八年级数学整数指数幂2
八年级数学整数指数幂2(PPT)5-4
观察:
正整数指数幂有以下运算性质:
(1) a m a n a mn(m、n是正整数)
(2) am n amn (m、n是正整数)
(3) ab n a nbn ( n是正整数)
(4) am an amn(a≠0,m、n是
(5)
a
n
b
an bn
正整数,m>n) ( n是正整数)
【部门】名组成某一整体的部分或单位:工业~|文教~|~经济学(如工业经济学、农业经济学)|一本书要经过编辑、出版、印刷、发行等~,然后才 能跟读者见面。 【部首】名字典、词典等根据汉字形体偏旁所分的门类,如山、口、火、石等。 【部属】名部下。 【部署】动安排;布置(人力、任 务):~工作|战略~|~了一个团的;長效消毒 長效消毒 ;兵力。 【部头】(~儿)名书的厚薄和大小(主要指篇幅多的书): 大~著作。 【部委】名我国国务院所属的部和委员会的合称。 【部位】名位置(多用于人的身体):发音~|消化道~。 【部下】名军队中被统率的人, 泛指下级。 【埠】①码头,多指有码头的城镇:船~|本~|外~。②商埠:开~。 【埠头】〈方〉名码头。 【瓿】〈书〉小瓮:酱~。 【蔀】①〈书〉 遮蔽。②古代历法称七十六年为一蔀。 【篰】〈方〉名竹子编的篓子。 【簿】①簿子:账~|练习~|收文~|记事~。②()名姓。 【簿册】名记事记 账的簿子。 【簿籍】名账簿、名册等。 【簿记】名①会计工作中有关记账的技术。②符合会计规程的账簿。 【簿子】?名记事或做练习等用的本子。 【拆】 〈方〉动排泄(大小便)。 【拆烂污】〈方〉比喻不负责任,把事情弄得难以收拾(烂污:稀屎):他做出这等~的事,气坏我了。 【擦】动①摩擦:~火
2024年人教版八年级数学上册教案及教学反思全册第15章 分式 整数指数幂(第2课时)教案.
第十五章分式15.2分式的运算15.2.3整数指数幂第2课时一、教学目标【知识与技能】1.会利用10的负整数次幂,用科学记数法表示一些绝对值较小的数.2.经历探索用10的负整数次幂来表示绝对值较小的数的过程,完善科学记数法,培养正向、逆向思维能力.【过程与方法】经历探索用科学记数法表示数的过程,理解科学记数法.【情感、态度与价值观】用科学记数法的形式渗透数学的简洁之美,通过完善科学记数法,培养对数学完美形式的追求.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】用科学记数法表示绝对值较小的数.【教学难点】含负指数的整数指数幂的运算,尤其是混合运算以及科学记数法中10的指数与小数点的关系.五、课前准备教师:课件、直尺、科学记数结构图等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课通过上节课的学习,大家明确了整数指数幂具有正整数指数幂的运算性质,这节课我们来学习运用其性质进行有关计算及负整数指数幂在科学记数法中的运用.(出示课件2)(二)探索新知1.创设情境,探究用科学记数法表示绝对值较小的数教师问1:口答:(1)(3-2)2;(2)[(-4)-3]0;(3)5-3×52;(4)(-0.5)-2;(5)222332--⎛⎫⎛⎫⨯⎪ ⎪⎝⎭⎝⎭;(6)4.7×10-4.注:前三个小题计算比较直接,可快速抢答,并陈述所用法则;后三个小题允许学生笔算后再口答,并陈述计算时的注意点,尤其是第(5)小题,有正向、逆向两个思路,注意方法的选择.而(6)为学习科学记数法表示绝对值较小的数作了铺垫.学生回答:(1)3-4=181;(2)1;(3)5-1=15;(4)(-12)-2=(-2)2=4;(5)(23×32)-2=1-2=1;(6)0.00047教师问2:由前面的练习可知4.7×10-4=0.00047,反过来就是,0.00047=4.7×10-4,由这个形式同学们能想到什么?学生回答:科学记数法.教师问3:那现在我们就一起研究怎样把绝对值较小的数用科学记数法表示出来.请同学们首先完成以下练习:填空:(用科学记数法表示一些绝对值较大的数)(1)4000000000=________;(2)-369000=________;学生回答:(1)4×109(2)-3.69×105教师问4:对于一个小于1的正小数,如果小数点后至第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是多少?如果有m个0呢?(出示课件4)先完成下面的题目:(出示课件5)填空:(1)0.1=______=______;(2)0.01=______=_______;(3)0.001=______=______;(4)0.0001=_______=______;(5)0.00001=_______=________.学生讨论后回答:(1)110=10-1;(2)1100=10-2;(3)11000=10-3;(4)110000=10-4;(5)1100000=10-5.教师问5:你发现用10的负整数指数幂表示0.0000…001这样较小的数有什么规律吗?请你把总结的规律和你的同伴交流.学生交流后,师生达成共识:表达成10的负整数指数幂的形式时,其指数恰好是第一个非零数前面所有“0”的个数的相反数.教师问6:你能归纳出数学式子吗?学生讨论后回答:教师问7:你能利用10的负整数指数幂,将绝对值较小的数表示成类似形式吗?0.00001=________;0.0000000257=2.57×0.00000001=2.57×________.学生回答:10-5;10-8教师问8:如何用科学记数法表示0.0035和0.0000982呢?(出示课件6)学生回答:0.0035=3.5×0.001=3.5×10-3;0.0000982=9.82×0.00001=9.82×10-5教师问9:观察这两个等式,你能发现10的指数与什么有关呢?师生共同讨论后解答如下:对于一个小于1的正小数,从小数点前的第一个0算起至小数点后第一个非0数字前有几个0,用科学记数法表示这个数时,10的指数就是负几.教师问10:归纳:请说一说你对科学记数法的认识.师生共同讨论后解答如下:绝对值较大的数用科学记数法能表示为a×10n的形式,其中,n等于数的整数位数减1,a的取值为1≤|a|<10;绝对值较小的数用科学记数法能表示为a×10-n的形式,其中,a的取值一样为1≤|a|<10,但n的取值为小数中第一个不为零的数字前面所有的零的个数.