最新2020人教版八年级数学下册期末试卷

合集下载

2020人教版八年级下册数学《期末考试试题》(带答案)

2020人教版八年级下册数学《期末考试试题》(带答案)
(1)求第一次购进该纪念品的进价是多少元?
(2)若该纪念品的两次售价均为9元/个,两次所购纪念品全部售完后,求该商铺两次共盈利多少元?
26.如图,在平面直角坐标系中,点B是反比例函数y= 的图象上任意一点,将点B绕原点O顺时针方向旋转90°到点A.
(1)若点A的坐标为(4,2).
①求k的值;
②在反比例函数y= 的图象上是否存在一点P,使得△AOP是等腰三角形且∠AOP是顶角,若存在,写出点P的坐标;若不存在,请说明理由.
16.如图,矩形OABC的顶点A,C的坐标分别是(4,0)和(0,2),反比例函数y= (x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为________.
17.如图,点A在函数y= (x>0)的图象上,点B在函数y= (x>0)的图象上,点C在x轴上.若AB∥x轴,则△ABC的面积为__.
(1)当A1、D两点重合时,AC=cm;
(2)当A1、D两点不重合时,
①连接A1D,求证:A1D∥BC;
②若以点A1、C、B、D为顶点的四边形是矩形,求AC的长.
答案与解析
一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.
21.先化简[ ﹣ ]÷ ,然后从﹣1,0,1,2中选取一个你认为合适的数作为x的值代入求值.
22.某校开展学生安全知识竞赛.现抽取部分学生的竞赛成绩(满分为100分,得分均为整数)进行统计,绘制了图中两幅不完整的统计图.根据图中信息,回答下列问题:
(1)a=,n=;
(2)补全频数分布直方图;
(3)该校共有2000名学生.若成绩在80分以上的为优秀,请你估计该校成绩优秀的学生人数.

2020年最新人教版八年级(下)期末数学试卷 含解析

2020年最新人教版八年级(下)期末数学试卷 含解析

2020年最新人教版八年级(下)期末数学试卷一、选择题:1.在数﹣,0,1,中,最大的数是()A.B.1 C.0 D.2.若使二次根式在实数范围内有意义,则x的取值范围是()A.x≥3 B.x>3 C.x<3 D.x≤33.若y=kx+2的函数值y随着x的增大而增大,则k的值可能是()A.0 B.1 C.﹣30 D.﹣24.下列数据是2015年5月23日发布的武汉市五个环境监测点PM2.5空气质量指数实时数据:PM2.5指数94 114 96 113 131则这组数据的中位数是()A.94 B.96 C.113 D.113.55.下列计算错误的是()A.3+2=5B.÷2=C.×=D.=6.若Rt△ABC中,∠C=90°,且AB=10,BC=8,则AC的值是()A.5 B.6 C.7 D.87.一次函数y=kx﹣k(k<0)的图象大致是()A.B.C.D.8.如图,在▱ABCD中,对角线AC、BD相交于点O,AC=10,BD=6,AD=4,则▱ABCD的面积是()A.12 B.12C.24 D.309.“校园安全”受到全社会的广泛关注,某校对部分学生及家长就校园安全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图(不完整).根据统计图中的信息,若全校有2050名学生,请你估计对“校园安全”知识达到“非常了解”和“基本了解”的学生人数为()第8题图A.1330 B.1350 C.1682 D.185010.如图,点E是正方形ABCD的边BC延长线一点,连接AE交CD于F,作∠AEG=∠AEB,EG交CD的延长线于G,连接AG,当CE=BC=2时,作FH⊥AG于H,连接DH,则DH的长为()A.2﹣B.C.D.二、填空题11.(﹣)2=.12.将直线y=2x+1向下平移2个单位,所得直线的表达式是.13.某地冬季一周的气温走势如下表所示,那么这一周的平均气温为℃.温度﹣1℃1℃2℃3℃4℃天数 1 2 1 1 214.菱形ABCD的对角线AC、BD交于点O,AC=6cm,BD=8cm,点E是边BC的中点,连接OE,则OE= cm.第14题图第15题图第16题图15.某渔船计划从码头出发到指定海域捕鱼,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该渔船加快速度仍匀速前进,结果恰好准点到达,如图是该渔船行驶的路程y(海里)与所用时间t(小时)的函数图象,则该渔船从码头到捕鱼海域的路程是海里.16.如图,在等腰三角形ABC中,AB=AC,∠A=80°,BC=12,点D、E分别在边AB、AC上,且DA=DE=EC,则EC=.17.计算:(1)3(2-3)-24-|6-3|.18.如图,直线y=kx+b经过A(0,﹣3)和B(﹣3,0)两点.(1)求k、b的值;(2)求不等式kx+b<0的解集.19.已知:如图,在▱ABCD中,点E,F分别在AB和CD,BE=DF.求证:四边形DEBF是平行四边形.20.为了解某校学生的身高情况,随机抽取该校若干名学生测量他们的身高,已知抽取的学生中,男生、女生的人数相同,利用所得数据绘制如下统计图表:请根据以上图表提供的信息,解答下列问题:(1)在女生身高频数分布表中:a=,b=,c=;(2)补全男生身高频数分布直方图;(3)已知该校共有女生400人,男生380人,请估计身高在165≤x<170之间的学生约有多少人.21.如图,已知函数y=﹣的图象与x轴、y轴分别交于点A、B,与函数y=x的交于点E,点E的横坐标为3.(1)求点A的坐标;(2)在x轴上有一点F(a,0),过点F作x轴的垂线,分别交函数y=﹣和y=x的图象于点C、D,若以点B、O、C、D为顶点的四边形为平行四边形,求a的值.22.A、B两个水果市场各有荔枝13吨,现从A、B向甲、乙两地运送荔枝,其中甲地需要荔枝14吨,乙地需要荔枝12吨,从A到甲地的运费为50元/吨,到乙地的运费为30元/吨,从B到甲地的运费为60元/吨,到乙地的运费为45元/吨.。

