椭圆的解题方法和技巧
椭圆题型及方法总结
椭圆题型及方法总结
椭圆题型及方法总结:
1. 求椭圆的标准方程:通过给定的信息,如焦点、顶点、直径长度等,使用定义式以及椭圆的性质,将椭圆的方程转化为标准方程:$(x-h)^2/a^2 + (y-k)^2/b^2 = 1$,其中$(h,k)$为椭圆的中心坐标。
2. 求椭圆的焦点坐标:已知椭圆的方程,可以通过标准方程得到椭圆的中心坐标$(h,k)$,然后使用椭圆的性质,计算出焦点的坐标。
3. 求椭圆的顶点坐标:已知椭圆的方程,可以通过标准方程得到椭圆的中心坐标$(h,k)$,然后使用椭圆的性质,计算出顶点的坐标。
4. 求椭圆的参数方程:已知椭圆的方程,可以通过给定的信息,如焦点、顶点、直径长度等,使用定义式以及椭圆的性质,将椭圆的方程转化为参数方程:$x = h + a \cos t$,$y = k + b \sin t$,其中$(h,k)$为椭圆的中心坐标,$a$和$b$分别为椭圆的半
长轴和半短轴长度。
5. 求椭圆的离心率:已知椭圆的方程,可以通过标准方程得到椭圆的半长轴长度$a$和半短轴长度$b$,然后使用离心率的定义式计算出椭圆的离心率:$e = \sqrt{1 - \frac{b^2}{a^2}}$。
6. 求椭圆的面积和周长:已知椭圆的方程,可以通过给定的信
息,如半长轴长度$a$和半短轴长度$b$,使用椭圆的性质计算出椭圆的面积和周长。
以上是常见的椭圆题型及解题方法的总结,具体问题具体分析,有时需要结合其他几何知识来解决问题。
椭圆常见题型与典型方法归纳
椭圆常见题型与典型方法归纳椭圆是平面内与两个定点距离之和等于常数的点的轨迹。
这两个定点被称为椭圆的焦点,椭圆的焦距是两个焦点之间的距离。
另外,椭圆也可以被定义为平面内一个点到一个定直线距离与到一个定点距离之比等于常数的轨迹。
这个定点是椭圆的焦点,定直线是椭圆的准线,这个常数是椭圆的离心率。
需要注意的是,当两个定点之间的距离等于常数时,椭圆的轨迹是线段,而当两个定点之间的距离小于常数时,椭圆的轨迹不存在。
椭圆的标准方程有两种形式,一种是焦点在x轴上的形式,另一种是焦点在y轴上的形式。
这些方程可以用来确定椭圆的形状和位置。
需要注意的是,椭圆的焦点位置可以通过方程中分母的大小来判断。
如果分母中x的系数大于y的系数,那么焦点在y轴上,反之则在x轴上。
如果椭圆过两个定点,但焦点位置不确定,可以设椭圆方程为mx+ny=1,其中m和n都是正数。
在解题时,需要牢记椭圆的几何性质。
例如,如果一个点到椭圆的左焦点的距离是到右焦点距离的两倍,那么这个点的横坐标可以通过解方程得到。
又例如,如果一个点在椭圆上,那么它到两个焦点的距离之和等于椭圆的长轴长度。
1.椭圆的基本性质椭圆方程为x2/a2 + y2/b2 = 1 (a>b>0),其中a和b分别为长轴和短轴长。
椭圆的中心在原点(0,0)处,长轴与x轴平行。
椭圆的顶点分别为(a,0)。
(-a,0)。
(0,b)。
(0,-b),离心率为e=c/a,其中c为焦点到中心的距离,焦距为2c。
椭圆的准线方程为y=±(b/a)x,通径方程为y=kx或x=h,其中k和h为常数。
椭圆关于x轴和y轴对称,且具有中心对称性。
椭圆上任意一点到两焦点的距离之和等于长轴长,即PF1 + PF2 = 2a。
椭圆上任意一点到两焦点的距离之差等于该点到准线的距离,即PF1 - PF2 = 2b。
椭圆上点的横坐标的范围为-x ≤ x ≤ x,纵坐标的范围为-y ≤ y ≤ y。
2.典型练1) 题目描述:给定椭圆方程x2/a2 + y2/b2 = 1,已知长轴位于x轴上,长轴长为8,短轴位于y轴上,短轴长为6,焦点在x轴上,焦点坐标为(5,0)和(-5,0),求离心率e、左顶点坐标、下顶点坐标和椭圆上点的横坐标的范围、纵坐标的范围以及x+y的取值范围。
高考数学 专题07 直线与椭圆的解题方法(解析版)
专题07 直线与椭圆的解题方法一.【学习目标】1.掌握椭圆的定义、几何图形、标准方程及简单几何性质.2.熟练掌握常见的几种数学思想方法——函数与方程、数形结合、转化与化归. 3.了解椭圆的实际背景及椭圆的简单应用. 二.【知识要点】 1.椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数(大于____________)的点的轨迹叫做椭圆,这两个定点F 1,F 2叫做焦点,两焦点间的距离叫做焦距. 2.椭圆的标准方程(1) ______________ (a >b >0),焦点F 1(-c ,0),F 2(c ,0),其中c =_____________. (2)y 2a 2+x 2b2=1(a >b >0),焦点___________________,其中c =_____________. 3.椭圆的几何性质以x 2a 2+y 2b2=1(a >b >0)为例(1)范围:________________.(2)对称性:对称轴:x 轴,y 轴;对称中心:O (0,0).(3)顶点:长轴端点:A 1(-a ,0),A 2(a ,0),短轴端点:B 1(0,-b ),B 2(0,b );长轴长|A 1A 2|=2a ,短轴长|B 1B 2|=2b ,焦距|F 1F 2|=2c .(4)离心率e =_______,0<e <1,e 越大,椭圆越______,e 越_______,椭圆越圆. (5)a ,b ,c 的关系:c 2=a 2-b 2或a 2=c 2+b 2. 三.【方法总结】(一)直线与椭圆关系求离心率 (二)对称问题 (三)椭圆与圆(四)直线与椭圆的中点弦问题 (五)定点问题 (六)定值问题 (七)范围问题 (八)探索性问题 四.【题型归纳】(一)直线与椭圆关系求离心率例1.在平面直角坐标系xOy 中,已知点, A F 分别为椭圆2222:1(0)x y C a b a b+=>>的右顶点和右焦点,过坐标原点O 的直线交椭圆C 于,P Q 两点,线段AP 的中点为M ,若, , Q F M 三点共线,则椭圆C 的离心率为( ) A .13 B .23 C .83D .32或83【答案】A【解析】如图 设()()0000,,,P x y Q x y --,又(,0),(,0)A a F c ,00,22x a y M +⎛⎫∴ ⎪⎝⎭,,,Q F M Q 三点共线,MF QF k k = 0000022y y x a c x c-∴=++-,即00002y y c x x a c =++-,002c x x a c ∴+=+-,3a c ∴=,13c e a ∴==,故选A.练习1.已知1F ,2F 为椭圆22221(0)x yC a b a b+=>>:的左右焦点,过原点O 且倾斜角为30°的直线l 与椭圆C 的一个交点为A ,若12AF AF ⊥,122F AF S ∆=,则椭圆C 的方程为A.22162x y += B.22184x y += C.22182x y += D.2212016x y += 【答案】A【解析】由题意,过原点O 且倾斜角为30o 的直线l 与椭圆C 的一个交点为A , 且12AF AF ⊥,且122F AF S ∆=,则可知OA c =, 设(,)A x y ,则31cos30,sin 302x c y c c ====o o ,即31,)2A c , 代入椭圆的方程可得2222144c c a b+=又由122F AF S ∆=,则211122222S c c c =⨯⨯== ,解答24c =,且222c a b =-, 解得226,2a b ==,所以椭圆的方程为22162x y +=,故选A.方法2,利用焦点三角形面积公式2tan ||||21221θb y F F S A ==(21AF F ∠=θ) 求出坐标31,)2A c ,带入第一个面积公式求c ,利用第二个面积公式2πθ=求b练习2.已知F 1,F 2为椭圆C :()222210x y a b a b+=>>的两个焦点,过点F 1作x 轴的垂线,交椭圆C 于P ,Q 两点.当△F 2PQ 为等腰直角三角形时,椭圆C 的离心率为e 1,当△F 2PQ 为等边三角形时, 椭圆C 的离心率为e 2,则e 1,e 2的大小关系为e 1______e 2 (用“>”,“<”或“=”连接) 【答案】< 【解析】把x c =-代入椭圆方程可得:22221c y a b+=,解得:2by a =± ①当2F PQ ∆为等腰直角三角形时,可得:22b c a=,即222a c ac -=化为:211210e e +-=,101e <<解得:1212e -+== ②当2F PQ ∆为等边三角形时,22b c a=)222a c ac -=22220e +=,201e <<解得:2e =则1e ,2e 的大小关系为:12e e <本题正确结果:<(二)对称问题例2. 在平面直角坐标系xOy 中,点P 为椭圆:C 22221y x a b+=()0a b >>的下顶点,M ,N 在椭圆上,若四边形OPMN 为平行四边形,α为直线ON 的倾斜角,若,64ππα⎛⎤∈ ⎥⎝⎦,则椭圆C 的离心率的取值范围为( ) A.0,3⎛ ⎝⎦B.0,2⎛ ⎝⎦C.,32⎣⎦D.,33⎣⎦ 【答案】A【解析】OP Q 在y 轴上,且平行四边形中,MN OP P ,∴M 、N 两点的横坐标相等,纵坐标互为相反数,即M 、N 两点关于x 轴对称,而MN OP a ==,可设,2a M x ⎛⎫-⎪⎝⎭,,2a N x ⎛⎫ ⎪⎝⎭,代入椭圆方程得:||x =,得,2a N ⎫⎪⎪⎝⎭, α为直线ON的倾斜角,tan aa ==,,,tan 164a ππα⎛⎤∈<≤ ⎥⎝⎦,1<≤,1a b ∴<≤1b a ≤<22113b a ∴≤<,而221ab ac e -==0e ∴<≤. ∴椭圆C的离心率的取值范围为⎛ ⎝⎦.故选A 项.练习1. 设1F ,2F 分别是椭圆()222210x y a b a b+=>>的左、右焦点,若在直线2a x c =(其中222cb a +=)上存在点P ,使线段1PF 的垂直平分线经过点2F ,则椭圆离心率的取值范围是( )A.0,2⎛ ⎝⎦B.0,3⎛ ⎝⎦ C.3⎫⎪⎪⎣⎭ D.,12⎫⎪⎪⎣⎭【答案】C【解析】由题意得 ()1,0)F c -,2F (),0c ,设点2,a P m c ⎛⎫⎪⎝⎭, 则由中点公式可得线段1PF 的中点221(,22a c K m c - ),∴线段1PF 的斜率与2KF 的斜率之积等于1-,即2221212m m a a c c c c c--⋅=--+-, 22230a a m c c c c ⎛⎫⎛⎫∴=-+⋅-≥ ⎪ ⎪⎝⎭⎝⎭,4224230a a c c ∴--≤,423210e e ∴+-≥,213e ∴≥,或21(e ≤-舍去),e ∴≥. 