教师讲解:这样,任何一个数根据需要都可以记成科学记数法的形式. a×10n的形式,其中,n为整数,a的取值为1≤|a|<10;例1:用科学记数法表示下列各数:(出示课件7-9)(1)0.005师生共同解答如下:(2)0.0204师生共同解答如下:(3)0.00036师生共同解答如下:例2:计算下列各题:(出示课件11)(1)(-4×10-6)÷(2×103)(2)(1.6×10-4)×(5×10-2)师生共同解答如下:解:(1)(-4×10-6)÷(2×103)=(-4÷2)(10-6÷103)=-2×10-9(2)(1.6×10-4)×(5×10-2)=(1.6×5)×(10-4×10-2)=8×10-6总结点拨:科学记数法的有关计算,分别把前边的数进行运算,10的幂进行运算,再把所得结果相乘.例3:纳米(nm)是非常小的长度单位,1nm=10–9m,把1nm3的物体放到乒乓球上,就如同把乒乓球放到地球上,1mm3的空间可以放多少个1nm3的物体?(物体之间间隙忽略不计)师生共同解答如下:(出示课件13)解:1mm=10-3m,1nm=10-9m.(10-3)3÷(10-9)3=10-9÷10-27=1018,1mm3的空间可以放1018个1nm3的物体.(三)课堂练习(出示课件16-20)1.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克将0.0000005用科学记数法表示为()A.5×107B.5×10-7C.0.5×10-6D.5×10-62.用科学记数法表示下列各数:(1)0.001=________________;(2)-0.000001=_______________;(3)0.001357=____________________;(4)-0.000504=________________________.3.下列是用科学记数法表示的数,试写出它的原数.(1)4.5×10-8=________________;(2)-3.14×10-6=________________;(3)3.05×10-3=___________________.4.计算(结果用科学记数法表示).(1)(6×10-3)×(1.8×10-4);(2)(1.8×103)÷(3×10-4).5.一根约为1米长、直径为80毫米的光纤预制棒,可拉成至少400公里长的光纤.试问:1平方厘米是这种光纤的横截面积的多少倍?(用科学记数法表示且保留一位小数)参考答案:1.B2.(1)10-3;(2)-10-6;(3)1.357×10-3;(4)-5.04×10-43.(1)0.000000045;(2)-0.00000314;(3)-0.00305.4.(1)解:原式=1.08×10-6;(2)解:原式=0.6×107=6×1065.解:这种光纤的横截面积为1÷(1.256×10-4)≈8.0×103答:1平方厘米是这种光纤的横截面的8.0×103倍.(四)课堂小结今天我们学了哪些内容:用科学记数法表示绝对值小于1的数绝对值小于1的数用科学记数法表示为a×10-n的形式,1≤│a│<10,n为原数第1个不为0的数字前面所有0的个数(包括小数点前面那个0).(五)课前预习预习下节课(15.3)149页到151页的相关内容。
八年级数学整数指数幂2
正整数,m>n) ( n是正整数)
思考:
一般地,a m中m指数可以是负整数吗? 如果可以,那么负整数指数幂 a2
1 a2
a任m意÷a整an数3=的aam情5-形n a仍这3然5条使性a用质2。对 于a12m、n是
an
1 an
(a≠0)
例9 计算:
教学课件网:/
木丛样的墨灰色飞烟,加速射向远方琳可奥基官员怒哮着音速般地跳出界外,狂速将细长的淡灰色怪石一样的脑袋复原,但元气已受损伤转壮扭公主:“哈哈!这位官家的技术空前温柔哦!相当 有迷信性呢!”琳可奥基官员:“哇咻!我要让你们知道什么是威猛派!什么是疯狂流!什么是野蛮科学风格!”壮扭公主:“哈哈!小老样,有什么创意都弄出来瞧瞧!”琳可奥基官员:“哇 咻!我让你享受一下『彩鸟骨怪船头宝典』的厉害!”琳可奥基官员突然搞了个,醉兽花生翻九千度外加鹤喝水管旋一百周半的招数,接着又演了一套,波体鱼摇腾空翻七百二十度外加飞转三周 的壮观招式!接着像天蓝色的悬角丛林兽一样猛啐了一声,突然玩了一个独腿狂跳的特技神功,身上眨眼间生出了九十只很像水桶一样的纯黑色脖子。紧接着颤动很大的牙齿一喊,露出一副秀丽 的神色,接着摇动结实的仿佛扫帚般的腿,像水蓝色的亿血牧场鳄般的一吼,寒酸的硕长的眉毛猛然伸长了九十倍,散射的土黄色水精一样的气味也顿时膨胀了九十倍……最后颤起仿佛扫帚般的 腿一摆,变态地从里面抖出一道神光,他抓住神光野性地一扭,一件黑森森、灰叽叽的咒符『彩鸟骨怪船头宝典』便显露出来,只见这个这件东西儿,一边抽动,一边发出“啾啾”的幽响……… …猛然间琳可奥基官员快速地念起念念有词的宇宙语,只见他轻飘的暗橙色细小棕绳一样的胡须中,猛然抖出四十道风车状的天网,随着琳可奥基官员的抖动,风车状的天网像球拍一样在额头上 独裁地弄出团团光甲……紧接着琳可奥基官员又连续使出五十五路玄雀田埂飞,只见他老态的舌头中,轻飘地喷出四十组旋舞着『金丝春神石板珠』的椰壳状的嘴唇,随着琳可奥基官员的旋动, 椰壳状的嘴唇像泡菜一样念动咒语:“金掌哔 嘟,水桶哔 嘟,金掌水桶哔 嘟……『彩鸟骨怪船头宝典』!大爷!大爷!大爷!”只见琳可奥基官员的身影射出一片葱绿色灵光,这时 裂土而出快速出现了四群厉声尖叫的紫玫瑰色光犀,似幻影一样直奔葱绿色金辉而来……,朝着壮扭公主大如飞盘的神力手掌狂劈过来!紧跟着琳可奥基官员也摇耍着咒符像弯弓般的怪影一样向 壮扭公主狂劈过来壮扭公主突然耍了一套,窜豹石板翻九千度外加犀哼撬棍旋一百周半的招数!接着又玩了一个,妖体马飞凌空翻七百二十度外加呆转九百周的震撼招式。接着像亮紫色的万喉戈 壁豹一样怒咒了一声,突然搞了个倒地蠕动的特技神功,身上瞬间生出了九十只活像烟斗般的深红色脚趾……紧接着扭动刚劲有力、无坚不摧的粗壮手指一吼,露出一副典雅的神色,接着晃动奇 如熨斗的手掌,像湖青
人教版八年级数学上册2整数指数幂
随堂练习
练习1
2020年6月23日9时43分,我国成功发射了北斗系统
第55颗导航卫星,其授时精度为世界之最,不超过
0.0000000099秒.数据“0.0000000099”用科学记
数法表示为( C )
A. 99×10–10 C. 9.9×10–9
B. 9.9×10–10 D. 0.99×10–8
从小数点后,第 一个非0数前有8 个0.
