晶体三极管输入和输出特性共22页
3晶体三极管
2.三极管内部载流子的运动规律
集电结反偏, 集电结反偏, 有少子形成的反 向电流ICBO。 基区空穴 向发射区的 扩散形成电流 IEP可忽略。 可忽略。 进入P 进入P 区的电 子少部分与基区 的空穴复合, 的空穴复合,形 成电流IBN ,多 数作为非平衡少 子扩散到集电结 B RB IB IBN E IE IC ICBO C ICN
v
v
i
i
输出特性曲线各区的特点: 输出特性曲线各区的特点:
(1)饱和区 a.发射结正偏,集电结正偏或反 发射结正偏, 发射结正偏 偏电压很小。 偏电压很小。 UCE≤UBE b. iC明显受uCE控制, 明显受 控制 iC<βiB
1
4 3
i
C/
mA
iB =
µ 100 A 80 60
饱和区
随着VCE的变化而迅速变化。 的变化而迅速变化。 随着
∆iC
∆iB
β=
放大区 截止区
∆iC ∆iB
U CE =常量
β是常数吗?什么是理想三极管?什么情况下 β = β ? 是常数吗?什么是理想三极管? 是常数吗
2. 输出特性
iC = f (uCE ) I
数 B =常
对应于一个I 就有一条i 变化的曲线。 对应于一个 B就有一条 C随uCE变化的曲线。 输出特性曲线特点: 输出特性曲线特点: a. 各条特性曲线形状相同 b. 每条输出特性起始部分很陡 V时 uCE=0 V时,因集电极无收 b (集电结反压增加, 当集电结反压增加, 吸引电子能力增强,ic增大 增大) 吸引电子能力增强 增大) 集作用, =0。 集作用,iC=0。 c.每条输出特性当超过某一数 u c .CE ↑ → Ic ↑ 。 值时( ),变得平坦 值时(约1V),变得平坦 ), d. 曲线比较平坦的部分, 曲线比较平坦的部分, 的增加而略向上倾斜。 随vCE的增加而略向上倾斜。 d每条输出特性当超过某一数值时(约1V),变得平坦 每条输出特性当超过某一数值时( 1V),变得平坦 ), 这是基区宽变效应) (这是基区宽变效应) • CB ↑→ 基区宽带变窄 → B 1V后 当uCE >CE后,收集电子的能力足够强。这时,发射到基区的电子 1V ↑→ 收集电子的能力足够强。这时, 变小 • 都被集电极收集, 再增加, 基本保持不变。 都被集电极收集,形成iC。所以uCE再增加,iC基本保持不变。 iC •→ β = iB ↑→ iB 若不变则 C ↑
晶体管的输入输出特性曲线详解
晶体管的输入输出特性曲线详解届别系别专业班级姓名指导老师二零一二年十月晶体管的输入输出特性曲线详解学生姓名:指导老师:摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。
依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。
晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。
生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。
利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值晶体管是一种半导体器件,放大器或电控开关常用。
晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。
由于其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。
晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。
关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。
【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis.一、晶体管的基本结构晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图1-1(a)、(b)所示。
从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。
基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。
双极型晶体三极管的开关特性
1 0.7 mA 10
0.03mA
iB
3
0.7 10
mA
0.23mA
三极管临界饱和时的基极电流: 而
I BS
VCC uCES
Rc
5 0.3 mA 50 1
0.094 mA
因为0<iB<IBS,三极管工作在放大
状态。iC=βiB=50×0.03=1.5mA,
输出电压:
uo=uCE=UCC-iCRc=5-1.5×1=3.5V
状态称为放大状态。
2.2 双极型晶体三极管的开关特性
(3)三极管的饱和状态和可靠饱和的条件
当输入电压vI增加
:A. iB增加,工作点上移,当工作点上移至Q3点时,三