2020人教版数学八年级下册《期末考试试卷》附答案

2020人教版数学八年级下册《期末考试试卷》附答案

人 教 版 数 学 八 年 级 下 学 期期 末 测 试 卷一、选择题(每小题3分)1.若代数式12x x +-在实数范围内有意义,则实数x 的取值范围是( )A. x≥2B. x≠2C. x=﹣1D. x=22.如图,等腰三角形ABC 中,AB=AC ,BD 是AC 边上的高,若∠A=36°,则∠DBC 的大小是( )A. 18°B. 36°C. 54°D. 72°3.已知一个不等式组的解集如图所示,则以下各数是该不等式组的解的是( )A. ﹣5B. 2C. 3D. 4 4.将点P (2,1)沿x 轴方向向左平移3个单位,再沿y 轴方向向上平移2个单位,所得的点的坐标是()A. (5,﹣1)B. (﹣1,﹣1)C. (﹣1,3)D. (5,3) 5.将分式方程2322xx x -=--化为整式方程,正确的是( ) A. x ﹣2=3B. x+2=3C. x ﹣2=3(x ﹣2)D. x+2=3(x ﹣2) 6.已知正多边形的每个内角均为108°,则这个正多边形的边数为( )A 3 B. 4 C. 5 D. 67.如图,已知AB=DC ,下列所给的条件不能证明△ABC≌△DCB 的是( )A. ∠A=∠D=90°B. ∠ABC=∠DCBC. ∠ACB=∠DBCD. AC=BD8. 下列各式中能用完全平方公式进行因式分解的是【】A. x2+x+1B. x2+2x﹣1C. x2﹣1D. x2﹣6x+99.如图,已知四边形ABCD的对角线AC⊥BD,则顺次连接四边形ABCD各边中点所得的四边形是()A. 矩形B. 菱形C. 正方形D. 平行四边形10.如图,点A,B在直线l的同侧,若要用尺规在直线l上确定一点P,使得AP+BP最短,则下列作图正确的是()A. B. C.D.二、填空题(每小题2分)11.口ABCD中,若∠A+∠C=100°,则∠B=_______.12.因式分24ax a= .13.直角三角形两锐角互余的逆命题是_____________.14.若矩形的面积为a2+ab,宽为a,则长为_____.15.如图是3×4正方形网格,其中已有5各小方格涂上阴影,若再选取标有①,②,③,④中的一个小方格涂上阴影,使图中所有涂上阴影的小方格组成一个中心对称图形,则该小方格是_____.(填序号)16.如图,已知等边△ABC,AB=6,点D在AB上,点F在AC的延长线上,BD=CF,DF交BC于点P,作DE⊥BC 与点E,则EP的长是_____.三、解答题17.化简并求值:2x+221x111xx x--÷+--,其中x=﹣3.18.如图,已知▱ABCD,AB>AD,分别以点A,C为圆心,以AD,CB长为半径作弧,交AB,CD于点E,F,连接AF,CE.求证:AF=CE.19.解不等式组240{113xxx-≤-+<并将解集在数轴上表示出来.20.如图,已知△ABC,AB=AC,AD是△ABC的角平分线,EF垂直平分AC,分别交AC,AD,AB于点E,M,F.若∠CAD=20°,求∠MCD的度数.21.如图,已知菱形ABCD,AB=5,对角线BD=8,作AE⊥BC于点E,CF⊥AD于点F,连接EF,求EF的长.22.为响应“足球进校园”的号召,某校到商场购买甲、乙两种足球,购买甲种足球共花费1600元,乙种足球共花费1200元.已知甲种足球的单价是乙种足球单价的2倍,且购买甲种足球的数量比乙种足球少10个.(1)设乙种足球的单价为x元,用含x的代数式表示下表中相关的量品种购买个数单价总价甲种足球乙种足球1200xx 1200(2)列方程求乙种足球的单价.23.课堂上,老师给出了如下一道探究题:“如图,在边长为1的正方形组成的6×8的方格中,△ABC和△A1B1C1的顶点都在格点上,且△ABC≌△A1B1C1.请利用平移或旋转变换,设计一种方案,使得△ABC通过一次或两次变换后与△A1B1C1完全重合.”(1)小明的方案是:“先将△ABC向右平移两个单位得到△A2B2C2,再通过旋转得到△A1B1C1”.请根据小明的方案画出△A2B2C2,并描述旋转过程;(2)小红通过研究发现,△ABC只要通过一次旋转就能得到△A1B1C1.请在图中标出小红方案中的旋转中心P,并简要说明你是如何确定的.24.甲、乙两人利用不同的交通工具,沿同一路线分别从A、B两地同时出发匀速前往C地(B在A、C两地的途中).设甲、乙两车距A地的路程分别为y甲、y乙(千米),行驶的时间为x(小时),y甲、y乙与x之间的函数图象如图所示.(1)直接写出y 甲、y 乙与x 之间的函数表达式;(2)如图,过点(1,0)作x 轴的垂线,分别交y 甲、y 乙的图象于点M ,N .求线段MN 的长,并解释线段MN 的实际意义;(3)在乙行驶的过程中,当甲、乙两人距A 地的路程差小于30千米时,求x 的取值范围.25.(1)观察发现:如图1,已知Rt△ABC,∠ABC=90°,分别以AB ,BC 为边,向外作正方形ABDE 和正方形BCFG ,连接DG .若M 是DG 的中点,不难发现:BM=12AC . 请完善下面证明思路:①先根据 ,证明BM=12DG ;②再证明 ,得到DG=AC ;所以BM=12AC ; (2)数学思考:若将上题的条件改为:“已知Rt△ABC,∠ABC=90°,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACHI ,N 是EI 的中点”,则相应的结论“AN =12BC”成立吗? 小颖通过添加如图2所示的辅助线验证了结论的正确性.请写出小颖所添加的辅助线的作法,并由此证明该结论; (3)拓展延伸:如图3,已知等腰△ABC 和等腰△ADE,AB=AC ,AD=AE .连接BE ,CD ,若P 是CD 的中点,探索:当∠BAC 与∠DAE 满足什么条件时,AP=12BE ,并简要说明证明思路.答案与解析一、选择题(每小题3分)1.若代数式12xx+-在实数范围内有意义,则实数x的取值范围是()A. x≥2B. x≠2C. x=﹣1D. x=2 【答案】B【解析】∵代数式12xx+-实数范围内有意义,∴x-2≠0,即x≠2.故选B.2.如图,等腰三角形ABC中,AB=AC,BD是AC边上的高,若∠A=36°,则∠DBC的大小是()A. 18°B. 36°C. 54°D. 72°【答案】A【解析】∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°-72°=18°.故选A.3.已知一个不等式组的解集如图所示,则以下各数是该不等式组的解的是()A. ﹣5B. 2C. 3D. 4【答案】B【解析】由题意,得-2≤x<3,故选B.4.将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是()A. (5,﹣1)B. (﹣1,﹣1)C. (﹣1,3)D. (5,3)【答案】C【解析】将点P(2,1,)向上平移2个单位再向左平移3个单位得到点P′,∴2-3=-1,1+2=3,∴P′(-1,3),故选C.5.将分式方程2322xx x-=--化为整式方程,正确的是()A. x﹣2=3B. x+2=3C. x﹣2=3(x﹣2)D. x+2=3(x﹣2)【答案】D【解析】去分母得:x+2=3(x-2),故选D.6.已知正多边形的每个内角均为108°,则这个正多边形的边数为()A. 3B. 4C. 5D. 6【答案】C【解析】∵多边形的每一个内角都等于108°,多边形的内角与外角互为邻补角,∴每个外角是72度,∴多边形中外角的个数是360÷72=5,则多边形的边数是5.故选C.7.如图,已知AB=DC,下列所给的条件不能证明△ABC≌△DCB的是()A. ∠A=∠D=90°B. ∠ABC=∠DCBC. ∠ACB=∠DBCD. AC=BD【答案】C【解析】解:AB=DC,BC为△ABC和△DCB的公共边,A、∠A=∠D=90°满足“HL”,能证明△ABC≌△DCB;B、∠ABC=∠DCB满足“边角边”,能证明△ABC≌△DCB;C、∠ACB=∠DBC满足“边边角”,不能证明△ABC≌△DCB;D、AC=BD满足“边边边”,能证明△ABC≌△DCB.故选C.8. 下列各式中能用完全平方公式进行因式分解的是【】A. x2+x+1B. x2+2x﹣1C. x2﹣1D. x2﹣6x+9【答案】D【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:A、x2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C、x2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D、x2﹣6x+9=(x﹣3)2,故选项正确.故选D.9.如图,已知四边形ABCD的对角线AC⊥BD,则顺次连接四边形ABCD各边中点所得的四边形是()A. 矩形B. 菱形C. 正方形D. 平行四边形【答案】A【解析】试题分析:如图:∵E、F、G、H分别是边AD、AB、BC、CD的中点,∴EF∥BD,GH∥BD,EF=12BD,GH=12BD,EH=12AC,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形,∵AC=BD,EF=12BD,EH=12AC,∴EF=EH,∴平行四边形EFGH是菱形.故选B.考点:1.三角形中位线定理;2.菱形的判定.10.如图,点A,B在直线l的同侧,若要用尺规在直线l上确定一点P,使得AP+BP最短,则下列作图正确的是()A. B. C.D.【答案】C【解析】根据对称的性质以及两点之间线段最短可知选项C 是正确的.故选C .二、填空题(每小题2分)11.在口ABCD 中,若∠A+∠C=100°,则∠B=_______.【答案】130o【解析】【详解】解:如图所示:∵四边形ABCD 是平行四边形,∴∠A=∠C ,AD ∥BC ,∵∠A+∠C=100°,∴∠A=∠C=50°,∵AD ∥BC ,∴∠B=180°-∠A=130°.故答案是: 130°.12.因式分24ax a -= .【答案】(2)(2)a x x +-.【解析】【详解】试题分析:原式=2(4)(2)(2)a x a x x -=+-.故答案为(2)(2)a x x +-.考点:提公因式法与公式法的综合运用.13.直角三角形两锐角互余的逆命题是_____________.【答案】如果在一个三角形中两内角互余,那么这个三角形为直角三角形【解析】【分析】将原命题的条件与结论互换即可得到逆命题.【详解】解:原命题可改写成如果有一个三角形是直角三角形,那么这个三角形的两锐角互余,将条件与结论互换可得其逆命题为如果在一个三角形中两内角互余,那么这个三角形为直角三角形.故答案为:如果在一个三角形中两内角互余,那么这个三角形为直角三角形【点睛】本题考查了逆命题,熟练掌握逆命题与原命题的关系是解题的关键.14.若矩形的面积为a 2+ab ,宽为a ,则长为_____.【答案】a+b【解析】2a ab a b a+=+ 故答案是:a+b.15.如图是3×4正方形网格,其中已有5各小方格涂上阴影,若再选取标有①,②,③,④中的一个小方格涂上阴影,使图中所有涂上阴影的小方格组成一个中心对称图形,则该小方格是_____.(填序号)【答案】④【解析】解:若标有①的一个小方格涂上阴影,则图中所有涂上阴影的小方格组成的图形不是中心对称图形; 若标有②的一个小方格涂上阴影,则图中所有涂上阴影的小方格组成一个轴对称图形;若标有③的一个小方格涂上阴影,则图中所有涂上阴影的小方格组成一个轴对称图形;若标有④的一个小方格涂上阴影,则图中所有涂上阴影的小方格组成一个中心对称图形;故答案是:④.16.如图,已知等边△ABC,AB=6,点D 在AB 上,点F 在AC 的延长线上,BD=CF ,DF 交BC 于点P ,作DE⊥BC 与点E ,则EP 的长是_____.【答案】3【解析】如图,过点D 作DH ∥AC 交BC 于H ,∵△ABC 是等边三角形,∴△BDH 也是等边三角形,∴BD=HD ,∵BD=CF ,∴HD=CF ,∵DH ∥AC ,∴∠PCF=∠PHD ,在△PCF 和△PHD 中,PCF PHD CPF HPD HD CF ∠∠⎧⎪∠∠⎨⎪⎩===∴△PCF ≌△PHD (AAS ),∴PC=PH ,∵△BDH 是等边三角形,DE ⊥BC ,∴BE=EH ,∴EP=EH+HP=12BC ,∵等边△ABC ,AB=6,∴EP=12╳6=3. 故答案是:3.三、解答题17.化简并求值:2x+221x 111x x x --÷+--,其中x=﹣3. 【答案】2.【解析】试题分析:先将2x+221x 111x x x --÷+--进行化简,再将x 的值代入即可; 试题解析:原式=﹣•(x ﹣1)==, 当x=﹣3时,原式=﹣2.18.如图,已知▱ABCD ,AB >AD ,分别以点A ,C 为圆心,以AD ,CB 长为半径作弧,交AB ,CD 于点E ,F ,连接AF ,CE .求证:AF=CE .【答案】证明见解析【解析】试题分析:根据平行四边形的性质和已知条件得出AE=CF ,AE ∥CF ,证出四边形AECF 是平行四边形,即可得出AF=CE .试题解析:∵四边形ABCD 是平行四边形,∴AB∥CD,AD=BC ,根据题意得:AE=AD ,CF=BC ,∴AE=CF,又∵AE∥CF,∴四边形AECF 是平行四边形,∴AF=CE.19.解不等式组240{113xxx-≤-+<并将解集在数轴上表示出来.【答案】1<x≤2.【解析】【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【详解】240113xxx-⎧⎪⎨-+<⎪⎩①②…,由①得,x≤2,由②得,x>1,故不等式组的解集为:1<x≤2.在数轴上表示为:.20.如图,已知△ABC,AB=AC,AD是△ABC的角平分线,EF垂直平分AC,分别交AC,AD,AB于点E,M,F.若∠CAD=20°,求∠MCD的度数.【答案】50°【解析】试题分析:根据等腰三角形的性质得到AD⊥BC,根据三角形的内角和得到∠ACD=70°,根据线段垂直平分线的性质得到∠ACM=∠CAD=20°,于是得到结论.试题解析:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∵∠CAD=20°,∴∠ACD=70°,∵EF垂直平分AC,∴AM=CM,∴∠ACM=∠CAD=20°,∴∠MCD=50°.21.如图,已知菱形ABCD,AB=5,对角线BD=8,作AE⊥BC于点E,CF⊥AD于点F,连接EF,求EF的长.【答案】6.【解析】试题分析:连接AC交EF于点O,根据菱形的性质通过勾股定理可求出AC的长度,再由AE⊥BC于点E、CF⊥AD于点F,可得出四边形AECF为平行四边形,根据平行四边形的性质,即可得出EF=AC=6,此题得解.试题解析:连接AC交EF于点O,如图所示.∵四边形ABCD为菱形,AB=5、BD=8,∴AC与BD互相垂直平分,∴BO=4,AO==3,∴AC=6.∵AE⊥BC于点E,CF⊥AD于点F,四边形ABCD为菱形,∴AE∥CF,且AE=CF,∴四边形AECF为平行四边形,∴EF=AC=6.∴EF的长度为6.22.为响应“足球进校园”的号召,某校到商场购买甲、乙两种足球,购买甲种足球共花费1600元,乙种足球共花费1200元.已知甲种足球的单价是乙种足球单价的2倍,且购买甲种足球的数量比乙种足球少10个.(1)设乙种足球的单价为x元,用含x的代数式表示下表中相关的量品种购买个数单价总价甲种足球乙种足球1200xx 1200(2)列方程求乙种足球的单价.【答案】(1)填表见解析;(2)乙种足球的单价为40元.【解析】试题分析:(1)根据已知分别表示出甲种足球的单价与购买个数;(2)利用两种足球的个数得出等式进而求出答案.试题解析:(1)设乙种足球的单价为x元,用含x的代数式表示下表中相关的量品种购买个数单价总价甲种足球﹣10 2x 1600乙种足球x 1200(2)由(1)可得:=+10,解得:x=40,经检验得:x=40是原方程的根,答:乙种足球的单价为40元.23.课堂上,老师给出了如下一道探究题:“如图,在边长为1的正方形组成的6×8的方格中,△ABC和△A1B1C1的顶点都在格点上,且△ABC≌△A1B1C1.请利用平移或旋转变换,设计一种方案,使得△ABC通过一次或两次变换后与△A1B1C1完全重合.”(1)小明的方案是:“先将△ABC向右平移两个单位得到△A2B2C2,再通过旋转得到△A1B1C1”.请根据小明的方案画出△A2B2C2,并描述旋转过程;(2)小红通过研究发现,△ABC只要通过一次旋转就能得到△A1B1C1.请在图中标出小红方案中的旋转中心P,并简要说明你是如何确定的.【答案】(1)作图见解析;(2)作图见解析.【解析】试题分析:(1)根据平移的方向和距离,即可得到△A2B2C2,将△A2B2C2绕着点B1顺时针旋转90°,即可得到△A1B1C1.(2)连接CC1,BB1,作CC1的垂直平分线,BB1的垂直平分线,交于点P,根据对应点到旋转中心的距离相等,即可得到点P即为旋转中心.试题解析:(1)如图所示,△A2B2C2即为所求,将△A2B2C2绕着点B1顺时针旋转90°,即可得到△A1B1C1.(2)如图所示,连接CC1,BB1,作CC1的垂直平分线,BB1的垂直平分线,交于点P,则点P即为旋转中心.24.甲、乙两人利用不同的交通工具,沿同一路线分别从A、B两地同时出发匀速前往C地(B在A、C两地的途中).设甲、乙两车距A 地的路程分别为y 甲、y 乙(千米),行驶的时间为x (小时),y 甲、y 乙与x 之间的函数图象如图所示.(1)直接写出y 甲、y 乙与x 之间的函数表达式;(2)如图,过点(1,0)作x 轴的垂线,分别交y 甲、y 乙的图象于点M ,N .求线段MN 的长,并解释线段MN 的实际意义;(3)在乙行驶的过程中,当甲、乙两人距A 地的路程差小于30千米时,求x 的取值范围.【答案】(1)y 甲=60x ;y 乙=40x+60;(2)表示甲、乙两人出发1小时后,他们相距40千米;(3)在乙行驶的过程中,当甲、乙两人距A 地的路程差小于30千米时,x 的取值范围是1.5<x <4.5或5.25<x≤6.【解析】【详解】试题分析:(1)利用待定系数法即可求出y 甲、y 乙与x 之间的函数表达式;(2)把x=1代入(1)中的函数解析式,分别求出对应的y 甲、y 乙的值,则线段MN 的长=y 乙-y 甲,进而解释线段MN 的实际意义; (3)分三种情况进行讨论:①0<x≤3;②3<x≤5;③5<x≤6.分别根据甲、乙两人距A 地的路程差小于30千米列出不等式,解不等式即可.试题解析:(1)设y 甲=kx ,把(3,180)代入,得3k=180,解得k=60,则y 甲=60x ;设y 乙=mx+n ,把(0,60),(3,180)代入,得603180n m n =⎧⎨+=⎩ ,解得4060m n =⎧⎨=⎩, 则y 乙=40x+60;(2)当x=1时,y 甲=60x=60,y 乙=40x+60=100,则MN=100﹣60=40(千米),线段MN 的实际意义:表示甲、乙两人出发1小时后,他们相距40千米;(3)分三种情况:①当0<x≤3时,(40x+60)﹣60x <30,解得x >1.5;②当3<x≤5时,60x ﹣(40x+60)<30,解得x <4.5;③当5<x≤6时,300﹣(40x+60)<30,解得x >5.25.综上所述,在乙行驶的过程中,当甲、乙两人距A 地的路程差小于30千米时,x 的取值范围是1.5<x <4.5或5.25<x≤6.25.(1)观察发现:如图1,已知Rt△ABC,∠ABC=90°,分别以AB ,BC 为边,向外作正方形ABDE 和正方形BCFG ,连接DG .若M 是DG 的中点,不难发现:BM=12AC . 请完善下面证明思路:①先根据 ,证明BM=12DG ;②再证明 ,得到DG=AC ;所以BM=12AC ; (2)数学思考:若将上题的条件改为:“已知Rt△ABC,∠ABC=90°,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACHI ,N 是EI 的中点”,则相应的结论“AN=12BC”成立吗? 小颖通过添加如图2所示的辅助线验证了结论的正确性.请写出小颖所添加的辅助线的作法,并由此证明该结论;(3)拓展延伸:如图3,已知等腰△ABC 和等腰△ADE,AB=AC ,AD=AE .连接BE ,CD ,若P 是CD 的中点,探索:当∠BAC 与∠DAE 满足什么条件时,AP=12BE ,并简要说明证明思路.【答案】(1)直角三角形斜边上的中线等于斜边的一半,△BDG≌△BAC;(2)能,理由见解析;(3)当∠BAC=∠DAE=90°时,AP=12BE , 【解析】 试题分析:(1)根据题意即可得到结论;(2)过I 作IK ⊥EA 交EA 的延长线于K ,根据平角的定义得到∠BAC=∠IAK ,根据全等三角形的性质得到BC=IK ,AB=AK ,等量代换得到AE=AI ,推出AN 是△EKI 的中位线,于是得到结论.(3)延长BA 到F ,使AF=AB ,连接EF ,过A 作AG ∥BE ,根据三角形中位线的性质得到AG=12 BE ,根据全等三角形的性质得到∠ADC=∠AEF ,EF=CD ,根据全等三角形的性质即可得到结论. 试题解析:(1)①直角三角形斜边上的中线等于斜边的一半,②△BDG≌△BAC;故答案为直角三角形斜边上的中线等于斜边的一半,△BDG≌△BAC;(2)能,理由:过I 作IK⊥EA 交EA 的延长线于K ,∵∠EAI+∠BAC=360°﹣90°﹣90°=180°,∠EAI+∠TAK=180°,∵∠BAC=∠IAK,在△ABC 与△AKI 中,, ∴△ABC≌△AKI,∴BC=IK,AB=AK ,∵AE=AB, ∴AE=AI,∵N 是EI 的中点,∴AN 是△EKI 的中位线,∴AN=IK ,∴AN=BC ;(3)当∠BAC=∠DAE=90°时,AP=BE ,延长BA 到F ,使AF=AB ,连接EF ,过A 作AG∥BE,∴EG=EF ,∴AG=BE ,∵∠BAC=∠DAE=90°,∴∠CAD=180°﹣∠BAE,∵∠FAE=180°﹣BAE ,∴∠CAD=∠FAE,在△A CD与△AFE中,,∴△ACD≌△FAE,∴∠ADC=∠AEF,EF=CD,∵P是CD的中点,∴DP=CD,∴EG=DP,在△ADP与△AEG中,,∴△ADP≌△AEG,∴AP=AG,∴AP=BE.。

