2018年厦门市中考数学试题解析(B卷)
2018年福建省中考数学B卷试卷含答案解析
、福建省2018年初中学业毕业和高中阶段学校招生考试(B卷)数学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在实数3-,2-,0,π中,最小的数是( )A.3-B.2-C.0D.π2.某几何体的三视图如图所示,则该几何体是( )A.圆柱B.三棱柱C.长方体D.四棱锥3.下列各组数中,能作为一个三角形三边边长的是( )A.1,1,2B.1,2,4C.2,3,4D.2,3,54.一个n边形的内角和为360︒,则n等于( )A.3B.4C.5D.65.如图,等边三角形ABC中,AD BC∠=︒,⊥,垂足为D,点E在线段AD上,45EBC第1页则ACE∠等于( )A.15︒B.30︒C.45︒D.60︒6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于127.已知43m=+,则以下对m的估算正确的( )A.23m<<B.34m<<C.45m<<D.56m<<8.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )A.5152x yx y=+⎧⎪⎨=-⎪⎩B.5152x yx y=-⎧⎪⎨=+⎪⎩C.525x yx y=+⎧⎨=-⎩D.525x yx y=-⎧⎨=+⎩9.如图,AB是Oe的直径,BC与Oe相切于点B,AC交Oe于点D.若50ACB∠=︒,则BOD∠等于( )A.40︒B.50︒C.60︒D.80︒第2页第 3 页10.已知关于x 的一元二次方程21210a x bx a ++++=()()有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于x 的方程20x bx a ++=的根第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题4分,满分24分.请把答案填在题中的横线上)11.计算:021⎛⎫-= ⎪ ⎪⎝⎭.12.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为 .13.如图,Rt ABC △中,90ACB ∠=︒,6AB =,D 是AB 的中点,则CD = .14.不等式组313,20,x x x ++⎧⎨-⎩>>的解集为 .15.把两个同样大小的含45︒角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若2AB =,则CD = .16.如图,直线y x m =+与双曲线3y x=相交于A ,B 两点,BC x ∥轴,AC y ∥轴,则ABC △面积的最小值为 .三、解答题(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分8分)解方程组:1, 410. x yx y+=⎧⎨+=⎩18.(本小题满分8分)如图,□ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE OF=.19.(本小题满分8分)先化简,再求值:22111m mm m+-⎛⎫-÷⎪⎝⎭,其中31m=+.20.(本小题满分8分)求证:相似三角形对应边上的中线之比等于相似比.要求:(1)根据给出的ABC△及线段A B'',A A A∠'∠'=∠(),以线段A B''为一边,在第4页第 5 页给出的图形上用尺规作出A B C '''△,使得A B C ABC '''∽△△,不写作法,保留作图痕迹;(2)在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(本小题满分8分)如图,在Rt ABC △中,90C ∠=︒,10AB =,8AC =.线段AD 由线段AB 绕点A 按逆时针方向旋转90︒得到,EFG △由ABC △沿CB 方向平移得到,且直线EF 过点D . (1)求BDF ∠的大小; (2)求CG 的长.22.(本小题满分10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.如图是2018年4月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图:(1)现从2018年4月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以2018年4月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明理由.23.(本小题满分10分)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知20a ,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米,如图1.求所利用旧墙AD的长;第6页第 7 页(2)已知050α<<,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD 的面积最大,并求面积的最大值.24.(本小题满分12分)如图,D 是ABC △外接圆上的动点,且B ,D 位于AC 的两侧.DE AB ⊥,垂足为E ,DE 的延长线交此圆于点F .BG AD ⊥,垂足为G ,BG 交DE 于点H .DC ,FB 的延长线交于点P ,且PC PB =. (1)求证:BG CD ∥;(2)设ABC △外接圆的圆心为O ,若3AB DH =,80OHD ∠=︒,求BDE ∠的大小. 已知四边形ABCD 是O e 的内接四边形,AC 是O e 的直径,DE AB ⊥,垂足为E .第 8 页25.(本小题满分14分)已知抛物线2y ax bx c =++过点(02)A ,,且抛物线上任意不同两点11M x y (,),22N x y (,)都满足:当12x x <<0时,12120x x y y >(-)(-);当120x x <<时,12120x x y y <(-)(-).以原点O 为心,OA 为半径的圆与拋物线的另两个交点为B ,C ,且B 在C 的左侧,ABC △有一个内角为60︒. (1)求抛物线的解析式;(2)若MN与直线y =-平行,且M ,N 位于直线BC 的两侧,12y y >,解决以下问题:①求证:BC 平分MBN ∠;②求MBC △外心的纵坐标的取值范围.福建省2018年初中学业毕业和高中阶段学校招生考试(B 卷)数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】分析:直接利用绝对值的性质化简,进而比较大小得出答案.解:在实数3-,2-,0,π中,33-=,则320π-<<<-,故最小的数是:2-.故选:B .2.【答案】C第 9 页【解析】分析:根据常见几何体的三视图逐一判断即可得.解:A 、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B 、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C 、长方体的主视图、左视图及俯视图都是矩形,符合题意;D 、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意.故选:C . 3.【答案】C【解析】分析:根据三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.解:A 、112+=,不满足三边关系,故错误;B 、124+<,不满足三边关系,故错误;C 、234+>,满足三边关系,故正确;D 、235+=,不满足三边关系,故错误.故选:C . 4.【答案】B【解析】分析:n 边形的内角和是2180n o g (-),如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n .解:根据n 边形的内角和公式,得:2180360n =g (-),解得4n =.故选:B .5.【答案】A【解析】分析:先判断出AD 是BC 的垂直平分线,进而求出45ECB ∠=︒,即可得出结论.解:Q 等边三角形ABC 中,AD BC ⊥,∴BD CD =,即:AD 是BC 的垂直平分线,Q 点E 在AD 上, ∴BE CE =, ∴EBC ECB ∠=∠, Q 45EBC ∠=︒, ∴45ECB ∠=︒,Q ABC △是等边三角形, ∴60ACB ∠=︒,∴15ACE ACB ECB ∠=∠-∠=︒.故选:A . 6.【答案】D【解析】分析:根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.解:A 、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.【答案】B【解析】分析:直接化简二次根式,得出的取值范围,进而得出答案.解:Q 2m==12<,∴34m<<.故选:B.8.【答案】A【解析】分析:设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.解:设索长为x 尺,竿子长为y尺,根据题意得:5,15.2x yx y=+⎧⎪⎨=-⎪⎩故选:A.9.【答案】D【解析】分析:根据切线的性质得到90ABC∠=︒,根据直角三角形的性质求出A∠,根据圆周角定理计算即可.解:Q BC是Oe的切线,∴90ABC∠=︒,∴9040A ACB∠=︒-∠=︒,由圆周角定理得,280BOD A∠=∠=︒,故选:D.10.【答案】D【解析】分析:根据方程有两个相等的实数根可得出1b a=+或(1)b a=-+,当1b a=+时,1-是方程20x bx a++=的根;当(1)b a=-+时,1是方程20x bx a++=的根.再结合1(1)a a+≠-+,可得出1和1-不都是关于x的方程20x bx a++=的根.解:Q 关于x的一元二次方程21210a x bx a++++=()()有两个相等的实数根,∴2210,(2)4(1)0,ab a+≠⎧⎨∆=-+=⎩∴1b a=+或(1)b a=-+.当1b a=+时,有10a b+=-,此时1-是方程20x bx a++=的根;第10当(1)b a =-+时,有10a b ++=,此时1是方程20x bx a ++=的根.Q 10a +≠, ∴1(1)a a +≠-+,∴1和1-不都是关于x 的方程20x bx a ++=的根.故选:D .第Ⅱ卷二、填空题 11.【答案】0【解析】分析:根据零指数幂:01(0)a a =≠进行计算即可.解:原式110==-,故答案为:0. 12.【答案】120【解析】分析:根据众数的定义:一组数据中出现次数最多的数据即为众数.解:Q这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120. 13.【答案】3【解析】分析:根据直角三角形斜边上的中线等于斜边的一半解答.解:Q90ACB ∠=︒,D 为AB 的中点,∴116322CD AB ==⨯=. 故答案为:3. 14.【答案】2x >【解析】分析:先求出每个不等式的解集,再求出不等式组的解集即可.解:313,2,x x x +>+⎧⎨->⎩①0②Q 解不等式①得:1x >,解不等式②得:2x >, ∴不等式组的解集为2x >,15.1【解析】分析:先利用等腰直角三角形的性质求出2BC =,1BF AF ==,再利用勾股定理求出DF ,即可得出结论.解:如图,过点A 作AF BC ⊥于F , 在Rt ABC △中,45B ∠=︒,∴22BC AB ==,21BF AF AB ===, Q 两个同样大小的含45︒角的三角尺,∴2AD BC ==,在Rt ADF △中,根据勾股定理得,223DF AD AF =-=∴13231CD BF DF BC =+=+-=--,故答案为:31-.16.【答案】6【解析】分析:根据双曲线3y x =过A ,B 两点,可设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫⎪⎝⎭,,则3C a b ⎛⎫ ⎪⎝⎭,.将y x m =+代入3y x =,整理得230x mx +=-,由于直线y x m =+与双曲线3y x=相交于A ,B 两点,所以a 、b 是方程230x mx +=-的两个根,根据根与系数的关系得出a b m +=-,3ab =-,那么222))((412a b a b ab m -+=+=-.再根据三角形的面积公式得出211•622ABC S AC BC m ==+△,利用二次函数的性质即可求出当0m =时,ABC △的面积有最小值6.解:设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫ ⎪⎝⎭,,则3C a b ⎛⎫ ⎪⎝⎭,.将y x m =+代入3y x =,得3x m x+=, 整理,得230x mx +=-, 则a b m +=-,3ab =-,222))((412a b a b ab m =-∴+=+-.1•2ABC S AC BC =Q △222133=()213()••()21()21(12)2162a b a b b a a b ab a b m m ⎛⎫-- ⎪⎝⎭-=-=-=+=+ ∴当0m =时,ABC △的面积有最小值6.故答案为6. 三、解答题 17.【答案】解:1,410,x y x y +=⎧⎨+=⎩①②②-①得:39x =, 解得:3x =,把3x =代入①得:2y =-, 则方程组的解为3,2.x y =⎧⎨=-⎩【解析】方程组利用加减消元法求出解即可. 18.【答案】证明:Q 四边形ABCD 是平行四边形,∴OA OC =,AD BC ∥, ∴OAE OCF ∠=∠,在OAE △和OCF △中,OAE OCFOA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴AOE COF △≌△(ASA), ∴OE OF =.【解析】由四边形ABCD 是平行四边形,可得OA OC =,AD BC ∥,继而可证得AOE COF △≌△(ASA ),则可证得结论.19.【答案】解:22111m m m m +-⎛⎫-÷⎪⎝⎭()()211m m mm m m-=+-g()()111m mm m m+=+-g11m=-当31m=+时,原式33113===+-.【解析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.20.【答案】(1)解:如图所示,A B C'''△即为所求;(2)已知,如图,ABC A B C'''△∽△,kAB BC ABCA B C A C=='''''=',D是AB的中点,D'是A B''的中点,求证:DCkDC''=.证明:Q D是AB的中点D'是A B''的中点,∴12AD AB=,12A D A B''='',∴1212A BABABA D A BAD''''=='',Q ABC A B C'''△∽△,∴A ACBAB AC='''','A A∠=∠,QA AADAD CC''''=,'A A∠=∠,∴A C D ACD'''△∽△,∴k CD D C A C CA ''''==. 【解析】(1)作=A B C ABC '''∠∠,即可得到A B C '''△;(2)依据D 是AB 的中点, D '是A B ''的中点,即可得到A A BD AD A B ='''',根据ABC A B C '''△∽△,即可得到A A CB AB AC ='''','A A ∠=∠,进而得出A C D ACD '''△∽△,可得k CD D C A C CA ''''==. 