极管进入临界饱和状态。
B. iB再增加,输出iC将不再明显变化 。
当输入电压vI增加 :C.工作点向上移至Q3点以上,饱和深度增加,进入可
2.2 双极型晶体三极管的开关特性
(4)三极管开关的过渡过程
td:延迟时间,上升到0.1Icmax tr:上升时间, 0.1Icmax到0.9Icmax
ton = td +tr ton开通时间
ts:存储时间,下降到0.9Icmax tf:下降时间,下降到0.1Icmax
toff = ts +tf toff关断时间
iC=βiB
uCE=VCC- iCRc
可变
饱和
iB>IBS 发射结正偏 集电结正偏 uBE>0,uBC>0
iC=ICS uCE=UCES=
0.3V 很小, 相当开关闭合
+VCC Rc iC
Rb b
c
uo
ui
iB
e
iB(μA)
三极管的特征
三极管的特征三极管,也被称为双极型晶体管(bipolar junction transistor,简称BJT),是一种常见的半导体器件。
它具有三个区域:发射极(Emitter)、基极(Base)和集电极(Collector)。
三极管具有许多特征,下面将逐一介绍。
1. 放大作用三极管的主要功能是放大电流和电压信号。
当在基极-发射极电流(IB)的作用下,由发射极-集电极电流(IC)的增大,即电流放大效应。
这使得三极管可以用作放大器,将弱信号放大为强信号,从而实现信号处理和传输。
2. 开关作用三极管还可以用作开关。
当输入信号的电压或电流超过一定的阈值时,三极管可以处于饱和状态,导通集电极和发射极之间的电流。
反之,当输入信号的电压或电流低于阈值时,三极管处于截止状态,不导通。
这种开关特性使得三极管广泛应用于数字电路和开关电源等领域。
3. 电流放大倍数三极管的电流放大倍数(或称为电流放大系数)是指集电极-发射极电流(IC)与基极-发射极电流(IB)之间的比值,用β表示。
β的数值通常在几十到几百之间。
电流放大倍数决定了三极管的放大能力,也是设计电路时需要考虑的重要参数之一。
4. 输入/输出阻抗三极管具有较高的输入阻抗和较低的输出阻抗。
输入阻抗决定了信号源与三极管之间的匹配程度,输出阻抗决定了三极管与负载电路之间的匹配程度。
较高的输入阻抗可以减少信号源的负载效应,较低的输出阻抗可以提供更好的信号传输能力。
5. 频率响应三极管的频率响应是指其对不同频率信号的放大能力。
一般来说,三极管在低频时具有较好的放大能力,但在高频时可能会出现衰减。
这是由于三极管内部结构和材料特性所致。
为了实现更高的频率响应,可以采用特殊工艺和结构设计。
6. 温度特性三极管的工作性能会受到温度的影响。
一般情况下,三极管的电流放大倍数会随着温度的升高而下降,而饱和电压会随温度的升高而增加。
这需要在设计电路时考虑温度补偿和稳定性。
7. 噪声三极管的工作过程中会产生一定的噪声。
三极管特性
晶体管是半导体三极管中应用最广泛的器件之一,在电路中用“V”或“VT”(旧文字符号为“Q”、“GB”等)表示。
晶体管是内部含有两个PN结,外部通常为三个引出电极的半导体器件。
它对电信号有放大和开关等作用,应用十分广泛。
一、晶体管的种类晶体管有多种分类方法。
(一)按半导体材料和极性分类按晶体管使用的半导体材料可分为硅材料晶体管和锗材料晶体管管。
按晶体管的极性可分为锗NPN型晶体管、锗PNP晶体管、硅NPN型晶体管和硅PNP型晶体管。
(二)按结构及制造工艺分类晶体管按其结构及制造工艺可分为扩散型晶体管、合金型晶体管和平面型晶体管。
(三)按电流容量分类晶体管按电流容量可分为小功率晶体管、中功率晶体管和大功率晶体管。
(四)按工作频率分类晶体管按工作频率可分为低频晶体管、高频晶体管和超高频晶体管等。
(五)按封装结构分类晶体管按封装结构可分为金属封装(简称金封)晶体管、塑料封装(简称塑封)晶体管、玻璃壳封装(简称玻封)晶体管、表面封装(片状)晶体管和陶瓷封装晶体管等。
其封装外形多种多样。
(六)按功能和用途分类晶体管按功能和用途可分为低噪声放大晶体管、中高频放大晶体管、低频放大晶体管、开关晶体管、达林顿晶体管、高反压晶体管、带阻晶体管、带阻尼晶体管、微波晶体管、光敏晶体管和磁敏晶体管等多种类型。
二、晶体管的主要参数晶体管的主要参数有电流放大系数、耗散功率、频率特性、集电极最大电流、最大反向电压、反向电流等。
(一)电流放大系数电流放大系数也称电流放大倍数,用来表示晶体管放大能力。
根据晶体管工作状态的不同,电流放大系数又分为直流电流放大系数和交流电流放大系数。
1.直流电流放大系数直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。
2.交流电流放大系数交流电流放大系数也称动态电流放大系数或交流放大倍数,是指在交流状态下,晶体管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。
第三讲 晶体三极管
§2.2.3 三极管的主要参数
电流放大系数 三极管的参数是 用来表征管子性 能优劣适应范围 的,是选管的依 据,共有以下三 大类参数。