又椭圆的离心率 01e <<,故13e ≤<, 故选:C .练习2. 设椭圆C :22221(0)x y a b a b +=>>的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆C 与x 轴正半轴于点P 、Q ,且85AP PQ =uu u r uu u r, 椭圆C 的离心率为___.【答案】12【解析】:设0(,0)Q x ,由(,0)F c -,(0,)A b 知∵FA AQ ⊥u u u r u u u r ,0FA AQ ⋅=u u u r u u u r ,∴200cx b -=,20b x c= 设11(,)P x y ,由85AP PQ =uu u r uu u r 得21813b x c =,1513y b = 因为点P 在椭圆上,所以222221851313b a c bb +⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝=⎭整理得2b 2=3ac ,即2(a 2-c 2)=3ac ,2e 2+3e -2=0,故椭圆的离心率12e =(三)椭圆与圆例3.如图,1A ,2A 分别是椭圆2214xy +=的左、右顶点,圆1A 的半径为2,过点2A 作圆1A 的切线,切点为P ,在x 轴的上方交椭圆于点Q ,则2PQ QA =_______.【答案】34【解析】连结1PO PA 、,可得1POA n 是边长为2的等边三角形,所以1160PAO POA ∠∠==︒, 可得直线1PA 的斜率1603k tan =︒=PO 的斜率为21203k tan =︒=- 因此,直线1PA 的方程为)32y x =+,直线PO 的方程为3y x =, 设()P m n ,,由)323y x y x⎧=+⎪⎨=⎪⎩解得1m =-, 因为圆1A 与直线2PA 相切于点P ,所以21PA PA ⊥,因此219030PA O PAO ∠∠=︒-=︒, 故直线2PA 的斜率3150k tan =︒=2PA 的方程为)32y x =-,代入椭圆方程2214x y +=,消去y 得271640xx -+=,解得2x =或27x =, 因为直线2PA 交椭圆于()22,0A 与Q 点,设(),Q s t ,可得27s =, 由此可得22213722427Q P A Q x x PQ s m QA x x s +--====---. 故答案为34练习1.祖暅原理:两个等高的几何体,若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.利用祖暅原理可以求旋转体的体积.比如:设半圆方程为222(0,0)x y r y r +=≥>,半圆与x 轴正半轴交于点A ,作直线x r =,y r =交于点P ,连接OP (O 为原点),利用祖暅原理可得:半圆绕y 轴旋转所得半球的体积与OAP ∆绕y 轴旋转一周形成的几何体的体积相等.类比这个方法,可得半椭圆22221(0,0)y x a b y a b+=>>≥绕y 轴旋转一周形成的几何体的体积是_________. 【答案】223ab π 【解析】如图,这是椭圆22221(0,0)y x a b y a b+=>>≥绕y 轴旋转一周形成的几何体,所以半椭圆22221(0,0)y x a b y a b+=>>≥绕y 轴旋转一周形成的几何体为:椭圆的长半轴为a ,短半轴为b ,现构造两个底面半径为b ,高为a 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理,得出该几何体的体积是V V V =-圆柱圆锥22212=33b a b a b a πππ-=;答案:223ab π练习2.已知O 是椭圆E 的对称中心,1F ,2F 是E 的焦点,以O 为圆心,1OF 为半径的圆与E 的一个交点为A .若¼1AF 与¼2AF 的长度之比为2:1,则E 的离心率等于______. 【答案】31e =【解析】解法1:如图,设122F F c =,1OF c =,因为¼1AF 与¼2AF 的长度之比为2:1,故1120AOF ∠=o ,260AOF ∠=o ,所以2AOF △为正三角形,故2AF c =.在等腰1AOF △中,求得13AF c =.根据椭圆的定义,可得)12231a AF AF c =+=,故椭圆的离心率231231c c e a a ====+. 解法2:如图,设椭圆的方程为22221(0)x y a b a b+=>>,122F F c =.由题意,易知1120AOF ∠=o,260AOF ∠=o,所以2AOF △为正三角形,故13,22A c c ⎛⎫⎪ ⎪⎝⎭,因为点A 在椭圆上,所以22223144c c a b+=,即()222223144c c a a c +=-,即()22231441e e e +=-, 整理,得()22221344e eee -+=-,即42840e e -+=,解得2423e =+2423e =-31e =.练习3.设p 是椭圆2213632x y +=上一点,M ,N 分别是两圆:()2221x y -+=和()22124x y ++=上的点,则PM PN +的取值范围为______【答案】⎥⎦⎤⎢⎣⎡227221, 【解析】首先将P 点固定于一处,设两圆心分别为12,C C ,则1211,2r r ==,且12,C C 为椭圆的焦点, 根据圆外一点到与圆上的点的距离的范围可得11221111,22PC PM PC PC PN PC -≤≤+-≤≤+, 从而得到12123322PC PC PM PN PC PC +-≤+≤++,根据椭圆的定义可知1212PC PC +=,所以PM PN +的取值范围为2127[,]22, 故答案是:2127[,]22.(四)直线与椭圆的中点弦问题例4.已知椭圆T : 22221(>0)x y a b a b +=>的离心率为2,右焦点为()1,0F ,三角形ABC 的三个顶点都在椭圆T 上,设它的三条边AB BC AC 、、的中点分别为D E M 、、,且三条边所在直线的斜率分别1k 、2k 、3k ,且1k 、2k 、3k 均不为0。
数学椭圆的解题技巧
数学椭圆的解题技巧数学椭圆的解题技巧数学的复习策略及其椭圆技巧对考生来说极其重要。
下面要为大家分享的就是数学椭圆的解题技巧,希望你会喜欢!一、设点或直线做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。
其中点可以设为等,如果是在椭圆上的点,还可以设为。
一般来说,如果题目中只涉及到唯一一个椭圆上的的动点,这个点可以设为。
还要注意的是,很多点的坐标都是设而不求的。
对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设,如果只是过定点,可以设参数方程,其中α是直线的倾斜角。
一般题目中涉及到唯一动直线时可以设直线的参数方程。
二、转化条件有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。
对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。
比如点在圆上可以转化为向量点乘得零,三点共线可以转化成两个向量平行,某个角的角平分线是一条水平或竖直直线则这个角的两条边斜率和是零。
有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单。
三、代数运算转化完条件就剩算数了。
很多题目都要将直线与椭圆联立以便使用一元二次方程的韦达定理,但要注意并不是所有题目都是这样。
有的题目可能需要算弦长,可以用弦长公式,设参数方程时,弦长公式可以简化为解析几何中有时要求面积,如果O是坐标原点,椭圆上两点A、B坐标分别为和,AB与x轴交于D,则(d是点O到AB的距离;第三个公式是我自己推的,教材上没有,解答题慎用)。
解析几何中很多题都有动点或动直线。
如果题目只涉及到一个动点时,可以考虑用参数设点。
若是只涉及一个过定点的动直线,题目中又涉及到求长度面积之类的东西,这时设直线的参数方程会简单一些。
在解析几何中还有一种方法叫点差法,设椭圆上两个点的坐标,将两点在椭圆上的方程相减,整理即可得到这两点的中点的横纵坐标与这两点连线的斜率的关系式。
高三椭圆的知识点
高三椭圆的知识点椭圆是高中数学中重要的几何图形之一,它在解决实际问题中具有广泛的应用。
下面将介绍高三椭圆的相关知识点,包括定义、性质以及常见的解题方法。
一、椭圆的定义椭圆可由平面上到两个定点(焦点)F1和F2的距离之和等于常数2a,确定的点P的轨迹得到。
椭圆的中心为焦点连线中点O,以及焦点连线的中垂线l。
离心率e小于1,表明椭圆是一个封闭图形。
二、椭圆的性质1. 焦距性质:椭圆上的每一点到两个焦点的距离之和等于常数2a。
2. 几何定义椭圆:直角坐标系中,椭圆的方程为(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h,k)为椭圆的中心坐标,a为横半轴长,b为纵半轴长。
椭圆的右右焦点F(h+c,k)和左焦点(h-c,k)。
3. 参数方程椭圆:通过参数方程x = h + a*cosθ,y = k + b*sinθ,其中θ为参数。
4. 离心率与半轴关系:离心率e的定义为e = c/a,离心率与半轴关系式为c^2 = a^2 - b^2。
5. 曲线方程性质:椭圆是一个二次曲线,代数方程为Ax^2 + By^2 + Cx + Dy + E = 0。
三、椭圆的重要定理1. 线性方程:椭圆的一般方程Ax^2 + By^2 + Cx + Dy + E = 0可以通过平行于坐标轴的两条直线进行化简,并找到方程相应的参数。
2. 切线与法线:过椭圆上任一点的切线与法线斜率的关系式分别为k1 = -x0b^2 / (y0a^2),k2 = y0b^2 / (x0a^2)。
3. 曲线的切线方程:切线方程的一般形式为y = kx + b,切线与椭圆交点的坐标可通过求解方程得到。
4. 曲线的法线方程:法线方程的一般形式为y = -kx + c,法线与椭圆交点的坐标可通过求解方程得到。
四、椭圆的解题方法在解题过程中,可以运用椭圆的基本定义、性质和定理来求解与椭圆相关的各种问题。
具体方法如下:1. 已知椭圆方程求解:将已知的椭圆方程转化为标准方程,找出椭圆的参数,并求解各属性,如中心坐标、焦点坐标、离心率等。
高中数学椭圆标准方程解题技巧
