算法分析实验报告--分治策略

合集下载

分治算法实验

分治算法实验

分治算法实验(用分治法查找数组元素的最大值和最小值)算法分析与设计实验报告第一次实验实验步骤关键代码}else//当数组中元素个数少于2时,直接赋值处理1. 先解决小规模的问题,如数组中只有1个元素或者只有两个元素时候的情况。

2. 将问题分解,如果数组的元素大于等于3个,将数组分为两个小的数组。

3. 递归的解各子问题,将中分解的两个小的数组再进行以上两个步骤最后都化为小规模问题。

4. 将各子问题的解进行比较最终得到原问题的解。

//分治法处理整个数组,求出最大值与最小值void merge( int a[], int left, int right, int &Max, int &Min){int max1=0,min 1=0,max2=0,min2=0;if (right-left>2) //当数组中元素个数大于3时,才实行分治法{int mid=(right+left)/2;merge(a,left,mid,max1,mi n1);//左半边递归调用自身,求岀最大值与最小值,分别保存在max1,min1中merge(a,mid+1,right,max2,mi n2);//右半边递归调用自身,求岀最大值与最小值,分别保存在max2,min2中if (max1>=max2)Max=max1; //子序列两两合并,求岀最大值与最小值elseMax=max2; //分别保存在Max与Minif (min1<=min2)Min=mi n1;elseMin=mi n2;测试结果实验心得Max=compmax(a,left,right);Min=compmi n( a,left,right);}}利用分治法(递归实现):非递归实现:请输入数据克1000093 32767The tine is1990003276? 9The tine is1000032767 0TJ IE tine is1000 32767 9The time is3276? RThe tine is內.0060-004TO通解,明白了分治法到底是怎样的一个过程,在代码实现分治法的时候,也使我加深了对于自己构造函数的理解,明白了分治法利用代码是怎样实现的,以及构造函数的传参与返回值等等地方需要注意的F;\鮒实验沁[p || B附录:完整代码(分治法)#include <iostream>#inelude <time.h>#include <iomanip> using namespacestd;//当数组中的元素个数小于3时,处理最大值int compmax(int A[], int start, int end) {int max;if (start<end) //有两个元素{if (A[start]<=A[end]) max=A[e nd];elsemax=A[start];}else //有一个元素max=A[start];return max;}//当数组中元素的个数小于2时,处理最小值int compmin(int A[], int start, int end){int min;if (start<end) //有两个元素{if (A[start]<=A[end]) mi n= A[start];elsemin= A[e nd];}else //有一个元素mi n=A[start];return mi n;}//分治法处理整个数组,求最大值与最小值void merge( int a[], int left, int right, int &Max,int &Min) 〃Max,Min 用来保存最大值与最小值//之所以使用&引用,是由于如果只是简单的使用变量,并不会改变Ma>与Min的值,使用指针也可以{int max1=0,min 1=0,max2=0,min2=0;if (right-left>2) //当数组中元素个数大于等于3时,进行分治{int mid=(right+left)/2;merge(a,left,mid,max1,min1); //左半边递归调用自身,求出最大值最小值,分别保存在max1,min1中merge(a,mid+1,right,max2,min2); //右半边递归调用自身,求出最大值最小值,分别保存在max2,min2中if (max1>=max2) //子序列两两合并,求出最大值与最小值,保存在Max与Mi n 中Max=max1;elseMax=max2;if (min 1<=min2)Min=min1;elseMin=min 2;}else //数组中元素个数小于3时的情况,直接赋值{Max=compmax(a,left,right);Mi n=compmi n( a,left,right);}}void ran( int *input, int n) //随机生成数组元素函数{int i;sran d(time(0)); for(i=0;i<n;i++) input[i]=ra nd();input[i]= '\0';}int a[1000000]; //定义全局变量用来存放要查找的数组int main(){int n;int i;int max;int min;coutvv "请输入要查找的序列个数:"<<e ndl;for (i=0;i<5;i++){cin>>n;ran (a,n);start=clock();en d=clock();over=end-start;start=clock();//调用分治法算法merge(a,0, n-1,max,min);coutvvmax<<‘ " vvminvvendl;en d=clock();printf( "The time is %6.3f" ,( double )(end-start-over)/CLK_TCK); //显示运行时间}system( "pause"); // 停止运行窗口return 0;}完整代码(非递归方法)#include <iostream>#include <time.h>#include <iomanip> usingnamespacestd;void ran( int *input, int n) {//随机生成数组元素函数int i;sran d(time(0));for (i=0;i<n;i++)in put[i]=ra nd();input[i]= '\0';}int a[1000000];int main(){int max=a[0],min=a[0];int i,j,n;cout<<"请输入数据规模: "<<e ndl;for (j=0;j<5;j++){cin»n;ran( a, n);clock_t start,e nd,over;//计算程序运行时间的算法start=clock();en d=clock();start=clock(); for(i=1;i<n;i++) {if (a[i]>max)max=a[i];if (a[i]<min) min=a[i];}coutvvmax<<‘ " vvminvvendl;en d=clock();printf( "The time is %6.3f" ,( double )(end-start-over)/CLK_TCK); // 显示运行时间}system( "pause");return 0;}。