21.【答案】解:(1)Q 线段AD 是由线段AB 绕点A 按逆时针方向旋转90︒得到,∴90DAB ∠=︒,10AD AB ==, ∴45ABD ∠=︒,Q EFG △是ABC △沿CB 方向平移得到, ∴AB EF ∥,∴45BDF ABD ∠=∠=︒;(2)由平移的性质得,AE CG ∥,AB EF ∥,∴DEA DFC ABC ∠=∠=∠,180ADE DAB ∠+∠=︒, Q 90DAB ∠=︒, ∴90ADE ∠=︒, Q 90ACB ∠=︒, ∴ADE ACB ∠=∠,∴ADE ACB △∽△, ∴AD AEAC AB=, Q 8AB =,10AB AD ==, ∴12.5AE =,由平移的性质得,12.5CG AE ==.【解析】(1)由旋转的性质得,10AD AB ==,45ABD ∠=︒,再由平移的性质即可得出结论;(2)先判断出ADE ACB ∠=∠,进而得出ADE ACB △∽△,得出比例式求出AE ,即可得出结论.22.【答案】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为42=3015; (2)①甲公司各揽件员的日平均件数为3813399404413421=3930⨯+⨯+⨯+⨯+⨯件;②甲公司揽件员的日平均工资为70392148+⨯=元, 乙公司揽件员的日平均工资为()()3873974085341523630⎡⨯+⨯+⨯++⎤⨯+⨯+⨯⨯⎣⎦()()27171523=40463030⎡-⨯+-⨯⎤⨯+⨯+⨯+⨯⎢⎥⎣⎦1159.4元,因为159.4148>,所以仅从工资收入的角度考虑,小明应到乙公司应聘. 【解析】(1)根据概率公式计算可得; (2)分别根据平均数的定义及其意义解答可得. 23.【答案】解:(1)设AD x =米,则1002xAB -=米. 根据题意,得()1004502x x =-.解得110x =,290x =.Q 20a =,且x a ≤, ∴90x =舍去.∴利用旧墙AD 的长为10米.(2)设AD x =米,矩形ABCD 的面积为S 平方米.①如果按图一方案围成矩形菜园,依题意得()()2100150125022x x S x ==--+-,0x a <<, Q 050a <<,∴50x a <<时,S 随x 的增大而增大.当x a =时,21503S a a =-最大.②如按图2方案围成矩形菜园,依题意,得22(1002)[(25)](25)244x a x a a S x +-==---++,502aa x ≤<+.当25504a a <+<时,即10003a <<时, 则254a x =+时,2210000200(25)416a a S a ++=+=最大.当254a a +≤,即100503a ≤<时,S 随x 的增大而减小. ∴x a =时,2(1002)15022a S a a a a +-==-最大.综合①②,当10003a <<时, 222100002001(3100)(50)016216a a a a a ++---=>,即22100002001(50)162a a a a ++>-,此时,按图2方案围成矩形菜园面积最大,最大面积为21000020016a a ++平方米;当100503a ≤<,两种方案围成的矩形菜园面积最大值相等. ∴当时,围成长和宽均为(25)4a +米的矩形菜园面积最大,最大面积为21000020016a a ++平方米;当100503a ≤<时,围成长为a 米,宽为(50)2a-米的矩形菜园面积最大,最大面积为21(50)2a a -平方米.【解析】(1)按题意设出AD ,表示AB 构成方程;(2)根据旧墙长度a 和AD 长度表示矩形菜园长和宽,注意分类讨论S 与菜园边长之间的数量关系.24.【答案】解:(1)如图1,Q PC PB =,PCB PBC ∠=∠∴,Q 四边形ABCD 内接于圆,180BAD BCD ∴∠+∠=︒, 180BCD PCB ∠+∠=︒Q , BAD PCB ∠=∠∴,BAD BFD ∠=∠Q ,BFD PCB PBC ∠=∠=∠∴,BC DF ∴∥, DE AB ⊥Q ,90DEB =∴∠︒, 90ABC =∴∠︒, AC ∴是O e 的直径,90ADC =∴∠︒, BG AD ⊥Q , 90AGB =∴∠︒, ADC AGB ∠=∠∴,BG CD ∴∥;(2)由(1)得:BC DF ∥,BG CD ∥,∴四边形BCDH 是平行四边形,BC DH ∴=,在Rt ABC △中,3AB DH =Q ,∴3tan 3AB DHACB BC ∠===,∴60ACB ∠=︒,30BAC ∠=︒,∴60ADB ∠=︒,12BC AC =, ∴12DH AC =. ① 当点O 在DE 的左侧时,如图2,作直径DM ,连接AM 、OH ,则90DAM ∠=︒,90AMD ADM ∠∴∠+=︒.DE AB ⊥Q ,90BED =∴∠︒, 90BDE ABD ∠∴∠+=︒.AMD ABD ∠=∠Q , ADM BDE ∠=∠∴,Q 12DH AC =, DH OD ∴=,80DOH OHD ∠∴∠==︒, 20ODH =∴∠︒. 60AOB ∠=︒Q , 40ADM BDE ∠∴∠+=︒, 20BDE ADM ∠∴∠==︒.② 当点O 在DE 的右侧时,如图3,作直径DN ,连接BN ,由①得:20ADE BDN ∠=∠=︒,20ODH ∠=︒,40BDE BDN ODH ∠∴∠=∠+=︒,综上所述,BDE ∠的度数为20︒或40︒.【解析】(1)根据等边对等角得:PCB PBC ∠=∠,由四点共圆的性质得:180BAD BCD ∠+∠=︒,从而得:BFD PCB PBC ∠=∠=∠,根据平行线的判定得:BC DF ∥,可得90ABC ∠=︒,AC 是O e 的直径,从而得:90ADC AGB ∠=∠=︒,根据同位角相等可得结论;(2)先证明四边形BCDH 是平行四边形,得BC DH =,根据特殊的三角函数值得:60ACB ∠=︒,30BAC ∠=︒,所以12DH AC =,分两种情况:①当点O 在DE 的左侧时,如图2,作辅助线,构建直角三角形,由同弧所对的圆周角相等和互余的性质得:AMD ABD ∠=∠,则ADM BDE ∠=∠,并由DH OD =,可得结论;②当点O 在DE 的右侧时,如图3,同理作辅助线,同理有20ADE BDN ∠=∠=︒,20ODH ∠=︒,得结论.25.【答案】解:(1)Q 抛物线过点(0,2)A ,2c ∴=,当120x x <<时,120x x -<,由1212()()0x x y y -->,得到120y y -<,∴当0x <时,y 随x 的增大而增大,同理当0x >时,y 随x 的增大而减小,∴抛物线的对称轴为y 轴,且开口向下,即0b =,徐老师第 21Q 以O 为圆心,OA 为半径的圆与抛物线交于另两点B ,C ,如图1所示, ∴ABC △为等腰三角形,Q ABC △中有一个角为60︒,∴ABC △为等边三角形,且2OC OA ==,设线段BC 与y 轴的交点为点D ,则有BD CD =,且30OBD ∠=︒, ∴•cos303BD OB =︒=,•sin301OD OB =︒=,Q B 在C 的左侧,∴B 的坐标为(3,1)--,Q B 点在抛物线上,且2c =,0b =,321a ∴+=﹣,解得:1a =﹣,则抛物线解析式为22y x =-+;(2)①由(1)知,点211(,2)M x x -+,222(,2)N x x -+,Q MN 与直线23y x =-平行,∴设直线MN 的解析式为23y x m =-+,则有211223x x m -+=-+,即211232m x x =-++,∴直线MN 解析式为21123232y x x x =--++,把21123232y x x x =--++代入22y x =-+,解得:1x x =或123x x =-, ∴2123x x =-,即222111(23)24310y x x x =--+=-+-,作ME BC ⊥,NF BC ⊥,垂足为E ,F ,如图2所示,第 22 Q M ,N 位于直线BC 的两侧,且12y y >,则2212y y <-<≤,12x x <, ∴211(1)3ME y x =--=-+,11(BE x x =-=,221119NF y x =--=-+,21(BF x x =-=,在Rt BEM △中,21tan ME x BE MBE ===∠, 在Rt BFN △中,221tan NF x BF NBF =====∠. tan tan MBE NBF ∠=∠Q ,MBE NBF ∠=∠∴,则BC 平分MBN ∠;② Q y 轴为BC 的垂直平分线,∴设MBC △的外心为0(0,)P y ,则PB PM =,即22PB PM =,根据勾股定理得:22201013(1)()y x y y ++=+-,Q 2122x y =-,∴220010124(2)()y y y y y ++=-+-,即01112y y =-, 由①得:1121y -<≤-, ∴0302y -<≤, 则MBC △的外心的纵坐标的取值范围是0302y -<≤.【解析】(1)由A 的坐标确定出c 的值,根据已知不等式判断出120y y -<,可得出抛物线的增减性,确定出抛物线对称轴为y 轴,且开口向下,求出b 的值,如图1所示,可得三角形ABC 为等边三角形,确定出B 的坐标,代入抛物线解析式即可;(2)①设出点211(,2)M x x -+,222(,2)N x x -+,由MN 与已知直线平行,得到k 值相同,表示出直线MN 解析式,进而表示出ME ,BE ,NF ,BF ,求出tan MBE ∠与tan NBF ∠的值相等,进而得到BC 为角平分线;②三角形的外心即为三条垂直平分线的交点,得到y 轴为BC 的垂直平分线,设P 为外心,利用勾股定理化简22PB PM =,确定出MBC △外心的纵坐标的取值范围即可.。
2018年福建省中考数学B卷试卷-答案
福建省2018年初中学业毕业和高中阶段学校招生考试(B 卷)数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】分析:直接利用绝对值的性质化简,进而比较大小得出答案.解:在实数3-,2-,0,π中,33-=,则320π-<<<-,故最小的数是:2-.故选:B .2.【答案】C【解析】分析:根据常见几何体的三视图逐一判断即可得.解:A 、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B 、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C 、长方体的主视图、左视图及俯视图都是矩形,符合题意;D 、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意.故选:C .3.【答案】C【解析】分析:根据三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.解:A 、112+=,不满足三边关系,故错误;B 、124+<,不满足三边关系,故错误;C 、234+>,满足三边关系,故正确;D 、235+=,不满足三边关系,故错误.故选:C .4.【答案】B【解析】分析:n 边形的内角和是2180n (-),如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n .解:根据n 边形的内角和公式,得:2180360n =(-),解得4n =.故选:B .5.【答案】A【解析】分析:先判断出AD 是BC 的垂直平分线,进而求出45ECB ∠=︒,即可得出结论.解:等边三角形ABC 中,AD BC ⊥,∴BD CD =,即:AD 是BC 的垂直平分线,点E 在AD 上,∴BE CE =,∴EBC ECB ∠=∠,45EBC ∠=︒,∴45ECB ∠=︒,ABC △是等边三角形,∴60ACB ∠=︒,∴15ACE ACB ECB ∠=∠-∠=︒.故选:A .6.【答案】D【解析】分析:根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.解:A 、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B 、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C 、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D 、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D .7.【答案】B【解析】分析:直接化简二次根式,得出的取值范围,进而得出答案.解:2m ==,12<<,∴34m <<.故选:B .8.【答案】A【解析】分析:设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组.解:设索长为x 尺,竿子长为y 尺,根据题意得:5,1 5.2x y x y =+⎧⎪⎨=-⎪⎩故选:A .9.【答案】D【解析】分析:根据切线的性质得到90ABC ∠=︒,根据直角三角形的性质求出A ∠,根据圆周角定理计算即可.解:BC 是O 的切线,∴90ABC ∠=︒,∴9040A ACB ∠=︒-∠=︒,由圆周角定理得,280BOD A ∠=∠=︒,故选:D .10.【答案】D【解析】分析:根据方程有两个相等的实数根可得出1b a =+或(1)b a =-+,当1b a =+时,1-是方程20x bx a ++=的根;当(1)b a =-+时,1是方程20x bx a ++=的根.再结合1(1)a a +≠-+,可得出1和1-不都是关于x 的方程20x bx a ++=的根.解:关于x 的一元二次方程21210a x bx a ++++=()()有两个相等的实数根,∴2210,(2)4(1)0,a b a +≠⎧⎨∆=-+=⎩∴1b a =+或(1)b a =-+.当1b a =+时,有10a b +=-,此时1-是方程20x bx a ++=的根;当(1)b a =-+时,有10a b ++=,此时1是方程20x bx a ++=的根.10a +≠,∴1(1)a a +≠-+,∴1和1-不都是关于x 的方程20x bx a ++=的根.故选:D .第Ⅱ卷二、填空题11.【答案】0【解析】分析:根据零指数幂:01(0)a a =≠进行计算即可.解:原式110==-,故答案为:0.12.【答案】120【解析】分析:根据众数的定义:一组数据中出现次数最多的数据即为众数.解:这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.【答案】3【解析】分析:根据直角三角形斜边上的中线等于斜边的一半解答.解:90ACB ∠=︒,D 为AB 的中点, ∴116322CD AB ==⨯=. 故答案为:3.14.【答案】2x >【解析】分析:先求出每个不等式的解集,再求出不等式组的解集即可.解:313,2,x x x +>+⎧⎨->⎩①0②解不等式①得:1x >,解不等式②得:2x >,∴不等式组的解集为2x >,15.1【解析】分析:先利用等腰直角三角形的性质求出2BC =,1BF AF ==,再利用勾股定理求出DF ,即可得出结论.