2020年人教版八年级下学期数学期末测试题 (含答案)

2020年人教版八年级下学期数学期末测试题 (含答案)

人教版八年级下册数学期末测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________ 注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 12 小题,每题 3 分,共计36分)1. 下列计算正确的是()=1 B.√4−√3=1 C.√6÷√3=2 D.√4=±2A.√2√22. 函数y=√x−3中,自变量x的取值范围是()A.x<0B.x≥0C.x≥3D.x<33. 关于一次函数y=−2x+3,下列结论正确的是()A.图象过点(1, −1)B.图象经过一、二、三象限时,y<0C.y随x的增大而增大D.当x>324. 下列说法不正确的有()①三内角之比是1:2:3的三角形是直角三角形;②三内角之比为3:4:5的三角形是直角三角形;③三边之比是3:4:5的三角形是直角三角形;④三边a,b,c满足关系式a2−b2=c2的三角形是直角三角形.A.1个B.2个C.3个D.4个5. 如图,菱形ABCD的对角线AC,BD的长分别为6和8,则这个菱形的周长是( )A.20B.24C.40D.486. 已知一次函数y=kx−m−2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<07. 已知△ABC的三边之长分别为a,1,3,则化简|9−2a|−√9−12a+4a2的结果是( )A.12−4aB.4a−12C.12D.−128. 某校给足球队的十一位运动员每人购买了一双运动鞋.尺码及购买数量如下表:则这十一双运动鞋尺码的众数和中位数分别为()A.40,41B.41,41C.41,42D.42,439. 某班同学在探究弹簧长度跟外力的关系变化时,实验记录得到的数据如表:则y关于x的函数图象是()A. B.C. D.10. 下列命题中:①对角线互相平分的四边形是平行四边形;②对角线相等的四边形是矩形;③一组对角相等,一组对边平行的四边形是平行四边形;④对角线平分一组对角的平行四边形是菱形;⑤对角线相等且互相垂直的四边形是正方形.其中正确的命题有()个A.1B.2C.3D.411. 如图,把直线y=−2x向上平移后得到直线AB,直线AB经过点(m, n),且2m+n=6,则直线AB的解析式是()A.y=−2x−3B.y=−2x−6C.y=−2x+3D.y=−2x+612. 如图,已知在△ABC中,∠BAC=90∘,D,E,F分别是△ABC三边的中点,AB=4√5,AC=2√5,则下列判断中不正确的是()A.AE=DFB.S△ADE=10C.四边形ADEF是矩形D.CE=5卷II(非选择题)二、填空题(本题共计 6 小题,每题 3 分,共计18分)=________.13. 计算:2√8÷√1214. 如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影拼成一个正方形,那么新正方形的边长是________.,a⋆b=ab−b2.15. 规定a#b=√a⋅√b+√ab(1)3#5=________;(2)2⋆(√3−1)=________.16. 如图所示,在格点图中,以格点A、B、C、D、E、F为顶点,你能画出________个平行四边形.并在图中画出来________.17.如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则▱ABCD的面积是________,DC边上的高AF的长是________.的图象相交于A,C两点,AB⊥x 18.如图,正比例函数y=x与反比例函数y=1x轴于B,CD⊥x轴于D,则四边形ABCD的面积为________.三、解答题(本题共计 8 小题,共计66分)19.(6分) 计算下列各小题.(1)√27√3−√8×√23(2)√12−√6÷√2+(1−√3)2.20.(6分) 若a,b,c满足的关系是√2a−5b+5+c+√3a−3b−c=√5−a+b+√a−b−5.求:(1)a,b,c的值;(2)√a−b⋅√c的值.x+2与x轴交于点A,与y轴交于点B,直线l2:y=−2x+ 21.(8分) 已知直线l1:y=12b经过点B且与x轴交于点C.(1)b=________;(答案直接填写在答题卡的横线上)(2)画出直线l2的图象;(3)求△ABC的面积.22.(8分) 甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?23.(8分) 已知:如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AB=1,BC=√5.(1)求平行四边形ABCD的面积S;平行四边形ABCD(2)求对角线BD的长.24.(8分) 如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行。

2020人教版数学八年级下册《期末考试试卷》及答案

2020人教版数学八年级下册《期末考试试卷》及答案
A. B. C. D.
10.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是( )
A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时
C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早 小时
A. 3B. 4C. 19D. 20
8.已知A(﹣ ,y1)、B(﹣ ,y2)、C(1,y3)是一次函数y=﹣3x+b的图象上三点,则y1,y2,y3的大小关系是( )
A. y1<y2<y3B. y2<y1<y3C. y3<y1<y2D. y3<y2<y1
9.如图,正方形 的边长为10, , ,连接 ,则线段 的长为()
人教版数学八年级下学期
期末测试卷
一、选择题
1.计算 的结果为()
A.2B.-4C.4D.±4
2.若二次根式 有意义,则a的取值范围是()
A. a<3B. a>3C. a≤3D. a≠3
3.下列说法正确的是()
A.对角线互相垂直的平行四边形是正方形
B.一组对边平行另一组对边相等的四边形是平行四边形
C.一组对边平行另一组对角相等的四边形是平行四边形
二、填空题
11.某正比例函数图象经过点(1,2),则该函数图象 解析式为___________
12.将直线y=-2x+4向左平移2个单位,得到直线的函数解析式为___________
13.已知一组数据:0,2,x,4,5,这组数据的众数是4,那么这组数据的平均数是_____.
14.一个有进水管和出水管的容器,从某时刻开始4 min内只进水不出水,在随后的8 min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为________________