分治算法实验报告

分治算法实验报告

算法分析与设计实验报告第 1 次实验if(maxi>maxj)max=maxi;elsemax=maxj;if(mini<minj)min=mini;elsemin=minj;return;}}srand((unsigned int)time(NULL));cout <〈”随机产生的数据(0—100):”;for(int i=0; i〈m; i++)a[i] = rand()%100;测试结果附录:完整代码SelectMaxMin.cpp:#include <iostream>#include <ctime>#include 〈cstdio>#include <iomanip>#include 〈cstdlib〉using namespace std;void SelectMaxMin(int *a,int i,int j,int &max,int &min) {if(i==j){max= a[i];min =a[i];return;}else{int mid=(i+j)/2;int maxi,maxj,mini,minj;SelectMaxMin(a,i,(i+j)/2,maxi,mini);SelectMaxMin(a,((i+j)/2)+1,j,maxj,minj);if(maxi〉maxj)max=maxi;elsemax=maxj;if(mini<minj)min=mini;elsemin=minj;return;}}int main(){clock_t start,end,over;start=clock();end=clock();over=end—start;start=clock();//freopen("in。

txt",”r",stdin);//freopen(”out。

txt”,”w",stdout);int m;cout 〈<"Please input the number : ”;cin>〉 m;int a[m];srand((unsigned int)time(NULL));cout 〈〈 "随机产生的数据(0-100):";for(int i=0; i〈m; i++)a[i] = rand()%100;for(int i=0; i〈m; i++)cout <〈 a[i] 〈< " ";cout 〈< endl;int max,min;SelectMaxMin(a,0,m-1,max,min);cout 〈< "max = " 〈〈 max 〈〈 endl;cout <〈”min = " <〈 min 〈〈 endl;end=clock();printf(”The time is %6.3f”,(double)(end-start—over)/CLK_TCK); }。

《算法设计与分析》实验报告实验一...

《算法设计与分析》实验报告实验一...

《算法设计与分析》实验报告实验一递归与分治策略应用基础学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期第九周一、实验目的1、理解递归的概念和分治法的基本思想2、了解适用递归与分治策略的问题类型,并能设计相应的分治策略算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:以下题目要求应用递归与分治策略设计解决方案,本次实验成绩按百分制计,完成各小题的得分如下,每小题要求算法描述准确且程序运行正确。

1、求n个元素的全排。

(30分)2、解决一个2k*2k的特殊棋牌上的L型骨牌覆盖问题。

(30分)3、设有n=2k个运动员要进行网球循环赛。

设计一个满足要求的比赛日程表。

(40分)提交结果:算法设计分析思路、源代码及其分析说明和测试运行报告。

三、设计分析四、算法描述及程序五、测试与分析六、实验总结与体会#include "iostream"using namespace std;#define N 100void Perm(int* list, int k, int m){if (k == m){for (int i=0; i<m; i++)cout << list[i] << " ";cout << endl;return;}else{for (int i=m; i<k; i++){swap(list[m], list[i]);Perm(list, k, m+1);swap(list[m], list[i]);}}}void swap(int a,int b){int temp;temp=a;a=b;b=temp;}int main(){int i,n;int a[N];cout<<"请输入排列数据总个数:";cin>>n;cout<<"请输入数据:";for(i=0;i<n;i++){cin>>a[i];}cout<<"该数据的全排列:"<<endl;Perm(a,n,0);return 0;}《算法设计与分析》实验报告实验二递归与分治策略应用提高学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期一、实验目的1、深入理解递归的概念和分治法的基本思想2、正确使用递归与分治策略设计相应的问题的算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:从以下题目中任选一题完成,要求应用递归与分治策略设计解决方案。

分治法实验心得

分治法实验心得

分治法实验心得分治法实验心得分治法是一种常见的算法设计策略,它将原问题划分成若干个规模较小但结构与原问题相似的子问题,然后递归地求解这些子问题,最终将子问题的解合并得到原问题的解。

在本次实验中,我们实现了两个基于分治法的算法:归并排序和快速排序,并对它们进行了性能测试和比较。

一、归并排序1. 原理归并排序是一种典型的分治算法。

它将待排序数组不断地二分为两个子数组,直到每个子数组只剩下一个元素。

然后将相邻的两个子数组合并成一个有序数组,再将相邻的两个有序数组合并成一个更大的有序数组,直到最终合并成整个待排序数组。

2. 实现我们采用了自顶向下的递归方式实现了归并排序。

具体来说,我们定义了一个merge函数用于合并两个有序子数组,并定义了一个sort 函数用于递归地对左右两个子数组进行排序和合并。

3. 性能测试与比较我们使用Python内置的time模块对不同规模(10^2 ~ 10^6)的随机整数列表进行了性能测试,并绘制出了运行时间随数组规模增大的变化曲线。

结果表明,归并排序的时间复杂度为O(nlogn),与理论分析相符。

二、快速排序1. 原理快速排序也是一种分治算法。

它选择一个基准元素,将数组中小于等于它的元素放在其左侧,大于它的元素放在其右侧。

然后递归地对左右两个子数组进行同样的操作,直到每个子数组只剩下一个元素。

2. 实现我们实现了两个版本的快速排序:递归版本和非递归版本。

其中,递归版本采用了经典的Lomuto分区方案,而非递归版本则采用了更高效的Hoare分区方案。

3. 性能测试与比较我们同样使用Python内置的time模块对不同规模(10^2 ~ 10^6)的随机整数列表进行了性能测试,并绘制出了运行时间随数组规模增大的变化曲线。

结果表明,快速排序具有很好的平均时间复杂度(O(nlogn)),但最坏情况下时间复杂度会退化到O(n^2)。

三、总结与思考通过本次实验,我们深入理解了分治算法设计策略,并学会了如何实现归并排序和快速排序。

算法设计与分析:递归与分治法-实验报告(总8页)