高中数学椭圆标准方程解题技巧椭圆是高中数学中的一个重要概念,涉及到椭圆的标准方程的解题技巧对于学生来说是必备的。
本文将介绍椭圆标准方程的解题方法,并通过具体的例子来说明考点和解题思路,帮助高中学生和他们的父母更好地掌握这一知识点。
一、椭圆标准方程的基本形式椭圆的标准方程一般形式为:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,其中$a$和$b$分别代表椭圆的半长轴和半短轴的长度。
二、确定椭圆的中心和半长轴、半短轴对于给定的椭圆标准方程,首先需要确定椭圆的中心和半长轴、半短轴的长度。
通过观察方程可以得到以下信息:1. 中心:椭圆的中心为坐标原点$(0,0)$。
2. 半长轴和半短轴:椭圆的半长轴的长度为$a$,半短轴的长度为$b$。
三、确定椭圆的焦点和离心率椭圆的焦点和离心率是椭圆的重要属性,通过椭圆的标准方程可以计算得到。
1. 焦点:椭圆的焦点的坐标为$(\pm c, 0)$,其中$c=\sqrt{a^2-b^2}$。
2. 离心率:椭圆的离心率为$e=\frac{c}{a}$。
四、解题技巧举例下面通过具体的例子来说明椭圆标准方程的解题技巧。
例题1:已知椭圆的标准方程为$\frac{x^2}{16} + \frac{y^2}{9} = 1$,求椭圆的焦点和离心率。
解析:根据椭圆的标准方程,可以得到$a=4$,$b=3$。
通过计算可以得到$c=\sqrt{a^2-b^2}=2$,$e=\frac{c}{a}=\frac{1}{2}$。
因此,椭圆的焦点为$(\pm 2, 0)$,离心率为$\frac{1}{2}$。
例题2:已知椭圆的焦点为$F_1(-3, 0)$,$F_2(3, 0)$,离心率为$\frac{1}{2}$,求椭圆的标准方程。
解析:根据椭圆的焦点和离心率的定义,可以得到$c=\frac{1}{2}a$,$c=3$。
解方程组可以得到$a=6$。
由于椭圆的中心为坐标原点$(0,0)$,因此椭圆的标准方程为$\frac{x^2}{36} + \frac{y^2}{27} = 1$。
最全的分子做椭圆运动的解题方法和技巧
最全的分子做椭圆运动的解题方法和技巧分子在椭圆轨道上运动是物理学中的一个重要问题。
本文将介绍一些最全的解题方法和技巧,以帮助您更好地理解和解决相关问题。
1. 确定椭圆轨道的方程式首先,我们需要确定分子在椭圆轨道上的运动方程式。
对于一个具有长轴 a 和短轴 b 的椭圆,其方程可以表示为:(x^2 / a^2) + (y^2 / b^2) = 1其中,(x, y) 是分子在椭圆轨道上的某个点的坐标。
2. 确定分子在不同位置的速度和加速度为了解决分子在椭圆轨道上的运动问题,我们需要确定分子在不同位置的速度和加速度。
速度的大小可以通过以下公式计算:v = sqrt((2 * E) / m)其中,E 表示分子的总能量,m 表示分子的质量。
分子在椭圆轨道上的加速度可以通过以下公式计算:a = (v^2) / r其中,v 是速度,r 是分子到椭圆轨道中心的距离。
3. 理解分子的离心率和偏心距离离心率和偏心距离是描述椭圆轨道形状的两个重要参数。
离心率可以通过以下公式计算:e = sqrt(1 - (b^2 / a^2))其中,a 和 b 分别表示椭圆的长轴和短轴。
偏心距离可以通过以下公式计算:d = a * e4. 解决分子在椭圆轨道上的运动问题根据分子在椭圆轨道上的运动方程式和某个时刻的位置,我们可以通过以下步骤解决分子在椭圆轨道上的运动问题:- 确定分子在该位置的速度和加速度;- 根据速度和加速度,计算出分子在该位置的推力和力矩;- 使用牛顿第二定律和牛顿第三定律求解分子的加速度和角加速度;- 通过积分计算出分子在不同位置的坐标。
5. 详细案例分析为了更好地理解和应用上述方法和技巧,本文提供了详细的案例分析,包括具体的计算步骤和结果。
通过参考这些案例,您可以更好地解决分子在椭圆轨道上的运动问题。
总结起来,本文介绍了一些最全的解题方法和技巧,帮助您更好地理解和解决分子在椭圆轨道上的运动问题。
这些方法和技巧涵盖了椭圆轨道方程、速度和加速度计算、离心率和偏心距离的理解以及具体问题的解决步骤。
椭圆大题定值定点、取值范围、最值问题总结
椭圆大题定值定点、取值范围、最值问题等总结一、直线与椭圆问题的常规解题方法:1.设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y kx b =+与x my n =+的区别) 2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”) 3.联立方程组;4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单) 5.根据条件重转化;常有以下类型:①“以弦AB 为直径的圆过点0”(提醒:需讨论k 是否存在)121212100OA OB k k OA OB x x y y ⇔⊥⇔=⇔⋅-⋅=⇔+=u u u r u u u r②“点在圆内、圆上、圆外问题”⇔“直角、锐角、钝角问题” ⇔ “向量的数量积大于、等于、小于0问题”12120x x y y ⇔+>; ③“等角、角平分、角互补问题”令斜率关系(120k k +=或12k k =); ④“共线问题”(如:AQ QB λ=⇔u u u r u u u r数的角度:坐标表示法;形的角度:距离转化法); (如:A O B ,,三点共线⇔直线OA 与OB 斜率相等); ⑤“点、线对称问题”⇔坐标与斜率关系;⑥“弦长、面积问题”⇔转化为坐标与玄长公式问题(提醒:注意两个面积公式的合理选择); 6.化简与计算; 7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、基本解题思想:1.“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3.证明定值问题的方法:(1)常把变动的元素用参数表示出来,然后证明计算结果与参数无关; (2)也可先在特殊条件下求出定值,再给出一般的证明. 4.处理定点问题的方法:(1)常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点; (2)也可先取参数的特殊值探求定点,然后给出证明,5.求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决;6.转化思想:有些题思路易成,但难以实施.这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;椭圆中的定值、定点问题.一、常见基本题型:在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的. (1)直线恒过定点问题1.已知点00()P x y ,是椭圆E :2212x y +=上任意一点,直线l 的方程为0012x x y y +=,直线0l 过P 点与直线l 垂直,点(10)M -,关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标. 解:直线0l 的方程为()()00002x y y y x x -=-,即000020y x x y x y --=设(10)M -,关于直线0l 的对称点N 的坐标为()N m n ,,则0000001212022x n m y x n m y x y ⎧=-⎪+⎪⎨⎪-⋅--=⎪⎩,,解得()3200020432000020023444244824x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩ 所以直线PN 的斜率为()432000003200004288234n y x x x x k m x y x x -++--==---+, 从而直线PN 的方程为:()()432000000320004288234x x x x y y x x y x x ++---=---+即()32000432000023414288y x x x y x x x x --+=+++--从而直线PN 恒过定点(10)G ,.2.已知椭圆两焦点12F F ,在y 轴上,短轴长为22,离心率为2,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=u u u r u u u r,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点. (1)求P 点坐标;(2)求证直线AB 的斜率为定值;解:(1)设椭圆方程为22221y x a b+=,由题意可得2222a b c ===,,, 所以椭圆的方程为22142y x +=, 则12(02)(02)F F -,,,,设()()000000P x y x y >>,, 则()()10020022PF x y PF x y =--=---u u u r u u u u r,,,,.所以()22120021PF PF x y ⋅=--=u u u r u u u r ,因为点()00P x y ,在曲线上,则2200124x y +=,所以220042y x -=,从而()22004212y y ---=,得0y =,则点P的坐标为(1.(2)由(1)知1PF //x 轴,直线PA PB ,斜率互为相反数,设PB 斜率为0)k k >(,则PB的直线方程为:(1)y k x -,由22(1)124y k x y x ⎧-⎪⎨+=⎪⎩,,得()22222))40k x k k x k ++-+--=,设()B B B x y ,,则1B x -同理可得A xA Bx x -, ()()28112A B A B k y y k x k x k-=----=+,所以直线AB的斜率A BAB A By y k x x -==-3.已知动直线(1)y k x =+与椭圆C :221553y x +=相交于A B ,两点,已知点()703M -,, 求证:MA MB ⋅u u u r u u u r为定值.解:将(1)y k x =+代入221553y x +=中得()2222136350k x k x k +++-=, 所以()()4222364313548200k k k k ∆=-+-=+>,221212226353131k k x x x x k k -+=-=++,所以()()()()1122121277773333MA MB x y x y x x y y ⋅=+⋅+=+++u u u r u u u r,, ()()()()21212771133x x k x x =+++++()()()2221212749139k x x k x x k =++++++()()()22222223576491393131k k k k k k k -=+++-++++422231654949931k k k k ---=++=+.4.