圆的离心率.8. B 【解析】由题可设椭圆方程为,直线的方程为,整理为,椭圆中心到直线的距离,所以,,所以.9. C10. A【解析】以线段为直径的圆与直线相切,所以原点到直线的距离,化为:.所以椭圆的离心率.11. A 【解析】由题意知,即,,代入,得,.12. C 【解析】设的直线方程为,将直线方程与圆方程联立消得,直线与圆有两个交点,即,所以的取值范围为.第二部分13.【解析】将圆方程化简为标准方程为,即圆心,半径,圆心到直线的距离为,所以,解得,,所以圆面积.14.【解析】由已知得,,,所以,设双曲线的左焦点为,则的周长为(当点、、共线时取等号),直线方程为,代入得,解得或(舍去),所以,直线,可得点到直线的距离为,所以.15.【解析】设为右支上的点,根据双曲线定义可知,又,所以,而,所以,由余弦定理,解得.16.17.【解析】由题意,得.直线的方程与椭圆方程联立,解得,,则.由,得,即,再结合可得,则.19.20.【解析】由题意,圆经过椭圆的三点为,,,故设圆心为.从而有,解得,半径为.故圆的标准方程为.21.【解析】设,则.根据题意,得于是解得,.【解析】根据题意知,,,,,直线的方程为①,直线的方程为②.由①②可得,所以.又因为在椭圆上,所以,即,所以,又因为,所以.【解析】当斜率存在时,设过点的直线方程为,根据直线与圆相切,圆心到直线的距离等于半径,可以得到,直线与圆方程联立,可以得到切点的坐标.当斜率不存在时,直线方程为,则得.根据,,可得直线的方程为,与轴的交点,即为上顶点坐标.与轴的交点,即为焦点坐标,,故椭圆方程为.【解析】双曲线的渐近线方程为,其与直线质知,右支上任意一点到直线的距离都大于.第三部分27. (1)连接,.由,及,得,所以,因为是中点,所以.所以,所以,.又,所以,所以(等角的余角相等),所以.(2)设,.,准线为,,设直线与轴焦点为,,因为,所以,所以,即.设中点为,由得,又,,即.所以中点轨迹方程为.28. (1)设为第一象限内的点.根据及题设知将代入,解得故的离心率为.(2)由题意,原点为的中点,轴,所以直线与轴的交点是线段的中点,故即由得设,由题意知,则即代入的方程,得将及代入得解得故29. (1)曲线与轴交于,两点,可设,,则,是方程的两根,有,由韦达定理可得,若,则,,即为这与矛盾,故不出现的情况.(2)设过,,三点的圆的方程为,由题意可得时,与等价.可得,,圆的方程即为,由圆过,可得,可得,则圆的方程即为,再令,可得,解得.即有圆与轴的交点为,,则过,,三点的圆在轴上截得的弦长为,所以过,,三点的圆在轴上截得的弦长为定值.30. (1)设,圆的半径为.由题设从而故点的轨迹方程为(2)设,由已知得又点在双曲线上,从而得由得此时,圆的半径由得此时,圆的半径故圆的方程为31. (1)设,为曲线:上两点,则直线的斜率为;(2)设直线的方程为,代入曲线:,可得,即有,,,再由的导数为,设,可得处切线的斜率为,由在处的切线与直线平行,可得,解得,即,由可得,,即为,化为,即为,解得,满足,则直线的方程为.32. (1)圆的标准方程设,圆心,则由题设知故即由于点在圆内部,所以的轨迹方程为(2)由(1)可知的轨迹是以点为圆心,为半径的圆.由于,故在线段的垂直平分线上.又在圆上,从而.因为的斜率为,所以的斜率为故的方程为.又,到,所以的面积为.33. (1)由题设,可知直线的方程为.因为直线与圆交于两点,所以,解得.所以的取值范围为.(2)设,.将代入方程,整理得.所以,..由题设可得,解得,所以的方程是.故圆心在上,所以.34. (1)设点为,点为,点为.由题意,因为点在抛物线上,所以,所以.因为点是点关于点的对称点,且点为,所以得即点.所以直线的方程为:.因为点为直线与的交点,所以联立解得:(舍)或,所以,所以点的坐标为,.(2)由(1)可知,点,,所以直线的方程为:,联立消去得,,即.所以此方程组有两组相同的解,即直线与抛物线仅有一个交点.35. (1)由题意知,因为,且,所以为等腰直角三角形,所以,设点,由题意得,把代入椭圆方程得:解得:(舍),,所以.(2)设;;得.设,,所以,,,所以;同理;由,得;整理得:,得;即;设,,所以在递增;,,根据零点存在定理可知:.36. (1)因为圆与圆外切并且与圆内切,所以由椭圆的定义可知,曲线是以,为左,右焦点,长半轴长为,短半轴长为的椭圆(左顶点除外),其方程为(2)对于曲线上任意一点,由于所以,当且仅当圆的圆心为时,,所以当圆的半径最长时,其方程为若的倾斜角为,则与轴重合,可得若的倾斜角不为,由知不平行于轴,设与轴的交点为,则可求得,所以可设.由与圆相切得解得当时,将代入并整理得解得所以当时,由图形的对称性可知.综上,37. (1)设,由题意可得,设,由点满足,可得,可得,,即有,,,可得,即有点的轨迹方程为圆.(2)设,,,可得,即为,解得,即有,的左焦点为,由,,由,可得过点且垂直于的直线过的左焦点.38. (1)由题意,得,.又因为,解得,,.故方程为.(2)由题意得不在顶点处,设,,即.又因为,,则直线,令,得.直线,令,得,,。
2023年高考文科数学真题汇编圆锥曲线老师版
直线AE 旳方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -. 因此直线BM 旳斜率112131BM y y k -+==-.17.(安徽文)设椭圆E 旳方程为22221(0),x y a b a b+=>>点O 为坐标原点,点A 旳坐标为(,0)a ,点B 旳坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 旳斜率为510。
(1)求E 旳离心率e;(2)设点C 旳坐标为(0,-b ),N 为线段AC 旳中点,证明:MN ⊥AB 。
∴a b 3231=5525451511052222222=⇒=⇒=-⇒=⇒e a c a c a a b (Ⅱ)由题意可知N 点旳坐标为(2,2b a -)∴a b a ba a bb K MN 56652322131==-+= abK AB-=∴1522-=-=⋅a b K K AB MN ∴MN ⊥AB18.(福建文)已知椭圆2222:1(0)x y E a b a b+=>>旳右焦点为F .短轴旳一种端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 旳距离不不不小于45,则椭圆E 旳离心率旳取值范围是( A ) A . 3(0,]2 B .3(0,]4 C .3[,1)2 D .3[,1)4119.(新课标2文)已知双曲线过点()4,3,且渐近线方程为12y x =±,则该双曲线旳原则方程为 .2214x y -= 20.(陕西文)已知抛物线22(0)y px p =>旳准线通过点(1,1)-,则抛物线焦点坐标为( B ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1) 【解析】试题分析:由抛物线22(0)y px p =>得准线2px =-,由于准线通过点(1,1)-,因此2p =, 因此抛物线焦点坐标为(1,0),故答案选B 考点:抛物线方程.21.(陕西文科)如图,椭圆2222:1(0)x y E a b a b+=>>通过点(0,1)A -,且离心率为22.(I)求椭圆E 旳方程;2212x y += 22.(天津文)已知双曲线22221(0,0)x y a b ab 旳一种焦点为(2,0)F ,且双曲线旳渐近线与圆222y 3x 相切,则双曲线旳方程为( D )(A)221913x y (B) 221139x y (C)2213x y(D) 2213y x23.(广东文)已知中心在原点旳椭圆C 旳右焦点为(1,0)F ,离心率等于21,则C 旳方程是( D )30旳等腰三角形,则122文) 设椭圆221y b 0,0a b 旳一条渐近线平行于直线210x ,双曲线旳上,则双曲线旳方程为( A )2120y (B )221205x y (C )2331100y D )223310025x y 1) 已知双曲线C :221x y (0,0a b >>)旳离心率为52,则C 14x B .13y =±12x ± D .y x[9,)+∞ [9,)+∞ [4,)+∞[4,)+∞【解析】当0m <上存在点M 满足120,则603ab=即33m≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603a b ≥=,即33m ≥,得9m ≥,故m 旳取值范围为(0,1][9,)⋃+∞,选A. 41、(·全国Ⅱ文,5)若a >1,则双曲线x 2a 2-y 2=1旳离心率旳取值范围是( )A .(2,+∞)B .(2,2)C .(1,2)D .(1,2)3.【答案】C 【解析】由题意得双曲线旳离心率e =a 2+1a .∴e 2=a 2+1a 2=1+1a 2.∵a >1,∴0<1a 2<1,∴1<1+1a2<2,∴1<e < 2.故选C.42.(·全国Ⅱ文,12)过抛物线C :y 2=4x 旳焦点F ,且斜率为3旳直线交C 于点M (M 在x 轴上方),l 为C 旳准线,点N 在l 上且MN ⊥l ,则M 到直线NF 旳距离为( )A. 5 B .2 2 C .2 3 D .3 34.【答案】C 【解析】抛物线y 2=4x 旳焦点为F (1,0),准线方程为x =-1.由直线方程旳点斜式可得直线MF旳方程为y =3(x -1).联立得方程组⎩⎨⎧y =3(x -1),y 2=4x ,解得⎩⎨⎧x =13,y =-233或⎩⎨⎧x =3,y =2 3.∵点M 在x 轴旳上方,∴M (3,23).∵MN ⊥l ,∴N (-1,23).∴|NF |=(1+1)2+(0-23)2=4, |MF |=|MN |=3-(-1)=4.∴△MNF 是边长为4旳等边三角形.∴点M 到直线NF 旳距离为2 3. 故选C.43.(·全国Ⅲ文,11)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)旳左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径旳圆与直线bx -ay +2ab =0相切,则椭圆C 旳离心率为( ) A .63 B .33 C .23 D .135.【答案】A 【解析】由题意知以A 1A 2为直径旳圆旳圆心坐标为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切,∴圆心到直线旳距离d =2aba 2+b 2=a ,解得a =3b , ∴b a =13,∴e =c a =a 2-b 2a = 1-⎝⎛⎭⎫b a 2=1-⎝⎛⎭⎫132=63.44.(·天津文,5)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)旳右焦点为F ,点A 在双曲线旳渐近线上,△OAF 是边长为2旳等边三角形(O 为原点),则双曲线旳方程为( ) A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 2=1D .x 2-y 23=16.