算法设计与分析:递归与分治法-实验报告(总8页)

算法设计与分析:递归与分治法-实验报告(总8页)实验目的:掌握递归与分治法的基本思想和应用,学会设计和实现递归算法和分治算法,能够分析和评价算法的时间复杂度和空间复杂度。

实验内容:1.递归算法的设计与实现3.算法的时间复杂度和空间复杂度分析实验步骤:1)递归定义:一个函数或过程,在其定义或实现中,直接或间接地调用自身的方法,被成为递归。

递归算法是一种控制结构,它包含了解决问题的基础情境,也包含了递归处理的情境。

2)递归特点:递归算法具有以下特点:①依赖于递归问题的部分解被划分为若干较小的部分。

②问题的规模可以通过递推式递减,最终递归终止。

③当问题的规模足够小时,可以直接求解。

3)递归实现步骤:①确定函数的定义②确定递归终止条件③确定递归调用的过程4)经典实例:斐波那契数列递推式:f(n) = f(n-1) + f(n-2)int fib(int n) {if (n <= 0)return 0;else}5)优化递归算法:避免重复计算例如,上述斐波那契数列的递归算法会重复计算一些中间结果,影响效率。

可以使用动态规划技术,将算法改为非递归形式。

int f1 = 0, f2 = 1;for (int i = 2; i <= n; i++) {f1 = f2;使用循环避免递归,重复计算可以大大减少,提高效率。

1)分治算法的定义:将原问题分解成若干个规模较小且类似的子问题,递归求解子问题,然后合并各子问题得到原问题的解。

2)分治算法流程:②将问题分解成若干个规模较小的子问题。

③递归地解决各子问题。

④将各子问题的解合并成原问题的解。

3)分治算法实例:归并排序归并排序是一种基于分治思想的经典排序算法。

排序流程:②分别对各子数组递归进行归并排序。

③将已经排序好的各子数组合并成最终的排序结果。

实现源代码:void mergeSort(int* arr, int left, int right) {if (left >= right)while (i <= mid && j <= right)temp[k++] = arr[i] < arr[j] ? arr[i++] : arr[j++];temp[k++] = arr[i++];1) 时间复杂度的概念:指完成算法所需的计算次数或操作次数。

分治政策实验报告总结

分治政策实验报告总结

一、实验背景分治策略是一种常用的算法设计思想,它将一个复杂的问题分解成若干个相互独立、规模较小的子问题,分别解决这些子问题,再将子问题的解合并,从而得到原问题的解。

本实验旨在通过具体案例,深入理解分治策略的基本思想,掌握其应用方法,并分析其实际效果。

二、实验目的1. 理解分治策略的基本思想;2. 掌握分治策略的应用方法;3. 分析分治策略在解决实际问题中的效果;4. 提高算法设计与分析能力。

三、实验内容1. 分治策略案例分析实验中,我们选择了以下案例进行分析:(1)归并排序归并排序是一种典型的分治策略应用。

它将待排序的序列分为两半,分别对这两半进行归并排序,然后将两个有序序列合并为一个有序序列。

(2)二分查找二分查找也是一种分治策略应用。

它将待查找的序列分为两半,根据查找目标值与中间值的大小关系,确定目标值所在的一半,然后在该半序列中继续查找。

2. 分治策略实现(1)归并排序实现```cvoid mergeSort(int arr[], int left, int right) {if (left < right) {int mid = (left + right) / 2;mergeSort(arr, left, mid);mergeSort(arr, mid + 1, right);merge(arr, left, mid, right);}}void merge(int arr[], int left, int mid, int right) { int n1 = mid - left + 1;int n2 = right - mid;int L[n1], R[n2];for (int i = 0; i < n1; i++)L[i] = arr[left + i];for (int j = 0; j < n2; j++)R[j] = arr[mid + 1 + j];int i = 0, j = 0, k = left;while (i < n1 && j < n2) {if (L[i] <= R[j]) {arr[k] = L[i];i++;} else {arr[k] = R[j];j++;}k++;}while (i < n1) {arr[k] = L[i];i++;k++;}while (j < n2) {arr[k] = R[j];j++;k++;}}```(2)二分查找实现```cint binarySearch(int arr[], int left, int right, int target) { while (left <= right) {int mid = (left + right) / 2;if (arr[mid] == target)return mid;else if (arr[mid] < target)left = mid + 1;elseright = mid - 1;}return -1;}```3. 分治策略效果分析(1)归并排序归并排序的平均时间复杂度为O(nlogn),空间复杂度为O(n)。

算法分析实验报告

算法分析实验报告

《算法设计与分析》实验报告分治策略一、试验名称:分治策略( 1) 写出源程序,并编译运行( 2) 详细记录程序调试及运行结果二、实验目的(1) 了解分治策略算法思想(2) 掌握快速排序、归并排序算法(3) 了解其他分治问题典型算法三、实验内容(1) 编写一个简单的程序,实现归并排序。

(2) 编写一段程序,实现快速排序。

(3) 编写程序实现循环赛日程表。

设有n=2k 个运动员要进行网球循环赛。

现要设计一个满足以下要求的比赛日程表: (1)每个选手必须与其它n-1 个选手各赛一次( 2)每个选手一天只能赛一场( 3)循环赛进行n-1 天四、算法思想分析(1) 编写一个简单的程序,实现归并排序。

将待排序元素分成大小大致相同的 2 个子集合,分别对 2 个子集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合。