在平面直角坐标系xOy 中,已知椭圆C :2213x y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A B ,两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3)D m -,. (1)求22m k +的最小值;(2)若2OG OD OE =⋅,求证:直线l 过定点. 解:(1)由题意:设直线l :(0)y kc n n =+≠,由2213y kx n x y =+⎧⎪⎨+=⎪⎩,,消y 得:()222136330k x knx n +++-=, ()()()222222364133112310k n k n k n ∆=-+⨯-=+->,设()()1122A x y B x y ,,,,AB 的中点()00E x y ,, 则由韦达定理得:0122613t nx x k -+=+,即00022233131313kn kn n x y kx n k n k k k--==+=⨯+=+++,, 所以中点E 的坐标为()2231313km n k k -++,,因为O E D ,,三点在同一直线上,所以O OE D k k =,即133m k -=-,解得1m k =,所以222212m k k k+=+…,当且仅当1k =时取等号,即22m k +的最小值为2. (2)证明:由题意知:0n >,因为直线OD 的方程为3m y x =-,所以由22313m y x x y ⎧=-⎪⎨⎪+=⎩得交点G 的纵坐标为223G m y m =+, 又因为213E D n y y m k==+,,且2OG OD OE =⋅,所以222313m n m m k =⋅++, 又由(1)知:1m k=,,所以解得k n =,所以直线l 的方程为y kx k =+,即(1)y k x =+, 令1x =-得,0y =,与实数k 无关.椭圆中的取值范围问题一、常见基本题型:对于求曲线方程中参数范围问题,应根据题设条件及曲线的几何性质构造参数满足的不等式,通过解不等式求得参数的范围;或建立关于参数的目标函数,转化为函敞的值域来解. (1)从直线和二次曲线的位置关系出发,利用判别式的符号,确定参数的取值范围.5.已知直线l 与y 轴交于点(0)P m ,,与椭圆C :2221x y +=交于相异两点A B,,且3AP PB =u u u r u u u r , 求m 的取值范围.解:(1)当直线斜率不存在时:12m =±;(2)当直线斜率存在时:设l 与椭圆C 交点为()()1122A x y B x y ,,,, 所以2221y kx m x y =+⎧⎨+=⎩,,得()2222210k x knx m +++-= 所以()()()22222(2)4214220()kn k m k m ∆=-+-=-+>*21212222122km m x x x x k k --+==++, 1233AP PB x x =∴-=u u u r u u u r Q ,,所以122212223x x x x x x +=-⎧⎨=-⎩,,消去2x 得()21212340x x x x ++=, 所以()22222134022km m k k --+=++, 整理得22224220k m m k +--=,214m =时,上式不成立;214m ≠时,2222241m k m -=-, 所以22222041m k m -=-…,所以112m -<-„或112m <„, 把2222241m k m -=-代入(*)得112m -<<-或112m <<, 所以112m -<<-或112m <<,综上m 的取值范围为112m -<-„或112m <„.(2)利用题中其他变量的范围,借助于方程产生参变量的函数表达式,确定参数的取值范围. 6.已知点(40)(10)M N ,,,,若动点P 满足6||MN MP PN ⋅=u u u u r u u u r u u u r. (1)求动点P 的轨迹C 的方程;(2)设过点N 的直线l 交轨迹C 于A B ,两点,若181275NA NB -⋅-u u u r u u u r 剟,求直线l 的斜率的取值范围.解:(1)设动点()P x y ,,则(4)(30)(1)MP x y MN PN x y =-=-=--u u u r u u u u r u u u r,,,,,.由已知得3(4)x --=223412x y +=,得22143y x +=.所以点P 的轨迹C 是椭圆,C 的方程为22143y x +=. (2)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为(1)y k x =-, 设A B ,两点的坐标分别为()()1122A x y B x y ,,,. 由22(1)143y k x y x =-⎧⎪⎨+=⎪⎩,,消去y 得()22224384120k x k x k +-+-=,因为N 在椭圆内,所以0∆>.所以2122212283441234k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,, 因为()()()()()212121211111NA NB x x y y k x x⋅=--+=+--u u u r u u u r()()2121211k x x x x =+-++⎡⎤⎣⎦()()22222229141283413434k k k k k k k -+--++=+=++,所以()229118127534k k -+--+剟,解得213k 剟.(3)利用基本不等式求参数的取值范围7.已知点Q 为椭圆E :221182y x +=上的一动点,点A 的坐标为(31),,求AP AQ ⋅u u u r u u u r 的取值范围. 解:(13)AP =u u u r,,设()(31)Q x y AQ x y =--u u u r ,,,, (3)3(1)36AP AQ x y x y ⋅=-+-=+-u u u r u u u r因为221182y x +=,即22(3)18x y +=, 而22(3)2|||3|x y x y +⋅…,所以18618xy -剟.而222(3)(3)6186x y x y xy xy +=++=+的取值范围是[036],, 3x y +的取值范围是[66]-,, 所以36AP AQ x y ⋅=+-u u u r u u u r取值范围是[120]-,.8.已知椭圆的一个顶点为(01)A -,,焦点在x轴上.若右焦点到直线0x y -+=的距离为3. (1)求椭圆的方程.(2)设直线(0)y kx m k =+≠与椭圆相交于不同的两点M N ,.当AM AN =时,求m 的取值范围. 解:(1)依题意可设椭圆方程为2221x y a+=,则右焦点)0F,3=,解得23a =,故所求椭圆的方程为2213x y +=.(2)设()()(),,,p p M M N N P x y M x y N x y ,,,P 为弦MN 的中点,由2213y kx m x y =+⎧⎪⎨+=⎪⎩,,得()()222316310k x mkx m +++-= 因为直线与椭圆相交,所以()()22222(6)43131031mk k m m k ∆=-+⨯->⇒<+,① 所以23231M NP x x mk x k +==-+,从而231p p m y kx m k =+=+, 所以21313P AP P y m k k x mk+++==-,又AM AN =,所以AP MN ⊥, 则23113m k mk k++-=-,即2231m k =+,②把②代入①得22m m <,解02m <<, 由②得22103m k -=>,解得12m >.综上求得m 的取值范围是122m <<.9.如图所示,已知圆C :22(1)8x y ++=,定点(10)A ,,M 为圆上一动点,点P 在AM 上,点N 在CM 上,且满足20AM AP NP AM =⋅=u u u u r u u u r u u u r u u u u r,,点N 的轨迹为曲线E . (1)求曲线E 的方程;(2)若过定点(02)F ,的直线交曲线E 于不同的两点G H ,(点G 在点F H ,之间),且满足FG FH λ=u u u r u u u r,求λ的取值范围.解:(1)因为20AM AP NP AM =⋅=u u u u r u u u r u u u r u u u u r,. 所以NP 为AM 的垂直平分线,所以NA NM =, 又因为22CN NM +=,所以222CN AN +=>. 所以动点N 的轨迹是以点(10)(10)C A -,,,为焦点的椭圆 且椭圆长轴长为222a =,焦距21c =. 所以2211a c b ===,,. 所以曲线E 的方程为2212x y +=(2)当直线GH 斜率存在时,设直线GH 方程为2y kx =+.代入椭圆方程2212x y +=, 得()2214302k x kx +++=,由0∆>得232k >,设()()1122G x y H x y ,,,,则121222431122k x x x x k k -+==++,, 又因为FG FH λ=u u u r u u u r,所以()()112222x y x y λ-=-,,,所以12x x λ=,所以2122122(1)x x x x x x λλ+=+=,, 所以()22121221x x x x x λλ+==+,所以2222431122(1)k k k λλ-⎛⎫ ⎪+ ⎪+⎝⎭=+,整理得22(1)161312k λλ+=⎛⎫+ ⎪⎝⎭, 因为232k >,所以2161643332k <<+,所以116423λλ<++<,解得133λ<<.又因为01λ<<,所以113λ<<.又当直线GH 斜率不存在,方程为11033x FG FH λ===u u u r u u u r ,,, 所以113λ<…,即所求λ的取值范围是)113⎡⎢⎣,. 10.