【答案】D 【解析】根据题意画出草图如图所示⎝⎛⎭⎫不妨设点A 在渐近线y =ba x 上.由△AOF 是边长为2旳等边三角形得到∠AOF =60°,c =|OF |=2.又点A 在双曲线旳渐近线y =b a x 上,∴ba =tan 60°= 3.又a 2+b 2=4,∴a =1,b =3,∴双曲线旳方程为x 2-y 23=1.故选D. 45.(·全国Ⅲ文,14)双曲线x 2a 2-y 29=1(a >0)旳一条渐近线方程为y =35x ,则a =________.1.【答案】5【解析】∵双曲线旳原则方程为x 2a 2-y 29=1(a >0),∴双曲线旳渐近线方程为y =±3a x .又双曲线旳一条渐近线方程为y =35x ,∴a =5.46、(·北京文,10)若双曲线x 2-y 2m=1旳离心率为3,则实数m =________. 【答案】2【解析】由双曲线旳原则方程知a =1,b 2=m ,c =1+m ,故双曲线旳离心率e =ca =1+m =3,∴1+m =3,∴m =2.47、(·全国Ⅱ理,16)已知F 是抛物线C :y 2=8x 旳焦点,M 是C 上一点,FM 旳延长线交y 轴于点N .若M 为FN 旳中点,则|FN |=________.【解析】如图,不妨设点M 位于第一象限内,抛物线C 旳准线交x 轴于点A ,过点M 作准线旳垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2.∵点M 为FN 旳中点,PM ∥OF ,∴|MP |=12|FO |=1.1212121111442222BMy y K x x x x ----==---- (1x +=()12200x x ++= 又设AB :y=x +m 代入2x +20=0∴m=7故AB :x +y=7新课标Ⅱ文)设O 为坐标原点,动点M 在椭圆C :x 22+。
圆锥曲线--2023高考真题分类汇编完整版
圆锥曲线--高考真题汇编第一节椭圆1.(2023全国甲卷理科12)已知椭圆22196x y +=,12,F F 为两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF ∠=,则OP =()A.25 C.35【解析】解法一(利用焦点三角形面积公式):设122F PF θ∠=,π02θ<<.22212222cos sin 1tan 3cos cos 2cos sin 1tan 5F PF θθθθθθθ--∠====++,解得1tan 2θ=.由椭圆焦点三角形面积公式得1222121tantan 6322F PF F PF S b b θ∠===⨯=△.121211322F PF P P S F F y ===△,解得23P y =.则代入椭圆方程得292P x =,因此302OP ==.故选B.解法二(几何性质+定义):因为1226PF PF a +==①,22212121122cos PF PF PF PF F PF F F +-⋅∠=,即2212126125PF PF PF PF +-⋅=②,联立①②,解得12152PF PF ⋅=,221221PF PF +=.由中线定理可知,()()222212122242OP F F PF PF +=+=,而12F F =,解得302OP =.故选B.解法三(向量法):由解法二知12152PF PF ⋅=,221221PF PF +=.而()1212PO PF PF =+,所以1213022PO PF PF =+===.故选B.2.(2023全国甲卷文科7)设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅= ,则12PF PF ⋅=()A.1B.2C.4D.5【分析】解法一:根据焦点三角形面积公式求出12PF F △的面积,即可解出;解法二:根据椭圆的定义以及勾股定理即可解出.【解析】解法一:因为120PF PF ⋅=,所以1290F PF ∠= ,从而122121tan 4512F PF S b PF PF ===⨯⋅ △,所以122PF PF ⋅=.故选B.解法二:因为120PF PF ⋅=,所以1290F PF ∠= ,由椭圆方程可知,25142c c =-=⇒=,所以22221212416PF PF F F +===,又122PF PF a +==22121212216220PF PF PF PF PF PF ++=+=,所以122PF PF ⋅=.故选B.3.(2023新高考I 卷5)设椭圆()2212:11x C y a a +=>,222:14x C y +=的离心率分别为1e ,2e .若21e =,则a =()A.233B.【解析】11a e a =,232e =,由21e =可得32=,解得233a =.故选A.4.(2023新高考II 卷5)已知椭圆22:13x C y +=的左、右焦点分别为12,F F ,直线y x m =+与C 交于,A B 两点,若1F AB △的面积是2F AB △面积的2倍,则m =()A.23B.3C.3-D.23-【解析】设AB 与x 轴相交于点(),0D m -,由122F AB F AB S S =△△,得122F DF D=.又12F F =23F D =,则有()3m --=,解得3m =.故选C.第二节双曲线1.(2023新高考I 卷16)已知双曲线()2222:10,0x y C a b a b -=>>的左、右焦点分别为12,F F ,点A 在C 上,点B 在y 轴上,11F A F B ⊥ ,2223F A F B =- ,则C 的离心率为.【解析】解法一:建立如图所示的平面直角坐标系,设()()()12,0,,0,0,F c F c B n -,由2223F A F B =- 可得52,33A c n ⎛⎫- ⎪⎝⎭,又11F A F B ⊥ 且182,33F A c n ⎛⎫=- ⎪⎝⎭ ,()1,F B c n = ,则()22118282,,03333F A F B c n c n c n ⎛⎫⋅=-⋅=-= ⎪⎝⎭ ,所以224n c =,又点A 在C 上,则2222254991c n a b -=,整理可得2222254199c n a b-=,代入224n c =,可得222225169c c a b -=,即222162591e e e -=-,解得295e =或()215e =舍.故355e =.解法二:由2223F A F B =-可得2223F A F B =,设222,3F A x F B x ==,由对称性可得,13F B x =,由定义可得,122AF x a =+,5AB x =,设12F AF θ∠=,则33sin 55x x θ==,所以422cos 55x a xθ+==,解得x a =,所以1224AF x a a =+=,222F A x a ==,在12AF F △中,由余弦定理可得222216444cos 165a a c a θ+-==,2295a c =,所以355e =.2.(2023全国甲卷理科8)已知双曲线()222210,0x y a b a b-=>>的离心率为5,其中一条渐近线与圆()()22231x y -+-=交于,A B 两点,则AB =()A.15B.55C.255 D.455【解析】由5e =,则222222215c a b b a a a +==+=,解得2b a =.所以双曲线的一条渐近线为2y x =,则圆心()2,3到渐近线的距离22235521d ⨯-==+,所以弦长221452155AB r d =--.故选D.3.(2023全国甲卷文科9)已知双曲线()222210,0x y a b a b-=>>的离心率为5,其中一条渐近线与圆()()22231x y -+-=交于,A B 两点,则AB =()A.15B.55C.255D.455【解析】由e =,则222222215c a b b a a a+==+=,解得2b a =.所以双曲线的一条渐近线为2y x =,则圆心()2,3到渐近线的距离55d ==,所以弦长5AB =.故选D.4.(2023北京卷12)已知双曲线C 的焦点为()2,0-和()2,0,离心率为,则C 的方程为.【分析】根据给定条件,求出双曲线C 的实半轴、虚半轴长,再写出C 的方程作答.【解析】令双曲线C 的实半轴、虚半轴长分别为,a b ,显然双曲线C 的中心为原点,焦点在x 轴上,其半焦距2c =,由双曲线C ,得ca,解得a =,则b =所以双曲线C 的方程为22122x y -=.故答案为:22122x y -=.因为()2,0F c ,不妨设渐近线方程为所以222bc bcPF c a b ==+设2POF θ∠=,则tan θ=第三节抛物线2.(2023全国乙卷理科13,文科13)已知点A 在抛物线2:2C y px =上,则A 到C 的准线的距离为.【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为54x =-,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【解析】由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =-,点A 到C 的准线的距离为59144⎛⎫--= ⎪⎝⎭.故答案为:94.3.(2023新高考II 卷10)设O 为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于,M N 两点,l 为C 的准线,则()A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN △为等腰三角形【解析】由题意可得焦点为()1,0F ,所以12p=,2p =,A 正确;联立)214y x y x⎧=-⎪⎨=⎪⎩,消y 得231030x x -+=.设()()1122,,,M x y N x y ,由韦达定理得12103x x +=,所以12163MN MF NF x x p =+=++=,B 错误;设MN 的中点为Q ,分别过,,M N Q 向l 作垂线,垂足分别为111,,M N Q ,由梯形中位线性质及抛物线定义可得,()()111111222QQ MM NN MF NF MN r =+=+==,所以以MN 为直径的圆与准线l 相切,C 正确;由上述解题过程知,231030x x -+=,解得121,33x x ==,从而(1,3,3M N ⎛- ⎝⎭,易得OM ON MN ≠≠,OMN △不是等腰三角形,D 错误.综上,故选AC.第四节直线与圆锥曲线的位置关系1.(2023全国乙卷理科11,文科12)已知,A B 是双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1 B.()1,2- C.()1,3 D.