(2) 编写一段程序,实现快速排序。

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

(3) 编写程序实现循环日赛表。

按分治策略,将所有的选手分为两组,n 个选手的比赛日程表就可以通过为n/2 个选手设计的比赛日程表来决定。

递归地用对选手进行分割,直到只剩下 2 个选手时,比赛日程表的制定就变得很简单。

这时只要让这 2 个选手进行比赛就可以了。

五、算法源代码及用户程序(1) 编写一个简单的程序,实现归并排序。

#include<iostream>#include<>#define MAX 10using namespace std;void merge(int array[],int p,int q,int r){int i,k;int begin1,end1,begin2,end2;int* temp = new int[r-p+1];begin1 = p;end1 = q;begin2 = q+1;end2 = r;k = 0;while((begin1 <= end1)&&(begin2 <= end2)){if(array[begin1] < array[begin2]){temp[k] = array[begin1];begin1++;}else{temp[k] = array[begin2];begin2++;}k++;}while(begin1 <= end1) {temp[k++] = array[begin1++];while(begin2 <= end2){temp[k++] = array[begin2++];}for(i = 0;i < (r-p+1);i++){array[p+i] = temp[i];}delete[](temp);}void merge_sort(int data[],int left,int right){if(left < right){int mid = (left + right)/2;merge_sort(data,left,mid);merge_sort(data,mid + 1,right); merge(data,left,mid,right);}}void main(){int number[MAX] = {0};srand(time(NULL));printf(" 排序前:");for(int i = 0; i < MAX; i++) {number[i] = rand() % 100; printf("%d ", number[i]);}cout<<endl;merge_sort(number,0,9);printf(" 排序后:");for(int j = 0; j < MAX; j++) { printf("%d ", number[j]);}(2) 编写一段程序,实现快速排序。

算法设计与分析实验报告

算法设计与分析实验报告

实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。

2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。

三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。

递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。

否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。

2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。

在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。

五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

分治法实验总结

分治法实验总结

分治法实验总结
分治法是一种常用的算法设计策略,它将问题分解成若干个子问题,然后递归地解决这些子问题,最后将子问题的解合并成原问题的解。

在本次实验中,我们通过实现归并排序和快速排序两个算法,深入理解了分治法的思想和实现方式。

我们实现了归并排序算法。

归并排序的基本思想是将待排序的序列分成若干个子序列,每个子序列都是有序的,然后再将子序列合并成一个有序的序列。

在实现过程中,我们采用了递归的方式,将序列不断地分成两半,直到每个子序列只有一个元素,然后再将这些子序列两两合并,直到最终得到一个有序的序列。

归并排序的时间复杂度为O(nlogn),是一种稳定的排序算法。

接着,我们实现了快速排序算法。

快速排序的基本思想是选择一个基准元素,将序列分成两个部分,一部分比基准元素小,一部分比基准元素大,然后递归地对这两个部分进行排序。

在实现过程中,我们选择了序列的第一个元素作为基准元素,然后使用两个指针分别从序列的两端开始扫描,将比基准元素小的元素放在左边,将比基准元素大的元素放在右边,最后将基准元素放在中间,然后递归地对左右两个部分进行排序。

快速排序的时间复杂度为O(nlogn),但是在最坏情况下,时间复杂度会退化为O(n^2)。

通过实现归并排序和快速排序两个算法,我们深入理解了分治法的
思想和实现方式。

分治法是一种非常重要的算法设计策略,可以用来解决很多复杂的问题,比如最近点对问题、矩阵乘法问题等。

在实际应用中,我们可以根据具体问题的特点选择合适的分治算法,以提高算法的效率和准确性。

分治法实验报告

分治法实验报告

算法实验报告一分治法实验一、实验目的及要求利用分治方法设计大整数乘法的递归算法,掌握分治法的基本思想和算法设计的基本步骤。

要求:设计十进制的大整数乘法,必须利用分治的思想编写算法,利用c语言(或者c++语言)实现算法,给出程序的正确运行结果。

(必须完成)设计二进制的大整数乘法,要求利用分治的思想编写递归算法,并可以实现多位数的乘法(利用数组实现),给出程序的正确运行结果。

(任选)二、算法描述1、输入两个相同位数的大整数u,v 输出uv的值判断大整数的位数i;w=u/10^(i/2);y=v/10^(i/2);x=u-w*10^(i/2);z= v-y*10^(i/2);然后将w,x,y,z代入公式求得最后结果uv=wy10^i+((w+x)(y+z)-wy-xz)10^(i/2)+xz三、调试过程及运行结果在实验中我遇到的问题:原来以为这两个大整数的位数不同,结果题目要求是相同位数的大整数在写10的多少次方时,写的是10^(i/2),10^(i),结果不对,我就将它改成了for循环语句四、实验总结在本次实验中,我知道了分治算法,以及分治算法的基本思想。

我还掌握了编写大整数乘法的算法与步骤,以及如何修改在编写程序时遇到的问题。

五、附录(源程序代码清单)1、#include&lt;iostream.h&gt; int weishu(int x){int i;while(x!=0){ x=x/10;i++;}return i;}void main(){int u,v;cout&lt;&lt;输入两个位数相同的大整数:&lt;&lt;endl; cin&gt;&gt;u;cin&gt;&gt;v;int i,j,m,n;int p,x,y,z,w;int a=1;int b=1;i=weishu(u);for(int k=1;k&lt;=i;k++){a=a*10;}for(int q=1;q&lt;=i/2;q++) {b=b*10;}w=u/b;y=v/b;x=u-w*b;z=v-y*b;p=w*y*a+((w+x)*(y+z)-w*y-x*z)*b+x*z; cout&lt;&lt;u&lt;&lt;*&lt;&lt;v&lt;&lt;=&lt;&lt;p; }教师评语:成绩:√优良中及格不及格算法实验报告二动态规划法实验一、实验目的及要求利用动态规划方法设计背包问题算法,掌握动态规划法的基本思想和算法设计的基本步骤。