已知椭圆C :22221(0)y x a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -+相切. (1)求椭圆C 的方程;(2)若过点(20)M ,的直线与椭圆C 相交于两点A B ,,设P 为椭圆上一点,且满足OA OB tOP +=u u u r u u u r u u u r(O 为坐标原点),当||PA PB -<u u u r u u u r时,求实数t 取值范围.解:(1)由题意知c e a ==,所以22222212c a b e a a -===, 即222a b =,所以2221a b ==,. 故椭圆C 的方程为2212x y +=.(2)由题意知直线AB 的斜率存在.设AB :()2y k x =-,()()1122()x y B x A y P x y ,,,,,, 由22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,,得()2222128820k x k x k +-+-=, ()()42221644218202k k k k ∆=-+-><,,221212228821212k k x x x x k k -+=⋅=++,. 因为OA OB tOP +=u u u r u u u r u u u r ,所以()()212121228()12x x k x x y y t x y x t t k +++===+,,,,()()1212214412y y k y k x x k t t t k +-==+-=⎡⎤⎣⎦+, 因为点P 在椭圆上,所以()()()2222222228(4)221212k k tk t k-+=++,所以()2221612k t k =+.因为||PA PB -<u u u r u u u r12x -()()22121220149k x x x x ⎡⎤++-⋅<⎣⎦,所以()()4222226482201491212k k k k k ⎡⎤-⎢⎥+-⋅<⎢⎥++⎣⎦, 所以()()224114130k k -+>,所以214k >,所以21142k <<,因为()2221612k t k=+,所以222216881212k t k k==-++,所以2t -<<2t <<,所以实数t取值范围为()22-U ,.椭圆中的最值问题一、常见基本题型: (1)利用基本不等式求最值,11.已知椭圆两焦点12F F ,在y轴上,短轴长为,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=u u u r u u u r,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点,求PAB ∆面积的最大值.解:设椭圆方程为22221y x a b+=,由题意可得2a b c ===,故椭圆方程为22142y x +=设AB 的直线方程:2y x m =+.由222124y x m y x ⎧=+⎪⎨+=⎪⎩,,得2242240x mx m ++-=,由()22(22)1640m m ∆=-->,得2222m -<<,P 到AB 的距离为3d =, 则()2111||432223PAB S AB d m ∆=⋅=-⋅⋅, ()()2222211882882m m m m -+=-+=„.当且仅当2(2222)m =±∈-,取等号,所以三角形PAB 面积的最大值为2. (2)利用函数求最值,12.如图,DP ⊥x 轴,点M 在DP 的延长线上,且2DM DP =.当点P 在圆221x y +=上运动时. (1)求点M 的轨迹C 的方程;(2)过点(0)T t ,作圆221x y +=的切线l 交曲线C 于A B ,两点,求AOB ∆面积S 的最大值和相应的点T 的坐标.解:(1)设点M 的坐标为()x y ,,点P 的坐标为00()x y ,,则002x x y y ==,,所以002yx x y ==,,① 因为00()P x y ,在圆221x y +=上,所以22001x y +=② 将①代入②,得点M 的轨方程C 的方程2214y x +=. (2)由题意知,||1t ….当1t =时,切线l 的方程为1y =,点A B ,的坐标分别为()()3311-,,,,此时3AB =;当1t =-时,同理可得3AB =;当||1t >时,设切线l 的方程为y kx m k =+∈R ,, 由2214y kx t y x =+⎧⎪⎨+=⎪⎩,,得()2224240k x ktx t +++-=③设A B ,两点的坐标分别为()()1122x y x y ,,,,则由③得: 21212222444kt t x x x x k k -+=-=++,.又由l 与圆221x y +=1=,即221t k =+. 所以||AB ==因为||23||||ABt t ==+,且当t = 2AB =,所以AB 的最大值为2,依题意,圆心O 到直线AB 的距离为圆221x y +=的半径,所以AOB ∆面积1112S AB =⨯„, 当且仅当t =AOB∆面积S 的最大值为1,相应的T的坐标为(0-,或(0.13.已知椭圆G :2214x y +=.过点(0)m ,作圆221x y +=的切线l 交椭圆G 于A B ,两点.将AB 表示为m 的函数,并求AB 的最大值.解:由题意知,||1m ….当1m =时,切线l 的方程为1x =,点A B ,的坐标分别为((11,,,此时AB= 当1m =-时,同理可得AB =当||1m >时,设切线l 的方程为()y k x m =-. 由22()14y k x m x y =-⎧⎪⎨+=⎪⎩,,得()22222148440k x k mx k m +-+-=. 设A B ,两点的坐标分别为()()1122x y x y ,,,, 又由l 与圆221x y +=1=,即2221m k k =+. 所以AB ===由于当1m =±时,AB ,23||||AB m m==+, 当且当m =时,2AB =.所以AB 的最大值为2.【练习题】1.已知A B C ,,是椭圆m :22221(0)y x a b a b+=>>上的三点,其中点A 的坐标为(230),,BC 过椭圆m 的中心,且0||2||AC BC BC AC ⋅==u u u r u u u r u u u r u u u r ,. (1)求椭圆m 的方程;(2)过点(0 )M t ,的直线l (斜率存在时)与椭圆m 交于两点P Q ,,设D 为椭圆m 与y 轴负半轴的交点,且||||DP DQ =u u u r u u u r ,求实数t 的取值范围.2.已知圆M :222()()x m y n r -+-=及定点(10)N ,,点P 是圆M 上的动点,点Q 在NP 上,点G 在MP上,且满足20NP NQ GQ NP =⋅=u u u r u u u r u u u r u u u r ,. (1)若104m n r =-==,,,求点G 的轨迹C 的方程;(2)若动圆M 和(1)中所求轨迹C 相交于不同两点A B ,,是否存在一组正实数m n r ,,,使得直线MN 垂直平分线段AB ,若存在,求出这组正实数;若不存在,说明理由.3.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线:y kx m =+与椭圆C 相交于A B ,两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.4.如图,已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的2倍且经过点1(2)M ,,平行于OM 的直线l 在y 轴上的截距为(0)m m ≠,l交椭圆于A B ,两个不同点.(1)求椭圆的方程;(2)求m 的取值范围;(3)求证直线MA MB ,与x 轴始终围成一个等腰三角形.。
椭圆的解题方法和技巧
椭圆的解题方法和技巧安徽省宿州市褚兰中学海平一、椭圆的定义的应用椭圆的定义是用椭圆上的点到焦点的距离来描述的,因此在解题中凡涉及曲线上的点到焦点的距离时,应先想到用定义求解,常会有事半功倍之效。
例1 的三边、、成等差数列且满足,、两点的坐标分别是、。
求顶点的轨迹。
分析:数列与解析几何相联系,往往构成综合性较大的题目,历来是高考考查的热点之一。
解析:∵、、成等差数列,∴,即,又,∴。
根据椭圆的定义,易得点的轨迹方程为。
又∵,∴,即,∴,∴。
故点的轨迹是椭圆的一半,方程为()。
又当时,点、、在同一条直线上,不能构成三角形,∴。
∴点的轨迹方程为。
评注:该例是先由条件找到动点所满足的几何关系,寻找出满足椭圆定义的条件,然后确定椭圆的方程。
解题时,易忽略这一条件,因此易漏掉这一限制;由于、、三点构成三角形,故应剔除使、、共线的点。
例2 、椭圆上一点到两焦点、的距离之差为2,试判断的形状。
分析:由椭圆定义知,的和为定值,且二者之差为题设条件,故可求出的两边。
解析:由,解得。
又,故满足。
∴为直角三角形。
评注:由椭圆上一点与两个焦点构成的三角形,称作焦点三角形。
利用焦点三角形能有意识地考查定义、三角形正(余)弦定理、内角和定理及面积公式能否灵活运用。
二、利用待定系数法确定椭圆的标准方程。