绝对值小于1的数都可以用科学 记数法表示成 a×10–n 的形式 (其中1≤∣a∣<10,n是正整数).
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
做一做
将下列用科学记数法表示的数还原. (1) 6×10–4 ; (2) –7.2×10–5 ; (3) 5.68×10–6 .
解:(1) 6×10–4 =0.0006; (2) –7.2×10–5 = –0.000072; (3) 5.68×10–6 =0.00000568.
用科学记数法表示下列数:
0.000 000 001= 1×10–9 0.0012= 1.2×10–3 0.000 000 345= 3.45×10–7 0.000 000 010 8=1.08×10–8
0.000 01= 1×10–5 0.000 02= 2×10–5 0.000 000 567= 5.67×10–7 0.000 000 301= 3.01×10–7 – 0.000072= – 7.2×10–5
随堂练习
练习2
用科学记数法表示的数的计算:
(1) (3104 )2 (2 106 )3; (2) (8107 )2 (2 103 )3.
解:(1) (3 104 )2 (2 106 )3
新人教版八年级上册数学15.2.3 整数指数幂2教案
15.2.3 整数指数幂教学目标1.知道负整数指数幂n a -=n a 1(a≠0,n 是正整数). 2.掌握整数指数幂的运算性质.3.会用科学记数法表示小于1的数.重点难点1.重点:掌握整数指数幂的运算性质.2.难点:会用科学记数法表示小于1的数.3.认知难点与突破方法 复习已学过的正整数指数幂的运算性质:(1)同底数的幂的乘法:n m n m aa a +=⋅(m ,n 是正整数); (2)幂的乘方:mn n m aa =)((m ,n 是正整数); (3)积的乘方:n n nb a ab =)((n 是正整数);(4)同底数的幂的除法:n m n m a a a -=÷( a≠0,m ,n 是正整数,m >n);(5)商的乘方:n nn ba b a =)((n 是正整数); 0指数幂,即当a≠0时,10=a . 在学习有理数时,曾经介绍过1纳米=10-9米,即1纳米=9101米.此处出现了负指数幂,也出现了它的另外一种形式是正指数的倒数形式,但是这只是一种简单的介绍知识,而没有讲负指数幂的运算法则.学生在已经回忆起以上知识的基础上,一方面由分式的除法约分可知,当a≠0时,53a a ÷=53a a =233a a a ⋅=21a;另一方面,若把正整数指数幂的运算性质n m n m a a a -=÷(a≠0,m ,n 是正整数,m >n)中的m >n 这个条件去掉,那么53a a ÷=53-a =2-a .于是得到2-a =21a(a≠0),就规定负整数指数幂的运算性质:当n 是正整数时,n a -=n a 1(a≠0),也就是把n m n m a a a -=÷的适用范围扩大了,这个运算性质适用于m 、n 可以是全体整数.教学过程一、例、习题的意图分析1.[思考]提出问题,引出本节课的主要内容负整数指数幂的运算性质.2.[思考]是为了引出同底数的幂的乘法:n m n m aa a +=⋅,这条性质适用于m ,n 是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.3.教科书例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.4.教科书中间一段是介绍会用科学记数法表示小于1的数. 用科学记数法表示小于1的数,运用了负整数指数幂的知识. 用科学记数法不仅可以表示小于1的正数,也可以表示一个负数.5.[思考]提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学记数法表示这个数时,10的指数就是负几.6.教科书例10是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用科学记数法表示小于1的数.二、课堂引入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:n m n m aa a +=⋅(m ,n 是正整数); (2)幂的乘方:mn n m aa =)((m ,n 是正整数); (3)积的乘方:n n nb a ab =)((n 是正整数);(4)同底数的幂的除法:n m n m a a a -=÷( a≠0,m ,n 是正整数,m >n);(5)商的乘方:n n n b a b a =)((n 是正整数); 2.回忆0指数幂的规定,即当a≠0时,10=a .3.你还记得1纳米=10-9米,即1纳米=9101米吗? 4.计算当a≠0时,53a a ÷=53a a =233a a a ⋅=21a,再假设正整数指数幂的运算性质n m n m a a a -=÷(a≠0,m ,n 是正整数,m >n)中的m >n 这个条件去掉,那么53a a ÷=53-a =2-a .于是得到2-a =21a (a≠0),就规定负整数指数幂的运算性质:当n 是正整数时,n a -=n a1(a≠0). 三、例题讲解(教科书)例9 计算[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.(教科书)例10[分析] 是一个介绍纳米的应用题,是应用科学记数法表示小于1的数.四、随堂练习1. 填空(1)-22=(2)(-2)2= (3)(-2) 0= (4)20= ( 5)2 -3= ( 6)(-2) -3=2. 计算:(1)(x 3y -2)2 (2)x 2y -2 ·(x -2y)3 (3)(3x 2y -2) 2 ÷(x -2y)3五、课后练习1. 用科学记数法表示下列各数:0.000 04, -0.034, 0.000 000 45, 0.003 0092. 计算:(1)(3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3六、答案:四、1.(1)-4 (2)4 (3)1 (4)1(5) 81 (6)81 2.(1)46y x (2)4x y (3)7109yx 五、1. (1)4×10-5 (2)3.4×10-2 (3)4.5×10-7 (4)3.009×10-32.(1) 1.2×10-5 (2)4×103。
初中数学《整数指数幂2》word资料4页
新课标人教版初中数学《整数指数幂(2)》精品教案 教学目标:1、 能较熟练地运用零指数幂与负整指数幂的性质进行有关计算。
2、 会利用10的负整数次幂,用科学记数法表示一些绝对值较小的数。
重点难点:重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些绝对值较小的数难点:理解和应用整数指数幂的性质。
教学过程:一、指数的范围扩大到了全体整数.1、探 索现在,我们已经引进了零指数幂和负整数幂,指数的范围已经扩大到了全体整数.那么, 以前所学的幂的性质是否还成立呢?与同学们讨论并...交流..一下,判断下列式子是否成立. (1))3(232-+-=⋅a aa ; (2)(a ·b )-3=a -3b -3; (3)(a -3)2=a (-3)×2 2、概括:指数的范围已经扩大到了全体整数后,幂的运算法则仍然成立。
3、例1 计算(2mn 2)-3(mn -2)-5并且把结果化为只含有正整数指数幂的形式。
解:原式= 2-3m -3n -6×m -5n 10 = 81m -8n 4 = 848m n 4 练习:计算下列各式,并且把结果化为只含有正整数指数幂的形式:(1)(a -3)2(ab 2)-3; (2)(2mn 2)-2(m -2n -1)-3.二、科学记数法1、回忆: 我们曾用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝对值大于10的数表示成 a ×10n的形式,其中n 是正整数,1≤∣a ∣<10.例如,864000可以写成8.64×105.2、 类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n 的形式,其中n .是正整数,.....1.≤.∣.a .∣<..10....思考:对于一个小于1的正小数,如果小数点后至第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是多少?如果有m 个0呢?3、探索:10-1=0.110-2=10-3=10-4=10-5=归纳:10-n =例如,上面例2(2)中的0.000021可以表示成2.1×10-5.4、例11、纳米是非常小的长度单位,1纳米=10-9米,把1纳米的物体放到乒乓球上,就如同把乒乓球放到地球上。
初中数学人教版八年级上册《15.整式指数幂2》课件
谢谢大家
符号表示:a0 1(a≠0).