分治法实验报告

分治法实验报告

分治法实验报告分治法实验报告一、引言分治法是一种重要的算法设计策略,它将一个大问题分解成若干个小问题,并通过递归的方式解决这些小问题,最终将它们的解合并起来得到原问题的解。

本实验旨在通过实际案例,探索分治法的应用和效果。

二、背景在计算机科学领域,分治法常常被用于解决一些复杂的问题,如排序、搜索、图算法等。

它的核心思想是将问题划分为更小的子问题,然后分别解决这些子问题,最后将它们的解合并起来得到原问题的解。

通过这种方式,我们可以降低问题的复杂度,提高算法的效率。

三、实验目的本实验旨在通过实际案例,验证分治法在问题解决中的有效性,并探索其在不同问题上的应用效果。

通过对比不同算法的运行时间和结果准确性,评估分治法在不同场景下的适用性。

四、实验过程本次实验选取了两个典型的问题,分别是最大子数组和快速排序。

首先,我们使用分治法来解决最大子数组问题。

该问题要求在一个给定的数组中,找到一个连续子数组,使得该子数组的和最大。

我们将数组分为两半,分别求解左半部分和右半部分的最大子数组,然后再考虑跨越中点的最大子数组。

通过递归的方式,最终得到整个数组的最大子数组。

接着,我们使用分治法来实现快速排序算法。

快速排序是一种高效的排序算法,它的核心思想是通过选择一个基准元素,将数组分为两个部分,使得左边的元素都小于等于基准元素,右边的元素都大于等于基准元素。

然后,对左右两个部分分别递归地进行快速排序,最终得到有序的数组。

五、实验结果通过对最大子数组和快速排序问题的实验,我们得到了以下结果。

首先,分治法在解决最大子数组问题上表现出色。

通过将问题划分为更小的子问题,我们可以在较短的时间内找到最大子数组,大大提高了算法的效率。

其次,在快速排序问题上,分治法同样展现了强大的能力。

通过不断地划分数组并进行排序,我们可以快速得到有序的结果。

六、实验分析分治法作为一种重要的算法设计策略,具有许多优点。

首先,它可以将复杂的问题分解为简单的子问题,降低了问题的复杂度,提高了算法的效率。

分治算法探讨分治策略与应用场景

分治算法探讨分治策略与应用场景

分治算法探讨分治策略与应用场景随着计算机科学的快速发展,算法成为了解决问题的重要工具。

其中,分治算法在很多场景下展现出强大的能力,被广泛应用于各个领域。

本文将探讨分治策略的原理和常见应用场景。

一、分治策略的基本原理分治策略是一种将大问题划分为细分的子问题,并通过解决子问题来解决原始问题的思想。

其基本思路可以概括为以下三个步骤:1. 分解:将原始问题划分为若干规模较小的子问题。

2. 解决:递归地解决各个子问题。

3. 合并:将各个子问题的解合并为原始问题的解。

通过将大问题递归地划分为越来越小的子问题,最终解决各个子问题,再将子问题的解合并为原始问题的解,分治策略能够高效地解决很多复杂的问题。

二、分治策略的应用场景1. 排序算法排序是计算机科学中一个重要的问题,各种排序算法都可以使用分治策略来实现。

例如,快速排序和归并排序就是使用分治策略的经典排序算法。

在快速排序中,通过选择一个基准元素将问题划分为两个子问题,然后递归地排序子问题。

最后,再将排序好的子数组合并为原始数组的有序序列。

在归并排序中,通过将问题划分为两个子问题,递归地排序子数组。

最后,再将排序好的子数组合并为原始数组的有序序列。

归并排序的特点是稳定性好,适用于大规模数据的排序。

2. 查找问题分治策略也可以应用于查找问题。

例如,在有序数组中查找某个元素可以使用二分查找算法,该算法也采用了分治思想。

二分查找算法通过将问题划分为两个子问题,然后根据子问题的规模逐步缩小查找范围,最终找到目标元素。

这种分治思想使得二分查找具有高效性。

3. 矩阵乘法矩阵乘法是一个常见的数学运算问题。

通过分治策略,可以将矩阵乘法划分为多个小问题,并递归地解决这些小问题。

然后,再将这些小问题的解进行合并,得到原始问题的解。

分治法用于矩阵乘法算法的优化,可以减少运算量,提高计算效率。

4. 搜索问题分治策略也可以应用于搜索问题。

例如,在搜索引擎中,分治策略可以用于并行搜索,从而加快搜索速度。

算法分析与设计实验报告1: 斐波那契数列(分治策略)

算法分析与设计实验报告1: 斐波那契数列(分治策略)
double a = 1;
double b = 1;
double result = 0;
if (n <= 0)
{
return 0;
}
else if (n <= 2)
{
return 1;
}
else
{
for (i = 3; i <= n; i++)
{
result = a + b;
a = b;
b = result;
天津商业大学学生实验报告
开课实验室:开课时间2019年4月26日实验报告2019年4月26日
学院名称
信息工程学院
年级、专业、班
软件1803班
学号
20180822
姓名
丁智颖
同组姓名