例3、已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1(6,1)P ,2(3,2)P ,求椭圆的方程.【解析】设椭圆方程为22mx ny 1+=(m >0,n >0且m≠n ). ∵椭圆经过1P ,2P 点,∴1P ,2P 点坐标适合椭圆方程, 则①6m+n=1,② 3m+2n=1,①②两式联立,解得m=19, n= 13. ∴所求椭圆方程为22x y 193+=评注:运用待定系数法求椭圆标准方程,即设法建立关于a ,b 的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m >0,n >0,m≠n ),由题目所给条件求出m ,n 即可.三、 利用向量解决椭圆问题几何中突出向量的工具作用成为高考命题的新亮点,向量本身具有“数”与“形”的双重身份,常把向量的代数式转化为坐标表示或利用其几何关系求解.()()()22410,14111()()22212||y x M l A B O P OP OA OB N l M P NP +==+例、最值问题设椭圆方程为,过点的直线交椭圆于、两点,是坐标原点,点满足,点的坐标为,.当绕点旋转时,求:动点的轨迹方程;的最大值与最小值.()()112222221221221212220,1 1.()()1(4)2301424.8414()()()212244l M k l y kx A x y B x y y kx k x kx y x k x x k y y k x x y y k OP OA OB k k=+=+⎧⎪++-=⎨+=⎪⎩⎧+=-⎪⎪+⎨⎪+=⎪+⎩++-=+==++直线过点,当斜率存在时,设其斜率为,则的方程为记,,,,由,得,所以解,:,析则.()()222222222()40.0,0111.16441117||()()3(40.1||611||.4).2261242P x P x y k x y y AB P x x NP x y y y x NP x x NP +-=≤-≤≤=-+-=-+-=++=-=点的轨迹方程为当时,取得设点的坐标为,,则,消去得当斜率不存在时,的中点为原点,也满足上述方程.所以由点的轨迹方程知,即所以故当时,取得最小值为评注:由向量作为载体的解析几何问题一要利用向量的几何意义,二要熟悉向量的坐标运算.而与椭圆有关的求最值问题则常与求函数的值域相联系. 例5、参数范围问题()()()(01)0,1||()12||G ABC A B x M MA MC GM AB R C k l C P Q AP AQ k λλ∆-==∈=已知点是的重心,,,,在轴上有一点,满足,.求点的轨迹方程;若斜率为的直线与点的轨迹交于不同的两点、,且满足,试求的取值()222()()33()(0)3||1(0)3131(0)x yC x y G ABC G GM AB R GM AB xM x M MA MC y x x C y x λλ∆=∈==+=≠+=≠设,,为的重心,则,.因为,所以,而点在轴上,则,.,得整理得.所点的轨迹方析:程为以解()()()222222222211220||.013(13)63(1)0*(6)4(13)3(1)0130**()()2k l C P Q AP AQ k l y kx m x y k x kmx m l km k m k m P x y Q x y ==≠=++=+++-=∆=-+⋅->+->①当时,与椭圆有两个不同的交点、,由椭圆的对称性知②当时,可设的方程为,代入,整理得,,因为直线与椭圆交于不同的两点,所以,即,设,,,,1122212122212000002222()()63(1)1313()231313||11313-13AN P x y Q x y km m x x x x k kx xPQ N x y x km m y kx m k k AP AQ AN PQ mk k k k km k -+=-=+++==-=+=++=⊥++⋅=⋅=-+设,,,,则,,则中点,的坐标为,,又,所以,所以,()()()()2213**121,00,1,11k m k k k -+=<∈-得,代入得,所以.的取值范围得,是综合①②.. 评注:解决参数的取值范围问题常用的方法有两种:①不等式(组)求解法:根据题意结合图形列出所讨论的参数适合的不等式(组),通过解不等式(组)得出参数的取值范围;②函数值域求解法:把所讨论的参数表示为有关某个变量的函数,通过讨论函数的值域求参数的变化范围.。
高中数学椭圆秒杀技巧
高中数学椭圆秒杀技巧
椭圆是平面几何中的重要概念,也是高中数学中常见的几何图形之一。
在学习
椭圆的过程中,很多同学可能会觉得难以掌握,但实际上只要掌握一些技巧,就能轻松秒杀椭圆相关问题。
本文将介绍几个高中数学中秒杀椭圆题目的技巧。
技巧一:理解椭圆的定义
在学习椭圆之前,首先要对椭圆的定义有一个清晰的认识。
椭圆是平面上到两
个定点的距离之和等于常数的点的轨迹。
这个定义看起来有点抽象,但理解了这个定义之后,我们就能更好地解决与椭圆相关的问题。
技巧二:熟练掌握椭圆的标准方程
椭圆的标准方程是一个常见的形式,即$\\frac{x^2}{a^2} + \\frac{y^2}{b^2} =
1$。
掌握这个标准方程可以帮助我们快速识别椭圆,并在解题过程中更加得心应手。
技巧三:利用对称性简化问题
椭圆具有很强的对称性,可以利用这一特点简化问题。
分析题目中给出的条件,找到椭圆的对称轴和对称中心,可以帮助我们更快地找到解题思路。
技巧四:化简方程,消减未知数
有些椭圆相关的问题可能会涉及复杂的方程式,我们可以通过一系列化简操作,将方程转化为更简单的形式。
在这个过程中,适当的代换和方程变换是非常有帮助的。
技巧五:灵活运用性质和定理
掌握椭圆的相关性质和定理是解题过程中的利器。
比如椭圆的离心率性质、焦
点定理等,都可以帮助我们更好地理解题目和解题。
通过掌握上述技巧,我们就能更好地应对高中数学中关于椭圆的问题,轻松秒
杀各种椭圆相关题目。
希望同学们能够在练习中不断提升解题能力,取得更好的成绩!。
椭圆方程的几种常见求法
椭圆方程的几种常见求法对于求椭圆方程的问题,通常有以下常见方法:一、定义法例1 已知两圆C1:,C2:,动圆在圆C1内部且和圆C1 相内切,和圆C2相外切,求动圆圆心的轨迹方程.分析:动圆满足的条件为:①与圆C1相内切;②与圆C2相外切.依据两圆相切的充要条件建立关系式.解:设动圆圆心M(,),半径为,如图所示,由题意动圆M内切于圆C1,∴,圆M外切于圆C2 ,∴,∴,∴动圆圆心M的轨迹是以C1、C2为焦点的椭圆,且,,故所求轨迹方程为:.评注:利用圆锥曲线的定义解题,是解决轨迹问题的基本方法之一.此题先根据平面几何知识,列出外切的条件,内切的条件,可发现利用动圆的半径过度,恰好符合椭圆的定义.从而转化问题形式,抓住本质,充分利用椭圆的定义是解题的关键.二、待定系数法例2已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求该椭圆的方程.分析:已知两点,椭圆标准方程的形式不确定,我们可以设椭圆方程的一般形式:=1(,进行求解,避免讨论。
解:设所求的椭圆方程为=1(.∵椭圆经过两点,∴解得,故所求的椭圆标准方程为.评注:求椭圆标准方程,可以根据焦点位置设出椭圆标准方程,用待定系数法求出的值:若焦点位置不确定,可利用椭圆一般形式简化解题过程.三、直接法例3设动直线垂直于轴,且交椭圆于A、B两点,P是上线段AB外一点,且满足,求点P的轨迹方程.分析:如何利用点P的坐标与椭圆上A,B两点坐标的关系,是求点P的轨迹的关键,因直线垂直于轴,所以P、A、B三点的横坐标相同,由A、B在椭圆上,所以A、B两点的纵坐标互为相反数,因此,紧紧抓住等式即可求解.解:设P(,),A(,),B(,),由题意:==,+=0∴,,∵P在椭圆外,∴-与-同号,∴=(-)(-)=∵,即为所求.评注:求轨迹方程,首先要找出动点与已知点之间的关系,建立一个等式,用坐标代换.四、相关点法例4的底边BC=16,AC和AB两边上的中线长之和为30,求此三角形重心G和定点A的轨迹方程.分析:由题意可知G到B、C两点的距离之和为定值,故可用定义法求解,A点和G点的关系式好建立,故可用相关点法去求.解(1)以BC边所在直线为轴,BC边的中点为坐标原点建立直角坐标系,设G(,),由,知G点的轨迹是以B、C为焦点,长轴长为20的椭圆且除去轴上的两顶点,方程为.(2)设A(,),G(,则由(1)知G的轨迹方程是∵G为的重心∴代入得:其轨迹是中心为原点,焦点在轴上的椭圆,除去长轴上的两个端点.评注:本题的两问是分别利用定义法和相关点法求解的,要注意各自的特点,另要注意轨迹与轨迹方程的不同.。
椭圆知识梳理和应用和解题方法步骤
圆锥曲线圆锥曲线分三大部分:椭圆,双曲线和抛物线 (一)椭圆椭圆分三大部分:基本量的应用、利用椭圆的基本量解决焦点三角形问题、直线和椭圆的相交问题一、椭圆的知识梳理二、椭圆的标准方程和统一方程三、椭圆的离心率 e= c/a ( 0<e<1)说明:1、同学们要牢记椭圆的定义,这是同学们经常想不到要用的,要记住。
对于求焦点三角形的面积,或者给了焦点弦之差、之积这些情况,第一想到的要用椭圆的定义。
例题:(1)已知△ABC 的三边长|CB|,|AB|,|CA|成等差数列,若点A ,B 的坐标分别为(-1,0),(1,0).求顶点C 的轨迹W 的方程解析:1、等差数列 得到,线段之和为定值,为椭圆方程、利用椭圆的定义来求解方程,确定a 2 、确定焦点在哪个轴3、列出椭圆标准方程,带值整理2、若椭圆两个焦点为12(40)(40)F F -,,,,椭圆的弦的AB 过点1F ,且2ABF △的周长为20,那么该椭圆的方程为 . 出现周长,想到定义。
2、求椭圆的方程,1.、确定焦点在哪个轴,用标准方程、不确定焦点在哪个轴,用统一方程。
2.一.设方程、二、带点、三、解法方程得解得结论、{}无轨迹时点的轨迹是线段时点得轨迹是椭圆是点椭圆的定义:P a P a a )22(2|)1(212121c F F c P c a c F F a MF MFM P <=><==+=22222222222c b a c 2 b 2 a 2c -0c ,0y )0(10c -0,c x )0(1+====>>=+>>=+焦距短轴长轴),)和(轴上(焦点坐标在),)和(轴上(焦点坐标在椭圆的方程:b a b x a y b a b y a x 轴上时焦点在轴上时焦点在x y ),0,0(122B A B A B A B A By Ax <>≠>>=+1、求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上一点P 到两焦点距离之和等于10;(2)两个焦点的坐标分别是(0,-2)、(0,2),并且椭圆经过点(- 32,52).(3) 焦点在y 轴且经过两个点(0、2)(1、0)(4) 经过p (-23、1)q (3、2)(5) 方程my x ++16m -2522=1表示焦点在y 轴上的椭圆,则m 的取值范围是 ( )(A)-16<m<25 (B)-16<m<29 (C)29<m<25 (D)m>29(6) 与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是 _______________(7) 椭圆的一焦点与两顶点为等边三角形的三个顶点,则椭圆的长轴长是短轴长的( )(A)3倍 (B)2倍 (C)2倍 (D)32倍9)、对于求离心率问题,重要的应用abc 三者的平方关系,导出a 与c 的关系。
一道椭圆焦点弦问题的7种解法
得 (+
,
即k2(4c2a2-b4)=b4,⑤
(
− ),
+
=
(
+ ),
+
−
− ) (+ + )= + ,
得− = ,④
22=32 ,即 − , − = Βιβλιοθήκη − , ,由①④得: =
−
,
+
−
由③⑤得 = − ,
=
2
2 2
2
,代入②得:a =(25c -a )m ,
+
··
得5b2=6am.②
−
=
(4a2- 5b2)( + ) =
4a2=5b2=5(a2-c2)
a2=5c2
.
=
①
.