2020年人教版数学八年级下册《期末考试试题》附答案

2020年人教版数学八年级下册《期末考试试题》附答案

人教版八年级下学期期末测试数 学 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每题2分,共20分)1.函数1x y x +=-的自变量取值范围是( ) A. 0x > B. 0x < C. 0x ≠ D. 1x ≠-2.下列计算正确的是( ) A. 235+= B. 236⨯= C. 2222+= D. 2222÷=3.宁宁所在的班级有42人,某次考试他的成绩是80分,若全班同学的平均分是78分,判断宁宁成绩是否在班级属于中等偏上,还需要了解班级成绩的( )A. 中位数B. 众数C. 加权平均数D. 方差4.等腰三角形的底边和腰长分别是10和12,则底边上的高是( )A. 13B. 8C. 234D. 119 5.下面有四个定理:①平行四边形的两组对边分别相等;②平行四边形的两组对角分别相等;③平行四边形的两组对边分别平行;④平行四边形的对角线互相平分;其逆命题正确的有( )A. 1个B. 2个C. 3个D. 4个6.若b >0,则一次函数y =﹣x +b 的图象大致是( )A. B. C. D. 7.当0,0a b <<a b结果是( ) A. 1ab b B. 1ab b C. 1ab b - D. ab 8.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A. 7.5平方千米B. 15平方千米C. 75平方千米D. 750平方千米 9.如图,在ABCD Y 中,对角线AC ,BD 相交于点O ,点,E F 分别是边,AD AB 的中点,EF 交AC 与点H ,则AH 与CH 的比值是( )A. 23B. 12C. 13D. 1410.如图,在四边形ABCD 中,5,AB AD BC CD ===,且BC AB >,8BD =,给出以下判断:①四边形ABCD 是菱形;②四边形ABCD 的面积1•2S AC BD =;③顺次连接四边形ABCD 的四边中点得到的四边形是正方形;④将ABD ∆沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF CD ⊥时,点F 到直线AB 的距离为768125;其中真确的是( )A. ①③B. ①④C. ②③D. ②④二、填空题(每题2分,共16分)11.直线2y x =向下平移2个单位长度得到的直线是__________.12.1205=__________. 13.矩形ABCD 中,对角线,AC BD 交于点O ,60,3ACB AB ∠=︒=,则AO 的长是__________. 14.如图,在平面直角坐标系中,A (4,0),B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为______.15.数据3,7,6,2-,1的方差是__________.16.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为_______.17.某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元,该商店计划一次性购进两种型号的电脑共100台,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元,则y 关于x 的函数解析式是____________.18.如图,直线34y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为________.三、解答题:(本题共44分)19.(12212462)32(2)当11(75),(75)22x y =+=-时,求代数22x xy y -+的值. 20.如图,在四边形ABCD 中,点,E F 分别对角线AC 上任意两点,且满足AF CE =,连接,DF BE ,若,//DF BE DF BE =.求证:(1)AFD CEB ∆∆≌(2)四边形ABCD 是平行四边形.21.在53⨯的方格纸中,四边形ABCD 的顶点都在格点上.(1)计算图中四边形ABCD 的面积;(2)利用格点画线段DE ,使点E 在格点上,且DE AC ⊥交AC 于点F ,计算DF 的长度.22.某厂为了检验甲、乙两车间生产的同一种零件的直径的合格情况,随机各抽取了10个样品进行检测,已知零件的直径均为整数,整理数据如下:(单位:mm )170~174 175~179 180~184 185~189 甲车间1 3 42 乙车间0 6 2 2(1)分别计算甲、乙两车间生产的零件直径的平均数;(2)直接说出甲、乙两车间生产的零件直径的中位数都在哪个小组内,众数是否在其相应的小组内? (3)若该零件的直径在175~184mm mm 的范围内为合格,甲、乙两车间哪一个车间生产的零件直径合格率高?23.为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图象(其中a ,b ,c 为常数)行驶路程 收费标准调价前调价后 不超过3km 的部分起步价6元 起步价a 元 超过3km 不超出6km 的部分每公里2.1元每公里b 元超出6km 的部分每公里c 元设行驶路程xkm 时,调价前的运价y 1(元),调价后的运价为y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题:(1)填空:a= ,b= ,c= .(2)写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.(3)函数y 1与y 2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.四、综合题:(本题共20分)24.在平面直角坐标系中,点A 的坐标为(4,0)-,点B 在x 轴上,直线2y x a =-+经过点B ,并与y 轴交于点(0,6)C ,直线AD 与BC 相交于点(1,)D n -;(1)求直线AD 的解析式;(2)点P 是线段BD 上一点,过点P 作//PE AB 交AD 于点E ,若四边形AOPE 为平行四边形,求E 点坐标.25.在正方形ABCD中,点E是边CD的中点,点M是对角线AC上的动点,连接ME,过点M作⊥交正方形的边于点F;MF ME(1)当点F在边BC上时,①判断ME与MF的数量关系;∠=∠时,判断点M的位置;②当AEM DFM(2)若正方形的边长为2,请直接写出点F在BC边上时,AM的取值范围.答案与解析一、选择题:(每题2分,共20分)1.函数1x y x +=-的自变量取值范围是( ) A. 0x >B. 0x <C. 0x ≠D. 1x ≠- 【答案】C【解析】【分析】自变量的取值范围必须使分式有意义,即:分母不等于0.【详解】解:当0x ≠时,分式有意义.即1x y x +=-的自变量取值范围是0x ≠. 故答案为C【点睛】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.下列计算正确的是( )==C. 2+=D. 22= 【答案】B【解析】【分析】根据二次根式的运算法则逐一计算可得.【详解】解:A. 2=B. =C.2不能合并,故本选项错误;D. 2=【点睛】本题主要考查二次根式的运算,解题的关键是熟练掌握二次根式的性质和运算法则. 3.宁宁所在的班级有42人,某次考试他的成绩是80分,若全班同学的平均分是78分,判断宁宁成绩是否在班级属于中等偏上,还需要了解班级成绩的()A. 中位数B. 众数C. 加权平均数D. 方差【答案】A【解析】【分析】根据中位数、众数,加权平均数和方差的定义逐一判断可得出答案.【详解】解:A.由中位数的定义可知,宁宁成绩与中位数比较可得出他的成绩是否在班级中等偏上,故本选项正确;B. 由众数的定义可知,众数反映同一个成绩人数最多的情况,故本选项错误;C.由加权平均数的性质可知,平均数会受极端值的影响,故本选项错误;D.由方差的定义可知,方差反映的是数据的稳定情况,故本选项错误.【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.等腰三角形的底边和腰长分别是10和12,则底边上的高是()A. 13B. 8C. 234D. 119【答案】D【解析】【分析】先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度.【详解】解:作底边上的高并设此高的长度为x,由等腰三角形三线合一的性质可得高线平分底边,根据勾股定理得:52+x2=122,解得119【点睛】本题考点:等腰三角形底边上高的性质和勾股定理,等腰三角形底边上的高所在直线为底边的中垂线.然后根据勾股定理即可求出底边上高的长度.5.下面有四个定理:①平行四边形的两组对边分别相等;②平行四边形的两组对角分别相等;③平行四边形的两组对边分别平行;④平行四边形的对角线互相平分;其逆命题正确的有( )A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】分别写出各个命题的逆命题,根据平行四边形的判定定理判断即可.【详解】解:平行四边形的两组对边分别相等的逆命题是两组对边分别相等的四边形是平行四边形,是真命题;平行四边形的两组对角分别相等的逆命题是两组对角分别相等的四边形是平行四边形,是真命题; 平行四边形的两组对边分别平行的逆命题是两组对边分别平行的四边形是平行四边形,是真命题; 平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,是真命题. 故选D【点睛】本题考查的是命题的真假判断和逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.6.若b >0,则一次函数y =﹣x +b 的图象大致是( ) A. B. C. D.【答案】C【解析】分析:根据一次函数的k 、b 的符号确定其经过的象限即可确定答案.详解:∵一次函数y x b =+中100k b =-,,∴一次函数的图象经过一、二、四象限,故选C .点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限; ②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.7.当0,0a b << )B. C. D. 【答案】B【解析】【分析】直接利用二次根式的性质结合a ,b 的符号化简求出答案.【详解】解:当a <0,b <0==故选B .【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.8.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A. 7.5平方千米B. 15平方千米C. 75平方千米D. 750平方千米 【答案】A【解析】分析:直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.详解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形, ∴这块沙田面积为:12×5×500×12×500=7500000(平方米)=7.5(平方千米). 故选A .点睛:此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键.9.如图,在ABCD Y 中,对角线AC ,BD 相交于点O ,点,E F 分别是边,AD AB 的中点,EF 交AC 与点H ,则AH 与CH 的比值是( )A. 23B. 12C. 13D. 14【答案】C【解析】【分析】由四边形ABCD 是平行四边形,可得OA=OC ,又由点E ,F 分别是边AD ,AB 的中点,可得AH :AO=1:2,即可得AH :AC=1:4,继而求得答案.【详解】解:∵四边形ABCD 是平行四边形,∴OA=OC ,∵点E ,F 分别是边AD ,AB 的中点,∴EF ∥BD ,∴△AFH ∽△ABO ,∴AH :AO=AF :AB ,12AH AO ∴= 14AH AC ∴= 13AH HC ∴= 故选C【点睛】此题考查了平行四边形的性质、三角形中位线的性质以及相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.10.如图,在四边形ABCD 中,5,AB AD BC CD ===,且BC AB >,8BD =,给出以下判断:①四边形ABCD 是菱形;②四边形ABCD 的面积1•2S AC BD =;③顺次连接四边形ABCD 的四边中点得到的四边形是正方形;④将ABD ∆沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF CD ⊥时,点F 到直线AB 的距离为768125;其中真确的是( )A. ①③B. ①④C. ②③D. ②④【答案】D【解析】【分析】 根据BC AB >可判定①错误;根据AB=AD ,BC=CD ,可推出AC 是线段BD 的垂直平分线,可得②正确;现有条件不足以推出中点四边形是正方形,故③错误;连接AF ,设点F 到直线AB 的距离为h ,作出图形,求出h 的值,可知④正确.可得正确选项.【详解】解:∵在四边形ABCD 中,BC AB >∴四边形ABCD 不可能是菱形,故①错误;∵在四边形ABCD 中,AB=AD=5,BC=CD ,∴AC 是线段BD 的垂直平分线,∴四边形ABCD 的面积1•2S AC BD =,故②正确; 由已知得顺次连接四边形ABCD 的四边中点得到的四边形是矩形,不是正方形,故③错误;将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,如图所示,连接AF ,设点F 到直线AB 的距离为h ,由折叠可得,四边形ABED 是菱形,AB=BE=5=AD=DE ,BO=DO=4,∴AO=EO=3,1122BDE S BD OE BE DF ∆=⨯⨯=⨯⨯Q 245BD EO DF BE ⨯∴==∵BF⊥CD,BF∥AD,7,5AD CD EF∴⊥==∵S△ABF=S梯形ABFD-S△ADF,117241245555225525h⎛⎫∴⨯=++⨯-⨯⨯⎪⎝⎭解得768125h=,故④正确故选D【点睛】本题主要考查了菱形的判定与性质,线段垂直平分线的性质以及勾股定理的综合运用,第④个稍复杂一些,解决问题的关键是作出正确的图形进行计算.二、填空题(每题2分,共16分)11.直线2y x=向下平移2个单位长度得到的直线是__________.【答案】22y x=-【解析】【分析】根据一次函数图象几何变换的规律得到直线y=2x向下平移2个单位得到的函数解析式为y=2x-2.【详解】解:直线y=2x向下平移2个单位得到的函数解析式为y=2x-2故答案为y=2x-2【点睛】本题考查了一次函数图象几何变换规律:一次函数y=kx(k≠0)的图象为直线,直线平移时k值不变,当直线向上平移m(m为正数)个单位,则平移后直线的解析式为y=kx+m.当直线向下平移m(m为正数)个单位,则平移后直线的解析式为y=kx-m.12.=__________.【解析】【分析】先把每个二次根式化简,然后合并同类二次根式即可.【详解】解:原式=955【点睛】本题考查了二次根式的化简和运算,熟练掌握计算法则是关键.13.矩形ABCD 中,对角线,AC BD 交于点O ,60,3ACB AB ∠=︒=,则AO 的长是__________.【答案】3【解析】 【分析】根据矩形的对角线互相平分且相等可得OA=OC ,然后由勾股定理列出方程求解得出BC 的长和AC 的长,然后根据矩形的对角线互相平分可得AO 的长. 【详解】解:如图,在矩形ABCD 中,OA=OC ,∵∠AOB=60°,∠ABC=90°∴∠BAC=30°∴AC=2BC设BC=x,则AC=2x∴2223(2)x x +=解得3,则3∴AO=12AC 3 【点睛】本题考查了矩形的对角线互相平分且相等的性质和含30°的直角三角形的性质,以及勾股定理的应用,是基础题.14.如图,在平面直角坐标系中,A (4,0),B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为______.【答案】(﹣1,0)【解析】【分析】根据勾股定理求出AB的长,由AB=AC即可求出C点坐标.【详解】解:∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=2222OA OB+=+=543∴AC=5,∴点C的横坐标为:4-5=-1,纵坐标为:0,∴点C的坐标为(-1,0).故答案为(-1,0).【点睛】本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方.15.数据3,7,6,2-,1的方差是__________.【答案】10.8【解析】【分析】根据平均数的计算公式先求出这组数据的平均数,再根据方差的公式计算即可.【详解】解:这组数据的平均数是:(3+7+6-2+1)÷5=3,则这组数据的方差是:1[(3-3)2+(7-3)2+(6-3)2+(-2-3)2+(1-3)2]=10.85故答案为10.8【点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为_______.34【解析】【分析】 先证明()AEB DFA SAS ∆≅∆,再利用全等角之间关系得出90EGA BGF ∠=∠=︒,再由H 为BF 的中点,又BGF ∆为直角三角形,得出12GH BF =,BCF ∆为直角三角形再利用勾股定理得出BF 即可求解. 【详解】,,90AE DF AB AD BAE ADF Q ==∠=∠=︒,()AEB DFA SAS ∴∆≅∆.∴∠BEA=∠AFD ,又∵∠AFD +∠EAG=90°,∴∠BEA +∠EAG=90°, ∴∠BGF=90°.Q H 为BF 的中点,又BGF ∆为直角三角形,12GH BF ∴=. ∵DF=2,∴CF=5-2=3.∵BCF ∆为直角三角形.∴BF=22CF +BC 225+33413422GH BF ∴==【点睛】本题主要考查全等三角形判定与性质,勾股定理,直角三角形斜边中线等于斜边一半知识点,熟悉掌握是关键.17.某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元,该商店计划一次性购进两种型号的电脑共100台,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元,则y 关于x 的函数解析式是____________.【答案】10050000y x =-+【解析】【分析】根据“总利润=A 型电脑每台利润×A 电脑数量+B 型电脑每台利润×B 电脑数量”可得函数解析式. 【详解】解:根据题意,y=400x+500(100-x )=-100x+50000;故答案为10050000y x =-+【点睛】本题主要考查了一次函数的应用,解题的关键是根据总利润与销售数量的数量关系列出关系式. 18.如图,直线34y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为________.【答案】3【解析】分析】根据直线于坐标轴交点的坐标特点得出,A,B 两点的坐标,得出OB ,OA 的长,根据C 是OB 的中点,从而得出OC 的长,根据菱形的性质得出DE=OC=2;DE ∥OC ;设出D 点的坐标,进而得出E 点的坐标,从而得出EF,OF 的长,在Rt △OEF 中利用勾股定理建立关于x 的方程,求解得出x 的值,然后根据三角形的面积公式得出答案.【详解】解: 把x=0代入y = −33x + 4 得出y=4,∴B(0,4);∴OB=4;∵C是OB的中点,∴OC=2,∵四边形OEDC是菱形, ∴DE=OC=2;DE∥OC,把y=0代入y = − 3x + 4 得出x=43,∴A(43,0); ∴OA=43,设D(x,3-x+4) ,∴E(x,- 3x+2),延长DE交OA于点F,∴3在Rt△OEF中利用勾股定理得:2223x+-223x⎛⎫+=⎪⎪⎝⎭,解得:x1=0(舍),x23;∴EF=1,∴S△AOE=12·OA·3故答案为【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(-b k,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx+b .也考查了菱形的性质.三、解答题:(本题共44分)19.(12(2)当1122x y =+=-时,求代数22x xy y -+的值.【答案】(1)8;(2)112【解析】【分析】 (1)根据二次根式的运算法则和完全平方公式计算并化简即可;(2)根据x,y 的数值特点,先求出x+y,xy 的值,再把原式变形代入求值即可.【详解】解:(1)原式=2=(632--g g=8(2)1122x y ==Q , 12x y xy ∴+==, 则222()3x xy y x y xy -+=+-=112故答案为 8;112【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是关键.20.如图,在四边形ABCD 中,点,E F 分别是对角线AC 上任意两点,且满足AF CE =,连接,DF BE ,若,//DF BE DF BE =.求证:(1)AFD CEB ∆∆≌(2)四边形ABCD 是平行四边形.【答案】(1)详见解析;(2)详见解析【解析】【分析】(1)利用两边和它们的夹角对应相等的两三角形全等(SAS ),这一判定定理容易证明△AFD ≌△CEB . (2)由△AFD ≌△CEB ,容易证明AD=BC 且AD ∥BC ,可根据一组对边平行且相等的四边形是平行四边形.【详解】证明:(1) //DF BE Q ,DFA AEB ∴∠=∠又,DF BE AF CE ==Q∴AFD CEB ∆∆≌(SAS ).(2)DFA BEC ∆≅∆Q ,,AD BC DAC ACB ∴=∠=∠//AD BC ∴∴四边形ABCD 是平行四边形【点睛】此题主要考查了全等三角形的判定和平行四边形的判定,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .平行四边形的判定,一组对边平行且相等的四边形是平行四边形.21.在53⨯的方格纸中,四边形ABCD 的顶点都在格点上.(1)计算图中四边形ABCD 的面积;(2)利用格点画线段DE ,使点E 在格点上,且DE AC ⊥交AC 于点F ,计算DF 的长度.【答案】(1)112;(2)7DF 1313= 【解析】【分析】(1)先证明BCD ∆是直角三角形,然后将四边形分为ABD BCD ABCD S S S ∆∆=+四边形可得出四边形的面积; (2)根据格点和勾股定理先作出图形,然后由面积法可求出DF 的值.【详解】解:(1)由图可得5;5;10CD CB BD ===BCD ∴∆是直角三角形ABD BCD ABCD S S S ∆∆∴=+四边形11112355222=⨯⨯+⨯⨯= (2)如图,DE 即为所求作的线段2,ABC S ∆=Q 72ADC S ∆∴=又AC =Q ,且17••22DF AC =,DF ∴= 【点睛】本题考查了勾股定理及其逆定理的应用,考查了复杂作图-作垂线,要求能灵活运用公式求面积和已经面积求高.22.某厂为了检验甲、乙两车间生产的同一种零件的直径的合格情况,随机各抽取了10个样品进行检测,已知零件的直径均为整数,整理数据如下:(单位:mm )(1)分别计算甲、乙两车间生产的零件直径的平均数;(2)直接说出甲、乙两车间生产的零件直径的中位数都在哪个小组内,众数是否在其相应的小组内? (3)若该零件的直径在175~184mm mm 的范围内为合格,甲、乙两车间哪一个车间生产的零件直径合格率高?【答案】(1)=180.5X mm 甲, 180X mm =乙;(2)甲中位数在180-184组,乙中位数在175-179组,众数不一定在相应的小组内;(3)乙车间的合格率高【解析】【分析】(1)根据加权平均数的计算公式直接计算即可;(2)根据中位数、众数的定义得出答案;(3)分别计算两车间的合格率比较即可得出答案.【详解】解:(1)1=[1721177318241872]180.5()10X mm =⨯+⨯+⨯+⨯=甲 1[177618221872]180()10X mm =⨯+⨯+⨯=乙 (2)甲中位数在180-184组,乙中位数在175-179组,众数不一定在相应的小组内(3)甲车间合格率:71070%÷=;乙车间合格率:81080%÷=;∴乙车间的合格率高【点睛】本题考查了数据的分析,考查了加权平均数、中位数、众数等统计量,理解并掌握常用的统计量的定义是解题的关键.23.为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图象(其中a,b,c为常数)行驶路程收费标准调价前调价后不超过3km的部分起步价6元起步价a 元超过3km不超出6km的部分每公里2.1元每公里b元超出6km的部分每公里c元设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:(1)填空:a= ,b= ,c= .(2)写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.(3)函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.【答案】(1)7,1.4,2.1;(2)y1=2.1x﹣0.3;图象见解析;(3)函数y1与y2的图象存在交点(317,9);其意义为当x<317时是方案调价前合算,当x>317时方案调价后合算.【解析】【分析】(1)a由图可直接得出;b、c根据:运价÷路程=单价,代入数值,求出即可;(2)当x>3时,y1与x的关系,由两部分组成,第一部分为起步价6,第二部分为(x﹣3)×2.1,所以,两部分相加,就可得到函数式,并可画出图象;(3)当y 1=y 2时,交点存在,求出x 的值,再代入其中一个式子中,就能得到y 值;y 值的意义就是指运价.【详解】①由图可知,a=7元,b=(11.2﹣7)÷(6﹣3)=1.4元,c=(13.3﹣11.2)÷(7﹣6)=2.1元,故答案为7,1.4,2.1;②由图得,当x >3时,y 1与x 的关系式是:y 1=6+(x ﹣3)×2.1,整理得,y 1=2.1x ﹣0.3,函数图象如图所示:③由图得,当3<x <6时,y 2与x 的关系式是:y 2=7+(x ﹣3)×1.4,整理得,y 2=1.4x+2.8;所以,当y 1=y 2时,交点存在,即,2.1x ﹣0.3=1.4x+2.8,解得,x=317,y=9; 所以,函数y 1与y 2的图象存在交点(317,9); 其意义为当 x<317时是方案调价前合算,当 x>317时方案调价后合算. 【点睛】本题主要考查了一次函数在实际问题中的应用,根据题意中的等量关系建立函数关系式,根据函数解析式求得对应的x 的值,根据解析式作出函数图象,运用数形结合思想等,熟练运用相关知识是解题的关键.四、综合题:(本题共20分)24.在平面直角坐标系中,点A 的坐标为(4,0)-,点B 在x 轴上,直线2y x a =-+经过点B ,并与y 轴交于点(0,6)C ,直线AD 与BC 相交于点(1,)D n -;(1)求直线AD 的解析式;(2)点P 是线段BD 上一点,过点P 作//PE AB 交AD 于点E ,若四边形AOPE 为平行四边形,求E 点坐标.【答案】(1)312y x =+;(2)点E 的坐标为1418,55⎛⎫-⎪⎝⎭ 【解析】【分析】 (1)首先将点C 和点D 的坐标代入解析式求得两点坐标,然后利用待定系数法确定一次函数的解析式即可; (2)由平行四边形的性质得出直线OP 的解析式为3y x =,再联立方程组得到点P 的坐标,进而求出点E 的坐标.【详解】(1)把点C (0,6)代入2y x a =+,得6=0+a6a ∴=即直线BC 的解析式26y x =-+当1x =-时,9y =,∴点D 坐标(1,9)-设直线AD 的解析式为y kx b =+,把,A D 两点代入0491k b k b =-+⎧⎨=-+⎩, 解得312k b =⎧⎨=⎩∴直线AD 的函数解析式:312y x =+(2)Q 四边形AOPE 为平行四边形,//OP AD ∴∴直线OP 的解析式为3y x =,列方程得:326y x y x =⎧⎨=-+⎩, 解得65185xy ⎧=⎪⎪⎨⎪=⎪⎩把185y =代入312y x =+, 得145x =, ∴点E 的坐标为1418,55⎛⎫- ⎪⎝⎭ 【点睛】本题考查了两条直线平行或相交问题,在求两条直线的交点坐标时,常常联立组成方程组,难度不大.25.在正方形ABCD 中,点E 是边CD 的中点,点M 是对角线AC 上的动点,连接ME ,过点M 作MF ME ⊥交正方形的边于点F ;(1)当点F 在边BC 上时,①判断ME 与MF 的数量关系;②当AEM DFM ∠=∠时,判断点M 的位置;(2)若正方形的边长为2,请直接写出点F 在BC 边上时,AM 的取值范围.【答案】(1)①ME MF =,理由详见解析;②点M 位于正方形两条对角线的交点处(或AC 中点出),理由详见解析;(2)23222AM << 【解析】【分析】 (1) ①过点M 作MG CD ⊥于点G ,MH BC ⊥于点H ,通过证,MFH MGE ∆∆≌可得ME=MF ; ②点M 位于正方形两条对角线的交点处时,,AE DF MFD MAE =∆∆≌,可得AEM DFM ∠=∠; (2)当点F 分别在BC 的中点处和端点处时,可得M 的位置,进而得出AM 的取值范围.【详解】解:(1)ME MF =.理由是:过点M 作MG CD ⊥于点G ,MH BC ⊥于点H在正方形ABCD 中,90BCD ∠=︒45,ACD BCA ∠=∠=︒MH HC ∴=∴矩形MHCG 为正方形90,HMG MH MG ∴∠=︒=又,MF MG FMH EMG ⊥∠=∠Q,MFH MGE ∴∆∆≌ ME MF ∴=②点M 位于正方形两条对角线的交点处(或AC 中点处)如图,ME 是ACD ∆的中位线,1,2ME AD ME AD ∴⊥=又ME MF =Q , 此时,F 是BC 中点,且AED CDF ∆∆≌,,AE DF MFD MAE ∴=∆∆≌,AEM DNF ∴∠=∠(2)当点F 在BC 中点时,M 在AC,BD 交点处时,此时AM 最小, AM=12AC= 22; 当点F 与点C 重合时,M 在AC,BD 交点到点C 的中点处,此时AM 最大, AM= 322. 232AM <<【点睛】本题是运动型几何综合题,考查了全等三角形、正方形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)添加恰当的辅助线是解题的关键.。