课程名称
算法分析与设计
实验项目名称
实验一斐波那契数列(分治策略)指教师宋建材实验类型
验证□√综合□设计□创新□
成绩
教师评语:
}
return result;
}
}
///
//分治方法求解
///
double fib2(int n)
{
if (n <= 0)
{
return 0;
}
else if (n <= 2)
{
return 1; //递归终止条件
}
else
{
return fib2(n - 1) + fib2(n - 2); //递归
四、实验代码
#include <stdio.h>
double fib1(int n); //非递归生成下标为n的斐波那契数列元素

分治法实验报告详细

分治法实验报告详细

分治法实验报告详细引言分治法是一种高效的问题解决方法,这种方法把一个复杂的问题划分成若干个规模较小的子问题,然后逐个解决这些子问题,并将子问题的解组合起来,形成原问题的解。

在本实验中,我们将通过实际案例来演示和验证分治法的有效性和高效性。

实验目的本实验的主要目的是探讨分治法在解决实际问题中的应用,验证其在问题规模较大时的效果,并通过与其他算法的对比分析,评估分治法的优势和不足。

实验材料与方法我们选择了一个具体的实际问题作为案例:在一个包含n个元素的列表中,查找特定元素x的位置。

为了模拟问题的规模,我们首先生成了一个包含1000个随机整数的列表,然后从中随机选择一个元素作为我们要查找的目标x。

我们采用了如下的分治法解决方案:1. 将列表分成两个子列表,分别包含前半部分和后半部分的元素。

2. 如果目标元素x等于列表的中间元素,则返回中间元素的位置。

3. 如果目标元素x小于列表的中间元素,则递归调用步骤1,查找前半部分子列表中的目标元素x。

4. 如果目标元素x大于列表的中间元素,则递归调用步骤1,查找后半部分子列表中的目标元素x。

5. 如果子列表为空,则说明目标元素x不存在于列表中。

实验结果与分析我们依次使用二分查找法和分治法来解决上述问题,并记录它们的运行时间。

重复实验10次,并计算它们的平均运行时间。

实验结果如下:- 二分查找法平均运行时间:0.002秒- 分治法平均运行时间:0.001秒通过实验数据可以看出,分治法的运行时间明显优于二分查找法。

这是因为分治法通过将问题划分为更小的子问题,使得每个子问题的规模减小,从而减少了解决每个子问题的时间。

而二分查找法则只是将问题逐步缩小,没有有效地利用子问题之间的联系。

结论通过本实验,我们验证了分治法在解决实际问题中的有效性和高效性。

与其他算法相比,分治法在处理问题规模较大时表现出更好的性能。

因此,我们可以得出结论,对于复杂问题的解决,分治法是一种值得采用的优秀方法。

实验报告

实验报告

合肥师范学院实验报告册2016/ 2017 学年第 1 学期系别计算机学院实验课程算法设计与分析专业软件工程班级一班姓名杨文皇学号1310421071指导教师程敏实验一:分治算法一、实验目的1、理解分治策略的基本思想;2、掌握用分治法解决问题的一般技巧。

二、实验内容利用分治算法在含有n个不同元素的数组a[n]中同时找出它的最大的两个元素和最小的两个元素,编写出完整的算法,并分析算法的时间复杂度。

三、实验源程序。

1、算法设计思想利用分治法思想,n个不同元素的数组不断进行划分,化为若干个个子问题,其与原问题形式相;解决子问题规模较小而容易解决则直接解决:即当n的规模为只有一个或两个,三个或四个;否则再继续直至更小的子问题:即当n的规模大于四时。

将已求得的各个子问题的解,逐步合并原问题的解:即将左右两边求得的子问题进行比较,在四个数据中的得到两个最大(最小)值。

为了简化空间,采用了对每一个小规模问题的排序,以及合并原问题时,对四个数据进行排序,获得当前或合并的最大(最小)值2、算法实现#include<iostream>using namespace std;int a[10]={4,5,6,2,3,9,8,13,1};int b[4];int sort(int i,int j){int temp,k;for(;i<j;i++){for(k=i;k<j;k++)if(a[k]>a[k+1]){temp=a[k];a[k]=a[k+1];a[k+1]=temp;}}return 0;}int sort1(int lmin1,int lmin2,int rmin1,int rmin2){int i,j,temp;b[0]=lmin1;b[1]=lmin2;b[2]=rmin1;b[3]=rmin2;for(i=0;i<=1;i++)for(j=i;j<=3;j++){if(b[i]>b[j]){temp=b[i];b[i]=b[j];b[j]=temp;}}return 0;}int maxmin(int i,int j,int &fmin1,int &fmin2,int &fmax1,int &fmax2) {int mid;int lmin1,lmin2,lmax1,lmax2;int rmin1,rmin2,rmax1,rmax2;if(i==j || i==j-1){sort(i,j);fmin1=a[i];fmin2=a[i];fmax1=a[j];fmax2=a[j];}elseif(i==j-2 || i==j-3){sort(i,j);fmin1=a[i];fmin2=a[i+1];fmax1=a[j-1];fmax2=a[j];}else{mid=(i+j)/2;maxmin(i,mid,lmin1,lmin2,lmax1,lmax2);maxmin(mid+1,j,rmin1,rmin2,rmax1,rmax2);sort1(lmin1,lmin2,rmin1,rmin2);fmin1=b[0];fmin2=b[1];sort1(lmax1,lmax2,rmax1,rmax2);fmax1=b[2];fmax2=b[3];}return 0;}int main(){int fmin1,fmin2,fmax1,fmax2;int i;maxmin(0,8,fmin1,fmin2,fmax1,fmax2);cout<<endl;cout<<"该组数据为:";for(i=0;i<=8;i++)cout<<a[i]<<" ";cout<<endl<<endl<<"最小值是:"<<fmin1<<",第二小值是:"<<fmin2<<endl;cout<<endl<<"第二大值是:"<<fmax1<<",最大值是:"<<fmax2<<endl<<endl;return 0;}3、程序结果4、算法分析用T(n)元素表示数,则导出的递推关系式是:在理想的情况下,即每一小规模的子问题中的数据都是递增序列,则:当n<=4时,T(n)=1; 当n>4时,T(n)= T(n/2)+ T(n/2)(均向下取整);在非理想情况下,即每一小规模的子问题中的数据都是递减序列,则:当n=1时,T(n)=1;当n=2时,T(n)=2;当n=3时,T(n)=3;当n=4时,T(n)=6;当n>4时,T(n)= T(n/2)+ T(n/2)(均向下取整)+12。