解:如图,过点A 作AF BC ⊥于F ,在Rt ABC △中,45B ∠=︒,∴2BC ==,12BF AF AB ===, 两个同样大小的含45︒角的三角尺,∴2AD BC ==,在Rt ADF △中,根据勾股定理得,DF ==∴121CD BF DF BC =+=-,1.16.【答案】6【解析】分析:根据双曲线3y x =过A ,B 两点,可设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫ ⎪⎝⎭,,则3C a b ⎛⎫ ⎪⎝⎭,.将y x m =+代入3y x =,整理得230x mx +=-,由于直线y x m =+与双曲线3y x =相交于A ,B 两点,所以a 、b 是方程230x mx +=-的两个根,根据根与系数的关系得出a b m +=-,3ab =-,那么222))((412a b a b ab m -+=+=-.再根据三角形的面积公式得出211•622ABC S AC BC m ==+△,利用二次函数的性质即可求出当0m =时,ABC △的面积有最小值6.解:设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫ ⎪⎝⎭,,则3C a b ⎛⎫ ⎪⎝⎭,. 将y x m =+代入3y x =,得3x m x +=,整理,得230x mx +=-,则a b m +=-,3ab =-,222))((412a b a b ab m =-∴+=+-.1•2ABC S AC BC =△ 222133=()213()••()21()21(12)2162a b a b b a a b aba b m m ⎛⎫-- ⎪⎝⎭-=-=-=+=+ ∴当0m =时,ABC △的面积有最小值6.故答案为6.三、解答题17.【答案】解:1,410,x y x y +=⎧⎨+=⎩①②②-①得:39x =,解得:3x =,把3x =代入①得:2y =-, 则方程组的解为3,2.x y =⎧⎨=-⎩【解析】方程组利用加减消元法求出解即可.18.【答案】证明:四边形ABCD 是平行四边形,∴OA OC =,AD BC ∥,∴OAE OCF ∠=∠,在OAE △和OCF △中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴AOE COF △≌△(ASA),∴OE OF =.【解析】由四边形ABCD 是平行四边形,可得OA OC =,AD BC ∥,继而可证得AOE COF △≌△(ASA ),则可证得结论.19.【答案】解:22111m m m m +-⎛⎫-÷ ⎪⎝⎭ ()()211m m m m m m -=+- ()()111m m m m m +=+- 11m =-当1m =时,原式===. 【解析】根据分式的减法和除法可以化简题目中的式子,然后将m 的值代入即可解答本题.20.【答案】(1)解:如图所示,A B C '''△即为所求; (2)已知,如图,ABC A B C '''△∽△,k AB BC A B C A B C AC=='''''=',D 是AB 的中点,D '是A B ''的中点,求证:DC kD C ''=.证明:D 是AB 的中点D '是A B ''的中点,∴12AD AB =,12A D A B ''='', ∴1212A B AB AB A D A B AD ''''=='', ABC A B C '''△∽△,∴A A CB AB AC ='''','A A ∠=∠, A A AD AD CC ''''=,'A A ∠=∠, ∴A CD ACD '''△∽△, ∴k CD D C A C C A ''''==. 【解析】(1)作=A B C ABC '''∠∠,即可得到A B C '''△;(2)依据D 是AB 的中点, D '是A B ''的中点,即可得到A A BD AD A B ='''',根据ABC A B C '''△∽△,即可得到A A C B AB A C ='''','A A ∠=∠,进而得出A C D ACD '''△∽△,可得k CD D C A C CA ''''==. 21.【答案】解:(1)线段AD 是由线段AB 绕点A 按逆时针方向旋转90︒得到,∴90DAB ∠=︒,10AD AB ==,∴45ABD ∠=︒,EFG △是ABC △沿CB 方向平移得到,∴AB EF ∥,∴45BDF ABD ∠=∠=︒;(2)由平移的性质得,AE CG ∥,AB EF ∥,∴DEA DFC ABC ∠=∠=∠,180ADE DAB ∠+∠=︒,90DAB ∠=︒,∴90ADE ∠=︒,90ACB ∠=︒,∴ADE ACB ∠=∠,∴ADE ACB △∽△, ∴AD AE AC AB=, 8AB =,10AB AD ==,∴12.5AE =,由平移的性质得,12.5CG AE ==.【解析】(1)由旋转的性质得,10AD AB ==,45ABD ∠=︒,再由平移的性质即可得出结论;(2)先判断出ADE ACB ∠=∠,进而得出ADE ACB △∽△,得出比例式求出AE ,即可得出结论.22.【答案】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为42=3015;(2)①甲公司各揽件员的日平均件数为3813399404413421=3930⨯+⨯+⨯+⨯+⨯件;②甲公司揽件员的日平均工资为70392148+⨯=元, 乙公司揽件员的日平均工资为()()3873974085341523630⎡⨯+⨯+⨯++⎤⨯+⨯+⨯⨯⎣⎦ ()()27171523=40463030⎡-⨯+-⨯⎤⨯+⨯+⨯+⨯⎢⎥⎣⎦=159.4元,因为159.4148>,所以仅从工资收入的角度考虑,小明应到乙公司应聘.【解析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得.23.【答案】解:(1)设AD x =米,则1002x AB -=米. 根据题意,得()1004502x x =-.解得110x =,290x =.20a =,且x a ≤,∴90x =舍去.∴利用旧墙AD 的长为10米.(2)设AD x =米,矩形ABCD 的面积为S 平方米.①如果按图一方案围成矩形菜园,依题意得()()2100150125022x x S x ==--+-,0x a <<, 050a <<,∴50x a <<时,S 随x 的增大而增大.当x a =时,21503S a a =-最大.②如按图2方案围成矩形菜园,依题意,得22(1002)[(25)](25)244x a x a a S x +-==---++,502a a x ≤<+. 当25504a a <+<时,即10003a <<时, 则254a x =+时,2210000200(25)416a a S a ++=+=最大. 当254a a +≤,即100503a ≤<时,S 随x 的增大而减小. ∴x a =时,2(1002)15022a S a a a a +-==-最大. 综合①②,当10003a <<时, 222100002001(3100)(50)016216a a a a a ++---=>, 即22100002001(50)162a a a a ++>-, 此时,按图2方案围成矩形菜园面积最大,最大面积为21000020016a a ++平方米; 当100503a ≤<,两种方案围成的矩形菜园面积最大值相等. ∴当时,围成长和宽均为(25)4a +米的矩形菜园面积最大,最大面积为21000020016a a ++平方米; 当100503a ≤<时,围成长为a 米,宽为(50)2a -米的矩形菜园面积最大,最大面积为21(50)2a a -平方米. 【解析】(1)按题意设出AD ,表示AB 构成方程;(2)根据旧墙长度a 和AD 长度表示矩形菜园长和宽,注意分类讨论S 与菜园边长之间的数量关系.24.【答案】解:(1)如图1,PC PB =,PCB PBC ∠=∠∴,四边形ABCD 内接于圆,180BAD BCD ∴∠+∠=︒,180BCD PCB ∠+∠=︒,BAD PCB ∠=∠∴,BAD BFD ∠=∠,BFD PCB PBC ∠=∠=∠∴,BC DF ∴∥,DE AB ⊥,90DEB =∴∠︒,90ABC =∴∠︒,AC ∴是O 的直径,90ADC =∴∠︒,BG AD ⊥,90AGB =∴∠︒,ADC AGB ∠=∠∴,BG CD ∴∥;(2)由(1)得:BC DF ∥,BG CD ∥,∴四边形BCDH 是平行四边形,BC DH ∴=,在Rt ABC △中,3AB =,∴tan AB ACB BC DH∠===, ∴60ACB ∠=︒,30BAC ∠=︒,∴60ADB ∠=︒,12BC AC =, ∴12DH AC =. ① 当点O 在DE 的左侧时,如图2,作直径DM ,连接AM 、OH ,则90DAM ∠=︒,90AMD ADM ∠∴∠+=︒.DE AB ⊥,90BED =∴∠︒,90BDE ABD ∠∴∠+=︒.AMD ABD ∠=∠,ADM BDE ∠=∠∴,12DH AC =, DH OD ∴=,80DOH OHD ∠∴∠==︒,20ODH =∴∠︒.60AOB ∠=︒,40ADM BDE ∠∴∠+=︒,20BDE ADM ∠∴∠==︒.② 当点O 在DE 的右侧时,如图3,作直径DN ,连接BN ,由①得:20ADE BDN ∠=∠=︒,20ODH ∠=︒,40BDE BDN ODH ∠∴∠=∠+=︒,综上所述,BDE ∠的度数为20︒或40︒.【解析】(1)根据等边对等角得:PCB PBC ∠=∠,由四点共圆的性质得:180BAD BCD ∠+∠=︒,从而得:BFD PCB PBC ∠=∠=∠,根据平行线的判定得:BC DF ∥,可得90ABC ∠=︒,AC 是O 的直径,从而得:90ADC AGB ∠=∠=︒,根据同位角相等可得结论;(2)先证明四边形BCDH 是平行四边形,得BC DH =,根据特殊的三角函数值得:60ACB ∠=︒,30BAC ∠=︒,所以12DH AC =,分两种情况:①当点O 在DE 的左侧时,如图2,作辅助线,构建直角三角形,由同弧所对的圆周角相等和互余的性质得:AMD ABD ∠=∠,则ADM BDE ∠=∠,并由DH OD =,可得结论;②当点O 在DE 的右侧时,如图3,同理作辅助线,同理有20ADE BDN ∠=∠=︒,20ODH ∠=︒,得结论.25.【答案】解:(1)抛物线过点(0,2)A ,2c ∴=,当120x x <<时,120x x -<,由1212()()0x x y y -->,得到120y y -<,∴当0x <时,y 随x 的增大而增大,同理当0x >时,y 随x 的增大而减小,∴抛物线的对称轴为y 轴,且开口向下,即0b =,以O 为圆心,OA 为半径的圆与抛物线交于另两点B ,C ,如图1所示,∴ABC △为等腰三角形,ABC △中有一个角为60︒,∴ABC △为等边三角形,且2OC OA ==,设线段BC 与y 轴的交点为点D ,则有BD CD =,且30OBD ∠=︒,∴•cos30BD OB =︒=•sin301OD OB =︒=,B 在C 的左侧,∴B 的坐标为(1)-,B 点在抛物线上,且2c =,0b =,321a ∴+=﹣,解得:1a =﹣,则抛物线解析式为22y x =-+;(2)①由(1)知,点211(,2)M x x -+,222(,2)N x x -+,MN与直线y =-平行,∴设直线MN的解析式为y m =-+,则有2112x m -+=-+,即2112m x =-++,∴直线MN解析式为2112y x =--++,把2112y x =--++代入22y x =-+,解得:1x x =或1x x =,∴21x x =,即222111)210y x x =-+=-+-,作ME BC ⊥,NF BC ⊥,垂足为E ,F ,如图2所示,M ,N 位于直线BC 的两侧,且12y y >,则2212y y <-<≤,12x x <,∴211(1)3ME y x =--=-+,11(BE x x =-=,221119NF y x =--=-+,21(BF x x =-=,在Rt BEM △中,21tan ME x BE MBE ===∠, 在Rt BFN △中,1tan NF x BF NBF =====∠. tan tan MBE NBF ∠=∠,MBE NBF ∠=∠∴,则BC 平分MBN ∠;② y 轴为BC 的垂直平分线,∴设MBC △的外心为0(0,)P y ,则PB PM =,即22PB PM =,根据勾股定理得:22201013(1)()y x y y ++=+-,2122x y =-,∴220010124(2)()y y y y y ++=-+-,即01112y y =-, 由①得:1121y -<≤-, ∴0302y -<≤, 则MBC △的外心的纵坐标的取值范围是0302y -<≤.【解析】(1)由A 的坐标确定出c 的值,根据已知不等式判断出120y y -<,可得出抛物线的增减性,确定出抛物线对称轴为y 轴,且开口向下,求出b 的值,如图1所示,可得三角形ABC 为等边三角形,确定出B 的坐标,代入抛物线解析式即可;(2)①设出点211(,2)M x x -+,222(,2)N x x -+,由MN 与已知直线平行,得到k 值相同,表示出直线MN 解析式,进而表示出ME ,BE ,NF ,BF ,求出tan MBE ∠与tan NBF ∠的值相等,进而得到BC 为角平分线;②三角形的外心即为三条垂直平分线的交点,得到y 轴为BC 的垂直平分线,设P 为外心,利用勾股定理化简22PB PM =,确定出MBC △外心的纵坐标的取值范围即可.。
福建省中考数学试卷(b卷)(解析版)