引例
已知椭圆C:
+
= > > 的左、右焦点分别是F1、F2,过F2的直
− = ,
③
− ( + ) + =0
④
−
把①②代入④,得:· + -3c·+ +a2=0,
即c2(k2c2-b2)-6c2a2k2+a2(b2+a2k2)=0,
即k2(c4-6c2a2+a4)=-b4
高考数学椭圆解题方法总结
高考数学椭圆解题方法总结一、设点或直线做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。
其中点可以设为,等,如果是在椭圆上的点,还可以设为。
一般来说,如果题目中只涉及到唯一一个椭圆上的的动点,这个点可以设为。
还要注意的是,很多点的坐标都是设而不求的。
对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设,如果只是过定点,可以设参数方程,其中α是直线的倾斜角。
一般题目中涉及到唯一动直线时可以设直线的参数方程。
二、转化条件有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。
对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。
比如点在圆上可以转化为向量点乘得零,三点共线可以转化成两个向量平行,某个角的角平分线是一条水平或竖直直线则这个角的两条边斜率和是零。
有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单。
三、代数运算转化完条件就剩算数了。
很多题目都要将直线与椭圆联立以便使用一元二次方程的韦达定理,但要注意并不是所有题目都是这样。
有的题目可能需要算弦长,可以用弦长公式,设参数方程时,弦长公式可以简化为解析几何中有时要求面积,如果O是坐标原点,椭圆上两点A、B坐标分别为和,AB与x轴交于D,则(d是点O到AB的距离;第三个公式是我自己推的,教材上没有,解答题慎用)。
解析几何中很多题都有动点或动直线。
如果题目只涉及到一个动点时,可以考虑用参数设点。
若是只涉及一个过定点的动直线,题目中又涉及到求长度面积之类的东西,这时设直线的参数方程会简单一些。
在解析几何中还有一种方法叫点差法,设椭圆上两个点的坐标,将两点在椭圆上的方程相减,整理即可得到这两点的中点的横纵坐标与这两点连线的斜率的关系式。
四、能力要求做解析几何题,首先对人的耐心与信心是一种考验。
高考椭圆的知识点
高考椭圆的知识点高考数学中关于椭圆的知识点主要包括以下几个方面:1、椭圆的定义:椭圆是平面内到两个固定点(焦点)的距离之和为定值(大于两焦点间距离)的所有点的轨迹。
2、椭圆的标准方程:当焦点在x轴上时,标准方程为:(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(a > b > 0),(h, k)是椭圆中心的坐标。
当焦点在y轴上时,标准方程为:(y-k)^2/a^2 + (x-h)^2/b^2 = 1,同样a>b>0,(h, k)为椭圆中心坐标。
3、参数形式:椭圆还可以用参数方程表示,例如:x = a * cosθ + h,y = b * sinθ + k。
4、基本性质:长半轴a和短半轴b决定了椭圆的形状和大小,离心率e = c/a(c为焦距的一半),范围在0 < e < 1。
椭圆的面积公式S = πab。
焦点与长轴、短轴的关系:焦距|F1F2| = 2c,长轴长2a,短轴长2b,有关系式a^2 = b^2 + c^2。
5、几何性质:焦点弦性质、通径(过焦点垂直于长轴的弦)、共轭直径等。
与圆锥曲线相关的光学性质,如反射定律等。
6、解题方法:利用定义求解有关焦点、焦半径等问题。
根据给定条件确定椭圆的标准方程,通常采用待定系数法。
计算椭圆上的点与焦点或准线的距离,以及运用离心率解决相关问题。
7、离心率的应用:离心率常作为约束条件出现在题目中,用来求解椭圆方程或者判断椭圆形状。
8、交点问题:椭圆与其他图形(直线、圆、抛物线等)相交时求交点坐标及相关长度、面积计算。
高考中的椭圆题目类型多样,包括但不限于以上知识点,要求考生能够灵活运用椭圆的基本概念、性质及方程来解答不同难度的问题。
椭圆的解题方法和技巧
椭圆的解题方法和技巧省市褚兰中学海平一、椭圆的定义的应用椭圆的定义是用椭圆上的点到焦点的距离来描述的,因此在解题中凡涉及曲线上的点到焦点的距离时,应先想到用定义求解,常会有事半功倍之效。
例1 的三边、、成等差数列且满足,、两点的坐标分别是、。
求顶点的轨迹。
分析:数列与解析几何相联系,往往构成综合性较大的题目,历来是高考考查的热点之一。
解析:∵、、成等差数列,∴,即,又,∴。
根据椭圆的定义,易得点的轨迹方程为。
又∵,∴,即,∴,∴。
故点的轨迹是椭圆的一半,方程为()。
又当时,点、、在同一条直线上,不能构成三角形,∴。
∴点的轨迹方程为。
评注:该例是先由条件找到动点所满足的几何关系,寻找出满足椭圆定义的条件,然后确定椭圆的方程。
解题时,易忽略这一条件,因此易漏掉这一限制;由于、、三点构成三角形,故应剔除使、、共线的点。
例2 、椭圆上一点到两焦点、的距离之差为2,试判断的形状。
分析:由椭圆定义知,的和为定值,且二者之差为题设条件,故可求出的两边。
解析:由,解得。
又,故满足。
∴为直角三角形。
评注:由椭圆上一点与两个焦点构成的三角形,称作焦点三角形。
利用焦点三角形能有意识地考查定义、三角形正(余)弦定理、角和定理及面积公式能否灵活运用。
二、利用待定系数法确定椭圆的标准方程。
例3、已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1(6,1)P ,2(3,2)P ,求椭圆的方程.【解析】设椭圆方程为22mx ny 1+=(m >0,n >0且m≠n). ∵椭圆经过1P ,2P 点,∴1P ,2P 点坐标适合椭圆方程, 则①6m+n=1,② 3m+2n=1,①②两式联立,解得m= 19, n= 13.∴所求椭圆方程为22x y 193+=评注:运用待定系数法求椭圆标准方程,即设法建立关于a ,b 的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m >0,n >0,m≠n),由题目所给条件求出m ,n 即可. 三、 利用向量解决椭圆问题几何中突出向量的工具作用成为高考命题的新亮点,向量本身具有“数”与“形”的双重身份,常把向量的代数式转化为坐标表示或利用其几何关系求解.()()()22410,14111()()22212||y x M l A B O P OP OA OB N l M P NP +==+例、最值问题设椭圆方程为,过点的直线交椭圆于、两点,是坐标原点,点满足,点的坐标为,.当绕点旋转时,求:动点的轨迹方程;的最大值与最小值.()()112222221221221212220,1 1.()()1(4)2301424.8414()()()212244l M k l y kx A x y B x y y kx k x kx y x k x x k y y k x x y y k OP OA OB k k =+=+⎧⎪++-=⎨+=⎪⎩⎧+=-⎪⎪+⎨⎪+=⎪+⎩++-=+==++直线过点,当斜率存在时,设其斜率为,则的方程为记,,,,由,得,所以解,:,析则.()()222222222()40.0,0111.16441117||()()3(40.1||6611||.4).2261242P x P x y k x y y AB P x x NP x y y y x NP x x NP +-=≤-≤≤=-+-=-+-=++=-=点的轨迹方程为当时,取得设点的坐标为,,则,消去得当斜率不存在时,的中点为原点,也满足上述方程.所以由点的轨迹方程知,即所以故当时,取得最小值为评注:由向量作为载体的解析几何问题一要利用向量的几何意义,二要熟悉向量的坐标运算.而与椭圆有关的求最值问题则常与求函数的值域相联系. 例5、参数围问题()()()(01)0,1||()12||G ABC A B x M MA MC GM AB R C k l C P Q AP AQ k λλ∆-==∈=已知点是的重心,,,,在轴上有一点,满足,.求点的轨迹方程;若斜率为的直线与点的轨迹交于不同的两点、,且满足,试求的取值()222()()33()(0)3||1(0)3131(0)x yC x y G ABC G GM AB R GM AB xM x M MA MC y x x C y x λλ∆=∈==+=≠+=≠设,,为的重心,则,.因为,所以,而点在轴上,则,.,得整理得.所点的轨迹方析:程为以解()()()222222222211220||.013(13)63(1)0*(6)4(13)3(1)0130**()()2k l C P Q AP AQ k l y kx m x y k x kmx m l km k m k m P x y Q x y ==≠=++=+++-=∆=-+⋅->+->①当时,与椭圆有两个不同的交点、,由椭圆的对称性知②当时,可设的方程为,代入,整理得,,因为直线与椭圆交于不同的两点,所以,即,设,,,,1122212122212000002222()()63(1)1313()231313||11313-13AN P x y Q x y km m x x x x k kx xPQ N x y x km m y kx m k k AP AQ AN PQ mk k k k km k -+=-=+++==-=+=++=⊥++⋅=⋅=-+设,,,,则,,则中点,的坐标为,,又,所以,所以,()()()()2213**121,00,1,11k m k k k -+=<∈-得,代入得,所以.的取值范围得,是综合①②.. 评注:解决参数的取值围问题常用的方法有两种:①不等式(组)求解法:根据题意结合图形列出所讨论的参数适合的不等式(组),通过解不等式(组)得出参数的取值围;②函数值域求解法:把所讨论的参数表示为有关某个变量的函数,通过讨论函数的值域求参数的变化围.。
高中数学解椭圆方程的常见方法和注意事项
高中数学解椭圆方程的常见方法和注意事项椭圆方程是高中数学中的重要内容,解椭圆方程需要掌握一些常见的方法和注意事项。
本文将介绍几种常见的解椭圆方程的方法,并给出相应的例题进行说明。
一、配方法解椭圆方程配方法是解椭圆方程的一种常用方法,它的基本思想是通过变量代换将椭圆方程转化为标准形式,从而求解出方程的解。
例题一:解方程$x^2-3xy+2y^2=7$解法:首先,我们将方程进行配方,即将$x^2-3xy+2y^2$转化为$(x-y)(x-2y)$的形式。
因此,原方程可写为$(x-y)(x-2y)=7$。
接下来,我们可以尝试令$u=x-y$和$v=x-2y$,则方程可以进一步转化为$uv=7$。
这样,我们就将原方程转化为了一个更简单的形式,可以通过求解$u$和$v$的值来得到方程的解。
假设$u=1$,则$v=7$;假设$u=7$,则$v=1$。
因此,原方程的解为$(x-y,x-2y)=(1,7)$和$(7,1)$。
二、直接求解椭圆方程直接求解椭圆方程是一种简单直接的方法,需要将方程转化为标准形式,然后根据标准形式进行求解。