()1,4--【分析】设直线AB 的斜率为AB k ,OM 的斜率为k ,根据点差法分析可得9AB k k ⋅=,对于A ,B ,D 通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【解析】设()11,A x y ,()22,B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,设直线AB 的斜率为AB k ,OM 的斜率为k ,可得1212121212122,2ABy y y y y y k k x x x x x x +-+===+-+,因为,A B 在双曲线上,则221122221919y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得()2222121209y y x x ---=,所以221222129AB y y k k x x -⋅==-.对于选项A :可得1k =,9AB k =,则:98AB y x =-,联立方程229819y x y x =-⎧⎪⎨-=⎪⎩,消去y 得272272730x x -⨯+=,此时()2272472732880∆=-⨯-⨯⨯=-<,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得2k =-,92AB k =-,则95:22AB y x =--,联立方程22952219y x y x ⎧=--⎪⎪⎨⎪-=⎪⎩,消去y 得245245610x x +⨯+=,此时()()22454456144545610∆=⨯-⨯⨯=⨯⨯-<,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得3k =,3AB k =,则:3AB y x =.由双曲线方程可得1a =,3b =,则:3AB y x =为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :4k =,94AB k =,则97:44AB y x =-,联立方程22974419y x y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消去y 得2631261930x x +-=,此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确.故选D.2.(2023新高考I 卷22)在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD的周长大于【解析】(1)设(,)P x y ,则22212x y y ⎛⎫+-= ⎪⎝⎭,故21:4W y x =+.(2)解法一:不妨设三个顶点,,A B C 在抛物线214y x =+上,且AB BC ⊥,显然,AB BC 的斜率存在且不为0,令222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,AB BC k a b k b c =+=+,1AB BC k k =-,即()()1a b b c ++=-,即1a b b c-+=+,本题等价于证明332AB BC +>,令||||AB BC b c m +=--=,则m b c =-+-,(未知数有,,a b c ,通过转化(放缩),将变量归一)由221ABBC kk =⋅,即()()22221AB BC k k a b b c =++=⋅,不妨设()221AB k a b =+≤,则m b c=-+-b =-+b c ≥--c ≥-()b b c =+-+1b a b=+++()3221a b a b⎡⎤⎣⎦++=+.令a b t +=,则()()1232323323222211223411332t t a b ta b tt t⎡⎤⎢⎥⎛⎫⎢⎥++⎡⎤ ⎪⎢⎥⎣⎦⎝⎭⎛⎫⨯ ⎪⎝⎭+++==≥=+⎣⎦,当212t =时取等号,又()2321t m t+≥取等时必有21t =,因此取不到等号,所以332m >.解法二:如图所示,先将第一问中的曲线下移14个单位,其表达式为2x y =.不妨设,,A B D 三点在抛物线上,再设()2,A t t 及AB 的斜率为k .由题意知AD 的斜率为1k -,因为11k k ⎛⎫⋅-= ⎪⎝⎭,故而可再使01k <≤,直线AB 的方程()2y t k x t -=-,即2y kx kt t =-+,与曲线联立可得220x kx kt t -+-=,由此可知()222222221211414412AB k x x k k kt t k k kt t k k t=+-=+--=+-+=+-同理,21112AD t k k=++,由此可知矩形ABCD 的周长ρ满足2211122122k k t t k kρ+-++=+2211122212k k t k t k k=+-+++22t t≥-+①12+2k t tk⎫-+⎪⎭1+k≥②()323222112122=2kkk k⎛⎫++⎪+⎝⎭=322k⎛⎫⎝⎭≥⨯③22⨯==.当1k=时①处取等号,当12,2k t tk-+同号时②处取等号,当212k=时③处取等号,显然三处不能同时取等号,所以矩形ABCD的周长大于.由题意得31a c a c +=⎧⎨-=⎩,解得所以椭圆的方程为24x y +(2)由题意得,直线2A A P 的方程为y =第五节圆锥曲线综合探究型问题1.(2023全国甲卷理科20)设抛物线()2:20C y px p =>,直线210x y -+=与C 交于,A B 两点,且AB =.(1)求p ;(2)设C 的焦点为F ,,M N 为抛物线C 上的两点,0MF NF ⋅=,求MNF △面积的最小值.【解析】(1)设()11,A x y ,()22,B x y ,联立直线与抛物线的方程22102x y y px -+=⎧⎨=⎩,消x 得()2221y p y =-,即2420y py p -+=,()21212168821042p p p p y y p y y p ∆⎧=-=->⎪+=⎨⎪=⎩,12AB y y ==-=,解得2p =,32p =-(舍).所以2p =.(2)解法一(向量法):由(1)知,抛物线的方程为24y x =,()1,0F ,设()33,M x y ,()44,N x y ,()233331,1,4y FM x y y ⎛⎫=-=- ⎪⎝⎭,()244441,1,4y FN x y y ⎛⎫=-=- ⎪⎝⎭ ,又FM FN ⊥ 得22343411044y y y y ⎛⎫⎛⎫--+= ⎪⎪⎝⎭⎝⎭,即22223434341164y y y y y y +++=,又()()22222233434434111111111222442164MNFy y y y y y S FM FN x x ⎛⎫⎛⎫⎛⎫+=⋅=++=++=++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ △()2223434344122816y y y y y y +⎛⎫=++= ⎪⎝⎭,又22223434341164y y y y y y +++=,得()()22343444y y y y +=-,因此343442y y y y +=-,即()343442y y y y +=-或()3434420y y y y ++-=,得()434222y y y +=-或()343222y y y +=-(这一步至关重要),()24442214162MNFy S y y ⎡+⎤=⋅+⎢⎥-⎣⎦△或()23332214162y y y ⎡+⎤⋅+⎢⎥-⎣⎦.设()22214,162MNFt S t t t ⎡+⎤=⋅+∈⎢⎥-⎣⎦R△()()22222214148181822442424242t t t t t t t t ⎛⎫⎛⎫+-+⎡⎤⎡⎤===-++=-+- ⎪ ⎪⎢⎥⎢⎥----⎣⎦⎣⎦⎝⎭⎝⎭.又()822t t -+-()822t t-+--则()(214434MNF S =-△(当且仅当2t -=时,即32t y =-=时取最小值).解法二(极坐标法):如图所示,设MF 与x 轴正半轴的夹角为θ,则有21cos MF θ=-,21sin NF θ=+,从而有()()()221cos 1sin 1sin cos sin cos MNF S θθθθθθ==-++--△()()()(22224443111112t t t ===-++++-.其中sin cos 4t θθθπ⎛⎫=-=- ⎪⎝⎭,显然当且仅当4θ3π=,即4MFO π∠=时取等号.2.(2023全国甲卷文科21)设抛物线()2:20C y px p =>,直线210x y -+=与C 交于,A B两点,且AB =.(1)求p ;(2)设C 的焦点为F ,,M N 为抛物线C 上的两点,0MF NF ⋅=,求MNF △面积的最小值.【解析】设()11,A x y ,()22,B x y ,联立直线与抛物线的方程22102x y y px-+=⎧⎨=⎩,消x 得()2221y p y =-,即2420y py p -+=,()21212168821042p p p p y y p y y p ∆⎧=-=->⎪+=⎨⎪=⎩,12AB y ==-==,解得2p =,32p =-(舍).所以2p =.(2)解法一:由(1)知,抛物线的方程为24y x =,()1,0F ,设()33,M x y ,()44,N x y ,()233331,1,4y FM x y y ⎛⎫=-=- ⎪⎝⎭ ,()244441,1,4y FN x y y ⎛⎫=-=- ⎪⎝⎭ ,又FM FN ⊥ 得22343411044y y y y ⎛⎫⎛⎫--+= ⎪⎪⎝⎭⎝⎭,即22223434341164y y y y y y +++=.又()()22222233434434111111111222442164MNFy y y y y y S FM FN x x ⎛⎫⎛⎫⎛⎫+=⋅==++=++=++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ △()2223434344122816y y y y y y +⎛⎫=++= ⎪⎝⎭,又22223434341164y y y y y y +++=,得()()22343444y y y y +=-,因此343442y y y y +=-,即()343442y y y y +=-或()3434420y y y y ++-=,得()434222y y y +=-或()343222y y y +=-(这一步至关重要),()24442214162MNFy S y y ⎡+⎤=⋅+⎢⎥-⎣⎦△或()23332214162y y y ⎡+⎤⋅+⎢⎥-⎣⎦.设()22214,162MNFt S t t t ⎡+⎤=⋅+∈⎢⎥-⎣⎦R △()()22222214148181822442424242t t t t t t t t ⎛⎫⎛⎫+-+⎡⎤⎡⎤===-++=-+- ⎪ ⎪⎢⎥⎢⎥----⎣⎦⎣⎦⎝⎭⎝⎭.又()822t t -+-()822t t-+--则()(214434MNFS-=-△2t -=时,即32t y =-=时取最小值).