2018年福建省中考数学试卷(B卷)一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4.00分)(2018•福建)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2 C.0 D.π2.(4.00分)(2018•福建)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥3.(4.00分)(2018•福建)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,54.(4.00分)(2018•福建)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.65.(4.00分)(2018•福建)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E 在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°6.(4.00分)(2018•福建)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于127.(4.00分)(2018•福建)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<68.(4.00分)(2018•福建)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.9.(4.00分)(2018•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC 交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°10.(4.00分)(2018•福建)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根二、填空题:本题共6小题,每小题4分,共24分)11.(4.00分)(2018•福建)计算:()0﹣1=.12.(4.00分)(2018•福建)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.13.(4.00分)(2018•福建)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=.14.(4.00分)(2018•福建)不等式组的解集为.15.(4.00分)(2018•福建)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=.16.(4.00分)(2018•福建)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤17.(8.00分)(2018•福建)解方程组:.18.(8.00分)(2018•福建)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.19.(8.00分)(2018•福建)先化简,再求值:(﹣1)÷,其中m=+1.20.(8.00分)(2018•福建)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(8.00分)(2018•福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.22.(10.00分)(2018•福建)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.23.(10.00分)(2018•福建)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.24.(12.00分)(2018•福建)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.25.(14.00分)(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.2018年福建省中考数学试卷(B卷)参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4.00分)(2018•福建)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2 C.0 D.π【考点】15:绝对值;2A:实数大小比较.【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.【点评】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.2.(4.00分)(2018•福建)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥【考点】U3:由三视图判断几何体.【分析】根据常见几何体的三视图逐一判断即可得.【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.【点评】本题主要考查由三视图判断几何体,解题的关键是掌握常见几何体的三视图.3.(4.00分)(2018•福建)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5【考点】K6:三角形三边关系.【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.【点评】本题主要考查了三角形三边关系的运用,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.4.(4.00分)(2018•福建)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6【考点】L3:多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n.【解答】解:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.5.(4.00分)(2018•福建)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E 在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°【考点】KG:线段垂直平分线的性质;KK:等边三角形的性质.【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.【点评】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.6.(4.00分)(2018•福建)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【考点】X1:随机事件.【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.【点评】此题主要考查了随机事件,关键是掌握随机事件定义.7.(4.00分)(2018•福建)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6【考点】2B:估算无理数的大小.【分析】直接化简二次根式,得出的取值范围,进而得出答案.【解答】解:∵m=+=2+,1<<2,∴3<m<4,故选:B.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.8.(4.00分)(2018•福建)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.9.(4.00分)(2018•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC 交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°【考点】M5:圆周角定理;MC:切线的性质.【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.10.(4.00分)(2018•福建)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【考点】AA:根的判别式.【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.二、填空题:本题共6小题,每小题4分,共24分)11.(4.00分)(2018•福建)计算:()0﹣1=0.【考点】6E:零指数幂.【分析】根据零指数幂:a0=1(a≠0)进行计算即可.【解答】解:原式=1﹣1=0,故答案为:0.【点评】此题主要考查了零指数幂,关键是掌握a0=1(a≠0).12.(4.00分)(2018•福建)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为120.【考点】W5:众数.【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.【点评】本题主要考查众数,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据.13.(4.00分)(2018•福建)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=3.【考点】KP:直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.14.(4.00分)(2018•福建)不等式组的解集为x>2.【考点】CB:解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.(4.00分)(2018•福建)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=﹣1.【考点】KQ:勾股定理.【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.【点评】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.16.(4.00分)(2018•福建)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为6.【考点】G8:反比例函数与一次函数的交点问题.【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以a、b是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形=AC•BC=m2+6,利用二次函数的性质即可求出当m=0时,的面积公式得出S△ABC△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了函数图象上点的坐标特征,根与系数的关系,三角形的面积,二次函数的性质.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤17.(8.00分)(2018•福建)解方程组:.【考点】98:解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8.00分)(2018•福建)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.【考点】KD:全等三角形的判定与性质;L5:平行四边形的性质.【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.19.(8.00分)(2018•福建)先化简,再求值:(﹣1)÷,其中m=+1.【考点】6D:分式的化简求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.(8.00分)(2018•福建)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.【考点】SB:作图—相似变换.【分析】(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;(2)依据D是AB的中点,D'是A'B'的中点,即可得到=,根据△ABC∽△A'B'C',即可得到=,∠A'=∠A,进而得出△A'C'D'∽△ACD,可得==k.【解答】解:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,∴△A'C'D'∽△ACD,∴==k.【点评】本题考查了相似三角形的性质与判定,主要利用了相似三角形的性质,相似三角形对应边成比例的性质,以及两三角形相似的判定方法,要注意文字叙述性命题的证明格式.21.(8.00分)(2018•福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【考点】Q2:平移的性质;R2:旋转的性质;S9:相似三角形的判定与性质.【分析】(1)由旋转的性质得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【解答】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.【点评】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质,解直角三角形,相似三角形的判定和性质,判断出△ADE∽△ACB 是解本题的关键.22.(10.00分)(2018•福建)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.【考点】V5:用样本估计总体;VC:条形统计图;W2:加权平均数;X4:概率公式.【分析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得.【解答】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.【点评】本题主要考查概率公式,解题的关键是掌握概率=所求情况数与总情况数之比及平均数的定义及其意义.23.(10.00分)(2018•福建)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.【考点】AD:一元二次方程的应用;HE:二次函数的应用.【分析】(1)按题意设出AD,表示AB构成方程;(2)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论s与菜园边长之间的数量关系.【解答】解:(1)设AD=x米,则AB=依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大=50a﹣当x=a时,S最大②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=当25+≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.【点评】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.24.(12.00分)(2018•福建)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.【考点】JB:平行线的判定与性质;KQ:勾股定理;M2:垂径定理;MA:三角形的外接圆与外心.【分析】(1)根据等边对等角得:∠PCB=∠PBC,由四点共圆的性质得:∠BAD+∠BCD=180°,从而得:∠BFD=∠PCB=∠PBC,根据平行线的判定得:BC∥DF,可得∠ABC=90°,AC是⊙O的直径,从而得:∠ADC=∠AGB=90°,根据同位角相等可得结论;(2)先证明四边形BCDH是平行四边形,得BC=DH,根据特殊的三角函数值得:∠ACB=60°,∠BAC=30°,所以DH=AC,分两种情况:①当点O在DE的左侧时,如图2,作辅助线,构建直角三角形,由同弧所对的圆周角相等和互余的性质得:∠AMD=∠ABD,则∠ADM=∠BDE,并由DH=OD,可得结论;②当点O在DE的右侧时,如图3,同理作辅助线,同理有∠ADE=∠BDN=20°,∠ODH=20°,得结论.【解答】(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠AOB=60°,∴∠ADM+∠BDE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.【点评】本题考查圆的有关性质,等腰三角形的判定和性质,平行线的性质和判定,平行四边形的性质和判定,解直角三角形等知识,考查了运算能力、推理能力,并考查了分类思想.25.(14.00分)(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.【考点】HF:二次函数综合题.【分析】(1)由A的坐标确定出c的值,根据已知不等式判断出y1﹣y2<0,可得出抛物线的增减性,确定出抛物线对称轴为y轴,且开口向下,求出b的值,如图1所示,可得三角形ABC为等边三角形,确定出B的坐标,代入抛物线解析式即可;(2)①设出点M(x1,﹣x12+2),N(x2,﹣x22+2),由MN与已知直线平行,得到k值相同,表示出直线MN解析式,进而表示出ME,BE,NF,BF,求出tan ∠MBE与tan∠NBF的值相等,进而得到BC为角平分线;②三角形的外心即为三条垂直平分线的交点,得到y轴为BC的垂直平分线,设P为外心,利用勾股定理化简PB2=PM2,确定出△MBC外心的纵坐标的取值范围即可.【解答】解:(1)∵抛物线过点A(0,2),∴c=2,当x1<x2<0时,x1﹣x2<0,由(x1﹣x2)(y1﹣y2)>0,得到y1﹣y2<0,∴当x<0时,y随x的增大而增大,同理当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,且开口向下,即b=0,∵以O为圆心,OA为半径的圆与抛物线交于另两点B,C,如图1所示,∴△ABC为等腰三角形,∵△ABC中有一个角为60°,∴△ABC为等边三角形,且OC=OA=2,设线段BC与y轴的交点为点D,则有BD=CD,且∠OBD=30°,∴BD=OB•cos30°=,OD=OB•sin30°=1,∵B在C的左侧,∴B的坐标为(﹣,﹣1),∵B点在抛物线上,且c=2,b=0,∴3a+2=﹣1,解得:a=﹣1,则抛物线解析式为y=﹣x2+2;(2)①由(1)知,点M(x1,﹣x12+2),N(x2,﹣x22+2),∵MN与直线y=﹣2x平行,∴设直线MN的解析式为y=﹣2x+m,则有﹣x12+2=﹣2x1+m,即m=﹣x12+2x1+2,∴直线MN解析式为y=﹣2x﹣x12+2x1+2,把y=﹣2x﹣x12+2x1+2代入y=﹣x2+2,解得:x=x1或x=2﹣x1,∴x2=2﹣x1,即y2=﹣(2﹣x1)2+2=﹣x12+4x1﹣10,。