极间反向电流ICBO 、 ICEO
极限参数
• 极限参数:ICM、PCM、U(BR)CEO
最大集电 极电流 c-e间击穿电压 最大集电极耗散功 率,PCM=iCuCE
4.下列NPN型三极管各个极的电位,处于放 大状态的三极管是( ) A VC=0.3V,VE=0V, VB=0.7V B VC=-4V, VE=-7.4V,VB=-6.7V C VC=6V, VE=0V, VB=-3V D VC=2V, VE=2V, VB=2.7V 5.如果三极管工作在截止区,两个PN结状 态( ) A.均为正偏 B.均为反偏 C.发射结正偏,集电结反偏 D.发射结反偏,集电结正偏
三极管符号
结构特点:
基区很薄且杂质浓度很低;
发射区掺杂浓度高; 集电区面积很大。
二.分类
(1)按半导体结构不同:NPN 型和 PNP 型。
(2)按功率分:小功率管和大功率管。
(3)按工作频率分:低频管和高频管。
(4)按管芯所用半导体材料分:锗管和硅管。
(5)按结构工艺分:合金管和平面管。
(6)按用途分:放大管和开关管。
放大区:发射结正向偏置,集电结反向偏置。
饱和区:发射结和集电结均正向偏置。
截止区:发射结电压小于开启电压,集电结 在电路中的连接方式
共发射极连接 共基极连接 共集电极连接
三极管的特性曲线
概 念
特性曲线是 指各电极之 间的电压与 电流之间的 关系曲线
输入特性曲线
输出特性曲线
(1)三极管的电流放大作用,实质上是用较小的基极电 流信号控制集电极的大电流信号,是“以小控大”的作用。 (2)三极管的放大作用,需要一定的外部条件。
晶体三极管与场效应管详解演示文稿
U11==64-V5.3,VV,U,2U=U222==V-21,V.8U,V3,=U23U=.37=5VV-,1.5V
第13页,共43页。
共射极NPN放大电路
进入基区少数电子和空穴复
结论:I =I +I 合,以及进入发射区的空穴
与电集子电复区合少而数载形E流成子电B流IBNC和
IC =ICN+集IC电BO结反发,偏射发结射正区偏多
UCE VCC IC RC 15 0.716103 5000 11.42(V )
③如果VBB=5V;RB=300kΩ,β=300 解答:
IB
VBB U BE RB
5 0.7 300000
0.01
IC IB 300 0.0143 4.29(mA)
I里IIBPEB了,空IC--?B那穴O。么形扩复其成散漂它合移多运运电数流电动动子形去形哪成成的的电电C流流 IC-漂移运IB动ICB形O 成的电流JC
ICN
数载流子电 子不断向基 区扩散,形 成扩散电流
IEN。
基区多数载
流子空穴不断 向基区扩散, 形成扩散电流
IEP。
B
RB IEP
VBB
IBP JE
集电极C
Collector
基极B 发射极E
Base Emitter
金属层
发射区:发射载流子 集电区:收集载流子
基区:传送和控制载流子
P
N+
N-Si
N型硅片
(衬底)
第5页,共43页。
强化练习1
NPN型三极管
C
B E
基极 B
电符路号符号 集电区的作用:
收集载流子
基区的作用: 传送、控制载流子
晶体管的输入输出特性曲线详解
晶体管的输入输出特性曲线详解届别系别专业班级姓名指导老师二零一二年十月晶体管的输入输出特性曲线详解学生姓名:指导老师:摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。
依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。
晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。
生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。
利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值晶体管是一种半导体器件,放大器或电控开关常用。
晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。
由于其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。
晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。
关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。
【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis.一、晶体管的基本结构晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图1-1(a)、(b)所示。
从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。
基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。