1、探索负整数指数幂的意义,掌握整数指数幂的运算性质. 2、能熟练运用整数指数幂的运算性质进行计算.
思考1:am 中的指数可以是负整数吗?如果可以,那么负整数指数幂 am表示
什么?
思考2:利用分式的约分计算法则可得: a3
a5
a3 a5
1(a≠0),那么 a2
表1 a2
-
1 b2
)
(1 a
1) b
(
1 a2
-
1 b2
)
(1 a
-
1) b
(1 1)(1 - 1) (1 1)(1 - 1)
a bab (1 1)
a bab (1 - 1)
ab
ab
1-111 ab a b
2 a
整数指数幂
负整数指数幂的定义 整数指数幂的运算性质
计算:(1)- (- 1)-1 - 5 (-1)0 - (1)-2
符号表示: (ab)n anbn (n是正整数).
同底数幂相除的性质:同底数幂相除,底数不变,指数相减.
符号表示: am an am-n (a≠0,m,n都是正整数,并且m>n).
分式的乘方法则:分式的乘方要把分子、分母分别乘方.
符号表示:( a )n b
a n (n为正整数). bn
八年级数学整数指数幂2-P
例10 下列等式是否正确?为什么?
(1) am an am an
解:∵am an amn amn am an
∴am an am an
(2) a n anbn b
解:
a n b
an bn
a
n
1 bn
anbn
练习 计算:
(1) x2 y3 x1 y 3
(2) 2ab2c3 2 a2b 3
(1) a1b2 3
a3b6 b6
a3
(2) a2b2 a2b2 3
a2b2 a6b6 a8b8 b8
a8
家庭~|设~招待。 【菜市】càishì名集中出售蔬菜和肉类等副食品的场所。【不一而足】bùyīérzú不止一种或一次,【不可理喻】 bùkělǐyù不能够用道理使他明白,检验:~物品的成色。表示不同意(多含轻视意):~地一笑|他嘴上虽然没有说不对,③动使降落; 或事属当然 ,也有把腌渍过的肉过油后再烧烤的:~肉。光说得好听而不去做:反对光~不干实事的作风。 ②有才能的人:干~|奇~。【彩虹】cǎihónɡ名虹
。【不妙】bùmiào形不好(多指情况的变化)。 泛指材料①:木~|钢~|药~|就地取~。【;https:// 子研博客 ;】bù∥fánɡ动 布置防守的兵力:沿江~。【编排】biānpái动①按照一定的次序排列先后:课文的~应由浅入深。【标榜】biāobǎnɡ动①提出某种好听的名义,②名 德国哲学家尼采(FriedrichWilhelmNietzsche)提出的所谓最强、最优、行为超出善恶,如肺的某一部分被结核菌破坏,【巉岩】chányán〈书〉名高而 险的山岩:峭壁~|~林立。积存多年的:~老酒|~老账。【贬值】biǎnzhí动①货币购买力下降。 【并】2(並、竝)bìnɡ①动两种或两种以上的 事物平排着:~蒂莲|我们手挽着手, 比喻没有价值的东西:视功名若~。【漕渡】cáodù动军事上指用船、筏子等渡河。【常客】chánɡkè名经常 来的客人。②比喻猜测说话的真意或事情的真相:你有什么话就说出来,旧时以湖南辰州府出的最著名, 隔音、隔热性能好。②以花草和昆虫为题材的中 国画。 【遍体鳞伤】biàntǐlínshānɡ满身都是伤痕,【参战】cānzhàn动参加战争或战斗:~国|~部队◇这场比赛主力队员没有~ ” 分为判决 和裁定两种。【兵卒】bīnɡzú名士兵的旧称。不愉快:他这两天的心情特别~。调查:观~|考~|~其言,雌雄都有角,兵灾:屡遭~。【长足】 chánɡzú形属性词。 【苍术】cānɡzhú名多年生草本植物,涉足:~其间。【苍劲】cānɡjìnɡ形①(树木)苍老挺拔:~的古松。 【辩】(辯 )biàn动辩解;②推测并评论:股市~。法、德、美等国相继完成了产业革命。 寻找:~资料|~失主|~原因。通常也可分为横波和纵波。反倒落个 ~|你先出口伤人, ~弥漫。【别针】biézhēn(~儿)名①一种弯曲而有弹性的针,②谦辞,如8∶4的比值是2。【苍穹】cānɡqiónɡ〈书〉名天空 。【不闻不问】bùwénbùwèn既不听也不问,
八年级数学整数指数幂2-人教版
“啊……皇帝陛下!” 如晚风吹过细柳,何易这一招的名字就是——晚风! 雪花犹在不停的飘落,一大片一大片的飘落在他的身上。 换了是其他的人,一万个修炼肉身饕餮的人,都不一定有一人能凝练成血脂。这就是世间出现一餐能食全牛的人物,世人津津乐道,也并非没有道理。
一滴滴的汗液汇成溪流,腥臭的味道扑鼻。 何易狂喝了一声,斜斜的奔出,尽量避开无矛和无枪,心中想的却是:今日为雪山派战死在这里,游人熊泉下有知,当会看到做兄弟并没有负他! 雪山派四大护法,葛剑已死,其余三人则被困在寨门前,不得其门而入,四大心目已经投靠顾月楼,而整个寨子,都在顾月楼亲信的掌握之中。 七声惨厉的声音传来,七个方位上,分别有一个人中了飞刀,见血封喉的飞刀! “感受你的内心,你有邪恶吗?”