2018年福建省厦门市中考数学试卷(含答案)
福建省厦门市2018年中考数学试卷一、选择题<本大题共7小题,每小题3分,共21分)1.<3分)(2018年福建厦门)sin30°的值是<)A .B .C .D .1分析:直接根据特殊角的三角函数值进行计算即可.解答:解:sin30°=.故选A .点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.2.<3分)(2018年福建厦门)4的算术平方根是<)A .16B .2C .﹣2D .±2考点:算术平方根.分析:根据算术平方根定义求出即可.解答:解:4的算术平方根是2,故选B .点评:本题考查了对算术平方根的定义的应用,主要考查学生的计算能力.3.<3分)(2018年福建厦门)3x 2可以表示为<)A .9xB .x 2?x 2?x 2C .3x?3xD .x 2+x 2+x2考点:单项式乘单项式;合并同类项;同底数幂的乘法.专题:计算题.分析:各项计算得到结果,即可做出判断.解答:解:3x 2可以表示为x 2+x 2+x 2,故选D点评:此题考查了单项式乘以单项式,合并同类项,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.4.<3分)(2018年福建厦门)已知直线AB ,CB ,l 在同一平面内,若AB ⊥l ,垂足为B ,CB ⊥l ,垂足也为B ,则符合题意的图形可以是<)b5E2RGbCAPA .B .C .D .考点:垂线.分析:根据题意画出图形即可.解答:解:根据题意可得图形,故选:C .点评:此题主要考查了垂线,关键是掌握垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.p1EanqFDPw5.<3分)(2018年福建厦门)已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是<)DXDiTa9E3dA.2k B.15 C.24 D.42考点:命题与定理.分析:证明命题为假命题,通常用反例说明,此反例满足命题的题设,但不满足命题的结论.解答:解:42是偶数,但42不是8的倍数.故选D.点评:本题考查了命题:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.RTCrpUDGiT 6.<3分)(2018年福建厦门)如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于<)5PCzVD7HxAA.∠EDB B.∠BED C.∠AFB D.2∠ABF考点:全等三角形的判定与性质.分析:根据全等三角形的判定与性质,可得∠ACB与∠DBE的关系,根据三角形外角的性质,可得答案.解答:解:在△ABC和△DEB中,,∴△ABC≌△DEB <SSS),∴∠ACB=∠DEB.∵∠AFB是△BCF的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.点评:本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质.7.<3分)(2018年福建厦门)已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是<)jLBHrnAILgA.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=13xHAQX74J0X考点:中位数;算术平均数.分析:根据平均数的计算公式求出正确的平均数,再与原来的平均数进行比较,得出a的值,根据中位数的定义得出最中间的数还是13岁,从而选出正确答案.LDAYtRyKfE解答:解:∵原来的平均数是13岁,∴13×23=299<岁),∴正确的平均数a=≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;故选D.点评:此题考查了中位数和平均数,中位数是将一组数据从小到大<或从大到小)重新排列后,最中间的那个数<最中间两个数的平均数),叫做这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.Zzz6ZB2Ltk二、填空题<本大题共10小题,每小题4分,共40分)8.<4分)(2018年福建厦门)一个圆形转盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,飞镖落在转盘上,则落在黄色区域的概率是.dvzfvkwMI1考点:几何概率.分析:根据概率公式,求出红色区域的面积与总面积的比即可解答.解答:解:∵圆形转盘平均分成红、黄、蓝、白4个扇形区域,其中黄色区域占1份,∴飞镖落在黄色区域的概率是;故答案为:.点评:本题考查了几何概率的运用,用到的知识点是概率公式,在解答时根据概率=相应的面积与总面积之比是解答此类问题关键.rqyn14ZNXI9.<4分)(2018年福建厦门)若在实数范围内有意义,则x的取值范围是x≥1.考点:二次根式有意义的条件.分析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解答:解:∵在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.10.<4分)(2018年福建厦门)四边形的内角和是360°.考点:多边形内角与外角.专题:计算题.分析:根据n边形的内角和是<n﹣2)?180°,代入公式就可以求出内角和.解答:解:<4﹣2)?180°=360°.故答案为360°.点评:本题主要考查了多边形的内角和公式,是需要识记的内容,比较简单.11.<4分)(2018年福建厦门)在平面直角坐标系中,已知点O<0,0),A<1,3),将线段OA 向右平移3个单位,得到线段O 1A 1,则点O 1的坐标是<3,0),A 1的坐标是<4,3).EmxvxOtOco考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:解:∵点O<0,0),A<1,3),线段OA 向右平移3个单位,∴点O 1的坐标是<3,0),A 1的坐标是<4,3).故答案为:<3,0),<4,3).点评:本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.SixE2yXPq512.<4分)(2018年福建厦门)已知一组数据:6,6,6,6,6,6,则这组数据的方差为.【注:计算方差的公式是S 2=[<x 1﹣)2+<x 2﹣)2+…+<x n ﹣)2]】考点:方差.分析:根据题意得出这组数据的平均数是6,再根据方差S 2=[<x 1﹣)2+<x 2﹣)2+…+<x n ﹣)2],列式计算即可.6ewMyirQFL解答:解:∵这组数据的平均数是6,∴这组数据的方差=[6×<6﹣6)2]=0.故答案为:0.点评:本题考查了方差:一般地设n 个数据,x 1,x 2,…xn 的平均数为,则方差S 2=[<x 1﹣)2+<x 2﹣)2+…+<x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.kavU42VRUs13.<4分)(2018年福建厦门)方程x+5=<x+3)的解是x=﹣7.考点:解一元一次方程.专题:计算题.分析:方程去分母,移项合并,将x 系数化为1,即可求出解.解答:解:去分母得:2x+10=x+3,解得:x=﹣7.故答案为:x=﹣7点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.y6v3ALoS8914.<4分)(2018年福建厦门)如图,在等腰梯形ABCD 中,AD ∥BC ,若AD=2,BC=8,梯形的高是3,则∠B 的度数是45°.M2ub6vSTnP考点:等腰梯形的性质.分析:首先过点A 作AE ⊥BC 交BC 于E ,过点D 作DF ⊥BC 交BC 于F ,易得四边形AEFD 是长方形,易证得△ABE 是等腰直角三角形,即可得∠B 的度数.0YujCfmUCw解答:解:过点A 作AE ⊥BC 交BC 于E ,过点D 作DF ⊥BC 交BC 于F ,∵AD ∥BC ,∴四边形AEFD 是长方形,∴EF=AD=2,∵四边形ABCD 是等腰梯形,∴BE=<8﹣2)÷2=3,∵梯形的高是3,∴△ABE 是等腰直角三角形,∴∠B=45°.故答案为:45°.点评:此题考查了等腰梯形的性质以及等腰直角三角形的判定与性质.此题注意掌握辅助线的作法,注意掌握数形结合思想的应用.eUts8ZQVRd15.<4分)(2018年福建厦门)设a=192×918,b=8882﹣302,c=10532﹣7472,则数a ,b ,c 按从小到大的顺序排列,结果是a<c<b.sQsAEJkW5T考点:因式分解的应用.分析:运用平方差公式进行变形,把其中一个因数化为918,再比较另一个因数,另一个因数大的这个数就大.GMsIasNXkA解答:解:a=192×918=361×918,b=8882﹣302=<888﹣30)<888+30)=858×918,c=10532﹣7472=<1053+747)<1053﹣747)=1800×306=600×918,TIrRGchYzg 所以a <c <b .故答案为:a <c <b .点评:本题主要考查了因式分解的应用,解题的关键是运用平方差公式进行化简得出一个因数为918.16.<4分)(2018年福建厦门)某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产15个零件.7EqZcWLZNX考点:分式方程的应用.分析:设一个工人每小时生产零件x 个,则机器一个小时生产零件12x 个,根据这台机器生产60个零件比8个工人生产这些零件少用2小时,列方程求解,继而可求得机器每小时生产的零件.lzq7IGf02E解答:解:设一个工人每小时生产零件x 个,则机器一个小时生产零件12x 个,由题意得,﹣=2,解得:x=1.25,经检验:x=1.25是原分式方程的解,且符合题意,则12x=12×1.25=15.即这台机器每小时生产15个零件.故答案为:15.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.zvpgeqJ1hk17.<4分)(2018年福建厦门)如图,正六边形ABCDEF的边长为2,延长BA,EF交于点O.以O为原点,以边AB所在的直线为x轴建立平面直角坐标系,则直线DF与直线AE的交点坐标是<2,4).NrpoJac3v1考点:正多边形和圆;两条直线相交或平行问题.分析:首先得出△AOF是等边三角形,利用建立的坐标系,得出D,F点坐标,进而求出直线DF的解读式,进而求出横坐标为2时,其纵坐标即可得出答案.1nowfTG4KI解答:解:连接AE,DF,∵正六边形ABCDEF的边长为2,延长BA,EF交于点O,∴可得:△AOF是等边三角形,则AO=FO=FA=2,∵以O为原点,以边AB所在的直线为x轴建立平面直角坐标系,∠EOA=60°,EO=FO+EF=4,∴∠EAO=90°,∠OEA=30°,故AE=4cos30°=6,∴F<,3),D<4,6),设直线DF的解读式为:y=kx+b,则,解得:,故直线DF的解读式为:y=x+2,当x=2时,y=2×+2=4,∴直线DF与直线AE的交点坐标是:<2,4).故答案为:2,4.点评:此题主要考查了正多边形和圆以及待定系数法求一次函数解读式等知识,得出F,D点坐标是解题关键.三、解答题<共13小题,共89分)18.<7分)(2018年福建厦门)计算:<﹣1)×<﹣3)+<﹣)0﹣<8﹣2)考点:实数的运算;零指数幂.分析:先根据0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=3+1﹣6=﹣2.点评:本题考查的是实数的运算,熟知0指数幂的运算法则是解答此题的关键.19.<7分)(2018年福建厦门)在平面直角坐标系中,已知点A<﹣3,1),B<﹣1,0),C<﹣2,﹣1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.fjnFLDa5Zo考点:作图-轴对称变换.分析:根据关于y轴对称点的性质得出A,B,C关于y轴对称点的坐标,进而得出答案.解答:解:如图所示:△DEF与△ABC关于y轴对称的图形.点评:此题主要考查了轴对称变换,得出对应点坐标是解题关键.20.<7分)(2018年福建厦门)甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有两个小球,分别标有号码1,2;这些球除数字外完全相同,从甲、乙两口袋中分别随机摸出一个小球,求这两个小球的号码都是1的概率.tfnNhnE6e5考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个小球的号码都是1的情况,再利用概率公式即可求得答案.HbmVN777sL解答:解:画树状图得:∵共有6种等可能的结果,这两个小球的号码都是1的只有1种情况,∴这两个小球的号码都是1的概率为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.V7l4jRB8Hs21.<6分)(2018年福建厦门)如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,DE=2,BC=3,求的值.83lcPA59W9考点:相似三角形的判定与性质.