2020年人教版八年级下册数学《期末考试试卷》含答案

2020年人教版八年级下册数学《期末考试试卷》含答案
【详解】解:可由一组对边平行且相等判定四边形是平行四边形, 可添加AD=BC;因为其一组对边平行,要使其为平行四边形,添加对边相等即可.
故答案为AD=BC,AB∥DC, ∠A=∠C, ∠B=∠D等
【点睛】此题考查了平行四边形的判定,为开放性试题,答案不唯一,要掌握平行四边形的判定方法.两组对边平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.
平均数
方差


3.2
(2)若你是教练,根据以上信息,你会选择谁参加射击比赛,理由是什么?
21. 已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF
求证:四边形BECF是平行四边形.
22.如图,在平面直角坐标系 中,直线 与 轴交于点 ,与双曲线 在第二象限内交于点 (-3, ).
⑴求 和 的值;
16. 如图,已知:在▱ABCD中,AB=AD=2,∠DAB=60°,F AC上一点,E为AB中点.
(1)▱ABCD的周长是;
(2)EF+BF的最小值为.
【答案】(1)8;(2)
【解析】
试题分析:根据平行四边形有一组邻边相等得到四边形ABCD为菱形,然后计算四边形的周长;根据菱形的性质可知点B与点D关于AC对称,从而可知BF=DF,则EF+BF=EF+DF,当点D、F、E共线时,EF+BF有最小值,然后根据等边三角形的性质以及直角三角形的勾股定理得出最小值.
14.在函数y= (m -3)x -2(m是常数)中, y随着x的增大而增大,则m的取值范围是______.
15.如图,已知AD∥BC,要使四边形ABCD为平行四边形,需要添加的一个条件是:____.(填一个你认为正确的条件即可,不再添加任何线段与字母)

人教版2020年八年级下数学期末考试卷(含答案)

人教版2020年八年级下数学期末考试卷(含答案)

人教版2020年八年级下数学期末考试卷(含答案)姓名:_____________。

总分:_____________一、选择题(每小题3分,共30分)1.要使式子有意义,则x的取值范围是()。

A。

x>0.B。

x≥-2.C。

x≥2.D。

x≤22.矩形具有而菱形不具有的性质是()。

A。

两组对边分别平行。

B。

对角线相等。

C。

对角线互相平分。

D。

两组对角分别相等3.下列计算正确的是()。

A。

4×2÷=4.B。

+=-15.C。

4-2×=2.D。

4÷2+=64.根据表中一次函数的自变量x与函数y的对应值,可得p的值为()。

A。

1.B。

-1.C。

3.D。

-3y 3 px -2 15.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()。

工资(元)。

2 000.2 200.2 400.2 600人数(人)。

1 3 4 2A。

2400元、2400元。

B。

2400元、2300元。

C。

2200元、2200元。

D。

2200元、2300元6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()。

A。

AB∥DC,AD∥BC。

B。

AB=DC,AD=BCC。

AO=CO,BO=DO。

D。

AB∥DC,AD=BC7.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()。

A。

24.B。

16.C。

4.D。

28.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD长()。

A。

2.B。

3.C。

4.D。

19.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()。

10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()。

A。

xm。

D。

x>3二、填空题(每小题3分,共24分)11.计算。

2020年人教版八年级下册数学《期末考试试卷》及答案

2020年人教版八年级下册数学《期末考试试卷》及答案
【答案】C
【解析】
【详解】解:A.32+42=52,故是直角三角形,故A选项不符合题意;
B.62+82=102,故是直角三角形,故B选项不符合题意;
C. ,故不是直角三角形,故C选项符合题意;
D.52+122=132,故是直角三角形,故D选项不符合题意.
故选:C.
考点:直角三角形的判定
3.菱形具有而矩形不具有的性质是( )
故选C.
二、填空题
11.函数 中,自变量 的取值范围是_____.
【答案】
【解析】
【分析】
根据被开方式是非负数列式求解即可.
【详解】依题意,得 ,
解得: ,
故答案为 .
【点睛】本题考查了函数自变量 取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
5.下列说法不正确的是()
A. 有两组对边分别平行的四边形是平行四边形
B. 平行四边形的对角线互相平分
C. 平行四边形的对边平行且相等
D. 平行四边形的对角互补,邻角相等
【答案】D
【解析】
A选项:平行四边形的判定定理:有两组对边分别平行的四边形是平行四边形,故本选项正确;
B选项:平行四边形的性质:平行四边形的对角线互相平分,故本选项正确;
A.2B.﹣2C.±2D.任意实数
8.下列说法正确的是()
A. 某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖.
B. 为了解全国中学生的睡眠情况,应该采用普查的方式.