晶体管知识介绍
N沟道:VDS > 0
P沟道:VDS < 0
MOS管的举例
PULS产品常用的三极管举例 型号 参数 外形图片
20N60C3系列
VGS(th):2.1-3.9V、V(BR)GS:±20V、RDS(on):0.16-0.19Ω V(BR)DS:700V、IDM:20.7A、PDM:34.5-208W、gm:6.8S
直流输入电阻 RGS,是指在漏源极间短路的条件下,栅源极之间所加直流电压与栅极 直流电流的比值。
导通电阻RDS(on),是指管子在导通时漏源极之间的阻值. 反应了VDS对ID的影响。 低频跨导 gm,是指在VDS为某一定值时,漏极电流iD的微变量和引起它变化的VGS微变量 的比值,反映了栅源电压VGS对漏极电流iD的控制能力。 计算公式:
Icm,是指集电极允许通过的最大电流,当集电极电流Ic增加到某一数值,导致β值下 降到额定值的2/3或1/2时的Ic值。当三极管的集电极电流Ic超过Icm时,其β值 等参数将明显变化,虽然三极管不致损坏,但性能会受到显著影响。
Pcm,是指保证三极管正常工作情况下集电极所允许消耗的最大功率,三极管在使用时 ,如果实际功耗超过Pcm值,三极管就会因过载而损坏。
பைடு நூலகம்
3.反向基穿电压(BUceo和BUcbo)
BUceo,是指基极开路时,集电极与发射极间的反向击穿电压。 BUcbo,是指发射极开路时,集电极与基极间的反向击穿电压。
三极管的特性参数
三极管的主要特性参数 4.特征频率(ƒT),三极管的工作频率高到一定程度时,电流放大倍数β就会下降, 当β=1时的频率就是特征频率,当三极管的工作频率超过特征频 率后,将会失去放大能力。 5.极限参数,包括集电极最大允许电流(Icm)和集电极最大允许耗散功率(Pcm).
晶体三极管及其特性
晶体三极管及其特性摘要晶体三极管三个区的工作状态特点可概括为以下三句话:三极管工作在饱和状态时发射结正偏,集电结也正偏;工作在放大状态时发射结正偏、集电结反偏;工作在截止状态时发射结反偏,集电结也反偏。
晶体三极管是电子技术最基本、最重要的器件之一,也是模拟电子技术教学的重点内容。
关键词三极管的结构;输出特性;工作状态;偏置条件晶体三极管在电子线路中起到很大的作用,是其他元器不可替代的。
在实际应用中有三种由三极管组成的放大电路,其中共发射极电路是三种基本电路中最常用的放大电路。
首先了解晶体三极管的结构。
1三极管的结构与作用1.1三极管的结构晶体三极管的结构和类型:晶体三极管是半导体中的一个基本元器件,它在放大状态下有很强的电流放大能力,是电子电路中的最主要的元器件。
三极管是由二个PN结组成,这二个PN结相距很近,两个相距较近的PN结把整块半导体划分为三个依次是发射区、基区和集电区,根据组合方式的不同分为PNP和NPN两种,NPN型管射区内”发射”的是负电子,移动方向与电流方向是不同的,所以发射极方向指向外部;而PNP型管射区内发射出的是正电子,移动方向与电流方向是相同的,所以发射极方向指向内部。
管型的不同在正向电压下的导通方向也不同,发射极方向指向代表着它的导通方向。
1.2 三极管的作用1.2.1晶体三极管可以实现电流放大的作用三极管实现电流放大作用的原理是:三极管能用基极电流的变化来控制集电极电流的变化,基极电流变化很小,导致集电极电流发生很大的变化。
这也是三极管非常重要的特性。
我们把集电极电流变化量与基极电流变化量的比值用符号“β”表示,一般来说“β”是一个定值,但有时ΔIb也可能会有所改变。
晶体三极管有以下三种状态:饱和状态、截止状态和放大状态。
如果加在发射结的电压比PN结的导通电压小,基极中无电流,集电极和发射极也都无电流,在电路中相当于一个断开的开关,三极管就不再有电流放大作用,即为三极管的截止状态。
晶体三极管及其基本放大电路解读PPT教案
Q IBQ
UBEQ
输 入 回 路 负 载线 ICQ
负载线
Q IBQ
UCEQ
第31页/共79页
2. 电压放大倍数的分析
uBE VBB uI iBRb 斜率不变
iC
IB IBQ iB
uI
uCE
给定uI
iB
iC
uCE (uO )
Au
uO uI
uO与uI反相,Au符号为“-”。
第32页/共79页
§4.2 放大电路的组成原 则
一、基本共射放大电路的工作原理 二、如何组成放大电路
第12页/共79页
一、基本共射放大电路的工 作原理
1. 电路的组成及各元件的作用
VBB、Rb:使UBE> Uon,且有 合适的IB。 VCC:使UCE≥UBE,同时作为 负载的能源。
Rc:将ΔiC转换成ΔuCE(uO) 。
因发射区多子浓度高使大量电子从发 射区扩散到基区
扩散运动形成发射极电流IE,复合运动形成基极 电流IB,漂移运动形成集电极电流IC。
第3页/共79页
电流分配:
IE=IB+IC
IE-扩散运动形成的电流
IB-复合运动形成的电流 IC-漂移运动形成的电流
直流电流 放大系数
穿透电流
IC
IB
iC
iB
ICEO (1 )ICBO
为什么基极开路集电极回 路会有穿透电流?