算法设计与分析实验报告

算法设计与分析实验报告

本科实验报告课程名称:算法设计与分析实验项目:递归与分治算法实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真指导教师:郝晓丽2018年05月04 日实验一递归与分治算法1.1 实验目的与要求1.进一步熟悉C/C++语言的集成开发环境;2.通过本实验加深对递归与分治策略的理解和运用。

1.2 实验课时2学时1.3 实验原理分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。

需要注意的是,分治法使用递归的思想。

划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。

最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。

1.4 实验题目1.上机题目:格雷码构造问题Gray码是一个长度为2n的序列。

序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。

试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。

对于给定的正整数n,格雷码为满足如下条件的一个编码序列。

(1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。

(2)序列中无相同的编码。

(3)序列中位置相邻的两个编码恰有一位不同。

2.设计思想:根据格雷码的性质,找到他的规律,可发现,1位是0 1。

两位是00 01 11 10。

三位是000 001 011010 110 111 101 100。

n位是前n-1位的2倍个。

N-1个位前面加0,N-2为倒转再前面再加1。

3.代码设计:}}}int main(){int n;while(cin>>n){get_grad(n);for(int i=0;i<My_grad.size();i++)cout<<My_grad[i]<<endl;My_grad.clear();}return 0;}运行结果:1.5 思考题(1)递归的关键问题在哪里?答:1.递归式,就是如何将原问题划分成子问题。

《算法设计与分析》课程实验报告 (分治法(三))

《算法设计与分析》课程实验报告 (分治法(三))

《算法设计与分析》课程实验报告实验序号:04实验项目名称:实验4 分治法(三)一、实验题目1.邮局选址问题问题描述:在一个按照东西和南北方向划分成规整街区的城市里,n个居民点散乱地分布在不同的街区中。

用x 坐标表示东西向,用y坐标表示南北向。

各居民点的位置可以由坐标(x,y)表示。

街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。

居民们希望在城市中选择建立邮局的最佳位置,使n个居民点到邮局的距离总和最小。

编程任务:给定n 个居民点的位置,编程计算邮局的最佳位置。

2.最大子数组问题问题描述:对给定数组A,寻找A的和最大的非空连续子数组。

3.寻找近似中值问题描述:设A是n个数的序列,如果A中的元素x满足以下条件:小于x的数的个数≥n/4,且大于x的数的个数≥n/4 ,则称x为A的近似中值。

设计算法求出A的一个近似中值。

如果A中不存在近似中值,输出false,否则输出找到的一个近似中值4.循环赛日程表问题描述:设有n=2^k个运动员要进行网球循环赛。

现要设计一个满足以下要求的比赛日程表:每个选手必须与其他n-1个选手各赛一次,每个选手一天只能赛一次,循环赛一共进行n-1天。

二、实验目的(1)进一步理解分治法解决问题的思想及步骤(2)体会分治法解决问题时递归及迭代两种不同程序实现的应用情况之差异(3)熟练掌握分治法的自底向上填表实现(4)将分治法灵活于具体实际问题的解决过程中,重点体会大问题如何分解为子问题及每一个大问题涉及哪些子问题及子问题的表示。

三、实验要求(1)写清算法的设计思想。

(2)用递归或者迭代方法实现你的算法,并分析两种实现的优缺点。

(3)根据你的数据结构设计测试数据,并记录实验结果。

(4)请给出你所设计算法的时间复杂度的分析,如果是递归算法,请写清楚算法执行时间的递推式。

四、实验过程(算法设计思想、源码)1.邮局选址问题(1)算法设计思想根据题目要求,街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。

算法--分治策略

算法--分治策略
}
int SortableList::Select(int k, int left, int right, int r)
{
int n = right - left + 1;
if (n <= r){pp
#include"标头.h"
void main()
{
int n = 10;
int x = 4;
SortableList myl(n);
void Output();
ResultCode Select(int &x, int k);
private:
int *l;
int maxSize;
int n;
void Swap(int i, int j);
void InsertSort(int left, int right);
int Partition(int left, int right);
();
(x,4);
();
}
四、实验小结(包括问题和解决方法、心得体会等)
1、通过实现快排和两路合并排序,加深了对相关知识的理解。
2、通过五元中值组取中值分割法在实际例子中体验了分治法的应用范围和优势。
五、指导教师评语
成 绩
批阅人
日 期
实验报告
(2016/2017学年第二学期)
课程名称
算Hale Waihona Puke 分析与设计实验名称分治策略
实验时间
2017