2020年人教版数学八年级下册《期末测试卷》附答案

2020年人教版数学八年级下册《期末测试卷》附答案

人教版八年级下学期期末测试数 学 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题,每小题4分,计40分.每小题只有一个选项是符合题意的) 1.下列平面图形中,是中心对称图形的是( ) A. B. C. D. 2.分式方程341x x =-的解为( ) A. 1x =- B. 3x = C. 3x =- D. 1x =3.如图,,A B 两地被池塘隔开,小明先在直线AB 外选一点C ,然后测量出AC ,BC 的中点,M N ,并测出MN 的长为6.5m .由此,他可以知道A 、B 间的距离为( )A. 7mB. 8mC. 12mD. 13m4.如果一个正多边形的内角和是这个正多边形外角和的2倍,那么这个正多边形是( )A. 等边三角形B. 正四边形C. 正六边形D. 正八边形 5.不等式5x ﹣2>3(x +1)的最小整数解为( )A . 3 B. 2 C. 1D. ﹣2 6.已知2416x mx ++是完全平方式,则m 值为( )A. 2B. 4C. 2±D. 4± 7.如图,在▱ABCD 中,AB 5=,BAD ∠的平分线与DC 交于点E ,BF AE ⊥,BF 与AD 的延长线交于点F ,则BC 等于( )A . 2 B. 2.5 C. 3 D. 3.5 8.如图,在Rt ABC ∆中,AB AC =,90A ∠=︒,BD 是角平分线,DE BC ⊥,垂足为点E .若52CD =,则AD 的长是( )A . 522B. 22C. 52D. 59.一个无人超市仓库的货物搬运工作全部由机器人A 和机器人B 完成,工作记录显示机器人A 比机器人B 每小时多搬运50件货物.机器人A 搬运2000件货物与机器人B 搬运1600件货物所用的时间相等,则机器人A 每小时搬运货物( )A. 250件B. 200件C. 150件D. 100件10.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,15CAD CBD ∠=∠=︒,延长BD 到点E ,使CE CB =,交AC 于点F ,在DE 上取一点G ,使DC DG =,连接CG .有以下结论:①CD 平分ACB ∠;②60CDE ∠=︒;③ACE ∆是等边三角形;④DE AD CD =+,则正确的结论有( )A. 1个B. 2个C. 3个D. 4个二、填空题(共4小题,每小题4分,计16分)11.若代数式25x +在实数范围内有意义,则实数x 的取值范围是__________. 12.因式分解:32-=m n m ____________.13.如图,已知一次函数1x b y =+与一次函数2mx n y =-的图像相交于点P (-2,1),则关于不等式x+b≥mx -n 的解集为_____.14.如图,在平行四边形ABCD 中,连接BD ,且BD CD =,过点A 作AM BD ⊥于点M ,过点D 作DN AB ⊥于点N ,在DB 的延长线上取一点P ,PM DN =,若70BDC ∠=︒,则PAB ∠的度数为____________︒.三、解答题(共8小题,计64分.解答应写出过程)15.化简:2229963a a a a a ⎛⎫-+÷+ ⎪-⎝⎭. 16.如图,已知直线l 和l 上一点P ,用尺规作l 的垂线,使它经过点P .(保留作图痕迹,不写作法)17.解不等式组:31251422x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.18.如图,四边形ABCD 是平行四边形,分别以AB ,CD 为边向外作等边△ABE 和△CDF ,连接AF ,CE .求证:四边形AECF 为平行四边形.19.如图,已知ABC ∆各顶点的坐标分别为()3,1A --,()4,4B --,()1,2C --.(1)画出ABC ∆以点O 为旋转中心,按逆时针方向旋转90︒后得到的111A B C ∆;(2)将ABC ∆先向右平移4个单位长度,再向上平移5个单位长度,得到222A B C ∆.①在图中画出222A B C ∆;②如果将222A B C ∆看成是由ABC ∆经过一次平移得到的,请指出这一平移的平移方向和平移距离. 20.阅读材料,回答问题:材料:将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“22+”分法、“31+”分法、“32+”分法及“33+”分法等. 如“22+”分法:ax ay bx by +++()()ax ay bx by =+++()()a x y b x y =+++()()x y a b =++请你仿照以上方法,探索并解决下列问题:分解因式:(1)22x y x y ---;(2)222944m x xy y -+-.21.如图,四边形ABCD 的对角线AC ⊥BD 于点E ,AB=BC ,F 为四边形ABCD 外一点,且∠FCA=90°,∠CBF=∠DCB . (1)求证:四边形DBFC 是平行四边形;(2)如果BC 平分∠DBF ,∠CDB=45°,BD=2,求AC 的长.22.某商店计划购进甲、乙两种商品,乙种商品的进价是甲种商品进价的九折,用3600元购买乙种商品要比购买甲种商品多买10件.(1)求甲、乙两种商品的进价各是多少元?(2)该商店计划购进甲、乙两种商品共80件,且乙种商品的数量不低于甲种商品数量的3倍.甲种商品的售价定为每件80元,乙种商品的售价定为每件70元,若甲、乙两种商品都能卖完,求该商店能获得的最大利润.答案与解析一、选择题(共10小题,每小题4分,计40分.每小题只有一个选项是符合题意的) 1.下列平面图形中,是中心对称图形的是( ) A. B. C. D.【答案】B【解析】【分析】根据中心对称图形的概念求解.【详解】解:A 、不是中心对称图形,故此选项错误;B 、是中心对称图形,故此选项正确;C 、不是中心对称图形,故此选项错误;D 、不是中心对称图形,故此选项错误.故选B .【点睛】本题考查中心对称图形.2.分式方程341x x =-的解为( ) A. 1x =-B. 3x =C. 3x =-D. 1x = 【答案】C【解析】【分析】观察可得最简公分母是x (x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】方程的两边同乘x (x-1),得3x-3=4x ,解得x=-3.检验:当x=-3时,x (x-1)≠0.∴原方程的解为:x=-3.故选C .【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.M N,并测3.如图,,A B两地被池塘隔开,小明先在直线AB外选一点C,然后测量出AC,BC的中点,出MN的长为6.5m.由此,他可以知道A、B间的距离为()A. 7mB. 8mC. 12mD. 13m【答案】D【解析】【分析】根据三角形中位线定理解答.【详解】解:∵点M,N分别是AC,BC的中点,∴AB=2MN=13(m),故选:C.【点睛】本题考查了三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是关键.4.如果一个正多边形的内角和是这个正多边形外角和的2倍,那么这个正多边形是()A. 等边三角形B. 正四边形C. 正六边形D. 正八边形【答案】C【解析】【分析】设这个多边形的边数为n.根据题意列出方程即可解决问题.【详解】设这个多边形的边数为n,由题意(n﹣2)•180°=2×360°,解得n=6,所以这个多边形是正六边形,故选C.【点睛】本题考查多边形的内角和、外角和等知识,解题的关键是学会构建方程解决问题.5.不等式5x﹣2>3(x+1)的最小整数解为()A. 3B. 2C. 1D. ﹣2【答案】A【分析】先求出不等式的解集,在取值范围内可以找到最小整数解.【详解】5x ﹣2>3(x +1),去括号得:5x ﹣2>3x +3,移项、合并同类项得:2x >5系数化为1得:x >52, ∴不等式5x ﹣2>3(x +1)的最小整数解是3;故选A .【点睛】本题考查了一元一次不等式的整数解.解答此题要先求出不等式的解集,再确定最小整数解.解不等式要用到不等式的性质.6.已知2416x mx ++是完全平方式,则m 的值为( )A. 2B. 4C. 2±D. 4±【答案】C【解析】【分析】根据完全平方公式的形式,可得答案.【详解】解:已知2416x mx ++=x²+4mx+4²是完全平方式,∴4m=±8 m=2或m=-2,故选:C .【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.7.如图,在▱ABCD 中,AB 5=,BAD ∠的平分线与DC 交于点E ,BF AE ⊥,BF 与AD 的延长线交于点F ,则BC 等于( )A. 2B. 2.5C. 3D. 3.5【解析】【分析】根据平行四边形性质证,△AEF ≌△AEB ,EF=EB ,AB=AF=5,再证△DEF ≌△CEB ,得BC=DF , 可得AF=AD+DF=AD+BC=2BC=5.【详解】解:因为,四边形ABCD 是平行四边形,所以,AD ∥BC,AD=BC ∠C=∠FDE,∠EBC=∠F因为,BAD ∠的平分线与DC 交于点E ,BF AE ⊥所以,∠FAE=∠BAE ,∠AEB=∠AEF所以,△AEF ≌△AEB所以,EF=EB,AB=AF=5所以,△DEF ≌△CEB所以,BC=DF所以,AF=AD+DF=AD+BC=2BC=5所以,BC=2.5.故选B . 【点睛】本题考核知识点:平行四边形、全等三角形. 解题关键点:熟记平行四边形性质、全等三角形判定和性质.8.如图,在Rt ABC ∆中,AB AC =,90A ∠=︒,BD 是角平分线,DE BC ⊥,垂足为点E .若52CD =,则AD 的长是( )A. 522B. 22C. 52D. 5【答案】D【解析】【分析】先根据勾股定理求出DE 的长度,在根据角平分线上的点到角的两边距离相等可得AD=DE ,从而得解. 详解】解:∵AB=AC ,∠A=90°,∵DE ⊥BC ,,∴CE=DE在RT △DCE 中,CD²=CE²+CE²即222DE =,∴DE=5,∵BD 是角平分线,DE ⊥BC ,∠A=90°,∴AD=DE=5.故选:D .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,等腰直角三角形的性质,难点在于求出DE 的长度.9.一个无人超市仓库的货物搬运工作全部由机器人A 和机器人B 完成,工作记录显示机器人A 比机器人B 每小时多搬运50件货物.机器人A 搬运2000件货物与机器人B 搬运1600件货物所用的时间相等,则机器人A 每小时搬运货物( )A. 250件B. 200件C. 150件D. 100件【答案】A【解析】【分析】首先由题意得出等量关系,即A 型机器人搬运2000件货物与B 型机器人搬运1600件货物所用时间相等,列出分式方程,从而解出方程,最后检验并作答.【详解】解:设B 型机器人每小时搬运x 件货物,则A 型机器人每小时搬运(x+50)件货物. 依题意列方程得: 2000160050x x=+, 解得:x=200.经检验x=200是原方程的根且符合题意.当x=200时,x+50=250.∴A 型机器人每小时搬运250件.故选A.【点睛】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系,②列出方程,③解出分式方程,④检验,⑤作答.注意:分式方程的解必须检验. 10.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,15CAD CBD ∠=∠=︒,延长BD 到点E ,使CE CB =,交AC 于点F ,在DE 上取一点G ,使DC DG =,连接CG .有以下结论:①CD 平分ACB ∠;②60CDE ∠=︒;③ACE ∆是等边三角形;④DE AD CD =+,则正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】 先根据等腰直角三角形的性质及已知条件得出∠DAB=∠DBA=30°,则AD=BD ,再证明CD 是边AB 的垂直平分线,得出∠ACD=∠BCD=45°,然后根据三角形外角的性质求出∠CDE=∠BDE=60°即可判断①②;利用差可求得结论:∠CDE=∠BCE-∠ACB=60°,即可判断③;证明△DCG 是等边三角形,再证明△ACD ≌△ECG ,利用线段的和与等量代换即可判断④.【详解】解:∵△ABC 是等腰直角三角形,∠ACB=90°,∴∠BAC=∠ABC=45°,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°-15°=30°,∴BD=AD ,∴D 在AB 的垂直平分线上,∵AC=BC ,∴C 也在AB 的垂直平分线上,即直线CD 是AB 的垂直平分线,∴∠ACD=∠BCD=45°,∴∠CDE=∠CAD+∠ACD=15°+45°=60°,∵∠BDE=∠DBA+∠BAD=60°;∴∠CDE=∠BDE ,即DE 平分∠BDC ;所以①②正确;∵CA=CB,CB=CE,∴CA=CE,∵∠CAD=∠CBD=15°,∴∠BCE=180°-15°-15°=150°,∵∠ACB=90°,∴∠ACE=150°-90°=60°,∴△ACE是等边三角形;所以③正确;∵DC DG=,∠EDC=60°,∴△DCG是等边三角形,∴DC=DG=CG,∠DCG=60°,∴∠GCE=150°-60°-45°=45°,∴∠ACD=∠GCE=45°,∵AC=CE,∴△ACD≌△ECG,∴EG=AD,∴DE=EG+DG=AD+DC,所以④正确;正确的结论有:①②③④;故选:D.【点睛】本题考查了等腰三角形、全等三角形的性质和判定、等腰直角三角形、等边三角形等特殊三角形的性质和判定,熟练掌握有一个角是60°的等腰三角形是等边三角形这一判定等边三角形的方法,在几何证明中经常运用.二、填空题(共4小题,每小题4分,计16分)11.若代数式25x+在实数范围内有意义,则实数x的取值范围是__________.【答案】5x≠-【解析】分析】根据分式有意义的条件即可解答.【详解】因为25x+在实数范围内有意义,所以50x+≠,即5x≠-.【点睛】本题考查分式有意义的条件,解题的关键是知道要使得分式有意义,分母不为0.12.因式分解:32-=m n m ____________.【答案】()()m m n m n +-【解析】【分析】先提公因式m ,再利用平方差公式即可分解因式.【详解】解:3222()()()m n m m m n m m n m n -=-=+-,故答案为:()()m m n m n +-.【点睛】本题考查了利用提公因式法和公式法因式分解,解题的关键是找出公因式,熟悉平方差公式. 13.如图,已知一次函数1x b y =+与一次函数2mx n y =-的图像相交于点P (-2,1),则关于不等式x+b≥mx -n 的解集为_____.【答案】2x ≥-【解析】【分析】观察函数图象得到,当2x ≥-时,一次函数y 1=x+b 的图象都在一次函数y 2=mx-n 的图象的上方,由此得到不等式x+b >mx-n 的解集.【详解】解:不等式x+b≥mx -n 的解集为2x ≥-.故答案为2x ≥-.【点睛】本题考查一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.14.如图,在平行四边形ABCD 中,连接BD ,且BD CD =,过点A 作AM BD ⊥于点M ,过点D 作DN AB ⊥于点N ,在DB 的延长线上取一点P ,PM DN =,若70BDC ∠=︒,则PAB ∠的度数为____________︒.【答案】25【解析】【分析】根据平行四边形的性质得到BD=BA ,根据全等三角形的性质得到AM=DN ,推出△AMP 是等腰直角三角形,得到∠MAP=∠APM=45°,根据三角形的外角的性质可得出答案.【详解】解:在平行四边形ABCD 中,∵AB=CD ,∵BD=CD ,∴BD=BA ,又∵AM ⊥BD ,DN ⊥AB ,∴∠AMB=∠DNB=90°,在△ABM 与△DBN 中ABM DBN AMB DNB AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△DBN (AAS ),∴AM=DN ,∵PM=DN ,∴AM=PM ,∴△AMP 是等腰直角三角形,∴∠MAP=∠APM=45°,∵AB ∥CD ,∴∠ABD=∠CDB=70°,∴∠PAB=∠ABD-∠P=25°,故答案为:25.【点睛】本题考查了平行四边形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,熟练掌握性质和判定是解题的关键.三、解答题(共8小题,计64分.解答应写出过程)15.化简:2229963a a a a a ⎛⎫-+÷+ ⎪-⎝⎭. 【答案】13a + 【解析】【分析】根据分式的运算法则即可取出答案. 【详解】解:原式2(3)(3)96(3)a a a a a a a+-++=÷- 23(3)a a a a++=÷ 23(3)a a a a +=⋅+ 13a =+. 【点睛】本题考查了分式的化简及学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型. 16.如图,已知直线l 和l 上一点P ,用尺规作l 的垂线,使它经过点P .(保留作图痕迹,不写作法)【答案】见解析【解析】分析】根据线段垂直平分线的作法即可得出结论.【详解】解:如图所示.【点睛】本题考查了作图-基本作图,掌握线段垂直平分线的作法是解题的关键.17.解不等式组:31251422x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.【答案】﹣1<x ≤3【解析】【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【详解】31251422x x x x +⎧⎪⎨+-≥⎪⎩>①②,解不等式①,得x >﹣1,解不等式②,得x ≤3,所以,原不等式组的解集为﹣1<x ≤3,在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解答本题的关键.18.如图,四边形ABCD 是平行四边形,分别以AB ,CD 为边向外作等边△ABE 和△CDF ,连接AF ,CE .求证:四边形AECF 为平行四边形.【答案】见解析.【解析】【分析】由平行四边形的性质可得AB =CD ,AD =BC ,∠ABC =∠ADC ,由等边三角形的性质可得BE =EA =AB =CD =CF =DF ,∠EBA =∠CDF =60°,由“SAS”可证△ADF ≌△CBE ,可得EC =AF ,由两组对边相等的四边形是平行四边形可证四边形AECF 为平行四边形.【详解】∵四边形ABCD 是平行四边形∴AB =CD ,AD =BC ,∠ABC =∠ADC∵△ABE 和△CDF 是等边三角形∴BE =EA =AB =CD =CF =DF ,∠EBA =∠CDF =60°∴∠ADF =∠EBC ,且AD =BC ,BE =DF∴△ADF ≌△CBE (SAS )∴EC =AF ,且AE =CF∴四边形AECF 为平行四边形.【点睛】本题考查了平行四边形的判定和性质,等边三角形的性质,全等三角形的判定和性质,熟练运用平行四边形的判定和性质是本题的关键.19.如图,已知ABC ∆各顶点的坐标分别为()3,1A --,()4,4B --,()1,2C --.(1)画出ABC ∆以点O 为旋转中心,按逆时针方向旋转90︒后得到的111A B C ∆;(2)将ABC ∆先向右平移4个单位长度,再向上平移5个单位长度,得到222A B C ∆.①在图中画出222A B C ∆;②如果将222A B C ∆看成是由ABC ∆经过一次平移得到的,请指出这一平移的平移方向和平移距离.【答案】(l )见解析;(2)①见解析;②平移方向为由A 到2A 41个单位长度【解析】【分析】(1)利用网格特点和旋转的性质画出点A 、B 、C 的对应点A 1、B 1、C 1,从而得到111A B C ∆; (2)①利用点平移的规律写出A 2、B 2、C 2的坐标,然后描点即可;②根据平移的规律解答即可.【详解】解:(l )111A B C ∆如图所示.(2)①222A B C ∆如图所示:②连接2AA ,2225441AA =+=.平移方向为由A 到2A 的方向,平移距离是41个单位长度.【点睛】本题考查了作图-平移及旋转:根据平移和旋转的性质,找到对应点,顺次连接得出平移和旋转后的图形.20.阅读材料,回答问题:材料:将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“22+”分法、“31+”分法、“32+”分法及“33+”分法等. 如“22+”分法:ax ay bx by +++()()ax ay bx by =+++()()a x y b x y =+++()()x y a b =++请你仿照以上方法,探索并解决下列问题:分解因式:(1)22x y x y ---;(2)222944m x xy y -+-.【答案】(1)()()1x y x y +--;(2)()()3232m x y m x y +--+【解析】【分析】(1)首先利用平方差公式因式分解因式,进而提取公因式得出即可;(2)将后三项运用完全平方公式分解因式进而利用平方差公式分解因式即可.【详解】解:(1)22x y x y ---()()22x y x y =--+()()()x y x y x y =+--+()()1x y x y =+--.(2)222944m x xy y -+-()222944m x xy y =--+()()2232m x y =-- ()()3232m x y m x y =+--+.【点睛】本题考查的是分组分解法因式分解,掌握分组分解法、公式法的一般步骤是解题的关键. 21.如图,四边形ABCD 的对角线AC ⊥BD 于点E ,AB=BC ,F 为四边形ABCD 外一点,且∠FCA=90°,∠CBF=∠DCB . (1)求证:四边形DBFC 是平行四边形;(2)如果BC 平分∠DBF ,∠CDB=45°,BD=2,求AC 的长.【答案】(1)证明见解析;(2)2.【解析】【分析】(1)证明四边形DBCF 的两组对边分别平行;(2)作CM ⊥BF 于F ,△CFM 是等腰直角三角形,求出CM 的长即可得到AC 的长.【详解】解:(1)证明:∵AC ⊥BD ,∠FCA=90°, ∴∠AEB=∠FCA=90°,∴BD ∥CF.∵∠CBF=∠DCB .∴CD ∥BF ,∴四边形DBFC 是平行四边形;(2)解:∵四边形DBFC是平行四边形,∴CF=BD=2,∠F=∠CDB=45°,∵AB=BC,AC⊥BD,∴AE=CE,作CM⊥BF于F,∵BC平分∠DBF,∴CE=CM,∴△CFM是等腰直角三角形,∴CM=22CF=2,∴AE=CE=2,∴AC=22.22.某商店计划购进甲、乙两种商品,乙种商品的进价是甲种商品进价的九折,用3600元购买乙种商品要比购买甲种商品多买10件.(1)求甲、乙两种商品的进价各是多少元?(2)该商店计划购进甲、乙两种商品共80件,且乙种商品的数量不低于甲种商品数量的3倍.甲种商品的售价定为每件80元,乙种商品的售价定为每件70元,若甲、乙两种商品都能卖完,求该商店能获得的最大利润.【答案】(1)甲、乙两种商品的进价各是40元/件、36元/件;(2)该商店获得的最大利润是2840元.【解析】【分析】(1)设甲种商品的进价为x元/件,则乙种商品的进价为0.9x元/件,根据题意列出分式方程即可求解;(2)设甲种商品购进m件,则乙种商品购进(80-m)件,根据题意写出总利润w元,再根据一次函数的图像与性质即可求解.【详解】(1)设甲种商品的进价为x元/件,则乙种商品的进价为0.9x元/件,36003600100.9x x+=,解得,x=40,经检验,x=40是原分式方程的解,∴0.9x=36,答:甲、乙两种商品的进价各是40元/件、36元/件.(2)设甲种商品购进m件,则乙种商品购进(80-m)件,总利润为w元,w=(80-40)m+(70-36)(80-m)=6m+2720,∵80-m≥3m,∴m≤20,∴当m=20时,w取得最大值,此时w=2840,答:该商店获得的最大利润是2840元.【点睛】此题主要考查分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是根据题意列出方程与函数关系式.。