交流电流放大系 数
集电结反向电流
第4页/共79页
三、晶体管的共射输入特性和输
1. 输入特性
出特性
iB f (uBE ) UCE
为什么像PN结的伏安特性? 为什么UCE增大曲线右移? 为什么UCE增大到一定值曲线 右移就不明显了?
三极管及场效应管原理及参数
晶体三极管一、三极管的电流放大原理晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。
而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。
图1、晶体三极管(NPN)的结构图一是NPN管的结构图,它是由2块N型半导体中间夹着一块P型半导体所组成,从图可见发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b 和集电极。
当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。
在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)极基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。
由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连续性原理得:Ie=Ib+Ic这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:β1=Ic/Ib式中:β--称为直流放大倍数,集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:β= △Ic/△Ib式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。
三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。
电子技术试验:三极管输入、输出特性曲线的测试
五、下次预习要求
(P147实验4.14)
现代电子技术实验
4.13、三极管输入、输出特性曲线 的测试
现代电子技术实验
预习情况检查
1.半导体管特性图示仪的基本原理与应用。 2.晶体三极管的伏安特性曲线的特点及其主要
参数定义。
现代电子技术实验
一.实验目的
1. 进一步熟悉晶体管图示仪的面板旋钮。 2. 掌握晶体管输入输出特性的图测方法。 3. 掌握用晶体管特性曲线求参数的方法。
பைடு நூலகம்
设VCE =5V,适当选择和记录IBQ
ebc
1008:NPN型
IC
I B VCE 5V
IC
IB VCE 5V
iC
△IC IC
IB 10 A IB 8 A
IB 4 A
IB 2 A
VCE =5V
vCE
四、实验报告要求
1.写出所测参数的定义及其物理意义。 2.用坐标纸定量描绘特性曲线,正确标明相应
2.共射输出特性曲线
以输入口电流iB为参变量,反映输出口iC与vCE的函 数关系曲线。
iC f (vCE ) IB 常数
iC
iB5 iB4
iB3
iB2 iB1
O
uCE
3.三极管输出特性测试电路
图示仪面板主要包括
阶梯信号部分
晶体管输出特性的动态测量
半 导 体 特 性 图
示 集电 仪 极电 操源
作 面 板
测试台
Y轴
X轴 阶梯电
源
三、实验内容
1.晶体管输出特性的测量
(1)调节图示仪有关控制旋钮,测绘输出特性曲线。
(2)在曲线上标出饱和区、截止区和放大区。
晶体三极管工作总结
晶体三极管工作总结
晶体三极管是一种重要的半导体器件,它在电子设备中起着至关重要的作用。
它的工作原理和特性对于电子工程师来说是非常重要的。
在本文中,我们将对晶体三极管的工作原理和特性进行总结。
晶体三极管是一种三端口的半导体器件,通常包括一个发射极、一个基极和一
个集电极。
它的工作原理是基于PN结的导电特性。
当一个正向偏置电压施加在发
射极和基极之间时,PN结会被击穿,电子会从发射极注入到基极,形成一个电流。
这个电流会被放大并从集电极中输出。
晶体三极管有很多重要的特性。
首先,它具有放大作用。
当一个小的输入信号
施加在基极上时,晶体三极管可以放大这个信号并输出一个更大的信号。
这使得它在放大电路中得到了广泛的应用。
其次,晶体三极管还具有开关作用。
当一个正向偏置电压施加在发射极和基极
之间时,晶体三极管处于导通状态,允许电流通过。
而当一个逆向偏置电压施加在发射极和基极之间时,晶体三极管处于截止状态,电流无法通过。