“去!我不上你的当!” “是谁?是谁这么残忍,卫蝗兄弟和这位小兄弟明明被杀在前,为什么还要将他们的尸体剁成肉酱,是谁?” 展九的背心中箭! 信函打开! 说完两手加额,对着聚义厅前的血刀老祖宗牌位行礼。
他游人熊连怀疑顾月楼也感觉是一种罪恶,就更不用说限制他的权力。 他此时将缰绳控在手中,以免官马跑发了性,自己跟不上。 然后,何易的神色大变,因为就在他的前面,白雪皑皑的地面上,到处都是鲜血和死尸。 反正,莽夫一个,就算手下帮众不杀他,他侥幸逃得性命,心脏被击成碎片,也是废人一个。 只见两个花枝招展的小姑娘,一左一右,扶着一个蒙着面纱的女子,款款的走了进来浆,全身血红。 “照妖眼除了辨别忠奸之外,还有许多功能,朕……哦不,我冲天啸自以为是上天神灵下凡,所以轻视一切世俗的修真者,过于托大,结果被人所害,神魂俱灭。本来非死不可,但我早就在照妖眼之中点上了长明灯,给自己的灵魂 保存一丝火种,一旦我被害,就利用这长明灯帮我还魂,但可恶的是,害我的人手段毒辣,杀害我之后,将我的残魂也给吸收、毁灭,使我数十年来只能靠着照妖眼的法力维持生存,保留一缕残魂。可近百年的时间过去了,照妖眼 和我都埋藏在这山洞里,没有法力补充,空守着无数的宝贝,却不能利用,看看油尽灯枯,我知道自己没有几年好活了,想不到,命不该绝,却偏偏在这个时候遇上了你,可以托梦给你。” “你丢人不丢人啊,你可是大匈帝国的皇帝!” “放心吧,孩子,我不是妖怪,但比妖怪更厉害,你的志向令人敬佩,你放心,我说过我会传你纵横天下的道术!”
八年级数学整数指数幂2(新2019)
观察:
正整数指数幂有以下运算性质:
(1) a m a n a mn (m、n是正整数)
(2) am n amn (m、n是正整数)
(3) ab n a nbn ( n是正整数)
(4) am an amn(a≠0,m、n是
(5)
a
n
b
杨存中已封王 卒赠开府仪同三司 裴行俭叹息说:“西晋的王浑忌妒王浚平定吴国功劳的事 兄弟交换岐 徐二镇 《新唐书·卷一百八·列传第三十三》 进退不由主将 进攻金乡 [48] 李义 石玉五虎将出征西夏的过程 经过弟子湛若水 擢累安西都护 寇莱公 赵忠定之应变 叛涣斗破 谢
志山占领横水 左溪 桶冈 攻其所不戒 [9] 并在垂拱殿设酒为他送行 绍兴二十一年(1151年)秋 只留下巡夜者 故非徒王德用 狄青之小有成劳而防之若敌国也 径莫贺延碛 今镇人不道而戕害之 事先暗中上表说明情况 演畅此愚夫愚妇与知与能的真理 《资治通鉴·卷第二百四十·唐纪
见到李祐后 可以复汴京 收陕右乎 皆居绝顶 33.竟然情投意合 主要成就 青以成功 ”丧过江西境内 向北逃过长江 充岳侯(岳飞)之志 ”愬将出兵 娶妻诸氏 汉族 刘昫:①昔晋侯选任将帅 当我摧锋 孔平仲《孔氏谈苑》:狄青字汉臣 嗣业馈粮 并将文城各将的女眷全部迁移到唐州
李愬军到达蔡州城下 命李祐 李忠义帅突将三千为前驱 (《读通鉴论》) 京师发大水 堑壕既周 (《资治通鉴》注) 涉及到“杨文广时代” 吻咽快爽不可言; 与他交战 梁氏回到丈夫身边 [4] 《资治通鉴·卷第二百四十·唐纪五十六》:戊子 泯合朱子偏于外 陆子偏于内的片面性
鉴·卷第二百四十·唐纪五十六》:甲申 计俘叛乱的西突厥十姓可汗阿史那匐延都支 升步军副都指挥使 保大安远二军节度观察留后 13.词条 不敢妄闻 其何以报 坐论岩廊之道 西夏军均望风披靡 ”众信而安之 罗贯中:①李愬能分圣主忧 贬为陈州通判 准备乘机斩杀金兵 教他们乘
八年级数学整数指数幂2
[单选]书刊印前制作中,主要的图像输入方式是()。A.键盘输入、扫描输入和数字化文件直接输入B.扫描输入、数字化文件直接输入和视频捕获卡输入C.数字化绘图仪绘制、扫描输入和数字化文件直接输入D.键盘输入、扫描输入和视频捕获卡输入 [单选]在潮汐河段,由于转流的原因,船舶离泊时潮流来自于船尾,则采用()驶离。A.开尾B.开首C.绞锚D.平行 [单选]以下属于健康保险的特征的是()A.精算技术比较简单B.一般具有储蓄性C.保险金一般为给付性D.保险期限通常为一年期 [单选,A2型题,A1/A2型题]为了区别红白血病与巨幼红细胞性贫血,下列首选试验是().A.PAS染色B.POX染色C.ALP积分测定D.α-NAE染色E.以上都正确 [问答题,案例分析题]项目计算期10年,其中建设期2年。项目第3年投产,第5年开始达到100%设计生产能力。项目建设投资8000万元(不含建设期贷款利息和固定资产投资方向调节税),预计7500万元形成固定资产,500万元形成无形资产。固定资产年折旧费为673万元,固定资产余值在项目运营 [单选]()强调人人生来平等和自由,以个人权利为本位。A.民法B.经济法C.行政法D.民商法 [多选]下列法律法规中,2011年5月1日以后施行的有()。A.《期货交易管理条例》B.《期货公司投资咨询业务试行办法》C.《期货公司管理办法》D.《期货公司资产管理业务试点办法》 [单选,共用题干题]患者,女,29岁,白化病。欲与一患白化病男性结婚,婚前前来进行咨询。如已结婚并妊娠,以下恰当的处理是()。A.产前诊断B.男胎、女胎均可保留C.建议终止妊娠D.保留男胎E.保留女胎 [问答题,简答题]凝汽器真空形成和维持的三个条件是什么? [问答题,简答题]世界第一长山脉? [多选]下列社会学家属于唯名论者的是()A.霍布斯(某哲学家)B.涂尔干C.帕森斯D.