分析:由DE∥BC,可证得△ADE∽△ABC,然后由相似三角形的对应边成比例,求得的值.解答:解:∵DE∥BC,∴△ADE∽△ABC,∵DE=2,BC=3,∴==.点评:此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.22.<6分)(2018年福建厦门)先化简下式,再求值:<﹣x 2+3﹣7x)+<5x﹣7+2x2),其中x=+1.mZkklkzaaP考点:二次根式的化简求值;整式的加减.分析:根据去括号、合并同类项,可化简代数式,根据代数式的求值,可得答案.解答:解;原式=x2﹣2x﹣4=<x﹣1)2﹣5,把x=+1代入原式,=<+1﹣1)2﹣5=﹣3.点评:本题考查了二次根式的化简求值,先去括号、合并同类项,再求值.23.<6分)(2018年福建厦门)解方程组.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:①×2﹣②得:4x﹣1=8﹣5x,解得:x=1,将x=1代入①得:y=2,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.<6分)(2018年福建厦门)如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.AVktR43bpw考点:菱形的判定.专题:证明题.分析:首先证明∠B=∠D,可得四边形ABCD是平行四边形,然后再证明△ABM≌△ADN可得AB=AD,再根据菱形的判定定理可得结论.ORjBnOwcEd解答:证明:∵AD∥BC,∴∠B+∠BAD=180°,∠D+∠C=180°,∵∠BAD=∠BCD,∴∠B=∠D,∴四边形ABCD是平行四边形,∵AM⊥BC,AN⊥DC,∴∠AMB=∠AND=90°,在△ABM和△ADN中,,∴△ABM≌△ADN<AAS),∴AB=AD,∴四边形ABCD是菱形.点评:此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.25.<6分)(2018年福建厦门)已知A<x1,y1),B<x2,y2)是反比例函数y=图象上的两点,且x1﹣x2=﹣2,x1?x2=3,y1﹣y2=﹣,当﹣3<x<﹣1时,求y的取值范围.2MiJTy0dTT考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征得到y1=,y2=,利用y1﹣y2=﹣,得到﹣=﹣,再通分得?k=﹣,然后把x1﹣x2=﹣2,x1?x2=3代入可计算出k=﹣2,则反比例函数解读式为y=﹣,再分别计算出自变量为﹣3和﹣1所对应的函数值,然后根据反比例函数的性质得到当﹣3<x<﹣1时,y的取值范围.gIiSpiue7A解答:解:把A<x1,y1),B<x2,y2)代入y=得y1=,y2=,∵y1﹣y2=﹣,∴﹣=﹣,∴?k=﹣,∵x1﹣x2=﹣2,x1?x2=3,∴k=﹣,解得k=﹣2,∴反比例函数解读式为y=﹣,当x=﹣3时,y=;当x=﹣1时,y=2,∴当﹣3<x<﹣1时,y的取值范围为<y<2.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=<k为常数,k≠0)的图象是双曲线,图象上的点<x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.uEh0U1Yfmh26.<6分)(2018年福建厦门)A,B,C,D四支足球队分在同一小组进行单循环足球比赛,争夺出线权,比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队<有且只有两个队)出线,小组赛结束后,如果A队没有全胜,那么A 队的积分至少要几分才能保证一定出线?请说明理由.IAg9qLsgBX[注:单循环比赛就是小组内的每一个队都要和其他队赛一场].考点:推理与论证.分析:根据题意每队都进行3场比赛,本组进行6场比赛,根据规则每场比赛,两队得分的和是3分或2分,据此对A队的胜负情况进行讨论,从而确定.WwghWvVhPE解答:解:每队都进行3场比赛,本组进行6场比赛.若A队两胜一平,则积7分.因此其它队的积分不可能是9分,依据规则,不可能有球队积8分,每场比赛,两队得分的和是3分或2分.6场比赛两队的得分之和最少是12分,最多是18分,∴最多只有两个队得7分.所以积7分保证一定出线.若A队两胜一负,积6分.如表格所示,根据规则,这种情况下,A队不一定出线.同理,当A队积分是5分、4分、3分、2分时不一定出线.总之,至少7分才能保证一定出线.点评:本题考查了正确进行推理论证,在本题中正确确定A队可能的得分情况是关键.27.<6分)(2018年福建厦门)已知锐角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.asfpsfpi4k考点:解直角三角形.分析:首先根据题意画出示意图,根据三角形外角的性质得出∠ACB=∠D+∠CAD,而∠ACB=2∠D,那么∠CAD=∠D,由等角对等边得到CA=CD,再根据等角的余角相等得出∠B=∠BAC,则AC=CB,BD=2AC=2×=3.然后解Rt△ABD,运用勾股定理求出AB==,利用正切函数的定义求出tanD==.ooeyYZTjj1解答:解:如图,∵∠ACB=∠D+∠CAD,∠ACB=2∠D,∴∠CAD=∠D,∴CA=CD.∵∠DAB=90°,∴∠B+∠D=90°,∠BAC+∠CAD=90°,∴∠B=∠BAC,∴AC=CB,∴BD=2AC=2×=3.在Rt△ABD中,∵∠DAB=90°,AD=2,∴AB==,∴tanD==.点评:本题考查了三角形外角的性质,等腰三角形的判定,余角的性质,解直角三角形,勾股定理,正切函数的定义,难度适中.求出BD的值是解题的关键.BkeGuInkxI28.<6分)(2018年福建厦门)当m,n是正实数,且满足m+n=mn时,就称点P<m,)为“完美点”,已知点A<0,5)与点M都在直线y=﹣x+b上,点B,C是“完美点”,且点B 在线段AM上,若MC=,AM=4,求△MBC的面积.PgdO0sRlMo考点:一次函数综合题.分析:由m+n=mn变式为=m﹣1,可知P<m,m﹣1),所以在直线y=x﹣1上,点A<0,5)在直线y=﹣x+b上,求得直线AM:y=﹣x+5,进而求得B<3,2),根据直线平行的性质从而证得直线AM与直线y=x﹣1垂直,然后根据勾股定理求得BC的长,从而求得三角形的面积.3cdXwckm15解答:解:∵m+n=mn且m,n是正实数,∴+1=m,即=m﹣1,∴P<m,m﹣1),即“完美点”P在直线y=x﹣1上,∵点A<0,5)在直线y=﹣x+b上,∴b=5,∴直线AM:y=﹣x+5,∵“完美点”B在直线AM上,∴由解得,∴B<3,2),∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=﹣x,而直线y=x﹣1与直线y=x平行,直线y=﹣x+5与直线y=﹣x平行,h8c52WOngM∴直线AM与直线y=x﹣1垂直,∵点B是直线y=x﹣1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,∴点C在直线y=x﹣1上,∴△MBC是直角三角形,∵B<3,2),A<0,5),∴AB=3,∵AM=4,∴BM=,又∵CM=,∴BC=1,∴S△MBC=BM?BC=.点评:本题考查了一次函数的性质,直角三角形的判定,勾股定理的应用以及三角形面积的计算等,判断直线垂直,借助正比例函数是本题的关键.v4bdyGious29.<10分)(2018年福建厦门)已知A,B,C,D是⊙O上的四个点.<1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;<2)如图2,若AC ⊥BD ,垂足为E ,AB=2,DC=4,求⊙O 的半径.考点:垂径定理;勾股定理;圆周角定理.分析:<1)根据题意不难证明四边形ABCD 是正方形,结论可以得到证明;<2)作直径DE ,连接CE 、BE .根据直径所对的圆周角是直角,得∠DCE=∠DBE=90°,则BE ∥AC ,根据平行弦所夹的弧相等,得弧CE=弧AB ,则CE=AB .根据勾股定理即可求解.J0bm4qMpJ9解答:解:<1)∵∠ADC=∠BCD=90°,∴AC 、BD 是⊙O 的直径,∴∠DAB=∠ABC=90°,∴四边形ABCD 是矩形,∵AD=CD ,∴四边形ABCD 是正方形,∴AC ⊥BD ;<2)作直径DE ,连接CE 、BE .∵DE 是直径,∴∠DCE=∠DBE=90°,∴EB ⊥DB ,又∵AC ⊥BD ,∴BE ∥AC ,∴弧CE=弧AB ,∴CE=AB .根据勾股定理,得CE 2+DC 2=AB 2+DC 2=DE 2=20,∴DE=,∴OD=,即⊙O 的半径为.点评:此题综合运用了圆周角定理的推论、垂径定理的推论、等弧对等弦以及勾股定理.学会作辅助线是解题的关键.XVauA9grYP30.<10分)(2018年福建厦门)如图,已知c <0,抛物线y=x 2+bx+c 与x 轴交于A<x 1,0),B<x 2,0)两点<x 2>x 1),与y 轴交于点C .bR9C6TJscw<1)若x 2=1,BC=,求函数y=x 2+bx+c 的最小值;<2)过点A作AP⊥BC,垂足为P<点P在线段BC上),AP交y轴于点M.若=2,求抛物线y=x2+bx+c顶点的纵坐标随横坐标变化的函数解读式,并直接写出自变量的取值范围.pN9LBDdtrd考点:二次函数综合题.分析:<1)根据勾股定理求得C点的坐标,把B、C点坐标代入y=x2+bx+c即可求得解读式,转化成顶点式即可.DJ8T7nHuGT<2)根据△AOM∽△COB,得到OC=2OB,即:﹣c=2x2;利用x22+bx2+c=0,求得c=2b ﹣4;将此关系式代入抛物线的顶点坐标,即可求得所求之关系式.QF81D7bvUA解答:解:<1)∵x2=1,BC=,∴OC==2,∴C<0,﹣2),把B<1,0),C<0,﹣2)代入y=x2+bx+c,得:0=1+b﹣2,解得:b=1,∴抛物线的解读式为:y=x2+x+﹣2.转化为y=<x+)2﹣;∴函数y=x2+bx+c的最小值为﹣.<2)∵∠OAM+∠OBC=90°,∠OCB+∠OBC=90°,∴∠OAM=∠OCB,又∵∠AOM=∠BOC=90°,∴△AOM∽△COB,∴,∴OC=?OB=2OB,∴﹣c=2x2,即x2=﹣.∵x22+bx2+c=0,将x2=﹣代入化简得:c=2b﹣4.抛物线的解读式为:y=x2+bx+c,其顶点坐标为<﹣,).令x=﹣,则b=﹣2x.y==c﹣=2b﹣4﹣=﹣4x﹣4﹣x 2,∴顶点的纵坐标随横坐标变化的函数解读式为:y=﹣x2﹣4x﹣4<x>﹣).点评:本题考查了勾股定理、待定系数法求解读式、三角形相似的判定及性质以及抛物线的顶点坐标的求法等.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
厦门市中考数学试题与答案解析B卷
2018年厦门市中考数学试题与答案(B卷)一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2 C.0 D.π2.(4分)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥3.(4分)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,54.(4分)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.65.(4分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°6.(4分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于127.(4分)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<68.(4分)我国古代数学着作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.9.(4分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°10.(4分)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根二、填空题:本题共6小题,每小题4分,共24分)11.(4分)计算:()0﹣1=.12.(4分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.13.(4分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=.14.(4分)不等式组的解集为.15.(4分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=.16.(4分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤。
中考复习【数学】2018年福建省中考真题(B卷)(解析版)
如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:
(1)现从今年四月份的 30 天中随机抽取 1 天,求这一天甲公司揽件员人均揽件数超过 40 (不含 40)的概率;[来源:Z*xx*] (2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该 公司各揽件员的 揽件数,解决以下问题: ①估计甲公司各揽件员的日平均件数; ②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所 学的统计知识帮他选择,井说明理由8.证明:∵四边形 ABCD 是平行四边形, ∴OA=OC,AD∥BC, ∴∠OAE=∠OCF, 在△OAE 和△OCF 中,
,
∴△AOE≌△COF(ASA), ∴OE=OF.
19.解:(
﹣1)÷
=
=
=,
当 m= +1 时,原式=
.
20.解:(1)如图所示,△A'B′C′即为所求;
16.(4 分)如图,直线 y=x+m 与双曲线 y= 相交于 A,B 两点,BC∥x 轴,AC∥y 轴,则 △ABC 面积的最小值为 .
三、解答题:本题共 9 小题,共 86 分.解答应写出文字说 明、证明过程或演算步骤
17.(8 分)解方程组:
.
18.(8 分)如图,▱ABCD 的对角线 AC,BD 相交于点 O,EF 过点 O 且与 AD,BC 分别相 交于点 E,F.求证:OE=OF.
A.
B.
C.
D.
9.(4 分)如图,AB 是⊙O 的直径,BC 与⊙O 相切于点 B,AC 交⊙O 于点 D,若∠ACB=50°, 则∠BOD 等于( )
A.40° B.50° C.60° D.80° 10.(4 分)已知关于 x 的一元二次方程(a+1)x2+2bx+(a+1)=0 有两个相等的实数根,下 列判断正确的是( ) A.1 一定不是关于 x 的方程 x2+bx+a=0 的根 B.0 一定不是关于 x 的方程 x2+bx+a=0 的根 C.1 和﹣1 都是关于 x 的方 程 x2+bx+a=0 的根 D.1 和﹣1 不都是关于 x 的方程 x2+bx+a=0 的根 二、填空题:本题共 6 小题,每小题 4 分,共 24 分) 11.(4 分)计算:( )0﹣1= .