解法二(极坐标):如图所示,设MF 与x 轴正半轴的夹角为θ,则有22,1cos 1sin MF NF θθ==-+,从而有()()()221cos 1sin 1sin cos sin cos MNF S θθθθθθ==-++--△()()()(22224443111112t t t ===-++++-.其中sin cos 4t θθθπ⎛⎫=-=- ⎪⎝⎭,显然当且仅当4MFO π∠=时取等号.3.(2023全国乙卷理科20,文科21)已知椭圆()2222:10y x C a b a b+=>>的离心率为3,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,求证:线段MN 中点为定点.【解析】(1)依题意,2b =,3c e a ==,则2224b a c =-=,得3a =,c =,曲线C 的方程为22194y x +=.(2)设()11,P x y ,()22,Q x y ,直线():32PQ y k x -=+,()11:22y AP y x x =++,令0x =,得1122M yy x =+,()22:22y AQ y x x =++,令0x =,得2222N yy x =+.MN 的中点坐标为12120,22y y x x ⎛⎫+ ⎪++⎝⎭,联立直线PQ 的方程和椭圆方程得()22239436y k x x y ⎧=++⎪⎨+=⎪⎩,消y 建立关于x 的一元二次方程,()229423360x k x +⎡++⎤-=⎣⎦,即()()222249162416480k x k k x k k +++++=,21222122162449164849k kx x k k k x x k ⎧++=-⎪⎪+⎨+⎪=⎪+⎩,又()()121212121223231123222222k x k x y y k x x x x x x ++++⎛⎫+=+=++ ⎪++++++⎝⎭()2221222121222162416364492323164832482444949k k k x x k k k k k k k x x x x k k --+++++=+⋅=+⋅+++++-+++3=.所以线段MN 过定点()0,3.【评注】本题为2022全国乙卷的变式题,难度有所降低,考查仍为极点、极线的性质,定点()0,3为()2,3P -关于椭圆22194y x +=的极线123x y +=-与y 轴的交点.本题以椭圆中极点极线理论的射影不变性为命题背景,考查椭圆中对称式的计算方法,要求考生具有较强的计算能力.除此之外,如果考生具有先猜再证的解题意识,本题中的定点可以通过极限思想进行猜想.4.(2023新高考II 卷21)已知双曲线C的中心为坐标原点,左焦点为()-.(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点()4,0-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P ,求证:点P 在定直线上.【解析】(1)设双曲线方程为()22221,0x y a b a b-=>,且22220c a b =+=.又c e a a===,得2a =,因为c =,所以4b =,因此双曲线的方程为221416x y -=.(2)(设点设线).设()()1122,,,M x y N x y ,:4MN x ty =-.由(1)可得,()()122,0,2,0A A -,则()111:22y MA y x x =++,()222:22yNA y x x =--.联立12,MA NA 的方程,消y 得()()12122222y yx x x x +=-+-,即2121122212112122222266y x y ty ty y y x x x y ty y ty y y +--+=⋅=⋅=----.联立MN 的方程与双曲线221416x y -=,得224416x ty x y =-⎧⎨-=⎩,消x 得()224416ty y --=,即()224132480t y ty --+=.由韦达定理()()221221223244148032414841t t t y y t y y t ∆⎧=---⨯>⎪⎪⎪+=⎨-⎪⎪=⎪-⎩(非对称结构处理).()12122483412t ty y y y t ==+-,则()()1221212112331221222393236222y y y y y x x y y yy y +--+===--+--+,得1x =-.因此点P 在定直线1x =-上.5.(2023北京卷19)已知椭圆()2222:10x y E a b a b +=>>的离心率为53,,A C 分别是E 的上、下顶点,,B D分别是E 的左、右顶点,4AC =.(1)求椭圆E 的方程;(2)点P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线AP 与直线2y =-交于点N .求证://MN CD .【分析】(1)结合题意得到c a =24b =,再结合222a c b -=,解之即可;(2)依题意求得直线BC 、PD 与PA 的方程,从而求得点,M N 的坐标,进而求得MN k ,再根据题意求得CD k ,得到MN CD k k =,由此得解.【解析】(1)依题意,得53c e a ==,则53c a =,又,A C 分别为椭圆上下顶点,4AC =,所以24b =,即2b =,所以2224a c b -==,即22254499a a a -==,则29a =,所以椭圆E 的方程为22194x y +=.(2)因为椭圆E 的方程为22194x y +=,所以()()()()0,2,0,2,3,0,3,0A C B D --,因为P 为第一象限E 上的动点,设()(),03,02P m n m n <<<<,则22194m n +=,易得022303BC k +==---,则直线BC 的方程为223y x =--,033PD n n k m m -==--,则直线PD 的方程为()33n y x m =--,联立()22333y x n y x m ⎧=--⎪⎪⎨⎪=-⎪-⎩,解得()332632612326n m x n m n y n m ⎧-+=⎪⎪+-⎨-⎪=⎪+-⎩,即()332612,326326n m n M n m n m ⎛-+⎫- ⎪+-+-⎝⎭,而220PA n n k m m --==-,则直线PA 的方程为22n y x m-=+,令=2y -,则222n x m --=+,解得42m x n -=-,即4,22m N n -⎛⎫- ⎪-⎝⎭,又22194m n +=,则22994n m =-,2287218m n =-,所以()()()()()()12264122326332696182432643262MN n n m n n m k n m n m n m n m m n m n -+-+--+-==-+-+-++---+--222222648246482498612369612367218n mn m n mn m n m mn m n m n n m -+-+-+-+==++---++--()()22222324126482429612363332412n mn m n mn m n mn m n mn m -+-+-+-+===-+-+-+-+,又022303CD k +==-,即MN CD k k =,显然,MN 与CD 不重合,所以//MN CD .第六节平面几何性质在圆锥曲线中的应用1.(2023全国甲卷理科12)已知椭圆22196x y +=,12,F F 为两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF ∠=,则OP =()A.25C.35【解析】因为1226PF PF a +==①,22212121122cos PF PF PF PF F PF F F +-⋅∠=,即2212126125PF PF PF PF +-⋅=②,联立①②,解得12152PF PF ⋅=,221221PF PF +=.由中线定理可知,()()222212122242OP F F PF PF +=+=,而12F F =,解得302OP =.故选B.2.(2023新高考II 卷10)设O为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于,M N 两点,l 为C 的准线,则()A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN △为等腰三角形【解析】由题意可得焦点为()1,0F ,所以12p =,2p =,A 正确;联立)214y x y x⎧=-⎪⎨=⎪⎩,消y 得231030x x -+=.设()()1122,,,M x y N x y ,由韦达定理得12103x x +=,所以12163MN MF NF x x p =+=++=,B 错误;设MN 的中点为Q ,分别过,,M N Q 向l 作垂线,垂足分别为111,,M N Q ,由梯形中位线性质及抛物线定义可得,()()111111222QQ MM NN MF NF MN r =+=+==,所以以MN 为直径的圆与准线l 相切,C 正确;由上述解题过程知,231030x x -+=,解得121,33x x ==,从而(1,3,3M N ⎛- ⎝⎭,易得OM ON MN ≠≠,OMN △不是等腰三角形,D 错误.综上,故选AC.。
2012-2021十年全国高考数学真题分类汇编(文科) 圆锥曲线选择题(精解精析)