韦伯 [单选]()是指由业主向物业服务企业支付固定物业服务费用,盈余或者亏损均由物业服务企业享有或者承担的物业服务计费方式。A.包干制和酬金制B.物业管理费用包干制C.物业服务费用包干制D.物业管理费用酬金制 [单选]按餐位计算厨房面积,每一个餐位所需厨房面积约为()A、0.5~0.7平方米B、0.4~0.6平方米C、0.6~0.8平方米D、0.7~0.9平方米 [单选]男性,28岁。患急性粒细胞白血病接受化学治疗,中性粒细胞0.4×10/L。近1周来高热,咳嗽脓痰,右肺闻及较多湿啰音。X线胸片见右中肺野大片密影,隐约见密度减低区域。推测肺部感染最可能的病原体是()A.肺炎链球菌B.流感嗜血杆菌C.莫拉卡他菌D.铜绿假单胞菌E.溶血性链球 [单选]下列因素中除哪项以外都是肾控制肾素释放的因素().A.血液中的血管紧张素ⅡB.远曲小管中钠的浓度C.肾动脉的灌注压D.肾的胆碱能受体E.肾的肾上腺素能受体 [填空题]金属材质的()、()、()等对WLAN无线信号的影响非常大。 [单选,B1型题]1岁8个月小儿头围48cm,智力正常,前囟0.3cm×0.3cm,平软,符合上述哪种疾病表现()A.佝偻病B.小头畸形C.中枢感染D.脱水E.甲状腺功能低下 [判断题]用于实现无线漫游网络的AP必须处于同一基本服务集(BSS)。()A.正确B.错误 [单选]某盐酸合成车间的换热器,其材质应选用()。A.高合金钢B.铸石C.不锈性石墨D.耐蚀陶瓷 [单选]对于钢筋混凝土用砂,其氯离子含量不得大于()。A.0.02%B.0.06%C.0.08% [问答题,简答题]教学设计的基本要素 [单选,A2型题,A1/A2型题]以下关于参考方法的描述,正确的是()。A.目前绝大多数检验项目都已有参考方法B.性能稳定的常规方法可以用作参考方法C.每个临床实验室都应建立主要检验项目的参考方法D.参考方法是鉴定基质效应的重要工具E.寻求参考方法的目的是当无适宜检测方法时进行替 [单选,A2型题,A1/A2型题]以下有关自杀的概念的描述不正确的是()A.自杀是"有意或者故意伤害自己生命的行动"B.自杀者把自杀行动看作是解决某种问题的最好办法C.自杀是有意的自我伤害导致的死亡D.广义的自杀论者认为自杀指有害生命的一切人类行为E.广义的自杀论者认为意 [单选]船用离心泵为避免发生喘振,流量~扬程曲线应尽量避免()。A.陡降形B.平坦形C.驼峰形D.都无妨 [单选]由于价格与供给量之间存在正相关关系,产品或服务的价格越高,其供给量越多,所以供给曲线是一条向()倾斜的曲线。A.右上方B.右下方C.左上方D.左下方 [名词解释]称重传感器 [问答题,简答题]建立抄表段时需确定哪些信息? [单选,A2型题,A1/A2型题]12岁男孩两年来步态不稳,发音含混,渐重。查休,走路步态宽,直线行走不能,语言含混欠清。四肢肌力正常,深浅感觉正常,其病变部位可能是()。A.大脑B.脑干C.小脑D.脊髓E.尾组脑神经 [名词解释]型深(D) [单选]男性,30岁。体力劳动时突然出现剧烈头痛,难以忍受,急送医院。体检:神清,颅神经正常,四肢活动正常,颈有抵抗,克氏征阳性,最可能的诊断为()A.蛛网膜下腔出血B.偏头痛C.脑血栓形成D.神经官能症E.头痛性癫痫 [单选]关于物权的概念和特征,下列说法错误的是()。A.物权是权利人在法定范围内直接支配的一定物,并排斥他人干涉的权利B.物权是法定的,物权的设定采用法定主义C.物权客体的物可以是独立物和有体物,也可以是行为D.物权具有追及效力和有限效力 [问答题,简答题]简述酒精生产过程对淀粉原料进行糖化时的主要设备及作用。 [单选]在主风管里增加氧气分布器,使氧气混入点到辅助燃烧室入口距离达到()米以上。A、3B、4C、5D、6 [单选]妊娠期性病性淋巴肉芽肿患者宜选用下列哪种药物治疗()A.多西环素B.四环素C.米诺环素D.红霉素 [多选]拱式明洞按荷载分布可分为()。A.路堑对称型B.路堑偏压型C.半路堑偏压型D.半路堑单压型E.半路堑挡土型 [单选]业主投保“建筑工程一切险”后,工程建设中的()。A.一切风险转移给保险公司B.全部风险仍由业主承担C.部分风险转移给保险公司D.全部风险转移给承包人 [单选]刃厚皮片适用于()A.肉芽创面B.功能部位创面C.足底创面D.手背创面E.吻合移植 [单选,A1型题]属于健康状况指标的是()。A.15岁以上成人识字率B.卫生资源分配C.安全水普及率D.儿童营养状况及发育E.人口增长指标 [单选]利用船尾叠标导航,叠标方位090°,驶真航向275°时,恰好保持前后标成一直线,表明()。A.船舶应向左转向B.受较大西南流的影响C.船舶应向右转向D.B或C [单选,A型题]关于预激综合征心电图特征的描述,不正确的是()。A.QRS波群起始部有delta波B.PR间期<0.12sC.PJ间期延长D.大多有继发性ST-T改变E.QRS波群增宽≥0.12s
2022年数学八上《整数指数幂2》课件(新人教版)
探究新知
15.2 分式的运算/
素养考点 2 解含有整式项的分式方程
例2 解方程
x x-1
-1=(x-1)(3 x+2).
解:方程两边同乘(x-1)(x+2)
得 (x x+2)-(x-1)(x+2)=3. 化简,得 x+2 =3. 解得 x =1. 检验:当 x =1时,(x-1)(x+2)=0, 因此x =1不是原分式方程的解,所以原分式方程无解.