2020新人教版八年级下册数学期末试卷及答案

2020新人教版八年级下册数学期末试卷及答案

2020年八年级数学(下)期末调研检测试卷一、选择题(本题共10小题,满分共30分)1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。

A 、1 个B 、2 个C 、3 个D 、4个2.若式子23x x --有意义,则x 的取值范围为( ). A 、x≥2 B 、x≠3 C 、x≥2或x≠3 D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C(C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1F E DC B AA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7. 如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点. 8. 当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121x x x x x x n S n -++-+-= 中,下列说法不正确的是( ) A. n 是样本的容量 B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )(A )极差是47(B )众数是42 (C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,11、M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65 二、填空题(本题共10小题,满分共30分)11.48-133-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30 -23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形 的面积分别为S 1,S 2,则S 1+S 2的值为( )010203040506070809012345678某班学生1~8月课外阅读数量 折线统计图 3670585842287583本数月份(第8题) 12345678(-1,1) 1y (2,2)2yx yOM P F E CB AB C A D O 13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。

2020年人教版数学八年级下册《期末考试试卷》含答案

2020年人教版数学八年级下册《期末考试试卷》含答案
B.样本是抽取的1200名学生的数学毕业成绩
C.总体是40本试卷的数学毕业成绩
D.样本是30名学生的数学毕业成绩
【答案】B
【解析】
【详解】A.个体是每份试卷,
C.总体是一万名初中毕业生的数学毕业成绩;
D.样本是抽取的1200名学生的数学毕业成绩,
故B正确
3.如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是( )
【详解】由于只是取了一点品尝,所以应该是抽样调查.
故答案为:抽样调查.
【点睛】此题考查抽样调查和全面调查,解题关键在于掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查.
12.两个相似多边形的一组对应边分别为3cm和4.5cm,如果它们的面积之和为130cm2,那么较小的多边形的面积是_____cm2.
【答案】40
【解析】
试题分析:利用相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方可得.
解:两个相似多边形的一组对应边分别为3cm和4.5cm,
则相似比是3:4.5=2:3,
D. 有一角对应相等的两个菱形相似
【答案】D
【解析】
【详解】A错误,对顶角相等,但相等的角不一定是对顶角.
B错误,两直线平行时,内错角相等.
C错误,当m和n互为相反数时, ,但m≠n.
故选D
5. 若线段2a+1,a,a+3能构成一个三角形,则a的范围是( )
A. a>0B. a>1C. a>2D. 1<a<3
9.分解因式:m2(a﹣2)+m(2﹣a)=.