2018年福建省中考数学试卷(b卷)(含答案解析)-推荐
2018 年福建省中考数学试卷( B 卷)一、选择题(本题共10 小题,每小题4分,共40 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4.00 分)在实数|﹣3|,﹣2,0,π 中,最小的数是()A.| ﹣3| B.﹣2 C.0 D.π2.( 4.00 分)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥3.( 4.00 分)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,54.(4.00 分)一个n 边形的内角和为360°,则n等于()A.3 B. 4 C.5 D.65.(4.00 分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠ EBC=4°5 ,则∠ ACE等于()A.15° B.30°C.45°D.60°6.(4.00 分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于127.( 4.00 分)已知m= + ,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4< m< 5 D.5< m< 68.( 4.00 分)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长 5 尺;如果将绳索对半折后再去量竿,就比竿短 5 尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()C.D.9.(4.00 分)如图,AB是⊙ O的直径,BC与⊙ O相切于点B,AC交⊙O于点D,若∠ACB=5°0 ,)C.60 D.8010.(4.00 分)已知关于x 的一元二次方程(a+1)x2+2bx+(a+1)=0 有两个相等的实数根,下列判断正确的是()A.1 一定不是关于x 的方程x2+bx+a=0 的根B.0 一定不是关于x 的方程x2+bx+a=0 的根C.1 和﹣1都是关于x 的方程x2+bx+a=0的根D.1 和﹣1 不都是关于x 的方程x2+bx+a=0的根、填空题:本题共 6 小题,每小题 4 分,共24分)11.(4.00 分)计算:( ) 0﹣1= .12.(4.00 分)某 8 种食品所含的热量值分别为: 120,134,120,119,126,120,118,124,ACB=9°0 , AB=6,D 是 AB 的中点,则 CD=15.(4.00 分) 尺的锐角顶点与另一个的直角顶点重合于点 A ,且另三个锐角顶点 B ,C ,D 在同一直线上. 若 AB= ,则 CD=16.(4.00 分)如图,直线 y=x+m 与双曲线 y= 相交于 A ,B 两点, BC ∥x 轴, AC ∥ y 轴,则三、解答题:本题共 9 小题,共 86分.解答应写出文字说明、证明过程或演算步骤 17.(8.00 分)解方程组: .把两个同样大小的含 45°角的三角尺按如图所示的方式放置,其中一个三角则这组数据的众数为的解集为△ABC 面积的最小值为18.(8.00 分)如图,?ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=O.F19.(8.00 分)先化简,再求值:(﹣1)÷,其中m= +1.20.(8.00 分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ ABC及线段A'B′,∠ A′(∠ A′=∠ A),以线段A′B′为一边,在给出的图形上用尺规作出△ A'B′C′,使得△ A'B′C′∽△ ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(8.00 分)如图,在Rt △ABC中,∠ C=90°,AB=10,AC=8.线段AD由线段AB绕点 A 按逆时针方向旋转90°得到,△ EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠ BDF的大小;(2)求CG的长.22.(10.00 分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/ 日,每揽收一件提成 2 元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成 4 元;若当日搅件数超过40,超过部分每件多提成 2 元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取 1 天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.23.(10.00 分)空地上有一段长为 a 米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100 米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100 米木栏,且围成的矩形菜园面积为450 平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.24.(12.00 分)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB 的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ ABC外接圆的圆心为O,若AB= DH,∠OHD=8°0 ,求∠ BDE的大小.25.(14.00 分)已知抛物线y=ax2+bx+c 过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0 时,(x1﹣x2)(y1﹣y2)> 0;当0< x1< x2时,(x1﹣x2)(y1 ﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B 在C的左侧,△ ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2 x 平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠ MBN;②求△ MBC外心的纵坐标的取值范围.2018 年福建省中考数学试卷( B 卷)参考答案与试题解析一、选择题(本题共10 小题,每小题4分,共40 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4.00 分)在实数|﹣3|,﹣2,0,π 中,最小的数是()A.| ﹣3| B.﹣2 C.0 D.π【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数| ﹣3| ,﹣2,0,π 中,|﹣3|=3,则﹣2<0<| ﹣3| <π,故最小的数是:﹣2.故选:B.2.( 4.00 分)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥【分析】根据常见几何体的三视图逐一判断即可得.【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.( 4.00 分)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5 【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.(4.00 分)一个n 边形的内角和为360°,则n等于()A.3 B. 4 C.5 D.6【分析】n 边形的内角和是(n﹣2)?180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n.【解答】解:根据n 边形的内角和公式,得:(n﹣2)?180=360,解得n=4.故选:B.5.(4.00 分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠ EBC=4°5 ,则∠ ACE等于()A.15° B.30°C.45°D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ ECB=4°5 ,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点 E 在AD上,∴BE=CE,∴∠ EBC=∠ ECB,∵∠ EBC=4°5 ,∴∠ ECB=4°5 ,∵△ ABC是等边三角形,∴∠ ACB=6°0 ,∴∠ ACE=∠ACB﹣∠ECB=1°5 ,故选:A.6.(4.00 分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12 【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.( 4.00 分)已知m= + ,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4< m< 5 D.5< m< 6 【分析】直接化简二次根式,得出的取值范围,进而得出答案.【解答】解:∵ m= + =2+ ,1< <2,∴3<m<4,故选:B.8.( 4.00 分)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长 5 尺;如果将绳索对半折后再去量竿,就比竿短 5 尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A .B .C .D .【分析】设索长为 x 尺,竿子长为 y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿 子短一托”,即可得出关于 x 、y 的二元一次方程组. 解答】解:设索长为 x 尺,竿子长为 y 尺,故选: A .9.(4.00 分)如图,AB 是⊙ O 的直径,BC 与⊙ O 相切于点 B ,AC 交⊙O 于点 D ,若∠ACB=5°0 , 则∠ BOD 等于( )A .40°B .50°C .60°D .80°【分析】根据切线的性质得到∠ ABC=9°0 ,根据直角三角形的性质求出∠ A ,根据圆周角定理 计算即可.【解答】解:∵ BC 是⊙ O 的切线, ∴∠ ABC=9°0 ,∴∠A=90°﹣∠ ACB=4°0 , 由圆周角定理得,∠ BOD=∠2 A=80°, 故选: D .10.(4.00 分)已知关于 x 的一元二次方程( a+1)x 2+2bx+( a+1)=0 有两个相等的实数根, 下列判断正确的是( )A .1 一定不是关于 x 的方程 x 2+bx+a=0 的根B .0 一定不是关于 x 的方程 x 2+bx+a=0的根 C .1 和﹣ 1都是关于 x 的方程 x 2+bx+a=0的根 D .1 和﹣1 不都是关于 x 的方程 x 2+bx+a=0的根【分析】根据方程有两个相等的实数根可得出 b=a+1或 b=﹣( a+1),当 b=a+1时,﹣ 1 是方 程 x 2+bx+a=0的根;当 b=﹣(a+1)时, 1 是方程 x 2+bx+a=0的根.再结合 a+1≠﹣( a+1), 可得出 1和﹣ 1不都是关于 x 的方程 x 2+bx+a=0的根.【解答】解:∵关于 x 的一元二次方程( a+1)x 2+2bx+(a+1)=0有两个相等的实数根, ∴,∴b=a+1 或 b=﹣( a+1).当 b=a+1时,有 a ﹣ b+1=0,此时﹣ 1 是方程 x 2+bx+a=0的根;2当 b=﹣( a+1)时,有 a+b+1=0,此时 1 是方程 x +bx+a=0 的根. ∵a+1≠0,∴ a+1≠﹣( a+1),∴1 和﹣ 1不都是关于 x 的方程 x 2+bx+a=0的根. 故选: D .、填空题:本题共 6 小题,每小题 4 分,共 24分)分析】根据零指数幂: a 0=1(a ≠0)进行计算即可.【解答】解:原式 =1﹣1=0, 故答案为: 0.12.(4.00 分)某 8 种食品所含的热量值分别为: 120,134,120,119,126,120,118,124, 则这组数据的众数为 120 .【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.11.(4.00 分)计算:【解答】解:∵这组数据中120出现次数最多,有 3 次,∴这组数据的众数为120,故答案为:120.13.(4.00 分)如图,Rt△ABC中,∠ACB=9°0 ,AB=6,D是AB的中点,则CD= 3【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ ACB=9°0 ,D为AB的中点,∴CD= AB= × 6=3.故答案为:3.14.(4.00 分)不等式组的解集为x>2分析】先求出每个不等式的解集,再求出不等式组的解集即可.解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x> 2.15.(4.00 分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D 在同一直线上.若AB= ,则CD= ﹣1 .【分析】先利用等腰直角三角形的性质求出 BC=2,BF=AF=1,再利用勾股定理求出 DF ,即可 得出结论.【解答】解:如图,过点 A 作 AF ⊥BC 于 F , 在 Rt △ABC 中,∠ B=45°, ∴BC= AB=2,BF=AF= AB=1, ∵两个同样大小的含 45°角的三角尺, ∴AD=BC=,2在 Rt △ ADF 中,根据勾股定理得, DF= =∴CD=BF+D ﹣F BC=1+ ﹣2= ﹣1,16.(4.00 分)如图,直线 y=x+m 与双曲线 y= 相交于 A ,B 两点, BC ∥x 轴, AC ∥ y轴,则△ABC 面积的最小值为 6 .是方程 x 2+mx ﹣3=0 的两个根,根据根与系数的关系得出 a+b=﹣m ,ab=﹣3,那么( a ﹣过 A ,B 两点,可设 A (a , ),B (b , ),则 C (a , ).将 y=x+m整理得 x 2+mx ﹣3=0,由于直线 y=x+m 与双曲线 y= 相交于 A ,B 两点,所以 a 、b代入 y=b)2a+b )2﹣4ab=m 2+12.再根据三角形的面积公式得出 S △ABC = AC?BC= m 2+6,利用二次函数的性质即可求出当 m=0时,△ ABC 的面积有最小值 6. 【解答】解:设 A ( a , ),B(b , ,得 x+m= , 则 a+b=﹣ m , ab=﹣3,∴( a ﹣ b ) 2=(a+b )2﹣ 4ab=m 2+12. ∵S △ABC = AC?BC= ( a ﹣ b ) = ( m 2+12) = m 2+6,∴当 m=0时,△ ABC 的面积有最小值 6. 故答案为 6.三、解答题:本题共 9 小题,共 86分.解答应写出文字说明、证明过程或演算步骤17.(8.00 分)解方程组:.分析】方程组利用加减消元法求出解即可.解答】解:②﹣①得: 3x=9,解得: x=3,把 x=3 代入①得: y=﹣ 2, 则方程组的解为18.(8.00 分)如图, ?ABCD 的对角线 AC ,BD 相交于点 O ,EF 过点 O 且与 AD ,BC 分别相交于 点 E , F .求证: OE=O .F),则 C (a ,将 y=x+m 代入 y= 整理,得 x 2+mx ﹣3=0, ==? =?)(a ﹣b )?(a ﹣b )【分析】由四边形 ABCD 是平行四边形,可得OA=O ,CAD ∥BC ,继而可证得△ AOE ≌△CO (F ASA ), 则可证得结论.【解答】证明:∵四边形 ABCD 是平行四边形, ∴OA=O ,C AD ∥ BC ,∴∠ OAE=∠ OCF , 在△ OAE 和△ OCF 中,,∴△AOE ≌△COF (ASA ), ∴OE=O .F19.(8.00 分)先化简,再求值: ( ﹣1)÷ ,其中 m= +1.分析】根据分式的减法和除法可以化简题目中的式子,然后将 m 的值代入即可解答本题. 解答】解:(﹣1)÷= == ==,,20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.当m要求:①根据给出的△ ABC 及线段 A'B ′,∠ A ′(∠ A ′=∠ A ),以线段 A ′B ′为一边,在给 出的图形上用尺规作出△ A'B ′C ′,使得△ A'B ′C ′∽△ ABC ,不写作法,保留作图痕迹; ②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.分析】(1)作∠ A'B'C= ∠ ABC ,即可得到△ A'B ′C ′;2)依据 D 是 AB 的中点,D'是 A'B' 的中点,即可得到解答】解:( 1)如图所示,△ A'B ′C ′即为所求;∵△ ABC ∽△A'B'C' ,∴∴==k ,,D 是 AB 的中点,D' 是 A'B'==,∠A'= ∠A ,进而得出△ A'C'D' ∽△ACD ,可得=k .,∠A'=∠A ,,根据△ ABC ∽△,即可得到2)已知,如图,△ ABC ∽△ A'B'C' ,的中点,∴AD= AB ,A'D'= A'B' ,21.(8.00 分)如图,在Rt △ABC中,∠ C=90°,AB=10,AC=8.线段AD由线段AB 绕点 A 按逆时针方向旋转90°得到,△ EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠ BDF的大小;(2)求CG的长.【分析】(1)由旋转的性质得,AD=AB=1,0 ∠ ABD=4°5 ,再由平移的性质即可得出结论;(2)先判断出∠ ADE=∠ACB,进而得出△ ADE∽△ ACB,得出比例式求出AE,即可得出结论.