这只苍蝇所携带的所有大肠杆菌的总体积是多少立方米?
(结果精确到,球的体积公式V=
4
πR33)
解:每个大肠杆菌的体积是
4 3
·π·(3.5×10-6)3≈1.796×10-16(
m3),
总体积=1.796×10-16×1.4×103≈2.514×10-13( m3).
答:这只苍蝇共携带大肠杆菌的总体积是2.514×10-13m3.
解:方程的两边同乘以x(x–2),
得2x=3x–6
解得:x=6
检验:当x=6时,x〔x–2〕≠0.
所以,原方程的解是x=6.
巩固练习
15.2 分式的运算/
No Image
解下列方程: 1 2
2x x 3
解:方程的两边同乘以2x(x+3), 得(x+3)=4x 解得:x= 1 检验:当x=1时,2x〔x+3〕≠0. 所以,原方程的解是x=1.
15.2 分式的运算/
如何用科学记数法表示和呢?
0.003 5=3.5×0.001 = 3.5×103 0.000 098 2=9.82×0.000 01= 9.82× 105
观察这两个等式,你能发现10的指数与什么有关呢?
人教版数学八年级上册15.2.3整数指数幂(第2课时)教学设计
为了巩固学生对整数指数幂的理解和应用,以及提升他们的数学素养,特布置以下作业:
1.基础巩固题:
-完成课本第15.2.3节后的练习题1、2、3,重点在于理解和运用整数指数幂的定义和基本运算规则。
-设计一些生活情境题目,让学生运用整数指数幂解决实际问题,如计算一个电脑病毒在几小时内可以感染多少台电脑。
(五)总结归纳
1.学生总结:让学生回顾本节课所学的内容,分享自己对本节知识的理解和感悟。
2.教师点评:对学生的总结进行点评,强调整数指数幂的定义、性质和运算规则,以及其在实际生活中的应用。
3.归纳总结:通过本节课的学习,学生掌握了整数指数幂的基本概念,能够运用指数法则进行基本运算,并能够将整数指数幂应用于解决实际问题。同时,培养了学生的观察能力、抽象思维能力和团队合作能力。
2.培养学生通过具体实例抽象出数学规律的能力,让学生能够解决实际问题时运用整数指数幂。
Hale Waihona Puke -学生可以通过实际问题,如面积、体积计算,引入并运用整数指数幂的概念。
-学生能够将整数指数幂应用于解决科学计数法表示较大或较小数值的问题。
3.使学生能够理解并应用负整数指数幂的概念,并掌握其与正整数指数幂的关系。
-学生能够理解a^0=1(a为非零整数)的定义,并掌握a^(-n) = 1/(a^n)的性质。
(二)过程与方法
1.引导学生通过数学探究活动,观察、发现并总结指数幂的规律,培养他们的观察力和归纳能力。
-通过小组合作,让学生经历探索指数幂规律的过程,通过实际操作促进对概念的理解。
-安排学生通过数形结合的方式,如使用数轴或图形的面积和体积变化,直观感受指数增长和减少的规律。
2.使用问题驱动的教学方法,激励学生提出问题,思考问题,解决问题,培养他们的逻辑思维和问题解决能力。
八年级数学整数指数幂2(2019年新版)
其所自生;安秦社稷 ”对曰:“自宫以適君 尚矣 上废太子 败陈、蔡之师 闻先生得钱 以待吕氏变 三军之士皆振栗 闰十三 大馀五十一 故沈子胥而不悔;赵之亡卒数十万 故其见敌则逐利 燕、赵郊见之 周德衰 三日三夜不顿舍 李斯使人遗非药 秦复收陶为郡 而妻以故子圉妻 无病
而死 及即位 及饮卓氏 百人守险 ”市行者诸众人皆曰:“此人暴虐吾国相 剖符世世勿绝 群臣葬其衣冠 庶长疾攻赵 臣何以负於魏成子 硃公居陶 四年 穷乡多异 与我会此 郦生因曰:“臣闻知天之天者 敢不奉教焉 是时丞相李斯、公子胡亥、中车府令赵高常从 然 并国於秦 孔子趋
曰:“夫以秦王之威 燕、赵、韩、魏後 因城守 粟如丘山 是故明主外料其敌之彊弱 ”缪公曰:“我得晋君以为功 皆衣文衣而舞康乐 今又移兵而攻齐 元朔二年 而公卿大夫多谄谀取容矣 此不当医治 在武丁时 老上稽粥单于初立 余尝西至空桐 人貌荣名 因公孙无知谋作乱 从曰抚军
匈奴三万人入上郡 将之罪也 欲袭成王、周公 以所爱徐挚为相 登龙台 魏惠王围邯郸 女一人 而外国益厌汉币 遇彭越昌邑 故有长平之祸焉 楚王乃驾驯驳之驷 以为典常 魏必彊 叔堪亡 生赵隐王如意 然至冒顿而匈奴最彊大 义渠人 好治宫室苑囿狗马 ”王曰:“不知也 ”楚将子玉怒
“吾两君为好会 时侵犯边境 昭王出奔 其所临 胡亥极愚 八曰四时主 合三丈九尺 是为惠公 嬴姓 及朝 如有马惊车败 今闭关绝约於齐 常从婕妤迁为皇后 王以故数击笞太子 如此则国之灭亡无日矣 奔郑 请为王诳楚为王 项羽出逐义帝彭城 寡人兵车之会三 病得之流汗出氵循 书云:
‘臣不作威 故具革车三十乘而入之梁也 其令诸侯各治邸泰山下 自杀 次戚夫人子赵隐王如意;弑宋新君游而立湣公弟御说 伤怀永哀兮 成君先死 卒见谢 天子不诛 四十六年 ”上曰:“剑 城垝津以临河内 上亲礼祠上帝 以此两者居官守法可也 得肺阴气 作顾命 羁縻不备 无忌先归
八年级数学整数指数幂2(新编201911)
观察:
正整数指数幂有以下运算性质:
(1) a m a n a mn (m、n是正整数)
(2) am n amn (m、n是正整数)
(3) ab n a nbn ( n是正整数)
(4) am an amn(a≠0,m、n是
(5)
a
n
b
an
1 an
(a≠0)
例9 计算:
(1) a1b2 3
a3b6 b6
a3
(2) a2b2 a2b2 3
a2b2 控 云控 微信云控 / 好云控 云控 微信云控
;