2012-2021十年全国高考数学真题分类汇编 (文科)圆锥曲线选择题(精解精析)1.(2021年高考全国甲卷文科)点()3,0到双曲线221169x y -=的一条渐近线的距离为( )A .95B .85C .65D .45【答案】A解析:由题意可知,双曲线的渐近线方程为:220169x y -=,即340±=x y ,结合对称性,不妨考虑点()3,0到直线340x y +=的距离:95d ==.故选:A .2.(2021年全国高考乙卷文科)设B 是椭圆22:15x C y +=的上顶点,点P 在C 上,则PB 的最大值为( )A .52B CD .2【答案】A解析:设点()00,P x y ,因为()0,1B ,220015x y +=,所以()()()222222200000001251511426424PB x y y y y y y ⎛⎫=+-=-+-=--+=--+ ⎪⎝⎭,而011y -≤≤,所以当012y =时,PB 的最大值为52.故选:A .【点睛】本题解题关键是熟悉椭圆的简单几何性质,由两点间的距离公式,并利用消元思想以及二次函数的性质即可解出.3.(2020年高考数学课标Ⅰ卷文科)设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为( )A .72B .3C .52D .2【答案】B【解析】由已知,不妨设12(2,0),(2,0)F F -, 则1,2a c ==,因为121||1||2OP F F ==, 所以点P 在以12F F 为直径的圆上,即12F F P 是以P 为直角顶点的直角三角形, 故2221212||||||PF PF F F +=,即2212||||16PF PF +=,又12||||22PF PF a -==,所以2124||||PF PF =-=2212||||2PF PF +-12||||162PF PF =-12||||PF PF ,解得12||||6PF PF =,所以12F F P S =△121||||32PF PF = 故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.4.(2020年高考数学课标Ⅱ卷文科)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为 ( ) A .4 B .8C .16D .32【答案】B 【解析】2222:1(0,0)x y C a b a b-=>> ∴双曲线的渐近线方程是by x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b -∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△ 双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =≥==当且仅当a b ==取等号∴C 的焦距的最小值:8故选:B .【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.5.(2020年高考数学课标Ⅲ卷文科)设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为 ( )A .1,04⎛⎫ ⎪⎝⎭ B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)【答案】B【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B .【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6.(2019年高考数学课标Ⅲ卷文科)已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则△OPF 的面积为 ( )A .32B .52C .72D .92【答案】B【解析】如图,不妨设F 为双曲线22:145x y C -=的右焦点,P 为第一象限点.由双曲线方程可得,24a =,25b =,则3c ==,则以O 为圆心,以3为半径的圆的方程为229x y +=.联立22229145x y x y ⎧+=⎪⎨-=⎪⎩,解得5)3P .5sin 9POF ∴∠=.则15533292OPF S ∆=⨯⨯⨯=.故选:B .7.(2019年高考数学课标Ⅱ卷文科)设F 为双曲线()2222:10,0x y C a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于,P Q 两点.若PQ OF =,则C 的离心率为 ( )ABC .2D【答案】A【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA∴=∴为以OF 为直径的圆的半径,A ∴为圆心,||2c OA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上, 22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=A .【点评】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.8.(2019年高考数学课标Ⅱ卷文科)若抛物线()220y px p =>的焦点是椭圆2213x y p p+=的一个焦点,则p =( ) A .2B .3C .4D .8【答案】D【解析】因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点评】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.9.(2019年高考数学课标Ⅰ卷文科)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为() ( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解析】由222AF F B =,1AB BF =,设2F B x =,则22AF x =,13BF x =,根据椭圆的定义21212F B BF AF AF a +=+=,所以12AF x =,因此点A 即为椭圆的下顶点,因为222AF F B =,1c =所以点B 坐标为3(,)22b ,将坐标代入椭圆方程得291144a +=,解得223,2a b ==.10.(2019年高考数学课标Ⅰ卷文科)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130︒,则C的离心率为()( )A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒【答案】D【解析】根据题意可知︒=-130tan a b ,所以︒︒=︒=50cos 50sin 50tan a b , 离心率︒=︒=︒︒+︒=︒︒+=+=50cos 150cos 150cos 50sin 50cos 50cos 50sin 1122222222a b e . 11.(2018年高考数学课标Ⅲ卷文科)已知双曲线22221x y C a b-=:(00a b >>,),则点()40,到C 的渐近线的距离为 ( )AB .2CD.【答案】D解析:由题意c e a ==,则1ba=,故渐近线方程为0x y ±=,则点(4,0)到渐近线的距离为d ==.故选D . 12.(2018年高考数学课标Ⅱ卷文科)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 ( )A.1B.2CD1【答案】D解析:12,F F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,可得椭圆的焦点坐标2(,0)F c,所以1()2P c .可得:22223144c c a b +=,可得22131144(1)e e+=-,可得42840e e -+=,解得1e =.故选D .13.(2018年高考数学课标Ⅱ卷文科)双曲线22221(0,0)x y a b a b-=>>()A.y = B.y = C.y = D.y = 【答案】A解析:∵双曲线的离心率为ce a ==,则b a =====即双曲线的渐近线方程为by x a=±=,故选A . 14.(2018年高考数学课标Ⅰ卷文科)已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为( )A .13B .12C.2D.3【答案】C解析:22224,2,8,b c a b c a ===+=∴=c e a ==. 15.(2017年高考数学课标Ⅲ卷文科)已知椭圆,的左、右顶点分别为,且以线段为直径的圆与直线相切,则的离心率为( )ABC .D.【答案】A【解析】法一:以线段为直径的圆的圆心为原点,半径为,该圆与直线相切,所以圆心到直线的距离,整理可得所以,故选A .法二:以线段为直径的圆是,直线与圆相切,所以圆心到直线的距离,整理为,即,即 ,,故选A .22221x y C a b+=:0a b()12A A,12A A 20bx ay ab -+=C31312A A R a =20bx ay ab -+=()0,020bx ayab -+=d R a ===223a b =c e a ==3==12A A 222x y a +=20bx ay ab -+=d a ==223a b =()22222323a a c a c =-⇒=2223c a =c e a ==【考点】椭圆离心率【点评】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.16.(2017年高考数学课标Ⅱ卷文科)过抛物线的焦点,于点(在轴上方),为的准线,点在上,且⊥,则到直线的距离为()A B.C.D.【答案】C【解析】由题知,与抛物线联立得,解得所以,因为,所以,因为,所以所以到方法二:设,,,由题知:.解得:.则,,则到直线的距离为故选C.【考点】直线与抛物线位置关系【点评】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,涉及弦长的问题中,应熟练地利用根与系数关系,设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.涉及中点弦问题往往利用点差法.或者由抛物线焦半径公式:得出.17.(2017年高考数学课标Ⅱ卷文科)若,则双曲线的离心率的取值范围是( ) A.B.C.D.【答案】C【解析】本题考查双曲线的性质.由题知,a>1,又, 则.故选C.,,a b c,,a b c b,a c,,a bc2:4C yx=F C M Mx l C N l MN l M NF:1)MF y x=-24y x=231030x x-+=121,33x x== (3,M MN l⊥(1,N-(1,0)F:1)NF y x=-M NF=()00,M x y()01,N y-()1,0F211cos60MF x==+-3x=()200120y y=>y=4MF MN NF===M NF1cos2p pMF xθ==+±1a>2221xya-=)+∞)2(()1,21b=c=c=(cea===【考点】双曲线离心率【点评】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.18.(2017年高考数学课标Ⅰ卷文科)设是椭圆长轴的两个端点,若上存在点满足,则的取值范围是( )A .B .C .D .【答案】A【解析】设是椭圆上的动点,椭圆上存在点满足等价于的最大值大于或等于. 可以猜测:当点为椭圆短轴上的顶点时,取得最大值(证明放在最后)当,焦点在轴上,要使上存在点满足,则,得;当,焦点在轴上,要使上存在点满足,则,得,故的取值范围为,故选A .命题:设,是椭圆长轴的两个端点,是椭圆上任意一点,为椭圆短轴上一顶点,求证:.,,a b c ,,a b c b ,a c ,,a b c ,A B 22:13x yC m+=C M 120AMB ∠=︒m (][)0,19,+∞([)9,+∞(][)0,14,+∞([)4,+∞P C C M 120AMB ∠=︒APB ∠120︒P APB ∠03m <<x C M 120AMB ∠=︒tan 60ab ≥︒=≥01m <≤3m >y C M 120AMB ∠=︒tan 60a b =≥︒=9m ≥m (0,1][9,)+∞A B 22221(0)x y a b a b +=>>P M APB AMB ∠≤∠如图,设,则则,故,又由于,在递增所以当时,取得最大值.