例题二:解方程$4x^2+9y^2-24x+36y=0$解法:首先,我们将方程进行配方,即将$4x^2-24x$转化为$4(x^2-6x)$,将$9y^2+36y$转化为$9(y^2+4y)$。
然后,我们再将方程进行分组,即$4(x^2-6x)+9(y^2+4y)=0$。
接下来,我们可以将$x^2-6x$转化为$(x-3)^2-9$,将$y^2+4y$转化为$(y+2)^2-4$。
将这些转化代入方程,得到$(x-3)^2-9+9(y+2)^2-36=0$。
整理后,得到$(x-3)^2+9(y+2)^2=45$。
这是一个标准的椭圆方程,可以根据标准形式求解。
通过对方程进行分析,我们可以得到椭圆的中心坐标为$(3,-2)$,长轴长度为$\sqrt{45}$,短轴长度为$\sqrt{5}$。
天津高考数学椭圆知识点
天津高考数学椭圆知识点椭圆是高中数学中的一个重要概念,在天津高考的数学考试中也是常见的题型。
本文将介绍天津高考数学中关于椭圆的知识点,帮助同学们更好地掌握椭圆的性质和解题技巧。
一、椭圆的定义和基本性质椭圆是指平面上到两个定点F1和F2的距离之和等于常数2a的点的集合,其中F1和F2被称为椭圆的焦点,而2a则是椭圆的长轴长度。
椭圆还有一个重要的性质是:对于椭圆上的任意一点P,它到两个焦点的距离之和等于常数2a。
二、椭圆的方程1. 椭圆的标准方程椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别为椭圆的半长轴和半短轴的长度。
标准方程的特点是椭圆的中心位于原点(0, 0)。
2. 椭圆的常用方程除了标准方程外,我们还可以通过一些特殊情况来得到椭圆的方程。
例如,当椭圆的中心为(h, k)时,其方程可以表示为(x-h)^2/a^2 + (y-k)^2/b^2 = 1。
三、椭圆的性质1. 离心率与焦点椭圆的离心率e定义为焦点到椭圆中心的距离与半长轴长度的比值,即e = F1C / a。
离心率决定了椭圆的形状,当e<1时,椭圆是紧凑的;当e=1时,椭圆是一个特殊的圆;当e>1时,椭圆是扁平的。
2. 焦点和准线椭圆中的焦点F1和F2与半长轴之间的连线称为准线,准线与半长轴的夹角是一个固定的角度,可以通过tanθ = b/a来计算。
3. 椭圆的参数方程椭圆的参数方程可以表示为x = a*cosθ和y = b*sinθ,其中θ是参数,取值范围为[0, 2π)。
四、椭圆的应用1. 椭圆的几何意义椭圆在几何学中有广泛的应用,例如描述行星的轨道、设计车轮等。
2. 椭圆的光学应用通过椭圆的光学性质,可以制造出能够将光线聚焦或散开的透镜,用于眼镜、望远镜等光学仪器中。
五、椭圆的解题技巧1. 确定椭圆的方程类型,是标准方程还是常用方程,根据已知条件选择合适的方程表达形式。
2. 利用椭圆的性质,例如离心率、焦点和准线的关系,来解决与椭圆有关的问题。
椭圆高考复习课件ppt
\leqslant
a$和$-b
\leqslant y \leqslant b$
。
椭圆的离心率
椭圆的焦距与长轴长度的
比叫做椭圆的离心率,记
作$e$,即$e
=
\frac{c}{a}$,其中$c$是
椭圆的焦距。
椭圆的参数方程
椭圆的参数方程
以焦点为极点,以长轴端点为极轴建立极坐 标系,则椭圆的极坐标方程为$\rho = \frac{2b^{2}}{1 - e^{2}\cos^{2}\theta}$ 。其中$\rho$为极径,$\theta$为极角。
详细描述
例题3:已知椭圆焦点 在x轴上,中心在原点 ,长轴长为4,短轴长 为2,并且一条切线方 程为y=x+1,求椭圆的 标准方程。
解答
根据椭圆的切线方程和 极坐标方程,可得到原 点为极点,极轴为x轴 ,进而求出椭圆的标准 方程。
谢谢
THANKS
践操作能力。
注重实际应用,培养综合素质
强化应用意识
在复习过程中要强化应用意识,引导考生将所学知识应用 到实际生活中,提高知识的实际应用能力。
提高应试技巧
在复习过程中要注重提高应试技巧,包括答题技巧、时间 分配、心态调整等方面,帮助考生在考试中更加从容应对 。
培养综合素质
在复习过程中要注重培养考生的综合素质,包括语言表达 、思维逻辑、人际交往、心理素质等方面,为未来的学习 和生活打下坚实的基础。
椭圆的参数方程与直角坐 标系下的方程转换
将$\rho = \fr乘$\rho$, 可得$\rho^{2} = \frac{2b^{2}\rho^{2}}{1 - e^{2}\cos^{2}\theta}$,再将其展开得到 $\rho^{2} = (1 - e^{2})x^{2} + y^{2}$,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆的解题方法和技巧
安徽省宿州市褚兰中学海平
一、椭圆的定义的应用椭圆的定义是用椭圆上的点到焦点的距离来描述的,因此在解题中凡涉及曲线上的点到焦点的距离时,应先想到用定义求解,常会有事半功倍之效。
例1 的三边、、成等差数列且满足,、两点的坐标分别是、。
求顶点的轨迹。
分析:数列与解析几何相联系,往往构成综合性较大的题目,历来是高考考查的热点之一。
解析:∵ 、、成等差数列,∴ ,即,又,∴ 。
根据椭圆的定义,易得点的轨迹方程为。
又∵ ,∴ ,即,
∴ ,∴ 。
故点的轨迹是椭圆的一半,方程为()。
又当时,
点、、在同一条直线上,不能构成三角形,∴ 。
∴点的轨迹方程为。
评注:该例是先由条件找到动点所满足的几何关系,寻找出满足椭圆定义的条件,然后确定椭圆的方程。
解题时,易忽略这一条件,因此易漏掉这一限制;由于、、三点构成三角形,故应剔除使、、共线的点。
例2 、椭圆上一点到两焦点、的距离之差为2 ,试判断的形状。
分析:由椭圆定义知,的和为定值,且二者之差为题设条件,故可求出的两边。
解析:由,解得。
又,故满足。
∴为直角三角形。
评注:由椭圆上一点与两个焦点构成的三角形,称作焦点三角形。
利用焦点三角形能有意识地考查定义、三角形正(余)弦定理、内角和定理及面积公式能否灵活运用。
二、利用待定系数法确定椭圆的标准方程。
例3 、已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点
P1( 6,1), P2 ( 3, 2),求椭圆的方程.
【解析】设椭圆方程为mx 2ny21(m>0,n>0 且m≠n). ∵椭圆经过P1,P2点,∴ P1,P2点坐标适合椭圆方程,则① 6m+n=1 ,② 3m+2n=1 ,①②两式联立,解
得m= 1, n= 1.
93
22
∴所求椭圆方程为x y 1
93
评注:运用待定系数法求椭圆标准方程,即设法建立关于a,b 的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1 (m >0,n>0,m≠n),由题目所给条件求出m,n 即可.
x
1 所以x 2
y 1 y 2
uuur 则OP 1
uuur
(OA
2k
4 k 2.
8
.
4 k
2
O uu B ur) (x1 x2,y1 y2) ( k2,42).
2 2 4 k2 4 k2
x
1
x
2 ,
y
1
y
2
三、利用向量解决椭圆问题几何中突出向量的工具作用成为高考命题的新亮点,向量本身具有
“数”与“形”的双重身份,常把向量的代数式转化为坐标表示或利用其几何关系求解.
例4、最值问题
2
设椭圆方程为x2 y 1,过点M 0,1 的直线l 交椭圆于A、B两点,O是坐标原点,4
uuur 1 uuur uuur 1 1
点P满足OP 1(OA OB),点N的坐标为(1,1).当l绕点M旋转时,
2 2 2
求:1 动点P的轨迹方程;
uuur
2 | NP | 的最大值与最小值.
解析:1 直线l过点M 0,1 ,当斜率存在时,设其斜率为k,则l的方程为y kx 1. 记A(x1,y1),B(x2,y2),
y kx 1 由 2 y2
x
4
,得(4 k2 )x2 2kx 3 0,
2
设点 P 的坐标为(x ,y),则,
消去 k 得4x 2 y 3 y 0.
当斜率不存在时, AB 的中点为原点 0,0 ,也满足上述 方程.所以 点P 的轨迹方程为 4x 2 y 2 y 0.
2 由点P 的轨迹方程知 x 2 1 ,即 1 x 1.
16 4 4
uuur 2 1 2 1 2 1 2 7
所以| NP |2 (x 1)2 (y 1)2 3(x 1)2 7 .
2 2 6 12
1 uuur 21
故当x 1时,| NP| 取得最大值为 21;
66 1 uuur 1 当x 1时,| NP |取得最小值为 1
. 44
评注: 由向量作为载体的解析几何问题一要利用向量的几何意义,
二要熟悉向量的坐标运算. 而与椭圆有关的求最值问题则常与求函数 的值域相联系.
例 5、参数范围问题
已知点G 是 ABC 的重心, A(0, 1), B 0,1 ,在x 轴上有一点 M ,满足 |MA MC |, uuuur uuur GM AB( R).
1 求点 C 的轨迹方程; uuur uuur
2 若斜率为 k 的直线 l 与点C 的轨迹交于不同的两点 P 、Q ,且满足 | AP AQ | ,试求 k 的取值
解析:1 设C(x ,y),G 为 ABC 的重心,则 G( x ,y ).
uuuur uuur 3 3 因为GM AB( R),所以 GM PAB ,
x 而点M 在x 轴上,则 M ( ,0).
uuur uuuur 3
由|MA MC |,得
( 3x )2 (0 1)2 (x
3 x)2 y 2, 2
整理得 x y 2 1(x 0).
2
所以点C 的轨迹方程为 x y 2 1(x 0) 3
2 ①当k 0时, l 与椭圆 C 有两个不同的交点 P 、Q , uuur uuur 由椭圆的对称性知 | AP AQ|. ②当 k 0时,可设 l 的方程为 y kx 2 代入 x y 2 1,整理得, 3
(1 3k 2) x 2 6kmx 3(m 2 1) 0,* 因为直线 l 与椭圆
交于不同的两点, 所以 即1 3k 设P (x 1, m , 22 (6km)2 4(1 3k 2 ) 22 m y 1), 0,**
Q(x 2,y 2), 2 3(m 2 1) 0, 设 P ( x 1, 则 x 1 x 2 Q(x 2,y 2),
6km 2 , x 1x 2 1 3k 2 1 2 则PQ 中点 N ( x 0, y 0 )的坐标为 x 0 3km
2 , y 0 kx 0 m 1 uu 3ur k uuur uuur 1 又 | AP AQ | ,所以 AN y 1), 2 3(m 2 1) 1 3k 2 x 1 m , 2, u3ukur 2 PQ , x 2 2 所以 k k AN k m 2 1 1 3k 2 1
- 3km -1 3k 2 1, 得 1 3k 2 得m
2 所以 k 1,0
综合①② 得, k 的取值范围 是 1,1 . 代入 ** 得k 2 1, U 0,1 . 评注: 解决参数的取值范围问题常用的方法有两种:①不等式 (组) 求解法:根据题意结合图形列出所讨论的参数适合的不等式 (组),通 过解不等式 (组 )得出参数的取值范围;②函数值域求解法:把所讨论 的参数表示为有关某个变量的函数, 通过讨论函数的值域求参数的变 化范围.。