3

30

指导单位
计算机学院 软件工程系
指导教师
张怡婷
学生姓名
霍淇滨
班级学号
B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分治策略
姓名:XXX 专业班级:XXX 学号:XXX 指导教师:XXX 完成日期:XXX
一、试验名称:分治策略
(1)写出源程序,并编译运行
(2)详细记录程序调试及运行结果
二、实验目的
(1)了解分治策略算法思想
(2)掌握快速排序、归并排序算法
(3)了解其他分治问题典型算法
三、实验内容
(1)编写一个简单的程序,实现归并排序。

(2)编写一段程序,实现快速排序。

(3)编写程序实现循环赛日程表。

设有n=2k个运动员要进行网球循环赛。


要设计一个满足以下要求的比赛日程表:(1)每个选手必须与其它n-1个选手各赛一次(2)每个选手一天只能赛一场(3)循环赛进行n-1天
四、算法思想分析
(1)编写一个简单的程序,实现归并排序。

将待排序元素分成大小大致相同的2个子集合,分别对2个子集合进行
排序,最终将排好序的子集合合并成为所要求的排好序的集合。

(2)编写一段程序,实现快速排序。

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有
数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数
据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据
变成有序序列。

(3)编写程序实现循环日赛表。

按分治策略,将所有的选手分为两组,n个选手的比赛日程表就可以通
过为n/2个选手设计的比赛日程表来决定。

递归地用对选手进行分割,
直到只剩下2个选手时,比赛日程表的制定就变得很简单。

这时只要让
这2个选手进行比赛就可以了。

五、算法源代码及用户程序
(1)编写一个简单的程序,实现归并排序。

#include<iostream>
#include<>
#define MAX 10
using namespace std;
void merge(int array[],int p,int q,int r)
{
int i,k;
int begin1,end1,begin2,end2;
int* temp = new int[r-p+1];
begin1 = p;
end1 = q;
begin2 = q+1;
end2 = r;
k = 0;
while((begin1 <= end1)&&(begin2 <= end2))
{
if(array[begin1] < array[begin2])
{
temp[k] = array[begin1];
begin1++;
}
else
{
temp[k] = array[begin2];
begin2++;
}
k++;
}
while(begin1 <= end1)
{
temp[k++] = array[begin1++];
}
while(begin2 <= end2)
{
temp[k++] = array[begin2++];
}
for(i = 0;i < (r-p+1);i++)
{
array[p+i] = temp[i];
}
delete[](temp);
}
void merge_sort(int data[],int left,int right) {
if(left < right)
{
int mid = (left + right)/2;
merge_sort(data,left,mid);
merge_sort(data,mid + 1,right);
merge(data,left,mid,right);
}
}
void main()
{
int number[MAX] = {0};
srand(time(NULL));
printf("排序前:");
for(int i = 0; i < MAX; i++) {
number[i] = rand() % 100;
printf("%d ", number[i]);
}
cout<<endl;
merge_sort(number,0,9);
printf("排序后:");
for(int j = 0; j < MAX; j++) {
printf("%d ", number[j]);
}
}
(2)编写一段程序,实现快速排序。

#include<iostream>
#include<>
#define MAX 10
#define SWAP(x,y) {int t; t = x; x = y; y = t;} using namespace std;
void quicksort(int number[],int left,int right) {
int i,j,s;
if(left < right)
{
s = number[(left + right)/2];
i = left - 1;
j = right + 1;
while(1)
{
while(number[++i] < s);
while(number[--j] > s);
if(i>=j)
break;
SWAP(number[i],number[j]);
}
quicksort(number,left,i-1);
quicksort(number,j+1,right);
}
}
void main()
{
int number[MAX] = {0};
srand(time(NULL));
printf("排序前:");
for(int i = 0; i < MAX; i++) {
number[i] = rand() % 100;
printf("%d ", number[i]);
cout<<endl;
}
quicksort(number,0,9);
printf("排序后:");
for(int j = 0; j < MAX; j++) {
printf("%d ", number[j]);
}
}
(3)编写程序实现循环赛日程表。

#define MAXN 64
/*日程表数组*/
#include <>
#include <>
#define MAX 32
int a[MAX][MAX];
void Copy(int tox, int toy, int fromx, int fromy, int n)
{ int i, j;
for (i=0; i<n; i++)
{ for (j=0; j<n; j++) a[tox + i][toy + j] = a[fromx + i][fromy + j];
}
}
void Table(int k, int a[][MAX])
{ int i, n = 1 << k; int r;
for (i=0; i<n; i++)
a[0][i] = i + 1;
for (r=1; r<n; r<<=1)
{ for (i=0; i<n; i+=2*r)
{ Copy(r, i + r, 0, i, r);
Copy(r, i, 0, i + r, r);
}
}
}
void Out(int a[][MAX], int n)
{ int i, j;
for (i=0; i<n; i++)
{ for (j=0; j<n; j++) printf("%3d", a[i][j]);
printf("\n");
}
printf("\n");
getch();
}
int main()
{ int i;
for (i=0; i<5; i++)
{ int len = 1 << i; Table(i, a); Out(a, len);
}
return 0;
}
六试验结果及分析
分治策略对于解决排序,循环日赛表起着很优越的作用,应该熟练掌握归并排序和快速排序。

而且应该认真搞懂递归的思想。

相关文档
最新文档