【考点】椭圆【点评】本题设置的是一道以椭圆的知识为背景的求参数范围的问题.解答问题的关键是利用条件确定的关系,求解时充分借助题设条件转化为,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论.19.(2017年高考数学课标Ⅰ卷文科)已知是双曲线的右焦点,是上一点,且与轴垂直,点的坐标是,则的面积为 ( )A .B .C .D .【答案】 D【解析】由得,所以,将代入,得,所以,故选D . (,),(,0)P x y G x 2222222221x y a x a a b y b -+=⇒=tan P AG a x APG G y +∠==tan BG a xBPG PG y-∠==222222222tan tan 2tan tan()1tan tan 11a ay y APG BPG a b APB APG BPG a x a APG BPG y c y b ∠+∠∠=∠+∠====-⨯--∠∠--22222tan a b abAPB b c c ∠≤-⨯=-tan 0APB ∠<tan y APB =∠(,)2ππy b=APB ∠,a b 120AMB ∠=︒tan60ab ≥︒=F 22:13y C x -=P C PF xA (1,3)APF △131223322224c a b =+=2c =(2,0)F 2x =2213y x -=3y =±133(21)22=⨯⨯-=【考点】双曲线【点评】本题考查圆锥曲线中双曲线的简单运算,属容易题.由双曲线方程得,结合与轴垂直,可得,最后由点的坐标是,计算的面积.20.(2016年高考数学课标Ⅲ卷文科)已知O 为坐标原点,F 是椭圆C :F 的左焦点,A B ,分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 ( ) A .13B .12C .23D .34【答案】A 【解析】法1:由题意得,(),0A a -,(),0B a ,根据对称性,不妨2,b P c a ⎛⎫- ⎪⎝⎭,设:l x my a =-,∴,a c M c m -⎛⎫- ⎪⎝⎭,0,a E m ⎛⎫⎪⎝⎭,∴直线:(),()a c BM y x a m a c -=--+又∵直线BM 经过OE 中点, ∴()1()23a c a a c e a c m m a -=⇒==+,故选A . 法2. 如图:记OE 的中点为N ,因为MF OE ∥,所以,.ON a MF a cMF a c OE a-==+ 又因为2OE ON =,所以12a a c a c a -=⋅+,解得13c e a ==.故选A .21.(2016年高考数学课标Ⅱ卷文科)设F 为抛物线:C 24y x =的焦点,曲线()0ky k x=>与C 交于点P ,PF x ⊥轴,则k =( ).A .12B .1C .32D .2【答案】D 【解析】(1,0)F ,又因为曲线(0)ky k x=>与C 交于点P ,PF x ⊥轴,所以,A C ,所以2k =,选D .22.(2016年高考数学课标Ⅰ卷文科)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短(2,0)F PF x 3PF =A (1,3)APF△轴长的14,则该椭圆的离心率为 ( )A .13B .12C .23D .34【答案】B 【解析】如图,由题意得在椭圆中,11,,242OF c OB b OD b b ===⨯= 在Rt OFB ∆中,||||||||OF OB BF OD ⨯=⨯,且222a b c =+,代入解得224a c =,所以椭圆得离心率得:12e =,故选B .23.(2015年高考数学课标Ⅰ卷文科)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( )A .3B .6C .9D .12【答案】B分析:∵抛物线的焦点为(2,0),准线方程为,∴椭圆E 的右焦点为(2,0),∴椭圆E 的焦点在x 轴上,设方程为,c =2,∵,∴,∴,∴椭圆E 方程为, 将代入椭圆E 的方程解得A (-2,3),B (-2,-3),∴|AB |=6,故选B . 考点:抛物线性质;椭圆标准方程与性质24.(2014年高考数学课标Ⅱ卷文科)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30︒的直线交C 于A .B 两点,则||AB = ( )AB .6C .12D.【答案】C解析:方法一:设2AF m =,2BF n = ,3(,0)4F ,由抛物线的定义和直角三角形知识可得,mn =6m n +=,2212AB AF BF m n =+=+=。
2023年高考真题文科数学解析分类汇编圆锥曲线
高考文科试题解析分类汇编:圆锥曲线一、选择题1.【高考新课标文4】设12F F 是椭圆2222:1(0)x y E a b a b +=>>旳左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30旳等腰三角形,则E 旳离心率为( )()A 12 ()B 23 ()C 34 ()D 45【答案】C【命题意图】本题重要考察椭圆旳性质及数形结合思想,是简朴题.【解析】∵△21F PF 是底角为030旳等腰三角形,∴0260PF A ∠=,212||||2PF F F c ==,∴2||AF =c ,∴322c a =,∴e =34,故选C. 2.【高考新课标文10】等轴双曲线C 旳中心在原点,焦点在x 轴上,C 与抛物线x y 162=旳准线交于,A B 两点,43AB =;则C 旳实轴长为( )()A 2 ()B 22 ()C 4 ()D 8【答案】C【命题意图】本题重要考察抛物线旳准线、直线与双曲线旳位置关系,是简朴题. 【解析】由题设知抛物线旳准线为:4x =,设等轴双曲线方程为:222x y a -=,将4x =代入等轴双曲线方程解得y =216a ±-,∵||AB =43,∴2216a -=43,解得a =2, ∴C 旳实轴长为4,故选C.3.【高考山东文11】已知双曲线1C :22221(0,0)x y a b a b-=>>旳离心率为 2.若抛物线22:2(0)C x py p =>旳焦点到双曲线1C 旳渐近线旳距离为2,则抛物线2C 旳方程为(A) 2833x y = (B) 21633x y = (C)28x y = (D)216x y = 【答案】D考点:圆锥曲线旳性质解析:由双曲线离心率为2且双曲线中a ,b ,c 旳关系可知a b 3=,此题应注意C2旳焦点在y 轴上,即(0,p/2)到直线x y 3=旳距离为2,可知p=8或数形结合,运用直角三角形求解。
圆锥曲线高考文科数学试题整理
4.圆锥曲线(2011)19.(本小题共14分)已知椭圆22:14x G y +=.过点(m ,0)作圆221x y +=的切线l 交椭圆G 于A ,B 两点. (I )求椭圆G 的焦点坐标和离心率;(II )将AB 表示为m 的函数,并求AB 的最大值. (2012)19.(本小题共14分)已知曲线22:(5)(2)8()C m x m y m -+-=∈R(Ⅰ)若曲线C 是焦点在x 轴点上的椭圆,求m 的取值范围;(Ⅱ)设4m =,曲线C 与y 轴的交点为,A B (点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点,M N ,直线1y =与直线BM 交于点G . 求证:,,A G N 三点共线.(2013)19. (本小题共14分)已知A 、B 、C 是椭圆W :2214x y +=上的三个点,O 是坐标原点. (I)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积.(II)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 5.函数(2011)18.(本小题共13分)已知函数2()()xkf x x k e =-。
(Ⅰ)求()f x 的单调区间;(Ⅱ)若对于任意的(0,)x ∈+∞,都有()f x ≤1e,求k 的取值范围。
(2012)18.(本小题共13分)已知函数2()1(0)f x ax a =+>,3()g x x bx =+.(1) 若曲线()y f x =与曲线()y g x =在它们的交点(1,)c 处具有公共切线,求,a b 的值; (2) 当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(,1]-∞-上的最大值. (2013)18. (本小题共13分) 设l 为曲线C :ln xy x=在点(1,0)处的切线. (I)求l 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线l 的下方 6.压轴题(2011)20.(本小题共13分)若数列12,,...,(2)n n A a a a n =≥满足11(1,2,...,1)k k a a k n +-==-,数列n A 为E 数列,记()n S A =12...n a a a +++.(Ⅰ)写出一个满足10s a a ==,且()s S A 〉0的E 数列n A ;(Ⅱ)若112a =,n=2000,证明:E 数列n A 是递增数列的充要条件是n a =2011; (Ⅲ)对任意给定的整数n (n ≥2),是否存在首项为0的E 数列n A ,使得()n S A =0?如果存在,写出一个满足条件的E 数列n A ;如果不存在,说明理由。
高考文科数学真题汇编圆锥曲线老师版
高考文科数学真题汇编圆锥曲线老师版Revised on July 13, 2021 at 16:25 pm∴a b3231=5525451511052222222=⇒=⇒=-⇒=⇒e a c a c a a bⅡ由题意可知N 点的坐标为2,2b a -∴a b a b a a bb K MN 56652322131==-+= abK AB -=∴1522-=-=⋅a b K K AB MN ∴MN ⊥AB 18.2015年福建文已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ;直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=;点M 到直线l 的距离不小于45;则椭圆E 的离心率的取值范围是 A A . 3(0,]2 B .3(0,]4 C .3[,1)2 D .3[,1)4121(0,0)y a b b 的一个焦点为222y 3相切;则双曲线的方程为 D A 221913x y B 1139x y C2213x yD 213y x.2013广东文已知中心在原点的椭圆C 的右焦点为(1,0)F ;离心率等于22y x 22y x 22y x 2x 30的等腰三角形椭圆C =30°;则221y b 0,0ab 的一条渐近线平行于直线则双曲线的方程为 A2120y B215y C2233125100x y D23125y33.2013新标1 已知双曲线C :22221x y a b-=0,0a b >>的离心率为52;则C 的渐近线方程为14x =± B .y = C .12y x =± D .y x =±34.2014新标1文已知双曲线)0(122>=-a y x 的离心率为=a D[9,)+∞ [9,)+∞ [4,)+∞[4,)+∞解析当03m <<120AMB =;则603=;即3m 要使C 上存在点120;则tan 603a b ≥=的取值范围为(0,1]·全国Ⅱ文>1;则双曲线∞1212121111442222BMy y K x x x x ----==---- (1x +=()122200x x ++= 又设AB :y=x +m 代入8+20=0∴m=7故AB :x +y=7年新课标Ⅱ文设O 为坐标原点;动点M 在椭圆错误!=错误!错误!.。