【解答】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=9°0 ,AD=AB=1,0∴∠ ABD=4°5 ,∵△ EFG是△ ABC沿CB方向平移得到,∴AB∥EF,∴∠ BDF=∠ABD=4°5 ;(2)由平移的性质得,AE∥CG,AB∥ EF,∴∠ DEA=∠ DFC=∠ ABC,∠ ADE+∠DAB=18°0 ,∵∠ DAB=9°0 ,∴∠ ADE=9°0 ,∵∠ ACB=9°0 ,∴∠ ADE=∠ ACB,∴△ ADE∽△ ACB,∴,△A'C'D'∽△ACD,==∠A'=∠A,∴,∵AB=8,AB=AD=1,0∴AE=12.5,由平移的性质得,CG=AE=12..522.(10.00 分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/ 日,每揽收一件提成 2 元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成 4 元;若当日搅件数超过40,超过部分每件多提成 2 元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取 1 天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.【分析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得.【解答】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40 的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为= ;(2)①甲公司各揽件员的日平均件数为=39 件; ②甲公司揽件员的日平均工资为 70+39×2=148 元,乙公司揽件员的日平均工资为=[40+] ×4+ ×6=159.4 元, 因为 159.4 >148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.23.(10.00 分)空地上有一段长为 a 米的旧墙 MN ,某人利用旧墙和木栏围成一个矩形菜园 ABCD ,已知木栏总长为 100 米.(1)已知 a=20,矩形菜园的一边靠墙,另三边一共用了 100 米木栏,且围成的矩形菜园面 积为 450 平方米.如图 1,求所利用旧墙 AD 的长;(2)已知 0<α< 50,且空地足够大,如图 2.请你合理利用旧墙及所给木栏设计一个方案, 使得所围成的矩(2)根据旧墙长度 a 和 AD 长度表示矩形菜园长和宽,注意分类讨论 s 与菜园边长之间的数量关系.【解答】解:( 1)设 AD=x 米,则 AB=依题意得, 解得 x 1=10,x 2=90∵a=20,且 x ≤a形菜园 ABCD 的面积最大,并求面积的最大值.分析】(1)按题意设出 表示 AB 构成方程; AD ,∴x=90 舍去 ∴利用旧墙 AD 的长为 10 米.(2)设 AD=x 米,矩形 ABCD 的面积为 S 平方米 ①如果按图一方案围成矩形菜园,依题意 得:S= ,0<x <a∵ 0<α< 50∴x <a <50 时,S 随 x 的增大而增大 当 x=a 时, S 最大 =50a ﹣②如按图 2 方案围成矩形菜园,依题意得,a ≤x <50+当 a <25+ <50 时,即 0<a < 时, 则 x=25+ 时, S 最大=(25+ )当 25+ ≤a ,即时,S 随 x 的增大而减小 ∴x=a 时,S 最大 =﹣( ),此时,按图 2 方案围成矩形菜园面积最大,最大面积为平方米 当 时,两种方案围成的矩形菜园面积最大值相等.∴当 0< a < 时,围成长和宽均为( 25+ )米的矩形菜园面积最大,最大面积为平方米;当 时,围成长为 a 米,宽为( 50 ﹣ )米的矩形菜园面积最大,最大面积为( )平方米.S= 综合①②,当 0<a <时,24.(12.00 分)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB 的延长线交于点P,且PC=PB.(1)求证:BG∥CD;2)设△ ABC外接圆的圆心为O,若AB= DH,∠OHD=8°0 ,求∠ BDE的大小.分析】(1)根据等边对等角得:∠ PCB=∠ PBC,由四点共圆的性质得:∠BAD+∠BCD=18°0 ,从而得:BFD=∠PCB=∠PBC,根据平行线的判定得:BC∥DF,可得∠ ABC=9°0 ,AC 直径,从而得:∠ ADC=∠AGB=9°0 ,根据同位角相等可得结论;(2)先证明四边形BCDH是平行四边形,得BC=D,H根据特殊的三角函数值得:∠ACB=6°0 ,∠BAC=3°0 ,所以DH= AC,分两种情况:①当点O在DE的左侧时,如图2,作辅助线,构建直角三角形,由同弧所对的圆周角相等和互余的性质得:∠ AMD∠= ABD,则∠ ADM∠= BDE,并由DH=O,D可得结论;②当点O在DE的右侧时,如图3,同理作辅助线,同理有∠ ADE=∠BDN=2°0 ,∠ODH=2°0 ,得结论.【解答】(1)证明:如图1,∵ PC=PB,∴∠ PCB=∠ PBC , ∵四边形 ABCD 内接于圆, ∴∠ BAD+∠BCD=18°0 , ∵∠ BCD+∠PCB=18°0 , ∴∠ BAD=∠ PCB , ∵∠ BAD=∠ BFD , ∴∠ BFD=∠ PCB=∠ PBC , ∴BC ∥DF , ∵DE ⊥AB , ∴∠ DEB=9°0 , ∴∠ ABC=9°0 , ∴AC 是⊙ O 的直径, ∴∠ ADC=9°0 , ∵BG ⊥AD ,∴∠ AGB=9°0 ,∴∠ ADC=∠ AGB ,∴BG ∥CD ;(2)由( 1)得: BC ∥DF ,BG ∥CD , ∴四边形 BCDH 是平行四边形,∴BC=DH , 在 Rt △ABC 中,∵ AB= DH ,∴∠ACB=6°0 ,∠ BAC=3°0 ,①当点 O 在 DE 的左侧时,如图 2,作直径 DM ,连接 AM 、OH ,则∠ DAM=9°0 , ∴∠ AMD ∠+ ADM=9°0∵DE ⊥AB ,∴tan ∠ ACB ==== ∴∠ ADB=6°0 , BC = AC ,∴∠BED=9°0 ,∴∠BDE+∠ABD=9°0 ,∵∠ AMD∠=ABD,∴∠ ADM∠=BDE,∴DH=O,D∴∠ DOH∠=OHD=8°0 ,∴∠ODH=2°0∵∠AOB=6°0 ,∴∠ ADM∠+BDE=4°0 ,∴∠BDE=∠ADM=2°0 ,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ ADE=∠BDN=2°0 ,∠ODH=2°0 ,∴∠BDE=∠BDN+∠ODH=4°0 ,综上所述,∠ BDE的度数为20°或40225.(14.00 分)已知抛物线y=ax2+bx+c 过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0 时,(x1﹣x2)(y1﹣y2)> 0;当0< x1< x2时,(x1﹣x2)(y1 ﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2 x 平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠ MBN;②求△ MBC外心的纵坐标的取值范围.【分析】(1)由A的坐标确定出 c 的值,根据已知不等式判断出y1﹣y2<0,可得出抛物线的增减性,确定出抛物线对称轴为y 轴,且开口向下,求出 b 的值,如图 1 所示,可得三角形ABC为等边三角形,确定出 B 的坐标,代入抛物线解析式即可;(2)①设出点M(x1,﹣x12+2),N(x2,﹣x22+2),由MN与已知直线平行,得到k 值相同,表示出直线MN解析式,进而表示出ME,BE,NF,BF,求出tan ∠MBE与tan∠NBF的值相等,进而得到BC为角平分线;②三角形的外心即为三条垂直平分线的交点,得到y 轴为BC的垂直平分线,设P为外心,利用勾股定理化简PB2=PM2,确定出△ MBC外心的纵坐标的取值范围即可.【解答】解:(1)∵抛物线过点A(0,2),∴c=2,当x1<x2<0 时,x1﹣x2<0,由(x1﹣x2)(y1﹣y2)>0,得到y1﹣y2<0,∴当x<0时,y 随x 的增大而增大,同理当x>0时,y随x 的增大而减小,∴抛物线的对称轴为y 轴,且开口向下,即b=0,∵以O为圆心,OA为半径的圆与抛物线交于另两点B,C,如图 1 所示,∴△ ABC 为等腰三角形,∵△ ABC 中有一个角为 60°,∴△ ABC 为等边三角形,且 OC=OA=,2设线段 BC 与 y 轴的交点为点 D ,则有 BD=C ,D 且∠ OBD=3°0 , ∴BD=OB?cos3°0 = ,OD=OB?sin3°0 =1,∵B 在 C 的左侧,∴B 的坐标为(﹣ ,﹣ 1),∵B 点在抛物线上,且 c=2,b=0,∴3a+2=﹣1,解得: a=﹣ 1, 则抛物线解析式为 y=﹣ x 2+2;(2)①由( 1)知,点 M (x 1,﹣ x 12+2),N (x 2,﹣x 22+2),∵MN 与直线 y=﹣2 x 平行,∴设直线 MN 的解析式为 y=﹣2 x+m ,则有﹣ x 1 +2=﹣2 x 1+m ,即 m=﹣x 1 +2 x 1+2, ∴直线 MN 解析式为 y=﹣2 x ﹣x 1 +2 x 1+2,把 y=﹣2 x ﹣ x 12+2 x 1+2 代入 y=﹣x 2+2,解得: x=x 1或 x=2 ﹣x 1,∴x 2=2 ﹣x 1,即 y 2=﹣( 2 ﹣x 1) +2=﹣x 1 +4 x 1﹣10,作 ME ⊥BC ,NF ⊥BC ,垂足为 E ,F ,如图 2 所示,∵M , N 位于直线 BC 的两侧,且 y 1> y 2,则 y 2<﹣ 1< y 1≤ 2,且﹣ <x 1<x 2, ∴ME=y 1﹣(﹣ 1)=﹣x 12+3,BE=x 1﹣(﹣ )=x 1+ ,NF=﹣1﹣ y 2=x 12﹣4 x 1+9,BF=x 2﹣(﹣)=3 ﹣x 1,在 Rt △ BFN 中,tan ∠ NBF= =∵tan ∠ MBE=tan ∠ NBF ,∴∠ MBE ∠= NBF ,则 BC 平分∠ MBN ;②∵ y 轴为 BC 的垂直平分线,∴设△ MBC 的外心为 P (0,y 0),则 PB=PM ,即 PB 2=PM 2,====在 Rt △BEM 中,tan ∠MBE ﹣x 1,= ﹣ x1,根据勾股定理得:3+(y0+1)=x1 +(y0﹣y1),2∵ x1 =2﹣y2,∴y02+2y0+4=(2﹣y1)+(y0﹣y1)2,即y0= y1﹣1,由①得:﹣1< y1≤2,0≤0则△ MBC的外心的纵坐标的取值范围<y0≤0 是﹣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年厦门市中考数学试题与答案(B卷)一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2 C.0 D.π2.(4分)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱 C.长方体 D.四棱锥3.(4分)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,54.(4分)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.65.(4分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45° D.60°6.(4分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于127.(4分)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<68.(4分)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.9.(4分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60° D.80°10.(4分)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根二、填空题:本题共6小题,每小题4分,共24分)11.(4分)计算:()0﹣1=.12.(4分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.13.(4分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=.14.(4分)不等式组的解集为.15.(4分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=.16.(4分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC ∥y轴,则△ABC面积的最小值为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤。
17.(8分)解方程组:.18.(8分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC 分别相交于点E,F.求证:OE=OF.19.(8分)先化简,再求值:(﹣1)÷,其中m=+1.20.(8分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(8分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB 绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.22.(10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.23.(10分)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<a<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.24.(12分)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE ⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.25.(14分)已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.2018年厦门市中考数学试题与答案(B卷)参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2 C.0 D.π【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.2.(4分)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱 C.长方体 D.四棱锥【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.(4分)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.(4分)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6【解答】解:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.5.(4分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45° D.60°【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.(4分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.(4分)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6【解答】解:∵m=+=2+,1<<2,∴3<m<4,故选:B.8.(4分)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.(4分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60° D.80°【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.(4分)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.二、填空题:本题共6小题,每小题4分,共24分)11.(4分)计算:()0﹣1=0.【解答】解:原式=1﹣1=0,故答案为:0.12.(4分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为120.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.(4分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=3.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.14.(4分)不等式组的解集为x>2.【解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.(4分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=﹣1.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.(4分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC ∥y轴,则△ABC面积的最小值为6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤。