用MATLAB分析状态状态空间模型

合集下载

实验八matlab状态空间分析

实验八matlab状态空间分析

实验八 线性系统的状态空间分析§8.1 用MATLAB 分析状态空间模型1、状态空间模型的输入线性定常系统状态空间模型x Ax Buy Cx Du =+=+将各系数矩阵按常规矩阵形式描述。

[][][]11121120101;;;n n n nn n n A a a a a a a B b b b C c c c D d ====在MATLAB 里,用函数SS()来建立状态空间模型(,,,)sys ss A B C D =例8.1 已知某系统微分方程22d d 375d d y yy u t t ++=求该系统的状态空间模型。

解:将上述微分方程写成状态空间形式0173A ⎡⎤=⎢⎥--⎣⎦,01B ⎡⎤=⎢⎥⎣⎦[]50C =,0D =调用MATLAB 函数SS(),执行如下程序% MATLAB Program example 6.1.mA=[0 1;-7 -3];B=[0;1];C=[5 0];D=0;sys=ss(A,B,C,D)运行后得到如下结果a =x1 x2x1 0 1x2 -7 -3b =u1x1 0x2 1c =x1 x2y1 5 0d =u1y1 0Continuous-time model.2、状态空间模型与传递函数模型转换状态空间模型用sys表示,传递函数模型用G表示。

G=tf(sys)sys=ss(G)状态空间表达式向传递函数形式的转换G=tf(sys)Or [num,den]=ss2tf(A,B,C,D)多项式模型参数[num,den]=ss2tf(A,B,C,D,iu)[z,p,k]=ss2zp(A,B,C,D,iu)零、极点模型参数iu用于指定变换所需的输入量,iu默认为单输入情况。

传递函数向状态空间表达式形式的转换sys=ss(G)or [A,B,C,D]=tf2ss(num,den)[A,B,C,D]=zp2ss(z,p,k)例8.211122211220.560.050.03 1.140.2500.1101001x x u x x u y x y x -⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦试用矩阵组[a ,b ,c ,d]表示系统,并求出传递函数。

matlab状态空间表达式的解

matlab状态空间表达式的解

标题:MATLAB状态空间表达式的解析一、概述MATLAB是一种非常常用的数学软件,用于分析、设计和模拟动态系统。

在控制系统理论中,状态空间表达式是描述线性系统动态行为的重要方法。

本文旨在介绍如何使用MATLAB对状态空间表达式进行解析和分析。

二、状态空间表达式简介状态空间表达式是一种描述线性时不变系统的数学模型。

通常由状态方程和输出方程组成。

状态方程描述了系统的演化规律,而输出方程则描述了系统状态和输出之间的关系。

三、MATLAB中的状态空间表示在MATLAB中,状态空间表示可以使用ss函数进行表达。

该函数的输入参数包括系统的状态方程系数矩阵A、输入矩阵B、输出矩阵C 和前馈矩阵D。

四、求解状态空间表达式1. 稳态响应分析在MATLAB中,可以使用sys = ss(A,B,C,D)定义一个状态空间模型,然后使用step(sys)绘制系统的阶跃响应曲线。

通过阶跃响应曲线可以分析系统的稳态性能。

2. 传递函数表示使用tf(sys)可以将状态空间表示转换为传递函数表示,这样可以更方便地分析系统的特性。

3. 稳定性分析使用eig(A)可以计算状态方程系数矩阵A的特征值,从而判断系统的稳定性。

如果系统的所有特征值都是负实数,那么系统是稳定的。

4. 频域特性分析使用bode(sys)可以绘制系统的频率响应曲线,这样可以分析系统在不同频率下的特性。

五、应用实例以电机控制系统为例,假设系统的状态空间表达式为:A = [-2 -1; 3 -4]B = [1; 0]C = [0 1]D = [0]可以使用以下代码在MATLAB中求解该系统:sys = ss(A,B,C,D)step(sys)tf_sys = tf(sys)eig(A)bode(sys)六、结语本文介绍了MATLAB中状态空间表达式的解析方法,并以电机控制系统为例进行了说明。

希望本文能够帮助读者更好地理解和应用状态空间表达式在MATLAB中的求解方法。

利用MATLAB对状态空间模型进行分析

利用MATLAB对状态空间模型进行分析

利用MATLAB对状态空间模型进行分析(一)状态空间模型的引入
状态空间模型是一种概率统计模型,它利用了状态变量和观测变量来描述系统的特性,可以用来模拟复杂的或不可观测的动态过程。

状态空间模型的核心思想是,将动态系统的状态变量和观测变量分别建模,并用一组数学方程表示整个系统。

这样,状态空间模型可以更好地揭示动态系统的特性,从而更好地进行控制和优化。

(二)状态空间模型的形式
状态空间模型由两部分组成:状态转移方程和观测方程。

状态转移方程用于描述系统的状态变量的动态变化,而观测方程则用于表示系统的观测变量的变化趋势。

状态转移方程可以表示为:
x_t = A_tx_{t-1} + B_tu_t + ν_t
其中,x_t表示状态变量的确定值,A_t表示状态转移矩阵,B_t表示输入矩阵,u_t表示输入信号,ν_t表示噪声。

观测方程可以表示为:
y_t = C_tx_t + D_tu_t + ε_t
其中,y_t表示观测变量的确定值,C_t表示观测矩阵,D_t表示输出矩阵,u_t表示输入信号,ε_t表示噪声。

(三)MATLAB绘制状态空间模型
1.为了完成状态空间模型的绘制,首先需要利用MATLAB来定义状态转移方程与观测方程的矩阵参数。

现代控制理论的MATLAB实现

现代控制理论的MATLAB实现

现代控制理论的MATLAB实现现代控制理论是控制工程中一门重要的学科,它研究如何设计和分析控制系统以满足一定的性能指标。

MATLAB是一种功能强大的科学计算和工程仿真软件,广泛应用于控制系统设计与分析。

本文将介绍现代控制理论的一些常见方法在MATLAB中的实现。

1.线性系统的状态空间表示线性系统的状态空间表示是现代控制理论的核心内容之一、在MATLAB中,可以使用`ss`命令创建线性系统的状态空间模型。

例如,假设存在一个二阶线性时不变系统,其传递函数为:![Transfer Function](transfer_function.png)可以使用以下代码将其转换为状态空间模型:```matlabnum = [1];den = [1, 1, 1];sys = tf(num, den);ss_sys = ss(sys);```2.线性系统的传递函数表示传递函数是描述线性系统输入输出关系的一种常用表示方法。

在MATLAB中,可以使用`tf`命令创建线性系统的传递函数模型。

例如,假设存在一个二阶线性时不变系统,其状态空间描述为:```matlabA=[0,1;-1,-1];B=[0;1];C=[1,0];D=0;ss_sys = ss(A, B, C, D);```可以使用以下代码将其转换为传递函数模型:```matlabtf_sys = tf(ss_sys);```3.常见控制器的设计与分析现代控制理论中常用的控制器设计方法包括PID控制器、根轨迹法、频率域分析等。

在MATLAB中,可以使用`pid`命令创建PID控制器,并使用`rlocus`命令绘制根轨迹图。

例如,创建一个PID控制器:```matlabKp=1;Kd=0.1;pid_controller = pid(Kp, Ki, Kd);```绘制根轨迹图:```matlabsys = tf([1], [1, 1, 1]);rlocus(sys);```4.系统的频率响应分析频率响应分析是现代控制理论中常用的系统性能评估方法之一、在MATLAB中,可以使用`bode`命令绘制系统的频率响应曲线。

实验三利用MATLAB求取状态空间模型的相似变换及其标准型、控制系统的不同状态模型实现

实验三利用MATLAB求取状态空间模型的相似变换及其标准型、控制系统的不同状态模型实现

现代控制理论第一次上机实验报告实验三 利用MATLAB 求取状态空间模型的相似变换及其标准型、控制系统的不同状态模型实现实验目的:1、通过实验掌握线性系统的对角线标准型、约旦标准型、模态标准型以及伴随矩阵标准型的表示及相应变换阵的求解;2、通过编程、上机调试,掌握系统可控性和可观测性的判别方法、系统的可控性和可观测性分解等;3、加深理解由控制系统传递函数建立能控、能观、约当标准型等不同状态模型的方法。

实验要求:1.实现同一系统传递函数的状态模型是唯一的吗?2.系统传递函数除上面三种不同状态模型实现外,常见的还有串连实现,对否? 3.对于上述系统传递函数,其输出稳态值与输入阶跃信号幅值有何关系? 实验步骤:1. 根据所给系统的已知条件(可自行参阅选择刘豹教材中的例题或习题),如传递函数、零极点模型或(A 、B 、C 、D ),实现状态空间模型之间的相似变换、写出其对角线标准型、约当标准型、模态标准型以及伴随矩阵标准型的表示及求解相应变换阵,采用MATLAB 的相关函数编写m-文件。

已知系统的传递函数如下:3211()(1)( 2.5)(5)8.52012.5160.270.11 2.55G s s s s s s s s s s ==++++++-=+++++运行如下m-文件,得到传递函数的状态空间模型: num=[0 0 0 1]; den=[1 8.5 20 12.5]; [A,B,C,D]=tf2ss(num,den) 得到 A =-8.5000 -20.0000 -12.5000 1.0000 0 0 0 1.0000 0 B = 1 0 0 C =D =因此,传递函数的一个状态空间实现是G=ss(A,B,C,D);(1)对角线标准型:计算矩阵A的特征值及与特征值对应的对角型变换矩阵D的m-如下:[V,D]=eig(A)[V,D]=eig(A)V =-0.9798 0.9184 0.57740.1960 -0.3674 -0.5774-0.0392 0.1469 0.5774D =-5.0000 0 00 -2.5000 00 0 -1.0000由对角线标准型的变换阵D,运行下列m-文件的到对角线标准型矩阵系数:G1=ss2ss(G,D)a =x1 x2 x3x1 -8.5 -40 -62.5x2 0.5 0 0x3 0 0.4 0b =u1x1 -5x2 0x3 0c =x1 x2 x3d =u1y1 0Continuous-time model.由上可得,对角线标准型:对角型变换矩阵为:(2)约旦标准型:计算矩阵A变换为约当标准型J,并得到变换矩阵V,运行下列m-文件:>> [V,J]=jordan(A)V =2.5000 -1.6667 0.1667-0.5000 0.6667 -0.16670.1000 -0.2667 0.1667J =-5.0000 0 00 -2.5000 00 0 -1.0000根据得到的约当标准型的变换矩阵V,运行下列文件得到约当标准型的矩阵系数:G1=ss2ss(G,V)a =x1 x2 x3x1 -104 -613.6 -697.1x2 21 123.1 139.6x3 -4.2 -24.28 -27.58b =u1x1 2.5x2 -0.5x3 0.1c =x1 x2 x3y1 1 7.5 12.5d =u1y1 0Continuous-time model由上可得,约旦标准型:约旦标准型的变换矩阵为:(3)模态标准型运行以下m-程序可得到模态标准型系数矩阵和其变换矩阵:>> [G1,V]=canon(G,'modal')a =x1 x2 x3x1 -5 0 0x2 0 -2.5 0x3 0 0 -1b =u1x1 -0.825x2 -0.95x3 0.375c =x1 x2 x3y1 -0.1212 0.2807 0.4444d =u1y1 0Continuous-time model.V =-0.8250 -2.8875 -2.0625-0.9500 -5.7000 -4.75000.3750 2.8125 4.6875由上可得,模态标准型:模态标准型的变换矩阵为:(4)伴随矩阵标准型运行以下m-程序可得到伴随矩阵标准型系数矩阵和其变换矩阵:>> [G1,V]=canon(G,'companion')a =x1 x2 x3x1 0 0 -12.5x2 1 0 -20x3 0 1 -8.5b =u1x1 1x2 0x3 0c =x1 x2 x3y1 0 0 1d =u1y1 0Continuous-time model.V =1.0000 8.5000 20.00000 1.0000 8.50000 0 1.0000由上可得,伴随矩阵标准型:模态标准型的变换矩阵为:2.根据所给系统的已知条件(可自行参阅选择刘豹教材中的例题或习题),如(A、B、C、D)模型,判断其可控性和可观测性并进行可控性和可观测性分解。

第9讲 基于Matlab的系统状态空间分析与设计

第9讲 基于Matlab的系统状态空间分析与设计
⎧ X = A ′ X + B ′U ⎨ ⎩ Y = C ′X + D ′U
其中
A′ = M
−1
A M = diag [ λ1 , λ 2 ,....λ n ], B ′ = M
−1
B, C ′ = CM
λi为A的特征根;M为A的特征矩阵.
线性系统状态空间分析
3.2 约当标准型(系统有k个mi重特征值λi)
线性系统状态空间分析
对于同一物理系统,动态方程的建立,在状态变量的 选取方面有很大的不同,导致求得的系统状态方程也 不尽相同。 然而, 状态变量的个数是相同的。因此,各种不同 的动态方程间又有一定的联系,这种联系就是变量间 的线性变化。
线性系统状态空间分析
二、线性变换
对于系统 令
⎧ x = Ax + Bu ⎨ ⎩ y = Cx + Du
⎡0 1 0 ⎤ 2s + 1 G( s) = 3 , X = ⎢0 0 1 ⎥ X 2 ⎢ ⎥ s + 7 s + 14 s + 8 ⎢ 2 −5 4 ⎥ ⎣ ⎦
试分别求系统的约当标准型。
线性系统状态空间分析
解 (1)程序如下 num1=[2,1];den1=[1,7,14,8]; [A,B,C,D]=tf2ss(num1,den1); [V,J]=jordan(A) V1=inv(V) B1=V1*B
0 f
入 u(t) 和系统输出 y( t ) 的信息唯一地确定任意初始状 态 x(t0 ) = x0。
这个定义规定: 对于时刻 t 0,若存在时刻 t f ,系统的任意 [t 0 , t上的 u 和 y 的信息来决定就 f ] 初始状态能唯一地由区间 tf 是状态完全能观的,没有对 施加限制,这意味着区间 [t 0 , t f ] 必须是有限的但不确定。

matlab ss指令

matlab ss指令

matlab ss指令
在MATLAB中,ss指令用于创建一个状态空间模型对象。

状态空间模型是一种描述动态系统的数学模型,它由状态方程和输出方程组成。

通过使用ss指令,您可以定义系统的状态变量、输入变量、输出变量和系统矩阵,然后使用这些信息来分析系统的动态行为。

以下是使用ss指令创建状态空间模型的示例代码:
matlab复制代码
% 定义系统矩阵
A = [0 1; -2 -3];
B = [0; 1];
C = [1 0];
D = 0;
% 创建状态空间模型对象
sys = ss(A, B, C, D);
在上面的示例中,A是状态矩阵,B是输入矩阵,C是输
出矩阵,D是直接矩阵。

这些矩阵描述了系统的动态行为。

通过将这些矩阵传递给ss指令,您可以创建一个状态空间
模型对象sys。

一旦创建了状态空间模型对象,您可以使用MATLAB的
各种工具和函数来分析系统的性能、稳定性、频率响应等。

例如,您可以使用step函数模拟系统的阶跃响应,使用bo de函数绘制系统的频率响应等。

请注意,ss指令只是创建状态空间模型对象的一种方式。

MATLAB还提供了其他函数和方法来创建和分析状态空间模型,具体取决于您的需求和使用的MATLAB版本。

实验一 用MATLAB分析状态空间模型

实验一 用MATLAB分析状态空间模型

实验一 用MATLAB 分析状态空间模型1、实验设备MATLAB 软件2、实验目的① 学习系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法;② 通过编程、上机调试,掌握系统状态空间表达式与传递函数相互转换方法。

3、实验原理说明用MATLAB 分析状态空间模型4、实验步骤① 根据所给系统的传递函数或A 、B 、C 矩阵,依据系统的传递函数阵和状态空间表达式之间的关系式,采用MATLAB 编程。

② 在MATLAB 界面下调试程序,并检查是否运行正确。

习题1:已知系统的传递函数为(1) 将其输入到MATLAB 工作空间;(2) 获得系统的状体空间模型。

解:在MATLAB 工作空间中输入num=[2];den=[1 6 11 6];G=tf(num,den) G1=ss(G) 322()6116G s s s s =+++得到系统的状态空间模型:num=[2];den=[1 6 11 6];G=tf(num,den)G1=ss(G)[A,B,C,D]=tf2ss(num,den)因此,所考虑传递函数的一个状态空间实现是:1611611210020301030x x x x x x μ---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪=+ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭习题2:已知系统的状态空间模型为(1) 将其输入到MATLAB 工作空间;(2) 求系统的传递函数。

A=[-5 -1;3 -1];B=[2;5];C=[1 2];D=[0];G=ss(A, B, C, D)G1=tf(G)所以系统的传递函数为:G =x1y u x x ]2[521315=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡---='12 s + 59 -------------s^2 + 6 s + 8。

用MATLAB分析状态状态空间模型

用MATLAB分析状态状态空间模型
num=6; den=[1 6 11 6]; Gtf=tf(num,den); Gss=ss(Gtf),
a =
x1 x2 x3
x1 -6 -1.375 -0.09375
x2 8 0 0
x3 0 8 0
b =
u1
x1 0.25
x2 0
x3 0
c =
x1 x2 x3
y1 0 0 0.375
d =
u1
y1 0
(3)将给定传递函数转换为对角标准型或约当标准型。再将得到的对角标准型或约当
标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。
(3)A=[0 1 0 0;0 -1 1 0;0 0 -1 1;0 0 0 -3];B=[0 0 0 2]';C=[2 0 0 0];D=0;
sys=ss(A,B,C,D);[V,J]=jordan(A);sys1=ss2ss(sys,inv(V))
x2 0 -1 10
x3 0 0 -1 1
x4 0 0 0 -3
b =
u1
x1 0
x2 0
x3 0
x4 2
c =
x1 x2 x3 x4
y1 2 0 0 0
d =
u1
y1 0
Gtf=tf(Gss)
Transfer function:
4
-------------------------
s^4 + 5 s^3 + 7 s^2 + 3 s
(2)用ss2ss函数进行相似变换将其转换为对角标准型。
>> A=[-6 -1.375 -0.09375;8 0 0;0 8 0];B=[0.25 0 0]';C=[0 0 0.375];D=0;

matlab状态反馈相关函数

matlab状态反馈相关函数

一、概述Matlab是一种强大的数学软件,广泛应用于工程、科学和金融等领域。

其中,状态反馈是控制系统领域的重要概念之一,而Matlab提供了丰富的状态反馈相关函数,方便工程师和研究人员进行系统建模、分析和控制设计。

本文将就Matlab中常用的状态反馈相关函数进行系统的介绍和讲解,以便读者更好地掌握这些函数的使用方法和应用场景。

二、状态反馈基础1. 状态空间模型状态空间模型是描述动态系统行为的一种常用数学模型,通常由状态方程和输出方程组成。

在Matlab中,可以使用函数ss来创建状态空间模型,例如:```A = [1 2; 3 4];B = [1; 0];C = [1 0];D = 0;sys = ss(A, B, C, D);```上述代码创建了一个简单的二阶状态空间模型,并将其存储在变量sys中。

2. 状态反馈设计状态反馈是一种常见的控制策略,通过对系统状态变量的线性组合进行反馈控制,以改善系统的稳定性、精度和鲁棒性。

在Matlab中,可以使用函数lqr进行状态反馈设计,例如:```Q = eye(2);R = 1;K = lqr(A, B, Q, R);```上述代码使用lqr函数计算了最优状态反馈增益矩阵K,以使闭环系统具有最小的性能指标。

三、Matlab状态反馈相关函数1. ss函数ss函数用于创建状态空间模型,其语法格式为:sys = ss(A, B, C, D);```其中,A、B、C和D分别表示状态方程的系数矩阵,输入矩阵,输出矩阵和传递矩阵。

2. lqr函数lqr函数用于计算最优状态反馈增益矩阵,其语法格式为:```K = lqr(A, B, Q, R);```其中,A和B表示状态方程的系数矩阵,而Q和R表示性能指标的加权矩阵。

3. acker函数acker函数用于计算满足给定极点位置要求的状态反馈增益矩阵,其语法格式为:```K = acker(A, B, poles);其中,A和B同样表示状态方程的系数矩阵,poles表示所要求的闭环极点位置。

利用MATLAB对状态空间模型进行分析

利用MATLAB对状态空间模型进行分析

实验2 利用MATLAB 对状态空间模型进行分析2.1 实验设备 同实验1。

2.2 实验目的1、根据状态空间模型分析系统由初始状态和外部激励所引起的响应;2、通过编程、上机调试,掌握系统运动的分析方法。

2.3 实验原理说明给定系统的状态空间模型:)()()()()()(t t t t t t Du Cx y Bu Ax x+=+=& (2.1)设系统的初始时刻,初始状态为,则系统状态方程的解为)0(x 00=t ∫∫−−+=+=tt t tt t e e eee t 0)(0d )()0(d )()0()(ττττττBu x Bu x x A A A A A (2.2)输出为)(d )()0()(0)(t e e t tt t Du Bu C x C y A A ++=∫−τττ (2.3))(t x 包括两部分,第一部分是由系统自由运动引起的,是初始状态对系统运动的影响;第二部分是由控制输入引起的,反映了输入对系统状态的影响。

输出由三部分组成。

第一部分是当外部输入等于零时,由初始状态引起的,故为系统的零输入响应;第二部分是当初始状态为零时,由外部输入引起的,故为系统的外部输入响应;第三部分是系统输入的直接传输部分。

)(t y )(0t x )(0t x MATLAB 函数:函数initial(A,B,C,D,x0)可以得到系统输出对初始状态x0的时间响应; 函数step(A,B,C,D)给出了系统的单位阶跃响应曲线; 函数impulse(A,B,C,D) 给出了系统的单位脉冲响应曲线;函数 [y,T,x]=lsim(sys,u,t,x0) 给出了一个状态空间模型对任意输入的响应,其中的sys 表示贮存在计算机内的状态空间模型,它可以由函数sys=ss(A,B,C,D)得到,x0是初始状态。

u 2.4 实验步骤1、构建系统的状态空间模型,采用MATLA 的m-文件编程;2、求取系统的状态和输出响应;3、在MATLA 界面下调试程序,并检查是否运行正确。

用MATLAB分析状态空间模型

用MATLAB分析状态空间模型

精品课件!
精品课件!
线性非奇异变换 • sys1=ss(A,B,C,D) • sys2=ss2ss(sys1,T) • 或[AA,BB,CC,DD]=ss2ss(A,B,C,D,T)
y

0 0
0 2
0 0
1 2 x
可由下列语句输入到MATLAB工作空间 >>A=[2.25,-5,-1.25,-0.5;2.25,-4.25,-
1.25,-0.25;0.25,-0.5,-1.25,-1;1.25,-1.75,0.25,-0.75]; >>B=[4,6;2,4;2,2;0,2]; >>C=[0,0,0,1;0,2,0,2]; >>D=zeros(2,2); >>G=ss(A,B,C,D)
0
1
0
x


1

u
0 0 0 1 0
0 0 5 0 2
y 1 0 0 0 x
可由下列语句得出系统相应的传递函数模 型
• >> A=[0,1,0,0;0,0,-1,0;0,0,0,1;0,0,5,0]; • >> B=[0;1;0;-2]; • >> C=[1,0,0,0]; • >> D=0; • >> G=ss(A,B,C,D);G1=tf(G)
bm1s bm an1s an
1、传递函数的输入 将传递函数模型输入到MATLAB环境中
>>num=[b0,b1,…,bn]; >>den=[1,a1,a2,…,an]; 排列方式:从右到左,不够的地方补零。 构造对应的传递函数
>>G=tf(num,den)

实验三利用MATLAB求取状态空间模型的相似变换及其标准型、控制系统的不同状态模型实现

实验三利用MATLAB求取状态空间模型的相似变换及其标准型、控制系统的不同状态模型实现

现代控制理论第一次上机实验报告实验三 利用MATLAB 求取状态空间模型的相似变换及其标准型、控制系统的不同状态模型实现实验目的:1、通过实验掌握线性系统的对角线标准型、约旦标准型、模态标准型以及伴随矩阵标准型的表示及相应变换阵的求解;2、通过编程、上机调试,掌握系统可控性和可观测性的判别方法、系统的可控性和可观测性分解等;3、加深理解由控制系统传递函数建立能控、能观、约当标准型等不同状态模型的方法。

实验要求:1.实现同一系统传递函数的状态模型是唯一的吗?2.系统传递函数除上面三种不同状态模型实现外,常见的还有串连实现,对否? 3.对于上述系统传递函数,其输出稳态值与输入阶跃信号幅值有何关系? 实验步骤:1. 根据所给系统的已知条件(可自行参阅选择刘豹教材中的例题或习题),如传递函数、零极点模型或(A 、B 、C 、D ),实现状态空间模型之间的相似变换、写出其对角线标准型、约当标准型、模态标准型以及伴随矩阵标准型的表示及求解相应变换阵,采用MATLAB 的相关函数编写m-文件。

已知系统的传递函数如下:3211()(1)( 2.5)(5)8.52012.5160.270.11 2.55G s s s s s s s s s s ==++++++-=+++++运行如下m-文件,得到传递函数的状态空间模型: num=[0 0 0 1]; den=[1 8.5 20 12.5]; [A,B,C,D]=tf2ss(num,den) 得到 A =-8.5000 -20.0000 -12.5000 1.0000 0 0 0 1.0000 0 B = 1 0 0 C =D =因此,传递函数的一个状态空间实现是G=ss(A,B,C,D);(1)对角线标准型:计算矩阵A的特征值及与特征值对应的对角型变换矩阵D的m-如下:[V,D]=eig(A)[V,D]=eig(A)V =-0.9798 0.9184 0.57740.1960 -0.3674 -0.5774-0.0392 0.1469 0.5774D =-5.0000 0 00 -2.5000 00 0 -1.0000由对角线标准型的变换阵D,运行下列m-文件的到对角线标准型矩阵系数:G1=ss2ss(G,D)a =x1 x2 x3x1 -8.5 -40 -62.5x2 0.5 0 0x3 0 0.4 0b =u1x1 -5x2 0x3 0c =x1 x2 x3d =u1y1 0Continuous-time model.由上可得,对角线标准型:对角型变换矩阵为:(2)约旦标准型:计算矩阵A变换为约当标准型J,并得到变换矩阵V,运行下列m-文件:>> [V,J]=jordan(A)V =2.5000 -1.6667 0.1667-0.5000 0.6667 -0.16670.1000 -0.2667 0.1667J =-5.0000 0 00 -2.5000 00 0 -1.0000根据得到的约当标准型的变换矩阵V,运行下列文件得到约当标准型的矩阵系数:G1=ss2ss(G,V)a =x1 x2 x3x1 -104 -613.6 -697.1x2 21 123.1 139.6x3 -4.2 -24.28 -27.58b =u1x1 2.5x2 -0.5x3 0.1c =x1 x2 x3y1 1 7.5 12.5d =u1y1 0Continuous-time model由上可得,约旦标准型:约旦标准型的变换矩阵为:(3)模态标准型运行以下m-程序可得到模态标准型系数矩阵和其变换矩阵:>> [G1,V]=canon(G,'modal')a =x1 x2 x3x1 -5 0 0x2 0 -2.5 0x3 0 0 -1b =u1x1 -0.825x2 -0.95x3 0.375c =x1 x2 x3y1 -0.1212 0.2807 0.4444d =u1y1 0Continuous-time model.V =-0.8250 -2.8875 -2.0625-0.9500 -5.7000 -4.75000.3750 2.8125 4.6875由上可得,模态标准型:模态标准型的变换矩阵为:(4)伴随矩阵标准型运行以下m-程序可得到伴随矩阵标准型系数矩阵和其变换矩阵:>> [G1,V]=canon(G,'companion')a =x1 x2 x3x1 0 0 -12.5x2 1 0 -20x3 0 1 -8.5b =u1x1 1x2 0x3 0c =x1 x2 x3y1 0 0 1d =u1y1 0Continuous-time model.V =1.0000 8.5000 20.00000 1.0000 8.50000 0 1.0000由上可得,伴随矩阵标准型:模态标准型的变换矩阵为:2.根据所给系统的已知条件(可自行参阅选择刘豹教材中的例题或习题),如(A、B、C、D)模型,判断其可控性和可观测性并进行可控性和可观测性分解。

利用MATLAB导出连续状态空间模型的离散化模型

利用MATLAB导出连续状态空间模型的离散化模型

实验3 利用MATLAB 导出连续状态空间模型的离散化模型3.1 实验设备同实验1。

3.2 实验目的1、基于对象的一个连续时间状态空间模型,导出其相应的离散化状态空间模型;2、通过编程、上机调试,掌握离散系统运动分析方法。

3.3 实验原理说明给定一个连续时间系统的状态空间模型:)()()()()()(t t t t t t Du Cx y Bu Ax x +=+=& (3.1) 状态空间模型(3.1)的输入信号具有以下特性:)(t u )()(kT t u u =, (3.2)T kT t kT +<≤已知第个采样时刻的状态和第k 个采样时刻到第)(kT x k 1+k 个采样时刻间的输入,可得第个采样时刻)()(kT t u u =T k )(+1处的状态1+k ∫+−++−+=+T k kT T k kT kT T k T k )1(d )())1(()())1(())1((τττBu Φx Φx (3.3)其中: T kT T k e e kT T k A A Φ==−+−+))1(())1(())1(())1((ττ−+=−+T k e T k A Φ由于输入信号在两个采样时刻之间都取常值,故对式(3.3)中的积分式进行一个时间变量替换τσ−+=T k )1(后,可得)(d )())1((0kT e kT e T k T T Bu x x A A ⎟⎠⎞⎜⎝⎛+=+∫σσ (3.4) 另一方面,以周期T 对输出方程进行采样,得到)()()(kT kT kT Du Cx y +=在周期采样的情况下,用来表示第k 个采样时刻kT 。

因此,连续时间状态空间模型(3.1)的离散化方程可以写成k ⎩⎨⎧+=+=+)()()()()()()()1(k k k k T k T k Du Cx y u H x G x (3.5) 其中:⎪⎩⎪⎨⎧⎟⎠⎞⎜⎝⎛==∫B H G A A T Te T e T 0d )()(σσ (3.6) 已知系统的连续时间状态空间模型,MATLAB 提供了计算离散化状态空间模型中状态矩阵和输入矩阵的函数:[G,H]=c2d(A,B,T)其中的T 是离散化模型的采样周期。

基于MATLAB的控制系统状态空间分析

基于MATLAB的控制系统状态空间分析

现代控制理论实验报告学院专业班级姓名指导教师年月日基于MATLAB的控制系统状态空间分析一、实验目的1、根据线性定常系统的微分方程或传递函数阵,通过MATLAB函数实现其状态空间表达式;2、将线性定常系统状态空间表达式转化为传递函数阵;3、通过MATLAB命令实现状态方程的求解;4、通过线性变换将状态空间表达式转化为对角标准型和约当标准型。

二、实验原理1、状态空间表达式建立与状态方程求解:运用适当的MATLAB指令语言可求得状态空间表达式或是传递函数以及状态方程求解,其过程比人工计算简单得多,而且结果准确,从而大降低了了人工计算的失误率;2、线性变换:若A的特征值没有重根,则可以将A变换为对角阵,变换矩阵为每个特征值对应特征向量所组成的矩阵;若矩阵A的n个特征值中有重特征值时,可分为两种情况。

一般情况是,有特征值,但矩阵A仍有n个独立的特征向量,即每个重特征值所对应的独立特征向量数恰好等于特征值的重数,这时就同没有重特征值的情况一样。

另一种,A有重特征值,矩阵A的独立特征向量个数小于n。

这时不能化为对角形,只能化为约当形。

三、实验题目1、1-5题已知微分方程+5+7+3y=+3+2u, 写其相应的状态空间表达式.2、1-7题给定下列状态空间表达式=+uY=求系统的传递函数。

3、1-9试求下列状态空间表达式的传递函数阵=+u。

4、求下列状态空间表达式的解:=x+u,Y=,初始状态x=,输入u是单位阶跃函数。

四、实验内容题目1:函数程序:num=[1,3,2];den=[1,5,7,3];[A,B,C,D]=tf2ss(num,den)执行结果:A =-5 -7 -31 0 00 1 0B =1C =1 3 2D =题目2:解输入Matlab 语句如下:A=[0 1 0;-2 -3 0;-1 1 -3];B=[0;1;2];C=[0 0 1];D=[0];执行结果:[num,den]=ss2tf(A,B,C,D)num =0 2.0000 7.0000 3.0000den =1 6 11 6所以由此可得系统的传递函数为=题目3:函数程序:syms s;A=[4 1 2;1 0 2;1 -1 3];B=[3 1;2 7;5 3];C=[1 2 0;0 1 1];D=[0];F=inv(s*eye-A)G=simple(simple(C*F*B)+D)执行结果:F =[ -2/5, (3*s - 5)/(5*(s - 1)), -(s - 2)/(5*(s - 1))] [ 1/5, -(4*s - 10)/(5*(s - 1)), (3*s - 6)/(5*(s - 1))] [ 1/5, (s + 5)/(5*(s - 1)), -(2*s + 1)/(5*(s - 1))] G =[ 3 - 1/(s - 1), 11/(s - 1) - 4][ 1 - 6/(5*(s - 1)), 66/(5*(s - 1)) - 16/5]题目4:函数程序:syms s t x0 tao phi phi0;A=[0 1;0 0];B=[0;1];I=[1 0;0 1];E=s*I-A;C=det(E);D=collect(inv(E));phio=ilaplace(D);x0=[1;1];x1=phio*x0;phi=subs(phio,'t',(t-tao));F=phi*B*1;x2=int(F,tao,0,t);x=collect(x1+x2)执行结果:x =t^2/2 + t + 1t + 1可得相应的输出为:Y=x=+t+1五、实验总结通过本次实验课,我熟练的掌握了用MATLAB软件在已知传递函数的条件下,求状态空间表达式。

状态空间模型分析报告实验报告材料

状态空间模型分析报告实验报告材料

按能观性分解后的系统状态空间表达式为:11 1.3416 3.8341 1.224700.40.73480.547700.4899 1.60.4472[00 2.2361]x x u y xì轾轾-ïï犏犏ïï犏犏=-+ï犏犏í犏犏ï-臌臌ïïï=ïïî&%%% 6、极点配置算法题目:针对状态空间模型为010341[32]x u y xì轾轾ïï犏犏=+ïï犏犏--í臌臌ïïï=ïî& 的被控对象设置状态反馈控制器,使得闭环极点为-4和-5,并讨论闭环系统的稳态。

代码:A=[0 1; -3 -4]; B=[0;1]; co=ctrb(A,B); det(ob) 结果:det(ob)=-1;所以系统是能控的 代码:A=[0 1;-3 -4]; B=[0;1]; C=[3 2]; D=[0]; P=[-4 -5] K=place(A,B,P) t=0:0.01:5;U=0.025*ones(size(t));%幅值为0.025输入阶跃信号 [Y1,X1]=lsim(A,B,C,D,U,t); [Y2,X2]=lsim(A-B*K,B,C,D,U,t); figure(1)plot(t,Y1);grid;title('反馈前');figure(2)plot(t,Y2);title('反馈后'); grid 结果:0.0050.010.0150.020.025反馈前状态反馈前的输出响应曲线00.51 1.52 2.53 3.54 4.55-3反馈后实用文案标准文档 状态反馈后的输出响应曲线7、线性定常系统稳定判据题目:用李雅普诺夫第二法判断下列线性定常系统的稳定性。

用MATLAB分析状态空间模型

用MATLAB分析状态空间模型

用MATLAB分析状态空间模型状态空间模型是一种用于描述动态系统的数学模型。

在MATLAB中,可以使用状态空间方法对系统进行分析和控制。

本文将从状态空间模型的定义、矩阵表示、稳定性以及控制器设计等方面进行详细介绍。

一、状态空间模型的定义状态空间模型是一种描述动态系统的数学模型,其中系统的行为是通过状态变量的演化来表示的。

状态空间模型通常由一组一阶微分方程表示,形式如下:dx(t)-------------------=Ax(t)+Bu(t)dty(t)=Cx(t)+Du(t)其中,x(t)是状态变量向量,表示系统的内部状态;u(t)是输入向量,表示对系统的外部输入;y(t)是输出向量,表示观测到的系统输出;A、B、C和D分别是系统的状态矩阵、输入矩阵、输出矩阵和直接传递矩阵。

二、状态空间模型的矩阵表示在MATLAB中,可以使用矩阵表示状态空间模型。

假设有一个由状态变量x、输入变量u和输出变量y组成的系统,可以通过矩阵表示如下:x'=Ax+Buy=Cx+Du其中,x'表示状态变量x的导数。

在MATLAB中,可以使用matrix函数创建状态矩阵A、输入矩阵B、输出矩阵C和直接传递矩阵D。

例如,可以使用如下代码定义一个状态空间模型:A=[12;34];B=[1;1];C=[10];D=0;sys = ss(A, B, C, D);在上述代码中,创建了一个状态空间模型sys,其中状态矩阵A是一个2×2的矩阵,输入矩阵B是一个2×1的矩阵,输出矩阵C是一个1×2的矩阵,直接传递矩阵D是一个标量。

三、状态空间模型的稳定性分析在控制系统设计中,稳定性是一个重要的指标。

对于线性时不变系统,可以使用状态空间模型进行稳定性分析。

MATLAB提供了一些函数用于稳定性分析,如eig、pole和isstable等。

eig函数用于计算系统的特征值,特征值的实部决定了系统的稳定性。

【实验报告】《自动控制原理》实验三 用Matlab进行状态空间分析及设计

【实验报告】《自动控制原理》实验三 用Matlab进行状态空间分析及设计

实验三用Matlab进行状态空间分析及设计1.A=[0 1 0;0 0 1;-6 -11 -6];B=[0;0;1];C=[1 0 0];sys1=ss(A,B,C,0);[num,den]=ss2tf(A,B,C,0);sys2=tf(num,den);[z,p,k]=tf2zp(num,den);e=eig(sys1);t=0;F=expm(A*t);t=[0:0.1:5];t0=0;x0=[2;1;2];u=stepfun(t,t0);[y,x]=lsim(sys1,u,t,x0);figure(1);plot(t,x);grid;title('step response of x');figure(2);plot(t,y);grid;title('step response of y');Qc1=ctrb(sys1);c=rank(Qc1);if c==3disp('sys1 is controlled');endQo1=obsv(sys1);o=rank(Qo1);if o==3disp('sys1 is observable');endsys3=ss(A',C',B',0);T=[1 2 4;0 1 0;0 0 1] ;sys4=ss2ss(sys1,T);Qc4=ctrb(sys4);c=rank(Qc4);if c==3disp('sys4 is controlled');endQo4=obsv(sys4);o=rank(Qo4);if o==3disp('sys4 is observable');end(1)传递函数及由此得到的系统的极点极点p =[-3.0000-2.0000-1.0000](2)根据状态空间模型得到的系统的特征值(由语句eig(sys1)求出)ans=[-1.0000-2.0000-3.0000]系统的特征值全部位于s平面的左半部分,由此判断出系统是一个稳定系统(3)求系统的状态转移矩阵(由语句symst1 ;expm(A*t1)求出)(4)求系统在x0=[2; 1; 2], u为单位阶跃输入时x及y的响应记录曲线如下:A:单位阶跃输入时状态变量X的响应曲线:B:单位阶跃输入时系统输出y响应曲线(5)系统的可控性,可观性分析A.系统的可控性矩阵s为:s = 0 0 10 1 -61 -6 25则系统可控性矩阵的秩f=3,矩阵A的维数为n=3得到系统的结果是system is controlled即系统是可控的B.系统的可观性矩阵v为:v =1 0 00 1 00 0 1则系统可观性矩阵的秩m=3,矩阵A的维数为n=3得到系统的结果是system is observable即系统是可观测的实验结论:由运行结果可知该系统既可控也可观(6)将原来的系统状态空间模型转化为以下俩种标准形式A.转化为对角线的标准形式(由语句sys3=canon(sys1,'modal')求出)B.转化成为A为伴随矩阵的标准形式(由语句sys4=canon(sys1,'companion')求出)(6)T=[1 2 4;0 1 0;0 0 1] 对上述状态空间模型进行变换,分析变换后的系统的空间模型为(有语句T=[1 2 4;0 1 0;0 0 1] ;sys5=ss2ss(sys1,T)实现)对变换后的系统的空间模型进行可控可观性分析得到的结果是系统的可控性矩阵s为s=1 0 00 1 00 0 1可控性矩阵的秩f=3得到系统的结果是system is controlled即系统是可控的系统的可观性矩阵v为v =0 0 10 1 -61 -6 25系统的可观测矩阵的秩m =3得到系统的结果是system is observable即系统是可观测的系统的特征根ans=[ -1.0000 -2.0000 -3.0000 ]2.A1=[0 2 0 0;0 1 -2 0;0 0 3 1;1 0 0 0];B1=[1 0;0 0;0 1;1 0];C1=[0 1 0 0;0 0 1 0];sys1=ss(A1,B1,C1,0);Qc1=ctrb(sys1);c=rank(Qc1);if c==4disp('sys1 is controlled');endQo1=obsv(sys1);o=rank(Qo1);if o==4disp('sys1 is observable');end系统的可控性矩阵s为:s =1 0 0 0 0 -4 -4 -160 0 0 -2 -2 -8 -10 -260 1 1 3 4 9 12 271 0 1 0 0 0 0 -4可控性矩阵的秩f = 4系统的维数n =4得到系统的结果是system is controlled即系统是可控的系统的可观性矩阵v为:v =0 1 0 00 0 1 00 1 -2 00 0 3 10 1 -8 -21 0 9 3-2 1 -26 -83 2 27 9系统的可观性矩阵秩m =4得到系统的结果是system is observable即系统是可观测的综上说明该系统即是可控的也是可观测的A2=[-3 1 0 0 0 0 0 0;0 -3 0 0 0 0 0 0;0 0 -4 1 0 0 0 0;0 0 0 -4 0 0 0 0;0 0 0 0 -1 1 0 0;0 0 0 0 0 -1 0 0;0 0 0 0 0 0 -5 1;0 0 0 0 0 0 0 5];B2=[1 3;5 7;4 3;0 0;1 6;0 0;9 2;0 0];C2=[3 1 0 5 0 0 3 6;1 4 0 2 0 0 7 1];sys2=ss(A2,B2,C2,0);Qc2=ctrb(sys2);c2=rank(Qc2);if c2==8disp('sys2 is controlled');endQo2=obsv(sys2);o2=rank(Qo2);if o2==8disp('sys2 is observable');end[A21,B21,C21,T21,K21]=ctrbf(A2,B2,C2);[A22,B22,C22,T22,K22]=obsvf(A2,B2,C2);系统的可控性矩阵s为:可控性矩阵的秩f=5系统的维数n =8得到系统的结果是system is no controlled即系统是不可控的系统的可观性矩阵v为:系统的可观性矩阵秩m =5得到系统的结果是system is no observable即系统是不可观测的综上说明该系统即是不可控的也是不可观测的A3=[-1 0 0 0;2 -3 0 0;1 0 -2 0;4 -1 2 -4];B3=[0;0;1;2];C3=[3 0 1 0];sys3=ss(A3,B3,C3,0);Qc3=ctrb(sys3);c3=rank(Qc3);if c3==4disp('sys3 is controlled');endQo3=obsv(sys3);o3=rank(Qo3);if o3==4disp('sys3 is observable');end[A31,B31,C31,T31,K31]=ctrbf(A3,B3,C3);[A32,B32,C32,T32,K32]=obsvf(A3,B3,C3);系统的可控性矩阵s为:s =0 0 0 00 0 0 01 -2 4 -82 -6 20 -72可控性矩阵的秩f = 2系统的维数n =4得到系统的结果是system is no controlled即系统是不可控的系统的可观性矩阵v为:v =3 0 1 0-2 0 -2 00 0 4 04 0 -8 0系统的可观性矩阵秩m =2得到系统的结果是system is no observable即系统是不可观测的综上说明该系统即是不可控的也是不可观测的3.A=[0 1 0; 0 0 1; -50 -25 -12];B=[0;0;1];C=[1 0 0];sys1=ss(A,B,C,0);Qc1=ctrb(sys1);c=rank(Qc1);if c==3disp('sys1 is controlled');endQo1=obsv(sys1);o=rank(Qo1);if o==3disp('sys1 is observable');endp=[-1,-10,-12];k=place(A,B,p);sys2=ss(A-B*k,B,C,0);[num,den]=ss2tf(A-B*k,B,C,0);G=tf(num,den);figure(1);step(sys1);grid;hold on;step(sys2);grid;legend('sys1','sys2');hold o ff;(1)判别系统的可控性系统的可控性矩阵s为:s =0 0 10 1 -121 -12 119可控性矩阵的秩f = 3系统的维数n =3得到系统的结果是system is controlled即系统是可控的系统的可观性矩阵v为:v =1 0 00 1 00 0 1系统的可观性矩阵秩m =3得到系统的结果是system is observable即系统是可观测的综上说明该系统即是可控的也是可观测的(2)设计状态反馈控制器使闭环极点为p=[-1,-10,-12];所求状态反馈增益矩阵为k=[70.0000 117.0000 11.0000] 状态反馈控制系统闭环状态矩阵:A1 =0 1 00 0 1-120-142 -23(3)求出闭环系统的传递函数和动态方程改变前系统传递函数改变后系统传递函数改变前系统的动态方程改变后系统动态方程(4)比较反馈前后系统的阶跃响应A.系统的单位阶跃响应状态曲线B.系统的单位阶跃响应输出曲线。

MATLAB 分析

MATLAB 分析

输入向量为:
U(k ) [u1 (k ), u 2 (k ), u 3 (k ),u 4 (k )] [ k时刻新增 k时刻新增 k时刻新增 k时刻总的 ] 鲫鱼数量 青鱼数量 鲤鱼数量 鱼类捕捉量
回总目录 回本章目录
(2)状态转移矩阵
0 0 1 p1 A 0 1 p2 0 0 0 1 p3
式中: p1,p2,p3为鲫鱼、青鱼和鲤鱼的生长率, 这里为p1=0.1,p2=0.13,p3=0.08。 (3)输入矩阵仍定为常阵
1 0 0 0.6 B 0 1 0 0.2 0 0 1 0.2
回总目录 回本章目录
(4)输出矩阵或预测矩阵C为3×3维单位阵, 这样输出向量或量测向量就等同于状态向 量,状态空间模型:
回总目录 回本章目录
二、状态空间局限性
状态空间表示一般是基于马尔科夫特性, 这就意味着给定系统的现在状态,则要求系统 的将来与过去独立。如果一个系统不满足马尔 科夫特性,那么就不适合用状态空间模型。
回总目录 回本章目录
化拟合。
回总目录 回本章目录
11.3 方 法 评 价
一、状态空间的特点 1、状态空间模型不仅能反映系统内部状态,而 且能揭示系统内部状态与外部的输入和输出 变量的联系。 2、状态空间模型将多个变量时间序列处理为向 量时间序列,这种从变量到向量的转变更适 合解决多输入输出变量情况下的建模问题。 3、状态空间模型能够用现在和过去的最小信 息形式描述系统的状态,因此,它不需要大 量的历史数据资料,既省时又省力。
回总目录 回本章目录
状态空间模型分类
状态空间模型按所受影响因素的不同分为: (1)确定性状态空间模型 (2)随机性状态空间模型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
实验名称用MATLAB分析状态状态空间模型

自动化
专业
自动化

1204
姓名
叶吉东
学号
0909121616
授课老师
袁艳
预定时间
实验时间
2014年5月21号
实验台号
一、目的要求
1、掌握线性定常系统的状态空间表达式。学会在MATLAB中建立状态空间模型的方
法。
2、掌握传递函数与状态空间表达式之间相互转换的方法。学会用MATLAB实现不同
a =
x1 x2 x3
x1 -1 0 0
x2 0 -2 0
x3 0 0 -3
b =
u1
x1 0.25
x2 0.25
x3 0.25
c =
x1 x2 x3
y1 12 -24 12
d =
u1
y1 0
七、分析讨论
通过本次试验,第一:掌握线性定常系统的状态空间表达式,学会在MATLAB中建立状态空间模型的各种方法。第二:知道传递函数与状态空间表达式之间相互转换的方法。掌握了不同模型之间的相互转换。第三:掌握了状态空间表达式的相似变换。掌握了将状态空间表达式转换为对角标准型、约当标准型、能控标准型和能观测标准型的方法。学会用MATLAB进行线性变换。因为实验指导书写的特别的详细,写的特别好,我们只要把实验指导书的例题看懂,然后模仿着例题思路解题就基本没有大问题。通过这次试验我们把书上抽象的东西实际化,进一步加深了对书上知识的掌握,很多书上讲的很模糊的地方通过实验就能够切实的掌握。
4
-------------------------
s^4 + 5 s^3 + 7 s^2 + 3 s
(3)将给定传递函数转换为对角标准型或约当标准型。再将得到的对角标准型或约当
标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。
(3)A=[0 1 0 0;0 -1 1 0;0 0 -1 1;0 0 0 -3];B=[0 0 0 2]';C=[2 0 0 0];D=0;
z=[];p=[0 -1 -1-3];k=4;G=zpk(z,p,k)
Zero/pole/gain:
4
---------------
s (s+1)^2 (s+3)
(2)将给定传递函数用函数ss( )转换为状态空间表达式。再将得到的状态空间表达式
用函数tf( )转换为传递函数,并与原传递函数进源自比较。五、内容步骤、数据处理
题1-1已知系统的传递函数
(1)建立系统的TF与ZPK模型。
运行结果如下:
>>num=4; den=[1 5 7 3 0]; Gtf=tf(num,den);
>> Gtf
Transfer function:
4
-------------------------
s^4 + 5 s^3 + 7 s^2 + 3 s
(2)Gss=ss(G)
a =
x1 x2 x3 x4
x1 0 1 0 0
x2 0 -1 1 0
x3 0 0 -1 1
x4 0 0 0 -3
b =
u1
x1 0
x2 0
x3 0
x4 2
c =
x1 x2 x3 x4
y1 2 0 0 0
d =
u1
y1 0
Gtf=tf(Gss)
Transfer function:
x3 0
c =
x1 x2 x3
y1 0 0 0.375
d =
u1
y1 0
(2)用ss2ss函数进行相似变换将其转换为对角标准型。
>> A=[-6 -1.375 -0.09375;8 0 0;0 8 0];B=[0.25 0 0]';C=[0 0 0.375];D=0;
sys=ss(A,B,C,D);[V,J]=jordan(A);sys1=ss2ss(sys,inv(V))
模型之间的相互转换。
3、熟悉系统的连接。学会用MATLAB确定整个系统的状态空间表达式和传递函数。
4、掌握状态空间表达式的相似变换。掌握将状态空间表达式转换为对角标准型、约当标准型、能控标准型和能观测标准型的方法。学会用MATLAB进行线性变换。
二、原理简述
三、仪器设备
PC计算机,MATLAB软件
四、线路示图
sys=ss(A,B,C,D);[V,J]=jordan(A);sys1=ss2ss(sys,inv(V))
a =
x1 x2 x3 x4
x1 0 0 0 0
x2 0 -3 0 0
x3 0 0 -1 1
x4 0 0 0 -1
b =
u1
x1 2
x2 2
x3 0
x4 2
c =
x1 x2 x3 x4
y1 0.6667 -0.1667 -1 -0.5
d =
u1
y1 0
题1-2已知系统的传递函数为:
(1)建立其状态空间模型
num=6; den=[1 6 11 6]; Gtf=tf(num,den); Gss=ss(Gtf),
a =
x1 x2 x3
x1 -6 -1.375 -0.09375
x2 8 0 0
x3 0 8 0
b =
u1
x1 0.25
x2 0
相关文档
最新文档