word完整版圆锥曲线文科测试含答案推荐文档
2圆锥曲线(文科)1已知F i 、F 2是两个定点,点P 是以F i 和F 2为公共焦点的椭圆和双曲线的一个交点, 并且PF i 丄PF 2, e i 和e 2分别是椭圆和双曲线的离心率,则有A . ee ? 22 ei2 2.已知方程— I m| 1 2 y=1 2 m表示焦点在y 轴上的椭圆,则 m 的取值范围是A . m<2 3 1<m<—22 4.已知椭圆二3m C . m< — 1 或 1<m<2D . m<— 1 或B . 1<m<2 3.在同一坐标系中, ) 5n 3n A . x —+ 上 y 2 5.过抛物线y=ax 2 (a > 0)的焦点 2m _ , <15 , £3 y 一 ± xC . x 一 ± y - 4 P 、 A . 2a B .丄 2a 2 F 用一直线交抛物线于 Q 两点, v —+ 3 y —± x 4 若线段PF 与FQ 的长分别是p 、q ,则丄 pC . 4a 2 y_ (a > b > 0) 的左、右焦点分别为 F i 、F 2,线段 F i F 2被抛物线y 2=2bx 的焦点分成5:3两段, 则此椭圆的离心率为 7. 8. 椭圆 16 172 x 12 2 »=13 ± _34 B 4 1717 的一个焦点为F i ,点 P 在椭圆上 •如果线段 PF i 的中点M 在y 轴上,那么点 M 的纵坐标是(2设F i 和F 2为双曲线— 4 y 2 1的两个焦点,点 P 在双曲线上,且满足/ F i PF 2= 90°,则 △ F 1PF 2的面积是(2x 已知双曲线—a2 計利椭圆2x 2 m 2+每=1(a>0,m>b>0)的离心率互为倒数,那么以 b 2 a 、 b 、 m 为边长的三角形是A .锐角三角形B .直角三角形C .钝角三角形D .锐角或钝角三角形 10.中心在原点,焦点坐标为(0, ± 5=2)的椭圆被直线3x — y — 2=0截得的弦的中点的横坐标为 丄,则椭圆方程为22 2 A.红+也=1 25 752 2 B .红+也=1 75 25 2 2C . —1 25 75 11.已知点(一2, 3)与抛物线y 2=2px ( p >0)的焦点的距离是2 2 D .・+・=1 75 255,贝y p= ____2 212•设圆过双曲线 ] 1=1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是___________9162 213.双曲线x y = 1的两个焦点为F i 、F 2,点P 在双曲线上,若 PF i 丄PF 2,则点P 到x 轴的距离为 _________________________百 14.若A 点坐标为(1, 1) , F 1是5X 2 + 9y 2=45椭圆的左焦点,点P 是椭圆的动点,则|PA|+ |P F 1|的最小值是 _______________________2 216•双曲线 笃 与1 ( a>1,b>0)的焦距为2c,直线I 过点(a,0)和(0, b),且点(1,0)到直线I 的距离与点(- a b 1,0)到直线l 的距离之和s > 4 c.求双曲线的离心率e 的取值范围52 2 ,—17.已知圆C 1的方程为(x - 2)2+(y — 1)2=竺,椭圆C 2的方程为 —+ -^=1 (a>b>0), C 2的离心率为空,如果 G 与C 2相交 3 a 2 b 2 2 于A 、B 两点,且线段 AB 恰为圆C 1的直径,求直线 AB 的方程和椭圆 C 2的方程。
圆锥曲线文科高考习题含答案
1.【2012高考新课标文4】设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为( ) ()A 12 ()B 23 ()C 34 ()D 452.【2012高考新课标文10】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 83.【2012高考山东文11】已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 2833x y =(B) 21633x y = (C)28x y = (D)216x y = 4.【2012高考全国文5】椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += 5.【2012高考全国文10】已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )456.【2012高考浙江文8】 如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点。
若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A.3B.2C. 3D.27.【2012高考四川文9】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
若点M 到该抛物线焦点的距离为3,则||OM =( )A 、22B 、23C 、4D 、258.【2012高考四川文11】方程22ay b x c =+中的,,{2,0,1,2,3}a b c ∈-,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )A 、28条B 、32条C 、36条D 、48条9.【2012高考上海文16】对于常数m 、n ,“0mn >”是“方程221mx ny +=的曲线是椭圆”的( )A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件10.【2012高考江西文8】椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线方程一、椭圆方程.1. 椭圆方程的第一定义:⑴①椭圆的标准方程:i.中心在原点,焦点在x 轴上:.ii.ii. 中心在原点,焦点在轴上:.②一般方程:.⑵①顶点:或.②轴:对称轴:x 轴,轴;长轴长,短轴长.③焦点:或.④焦距:.⑤准线:或.⑥离心率:.⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:和二、双曲线方程.1. 双曲线的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+πφ)0(12222φφb a by ax =+y )0(12222φφb a b x a y =+)0,0(122φφB A By Ax =+),0)(0,(b a ±±)0,)(,0(b a ±±y a 2b 2)0,)(0,(c c -),0)(,0(c c -2221,2b a c c F F -==ca x 2±=ca y 2±=)10(ππe ac e =),(2222a b c a b d -=),(2ab c⑴①双曲线标准方程:. 一般方程:.⑵①i. 焦点在x 轴上:顶点: 焦点:准线方程 渐近线方程:或 ②轴为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率.④通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.三、抛物线方程.3. 设,抛物线的标准方程、类型及其几何性质:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-φπ)0,(1),0,(122222222φφb a b x a y b a b y a x =-=-)0(122πAC Cy Ax =+)0,(),0,(a a -)0,(),0,(c c -ca x 2±=0=±b ya x 02222=-by a x y x ,ac e =ab 22ac e b a c =+=,22212222=-b y a x 21,F F 222a y x ±=-x y ±=2=e 0φp注:通径为2p,这是过焦点的所有弦中最短的.四、圆锥曲线的统一定义..:椭圆、双曲线、抛物线的标准方程与几何性质一、选择题(2013年高考湖北卷(文))已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的( )A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等【答案】D1 .(2013年高考四川卷(文))从椭圆22221(0)x y a b a b+=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是( )A .4B .12C .2D .2【答案】C2 .(2013年高考课标Ⅱ卷(文))设抛物线C:y 2=4x 的焦点为F,直线L过F 且与C 交于A, B 两点.若|AF|=3|BF|,则L 的方程为( )A .y=x-1或y=-x+1B .y=√33(X-1)或y=-√33(x-1)C .y=√3(x-1)或y=-√3(x-1)D .y=√22(x-1)或y=-√22(x-1)【答案】C3 .(2013年高考课标Ⅰ卷(文))O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =,则POF ∆的面积为( )A .2B .C .D .4【答案】C4 .(2013年高考课标Ⅰ卷(文))已知双曲线2222:1x y C a b-=(0,0)a b >>,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±【答案】C5 .(2013年高考福建卷(文))双曲线122=-y x 的顶点到其渐近线的距离等于( )A .21B .22 C .1 D .2【答案】B6 .