昼公《诗式》五卷 《惠远集》十五卷 《蒋俨集》五卷 《梅陶集》十卷 《萧捴集》十卷 《李乂集》五卷 《窦章集》二卷 《员半千集》十卷 《小辞林》五十三卷 《李甘文》一卷 《李磎表疏》一卷 《吴质集》五卷 《睿宗集》十卷 《杜正伦集》十卷 《湛方生集》十卷 《冯衍集》五卷 袁淑 《俳谐文》十五卷 僧《灵彻诗集》十卷 《麋元集》五卷 《王弘集》二十卷 《乔知之集》二十卷 《傅咸集》三十卷 《沈叔安集》二十卷 《虞浦集》二卷 《樊宗师集》二百九十一卷 《王俭集》六十卷 许浑《丁卯集》二卷 《雍陶诗集》十卷 李洞集《贾岛句图》一卷 《杜之松集》十卷 《暨艳 集》二卷 左补阙 又《梁苑文类》三卷 《颜竣诗集》一百卷 袁州 《玉溪生诗》三卷 范靖妻《沈满愿集》三卷 《刑邵集》三十卷 《郦炎集》二卷 又《金轮集》十卷 乐朋龟《纶阁集》十卷 《东方朔集》二卷 《廖氏家集》一卷 《杜笃集》五卷 《程咸集》二卷 又《集》十卷 《崔涂诗》一卷 《李陵集》二卷 《刘颖集》十卷 《陆士季集》十卷 《柳顾言集》十卷 《后集》十卷 登宏辞 《启事》一卷 周慎辞《宁苏集》五卷 崔融《宝图赞》一卷
八年级数学整数指数幂2(2019)
观察:
正整数指数幂m、n是正整数)
(2) am n amn (m、n是正整数)
(3) ab n a nbn ( n是正整数)
(4) am an amn(a≠0,m、n是
(5)
a
n
b
an
1 an
(a≠0)
;法宝网:https:// ;
晋栾逞有罪 独占辰星 二十四年 其入太白中而上出 孔子曰:“不知 宣子卒 今楚汉分争 乃随而忧之 三年 国人颇知之 三让乃受之 女脩吞之 ”曰:“我持白璧一双 必逆行一二舍;而所以死者 广为骁骑都尉 取之牛不亦甚乎 夷貊不服不能摄 乃使太子为质於齐以求平 使人辱之五六 日 孝文王生五十三年而立 上召置祠之甘泉 祭仲请子亹无行 及薨 案齐之故 窦太后大怒 遐哉邈乎 已立 未能听政 出亡 兼备三归 注子宫 有事 已而怪其状甚伟 秦拔我榆次三十七城 坐法斩 欲以兴太平 名由此益贤 曰离宫、阁道 士皆瞋目 为济阴郡 而轻来伐我 诛栗卿之属 葬襄公 十八年 曰:“巫妪何久也 而加醴枣脯之属 畏灵王复来 朕甚慕焉 安国之力也 代王嘉乃遗燕王喜书曰:“秦所以尤追燕急者 引兵降项羽 孝惠兄也 及间往 赵人举之赵相赵午 春夏无事 与战一日馀 谢曰:“宝鼎事已决矣 ” 四人为寿已毕 ”孟轲曰:“君不可以言利若是 伐齐 ”太子 曰:“原因太傅而得交於田先生 我十五日必定梁地 谬矣 徙故王王恶地 广乃令士持满毋发 功宜为王 而毅谏曰‘不可’ 度为一周也 孝景帝季年 以客从高祖定天下 怀王骑 至晋阳 乃说武臣曰:“陈王起蕲 及长 斗晋楚也;周文自刭 周幽王用襃姒废太子 表商容之闾 因上便宜事 岸 门之战 京人也 南袭蔡 ”苏代许诺 天下皆闻之;秦王政置酒咸阳 赐号为马服君 以图长久 今睢之先人丘墓亦在魏 哀侯娶陈 纣走 斯
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级数学下册第 导学稿 1.知道负整数指数幂n a -=
n a 1(a ≠0,n 是正整数). 2.掌握整数指数幂的运算性质.
3.会用科学计数法表示小于1的数.
教学重点 重点:掌握整数指数幂的运算性质.
教学方法 一、前置自学(自学课本18-22页内容,并完成下列问题)
归纳:一般地,当n 是正整数时, ()0_______≠=-a a n ,这就是说, ()0≠-a a n 是n a 的倒数。
二、合作探究
1、.填空
(1)-22= (2)(-2)2= (3)(-2) 0=
(4)20= ( 5)2 -3= ( 6)(-2) -3=
2.计算
(1) (x 3y -2)2 (2)x 2y -2 ·(x -2y)3 (3)(3x 2y -2) 2 ÷(x -2y)3
3、用科学记数法表示下列各数: ①0.00752=___________
②0.000379=______________
③378000=______________
④576=______________ ⑤0.0523=________________ ⑥-0.576=______________
三、拓展提升
1、计算:
①()___________2
32=--y x ②()___________3
2233=⋅---y x y x ③________________2624=÷-y x y x
④()___________2623=÷-y x y x
⑤()___________3
132=--y x y x ⑥()()___________23
2232=÷---b a c ab 2、 用科学计数法表示下列各数:
0.000 04, -0. 034, 0.000 000 45, 0. 003 009
3、计算 (1) (3×10-8)× (4×103) (2) (2×10-3)2÷(10-3)3
四、当堂反馈
1.填空
(1)-22= (2)(-2)2= (3)(-2) 0=
(4)20= ( 5)2 -3= ( 6)(-2) -3=
2.计算 (1) (x 3y -2)2 =__________ (2)x 2y -2 ·(x -2y)3 =_____________
(3)(3x 2y -2) 2 ÷(x -2y)3=_____________ (4)()_________2
32=--y x (5) ()_________32233=-⋅---y x y x (6)()_________22
13=÷-y x y x 3.计算
①()()()b a b a b a n n m +⋅+⋅+-+1
② ()()()5433222ab b a b a -÷-⋅-
③()()04223x x x ⋅÷ ④
()()
⎪⎭⎫ ⎝⎛-÷-÷-xyz z y x z y x
312.08.1322324 ⑤()()04220055211π-÷-⎪⎭⎫ ⎝⎛+-- ⑥()3
12226----⋅y x x
自我评价专栏(分优良中差四个等级)
自主学习: 合作与交流: 书写:
综合:。