这使得它在数字电路中得到了广泛的应用。
此外,晶体三极管还具有频率响应特性。
它可以在很高的频率下工作,这使得
它在射频电路中得到了广泛的应用。
总之,晶体三极管是一种非常重要的半导体器件,它在电子设备中起着至关重
要的作用。
它的工作原理和特性对于电子工程师来说是非常重要的。
希望本文对晶体三极管的工作原理和特性有所帮助。
晶体三极管的输入、输出特性曲线
晶体三极管的输入、输出特性曲线三极管的特性曲线是指三极管各极上的电压和电流之间的联络曲线,是三极管内部功用的外部体现。
从运用三极管的视点来说,了解它的特性曲线是首要的。
因为三极管有两个PN结,因而它的特性曲线不像二极管那样简略。
最常用的有输入特性和输出特性曲线两种,在实习运用中,通常运用晶体管特性图示仪直接查询,也可用图1的电路进行查验逐点描写。
(一)输入特性曲线输入特性是指,当三极管的集电极与发射极之间电压UCE坚持为某一固定值时,加在三极管基极与发射极之间的电压UBE与基极电流IB之间的联络。
以3DG130C为例,按图1试验电路查验。
当UCE别离固定在0和1伏两种状况下,调整RP1测得的IB和UBE的值,列于表1。
它的输入特性曲线,如图2所示。
为了阐明输入特性,图中画出两种曲线,标明UCE纷歧样的两种状况。
但两条线不会一起存在。
图1晶体三极管输入、输出特性试验电路图2晶体三极管输入特性曲线表1三极管输入特性数据1.当UCE=0伏时,也即是将三极管的集电极与发射极短接,如图3所示,恰当于正向接法的两个并联二极管。
图2中曲线A的形状跟二极管的正向伏安特性曲线非常类似,IB和UBE也对错线性联络。
2.当UCE=1伏时,集电结反偏,发作集电极电流IC,在相同的UBE条件下,基极电流IB就要减小。
(图2中a点降到b点),因而曲线B相对曲线A右移一段间隔。
可见,UCE对IB 有必定影响。
当UCE>1伏往后,IB与UCE几乎无关,其特性曲线和UCE=1伏那条曲线非常挨近,通常按UCE=1伏的输出特性曲线剖析。
图3UCE=0时的等效电路图43AX52B的输入特性曲线图4是3AX52B锗三极管的输入特性,留神横坐标是-UBE,这是指PNP型锗管的基极电位低于发射极电位。
可见,锗管和硅管它们的输入特性曲线都对错线性的,都有“死区”,锗管和硅管比照,锗管在较小的UBE值下,就可使发射结正偏导通。
当三极管在正常拓宽状况时,以发射极作为公共端,则NPN型硅管UBE约为0.7伏,PNP锗管UBE约为-0.3伏。
4.1-MOS场效应晶体管的结构工作原理和输出特性
国家标准对半导体三极管的命名如下:
3 D G 110 B
用字母表示同一型号中的不同规格
用数字表示同种器件型号的序号
用字母表示器件的种类 用字母表示材料 三极管
第二位:A锗PNP管、B锗NPN管、 C硅PNP管、D硅NPN管
2022/1/15
第三位:X低频小功率管、D低频大功率管、 G高频小功率管、A高频大功率管、K开关管
N+
G
P 型衬底
B
D B
S
IDSS
夹断电压
ID /mA
6 5 I DSS 4 3 2
1
4 3 2 1 UGS(off)
0
U GS/V
当UGS=0时,对应的漏极电流用IDSS表示。当UGS>0时,将使ID进一步增加。 UGS<0时,随着UGS的减小漏极电流逐渐减小,直至ID=0。对应ID=0的UGS称 为夹断电压,用符号UGS(off)表示,有时也用UP表示。N沟道耗尽型MOSFET的转移 特性曲线如右上图所示。
增强型 N沟道、P沟道 耗尽型 N沟道、P沟道
N沟道增强型MOSFET
的结构示意图和符号见图
02.13。其中: D(Drain)为漏极,相当c;
G(Gate)为栅极,相当b;
S(Source)为源极,相当e。
图4.1 N沟道增强型
MOSFET结构示意图(动画2-3)
第4页,共31页。
如果在同一N型衬底上同时制造P沟MOS管和N沟MOS 管,(N沟MOS管制作在P阱内),这就构成CMOS 。
表示衬底在 内部没有与 源极连接。
N沟道耗尽
型
MOSFET 管。漏、 衬底和源 不断开表 示零栅压 时沟道已 经连通。
如果是P沟道,箭头则向外。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
Thank you
60、人民的幸福是至高无个的法。— —西塞 罗
ቤተ መጻሕፍቲ ባይዱ
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