(2013年高考广东卷(文))已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是 ( )A .14322=+y xB .13422=+y x C .12422=+y x D .13422=+y x 【答案】D7 .(2013年高考四川卷(文))抛物线28y x =的焦点到直线0x =的距离是( )A .B .2CD .1【答案】D8 .(2013年高考课标Ⅱ卷(文))设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,,F F P 是C 上的点21212,30PF F F PF F ⊥∠=︒,则C 的离心率为( )A .√36B .13C .12D .√33【答案】D9.(2013年高考大纲卷(文))已知()()1221,0,1,0,F F C F x -是椭圆的两个焦点过且垂直于轴的直线交于A B 、两点,且3AB =,则C 的方程为 ( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】C10.(2013年高考辽宁卷(文))已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,F C 与过原点的直线相交于,A B 两点,连接了,AF BF ,若410,8,cos ABF 5AB B F ==∠=,则C 的离心率为 ( )A .35B .57C .45D .67【答案】B11.(2013年高考重庆卷(文))设双曲线C 的中心为点O ,若有且只有一对相较于点O 、所成的角为060的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( )A .2]B .2)C .)+∞D .)+∞ 【答案】A12.(2013年高考大纲卷(文))已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =u u u r u u u rg ,则k =( )A .12B .2C D .2【答案】D13.(2013年高考北京卷(文))双曲线221y x m-=的充分必要条件是 ( )A .12m >B .1m ≥C .1m >D .2m >【答案】C14.(2013年上海高考数学试题(文科))记椭圆221441x ny n +=+围成的区域(含边界)为()1,2,n n Ω=L ,当点(),x y 分别在12,,ΩΩL 上时,x y +的最大值分别是12,,M M L ,则lim n n M →∞=( )A .0B .41C .2D .【答案】D15.(2013年高考安徽(文))直线250x y +-=被圆22240x y x y +--=截得的弦长为( )A .1B .2C .4D .46【答案】C16.(2013年高考江西卷(文))已知点A(2,0),抛物线C:x 2=4y 的焦点为F,射线FA 与抛物线C 相交于点M,与其准线相交于点N,则|FM|:|MN|=( )A .2:√5B .1:2C .1:√5D .1:3【答案】C17.(2013年高考山东卷(文))抛物线的焦点与双曲线的右焦点的连线交于第一象限的点M,若在点M处的切线平行于的一条渐近线,则= ()A.B.C.D.【答案】D18.(2013年高考浙江卷(文))如图是椭圆C1:x24+y2=1与双曲线C2的公共焦点()A.B分别是在第二.四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()(第9题图)A . 2B . 3C .32D .62【答案】 D .二、填空题19.(2013年高考湖南(文))设F 1,F 2是双曲线C,22221a x y b-= (a>0,b>0)的两个焦点.若在C 上存在一点P.使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为____13+_______.【答案】13+20.(2013年高考陕西卷(文))双曲线的离心率为________. 【答案】21.(2013年高考辽宁卷(文))已知F 为双曲线22:1916x y C -=的左焦点,,P Q 为C 上的点,若PQ 的长等于虚轴长的2倍,点()5,0A 在线段PQ上,则PQF ∆的周长为____________.【答案】44221169x y -=4522.(2013年上海高考数学试题(文科))设AB 是椭圆Γ的长轴,点C在Γ上,且π4CBA ∠=.若4AB =,BC =则Γ的两个焦点之间的距离为_______.23.(2013年高考北京卷(文))若抛物线22y px =的焦点坐标为(1,0)则p =____;准线方程为_____.【答案】2,1x =-24.(2013年高考福建卷(文))椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于__________【答案】13-25.(2013年高考天津卷(文))已知抛物线28y x =的准线过双曲线22221(0,0)x y a b a b -=>>的一个焦点, 且双曲线的离心率为2, 则该双曲线的方程为______.【答案】2213y x -=三、解答题26.(2013年高考浙江卷(文))已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ) 过点F作直线交抛物线C于两点.若直线分别交直线l:y=x-2于两点,求|MN|的最小值.27.(2013年高考山东卷(文))在平面直角坐标系中,已知椭圆C 的中心在原点O,焦点在轴上,短轴长为2,离心率为(I)求椭圆C的方程(II)A,B 为椭圆C 上满足的面积为的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 与点P,设,求实数的值.28.(2013年高考广东卷(文))已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点.(1) 求抛物线C 的方程;(2) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程;(3) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.29.(2013年上海高考数学试题(文科))本题共有3个小题.第1小题满分3分,第2小题满分6分,第3小题满分9分.如图,已知双曲线1C :2212x y -=,曲线2C :||||1y x =+.P 是平面内一点,若存在过点P 的直线与1C 、2C 都有公共点,则称P 为“1C -2C 型点”.(1)在正确证明1C 的左焦点是“1C -2C 型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“1C -2C 型点;(3)求证:圆2212x y +=内的点都不是“1C -2C 型点”. 30.(2013年高考福建卷(文))如图,在抛物线2:4E y x =的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心OC 为半径作圆,设圆C 与准线l 的交于不同的两点,M N .(1)若点C 的纵坐标为2,求MN ;(2)若2AF AM AN =⋅,求圆C 的半径.31.(2013年高考北京卷(文))直线y kx m =+(0m ≠)W :2214x y +=相交于A ,C 两点,O 是坐标原点(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长.(2)当点B 在W 上且不是W 的顶点时,证明四边形OABC 不可能为菱形.32.(2013年高考课标Ⅰ卷(文))已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长是,求||AB .33.(2013年高考陕西卷(文))已知动点M (x ,y )到直线l :x = 4的距离是它到点N (1,0)的距离的2倍.(Ⅰ) 求动点M 的轨迹C 的方程;(Ⅱ) 过点P (0,3)的直线m 与轨迹C 交于A , B 两点. 若A 是PB 的中点, 求直线m 的斜率.34.(2013年高考大纲卷(文))已知双曲线()221222:10,0x y C a b F F a b -=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I)求,;a b ;(II)2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF -35.(2013年高考天津卷(文))设椭圆22221(0)x y a b a b +=>>的左焦点为F ,离心率为, 过点F 且与x (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=u u u r u u u ru u u r u u u r, 求k 的值.36.(2013年高考辽宁卷(文))如图,抛物线()2212:4,:20C x y C x py p ==->,点()00,M x y 在抛物线2C 上,过M 作1C的切线,切点为,A B (M 为原点O 时,,A B 重合于O )01x =,切线.MA 的斜率为12-.(I)求p 的值;(II)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程.(),,.A B O O 重合于时中点为37.(2013年高考课标Ⅱ卷(文))在平面直角坐标系xOy 中,己知圆P在x 轴上截得线段长为2√2,在Y 轴上截得线段长为2√3.(Ⅰ)求圆心P 的轨迹方程;(Ⅱ)若P 点到直线y=x 的距离为,求圆P 的方程.38.(2013年高考湖北卷(文))如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记m nλ=,△BDM 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.第22题图39.(2013年高考重庆卷(文))(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率2e =,过左焦点1F 作x 轴的垂线交椭圆于A 、A '两点,4AA '=. (Ⅰ)求该椭圆的标准方程;(Ⅱ)取平行于y 轴的直线与椭圆相较于不同的两点P 、P ',过P 、P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求PP Q '∆的面积S 的最大值,并写出对应的圆Q 的标准方程.40.(2013年高考湖南(文))已知1F ,2F 分别是椭圆15:22=+y x E 的左、右焦点1F ,2F 关于直线02=-+y x 的对称点是圆C 的一条直径的两个端点.(Ⅰ)求圆C 的方程;(Ⅱ)设过点F的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab2最大时,求直线l的方程.。