2020人教版八年级下册数学《期末考试试卷》含答案

2020人教版八年级下册数学《期末考试试卷》含答案

2020⼈教版⼋年级下册数学《期末考试试卷》含答案⼈教版数学⼋年级下学期期末测试卷⼀、选择题(本⼤题共 14 ⼩题,共 42 分)1. 为了解我市参加中考的15 000名学⽣的视⼒情况,抽查了1 000名学⽣的视⼒进⾏统计分析,下⾯四个判断正确的是()A. 15000名学⽣是总体B. 1000名学⽣的视⼒是总体的⼀个样本C. 每名学⽣是总体的⼀个个体D. 以上调查是普查2.若点P (a ,b )在第⼆象限内,则a ,b 的取值范围是()A. a <0,b >0B. a >0,b >0C. a >0,b <0D. a <0,b <0 3.函数3y x =-中⾃变量x 的取值范围是() A. 3x < B. 3x ≤ C. 3x > D. 3x ≥4.将⼀个n 边形变成(n +1)边形,内⾓和将( )A. 减少180°B. 增加90°C. 增加180°D. 增加360°5.设正⽐例函数y=mx 的图象经过点A(m ,4),且y 的值随x 的增⼤⽽增⼤,则m=( )A. 2B. -2C. 4D. -46.⼀次函数y =kx -(2-b)的图像如图所⽰,则k 和b 的取值范围是( )A. k>0,b>2B. k>0,b<2C. k<0,b>2D. k<0,b<27.在数学活动课上,⽼师让同学们判定⼀个四边形门框是否为矩形,下⾯是某合作⼩组的四位同学的拟订⽅案,其中正确的是( )A. 测量对⾓线是否互相平分B. 测量两组对边是否分别相等C. 测量⼀组对⾓是否为直⾓D. 测量两组对边是否相等,再测量对⾓线是否相等8.向最⼤容量为60升的热⽔器内注⽔,每分钟注⽔10升,注⽔2分钟后停⽌1分钟,然后继续注⽔,直⾄注满.则能反映注⽔量与注⽔时间函数关系的图象是( )A. B.C. D.9.如图,已知菱形ABCD的周长是24⽶,∠BAC=30°,则对⾓线BD的长等于()A. 63⽶B. 33⽶C. 6⽶D. 3⽶10.如图,将矩形纸⽚ABCD沿其对⾓线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A. 16B. 19C. 22D. 2511.如图,在平⾯直⾓坐标系中,正三⾓形OAB的顶点B的坐标为(2,0),点A在第⼀象限内,将△OAB 沿直线OB的⽅向平移⾄△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为()A. 3)B. 3)C. 3)D. 3)12.在平⾯直⾓坐标系中,⼀矩形上各点的纵坐标不变,横坐标变为原来的12,则该矩形发⽣的变化为( )A. 向左平移了12个单位长度 B. 向下平移了12个单位长度C. 横向压缩为原来的⼀半D. 纵向压缩为原来的⼀半13.某商店在节⽇期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款⾦额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所⽰,则超过500元的部分可以享受的优惠是()A. 打六折B. 打七折C. 打⼋折D. 打九折14. ⼩明在学习了正⽅形之后,给同桌⼩⽂出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使?ABCD为正⽅形(如图),现有下列四种选法,你认为其中错误的是()A. ①②B. ②③C. ①③D. ②④⼆、填空题(本⼤题共6 ⼩题,共18 分)15.当m=________时,函数y=-(m-2)2m3x-+(m-4)是关于x的⼀次函数.16.如图,在△ABC中,AB=5,BC=7,EF是△ABC的中位线,则EF的长度范围是________.17.⼀次函数y=k(x-1)的图象经过点M(-1,-2),则其图象与y轴的交点是__________.18.如图,在平⾯直⾓坐标系中,△ABC的顶点都在⽅格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为________.19.如图,四边形ABCD是菱形,O是两条对⾓线的交点,过O点的三条直线将菱形分成阴影和空⽩部分.当菱形的两条对⾓线的长分别为10和6时,则阴影部分的⾯积为_________.20.如图,已知菱形OABC 的顶点O(0,0),B(2,2),则菱形的对⾓线交点D 的坐标为____;若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,点D 的坐标为_____.三、解答题(本⼤题共 6 ⼩题,共 60 分)21.如图,左右两幅图案关于y 轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3),嘴⾓左右端点的坐标分别是(2,1),(4,1).(1)试确定左图案中的左右眼睛和嘴⾓左右端点的坐标;(2)从对称的⾓度来考虑,说⼀说你是怎样得到的;(3)直接写出右图案中的嘴⾓左右端点关于原点的对称点的坐标.22.为了了解江城中学学⽣的⾝⾼情况,随机对该校男⽣、⼥⽣的⾝⾼进⾏抽样调查.已知抽取的样本中,男⽣、⼥⽣的⼈数相同,根据所得数据绘制成如图所⽰的统计图表.组别⾝⾼(cm ) Ax<150 B 150≤x <155C 155≤x<160D 160≤x<165E x≥165根据图表中提供的信息,回答下列问题:(1)在样本中,男⽣⾝⾼的中位数落在________组(填组别序号),⼥⽣⾝⾼在B组的⼈数有________⼈;(2)在样本中,⾝⾼在150≤x<155之间的⼈数共有________⼈,⾝⾼⼈数最多的在________组(填组别序号);(3)已知该校共有男⽣500⼈、⼥⽣480⼈,请估计⾝⾼在155≤x<165之间的学⽣有多少⼈23.已知y是x的⼀次函数,当x=1时,y=1;当x=-2时,y=-14.(1)求这个⼀次函数的关系式;(2)在如图所⽰的平⾯直⾓坐标系中作出函数的图像;(3)由图像观察,当0≤x≤2时,函数y的取值范围.24.顺次连接四边形各边中点所得的四边形叫中点四边形.回答下列问题:(1)只要原四边形两条对⾓线______,就能使中点四边形是菱形;(2)只要原四边形的两条对⾓线______,就能使中点四边形是矩形;(3)请你设计⼀个中点四边形为正⽅形,但原四边形⼜不是正⽅形的四边形,把它画出来.25.王华同学要证明命题“对⾓线相等的平⾏四边形是矩形”是正确的,她先作出了如图所⽰的平⾏四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在平⾏四边形ABCD中,,求证:平⾏四边形ABCD是.(1)在⽅框中填空,以补全已知和求证;(2)按王晓的想法写出证明过程;证明:26.如图,直线y1=2x-2的图像与y轴交于点A,直线y2=-2x+6的图像与y轴交于点B,两者相交于点C.(1)⽅程组2226x yx y-=+=的解是______;(2)当y1>0与y2>0同时成⽴时,x的取值范围为_____;(3)求△ABC的⾯积;(4)在直线y1=2x-2的图像上存在异于点C的另⼀点P,使得△ABC与△ABP的⾯积相等,请求出点P的坐标.答案与解析⼀、选择题(本⼤题共 14 ⼩题,共 42 分)1. 为了解我市参加中考的15 000名学⽣的视⼒情况,抽查了1 000名学⽣的视⼒进⾏统计分析,下⾯四个判断正确的是()A. 15000名学⽣是总体B. 1000名学⽣的视⼒是总体的⼀个样本C. 每名学⽣是总体的⼀个个体D. 以上调查是普查【答案】B【解析】【详解】总体是参加中考的15 000名学⽣的视⼒情况,故A 错误;1000名学⽣的视⼒是总体的⼀个样本,故B 正确;每名学⽣的视⼒情况是总体的⼀个样本,故C 错误;以上调查应该是抽查,故D 错误;故选B .2.若点P (a ,b )在第⼆象限内,则a ,b 的取值范围是()A. a <0,b >0B. a >0,b >0C. a >0,b <0D. a <0,b <0 【答案】A【解析】【分析】点在第⼆象限的条件是:横坐标是负数,纵坐标是正数.【详解】解:因为点P (a ,b )在第⼆象限,所以a <0,b >0,故选A .【点睛】本题考查了平⾯直⾓坐标系中各象限点的坐标的符号特征,第⼀象限(+,+);第⼆象限(-,+);第三象限(-,-);第四象限(+,-).3.函数y =中⾃变量x 的取值范围是() A. 3x <B. 3x ≤C. 3x >D. 3x ≥【答案】B【解析】试题分析:根据⼆次根式的意义,被开⽅数是⾮负数.所以3﹣x≥0,解得x≤3.故选B.考点:函数⾃变量的取值范围.4.将⼀个n边形变成(n+1)边形,内⾓和将( )A. 减少180°B. 增加90°C. 增加180°D. 增加360°【答案】C【解析】【分析】利⽤多边形的内⾓和公式即可求出答案.【详解】解:n边形的内⾓和是(n﹣2)?180°,n+1边形的内⾓和是(n﹣1)?180°,因⽽(n+1)边形的内⾓和⽐n边形的内⾓和⼤(n﹣1)?180°﹣(n﹣2)?180=180°.故选C.5.设正⽐例函数y=mx的图象经过点A(m,4),且y的值随x的增⼤⽽增⼤,则m=()A. 2B. -2C. 4D. -4【答案】A【解析】【分析】直接根据正⽐例函数的性质和待定系数法求解即可.【详解】解:把x=m,y=4代⼊y=mx中,可得:m=±2,因为y的值随x值的增⼤⽽增⼤,所以m=2,故选:A.【点睛】本题考查了正⽐例函数的性质:正⽐例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第⼀、三象限,y值随x的增⼤⽽增⼤;当k<0时,图象经过第⼆、四象限,y值随x的增⼤⽽减⼩.也考查了⼀次函数图象上点的坐标特征.6.⼀次函数y=kx-(2-b)的图像如图所⽰,则k和b的取值范围是()A. k>0,b>2B. k>0,b<2C. k<0,b>2D. k<0,b<2 【答案】B 【解析】【分析】根据⼀次函数的图象经过⼀、三、四象限列出b的不等式,求出b及k的取值范围即可.【详解】∵⼀次函数y=kx-(2-b)的图象经过⼀、三、四象限,∴k>0,-(2-b)<0,解得b<2.故选B.【点睛】本题考查的是⼀次函数的性质,熟知⼀次函数的图象与系数的关系是解答此题的关键.7.在数学活动课上,⽼师让同学们判定⼀个四边形门框是否为矩形,下⾯是某合作⼩组的四位同学的拟订⽅案,其中正确的是( )A. 测量对⾓线是否互相平分B. 测量两组对边是否分别相等C. 测量⼀组对⾓是否为直⾓D. 测量两组对边是否相等,再测量对⾓线是否相等【答案】D【解析】【分析】根据矩形和平⾏四边形的判定推出即可得答案.【详解】A、根据对⾓线互相平分只能得出四边形是平⾏四边形,故本选项错误;B、根据对边分别相等,只能得出四边形是平⾏四边形,故本选项错误;C、根据⼀组对⾓是否为直⾓不能得出四边形的形状,故本选项错误;D、根据对边相等可得出四边形是平⾏四边形,根据对⾓线相等的平⾏四边形是矩形可得出此时四边形是矩形,故本选项正确;故选D.【点睛】本题考查的是矩形的判定定理,矩形的判定定理有①有三个⾓是直⾓的四边形是矩形;②对⾓线互相平分且相等的四边形是矩形;③有⼀个⾓是直⾓的平⾏四边形是矩形.牢记这些定理是解题关键.8.向最⼤容量为60升的热⽔器内注⽔,每分钟注⽔10升,注⽔2分钟后停⽌1分钟,然后继续注⽔,直⾄注满.则能反映注⽔量与注⽔时间函数关系的图象是( )A. B.C. D.【答案】D【解析】【详解】注⽔需要60÷10=6分钟,注⽔2分钟后停⽌注⽔1分钟,共经历6+1=7分钟,排除A、B;再根据停1分钟,再注⽔4分钟,排除C.故选D.9.如图,已知菱形ABCD的周长是24⽶,∠BAC=30°,则对⾓线BD的长等于()A. 3B. 3⽶C. 6⽶D. 3⽶【答案】C【解析】【分析】由菱形ABCD的周长是24⽶,∠BAC=30°,易求得AB=6⽶,△ABD是等边三⾓形,继⽽求得答案.【详解】解:∵菱形ABCD的周长是24⽶,∠BAC=30°,∴AB=AD=24÷4=6(⽶),∠DAB=2∠BAC=60°,∴△ABD是等边三⾓形,∴BD=AB=6⽶.故选C.【点睛】此题考查了菱形的性质以及等边三⾓形的判定与性质.注意证得△ABD是等边三⾓形是解此题的关键.10.如图,将矩形纸⽚ABCD 沿其对⾓线AC 折叠,使点B 落到点B′的位置,AB′与CD 交于点E ,若AB=8,AD=3,则图中阴影部分的周长为()A. 16B. 19C. 22D. 25【答案】C【解析】【分析】⾸先由四边形ABCD 为矩形及折叠的特性,得到B′C=BC=AD ,∠B′=∠B=∠D=90°,∠B′EC=∠DEA ,得到△AED ≌△CEB′,得出EA=EC ,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC ,即矩形的周长解答即可.【详解】解:∵四边形ABCD 为矩形,∴B′C=BC=AD ,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA ,△AED 和△C EB′中,'''BE C DEA B DB C AD ∠=∠??∠=∠??=?,∴△AED ≌△CEB′(AAS);∴EA=EC ,∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC ,=AD+DE+EC+EA+EB′+B′C ,=AD+DC+AB′+B′C ,=22,故选:C .【点睛】本题主要考查了图形的折叠问题,全等三⾓形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的⾓是解题的关键.11.如图,在平⾯直⾓坐标系中,正三⾓形OAB 的顶点B 的坐标为(2,0),点A 在第⼀象限内,将△OAB沿直线OB的⽅向平移⾄△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为()A. 3)B. 3)C. 3)D. 3)【答案】D【解析】【分析】根据等边三⾓形的性质和平移的性质即可得到结论.【详解】解:∵△OAB是等边三⾓形,∵B的坐标为(2,0),∴A(13),∵将△OAB沿直线OB的⽅向平移⾄△O′B′A′的位置,此时点B′的横坐标为5,∴A′的坐标(43,故选:D.【点睛】本题考查了坐标与图形变化-平移,在平⾯直⾓坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.也考查了等边三⾓形的性质,含30°⾓的直⾓三⾓形的性质.求出点A′的坐标是解题的关键.12.在平⾯直⾓坐标系中,⼀矩形上各点的纵坐标不变,横坐标变为原来的12,则该矩形发⽣的变化为( )A. 向左平移了12个单位长度 B. 向下平移了12个单位长度C. 横向压缩为原来的⼀半D. 纵向压缩为原来的⼀半【答案】C∵平⾯直⾓坐标系中,⼀个正⽅形上的各点的坐标中,纵坐标保持不变,∴该正⽅形在纵向上没有变化.⼜∵平⾯直⾓坐标系中,⼀个正⽅形上的各点的坐标中,横坐标变为原来的12,∴此正⽅形横向缩短为原来的12,即正⽅形横向缩短为原来的⼀半.故选C. 13.某商店在节⽇期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款⾦额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所⽰,则超过500元的部分可以享受的优惠是( )A. 打六折B. 打七折C. 打⼋折D. 打九折【答案】C【解析】【分析】设超过200元的部分可以享受的优惠是打n 折,根据:实际付款⾦额=500+(商品原价-500)×10折扣,列出y 关于x 的函数关系式,由图象将x=1000、y=900代⼊求解可得.【详解】设超过500元的部分可以享受的优惠是打n 折,根据题意,得:y=500+(x-500)?10n ,由图象可知,当x=1000时,y=900,即:900=500+(1000-500)×10n ,解得:n=8,∴超过500元的部分可以享受的优惠是打8折,故选C.【点睛】本题主要考查⼀次函数实际应⽤,理解题意根据相等关系列出实际付款⾦额y 与商品原价x 间的函数关系式是解题的关键.14. ⼩明在学习了正⽅形之后,给同桌⼩⽂出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD 中选两个作为补充条件,使?ABCD 为正⽅形(如图),现有下列四种选法,你认为其中错误的是()A. ①②B. ②③C. ①③D. ②④【答案】B【解析】【详解】A 、∵四边形ABCD 是平⾏四边形,当①AB=BC 时,平⾏四边形ABCD 是菱形,当②∠ABC=90°时,菱形ABCD 是正⽅形,故此选项正确,不合题意;B 、∵四边形ABCD 是平⾏四边形,∴当②∠ABC=90°时,平⾏四边形ABCD 是矩形,当AC=BD 时,这是矩形的性质,⽆法得出四边形ABCD 是正⽅形,故此选项错误,符合题意;C 、∵四边形ABCD 是平⾏四边形,当①AB=BC 时,平⾏四边形ABCD 是菱形,当③AC=BD 时,菱形ABCD 是正⽅形,故此选项正确,不合题意;D 、∵四边形ABCD 是平⾏四边形,∴当②∠ABC=90°时,平⾏四边形ABCD 是矩形,当④AC ⊥BD 时,矩形ABCD 是正⽅形,故此选项正确,不合题意.故选C .⼆、填空题(本⼤题共 6 ⼩题,共 18 分)15.当m =________时,函数y =-(m -2)2m 3x -+(m -4)是关于x 的⼀次函数.【答案】-2【解析】【详解】∵函数y =-(m -2)23x m -+(m -4)是⼀次函数,∴()23120m m ?-=??--≠??,∴m =-2.故答案为-216.如图,在△ABC 中,AB =5,BC =7,EF 是△ABC 的中位线,则EF 的长度范围是________.【答案】1<EF<6【解析】【详解】∵在△ABC中,AB=5,BC=7,∴7-5<AC<7+5,即2<AC<12.⼜∵EF是△ABC的中位线,∴EF=12AC∴1<EF<6.17.⼀次函数y=k(x-1)的图象经过点M(-1,-2),则其图象与y轴的交点是__________.【答案】(0,-1)【解析】【分析】由图象经过点M,故将M(-1,-2)代⼊即可得出k的值.【详解】解:∵⼀次函数y=k(x-1)的图象经过点M(-1,-2),则有k(-1-1)=-2,解得k=1,所以函数解析式为y=x-1,令x=0代⼊得y=-1,故其图象与y轴的交点是(0,-1).故答案为(0,-1).【点睛】本题考查待定系数法求函数解析式,难度不⼤,直接代⼊即可.18.如图,在平⾯直⾓坐标系中,△ABC的顶点都在⽅格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为________.【答案】(2,5)【解析】【详解】∵将△ABC先向右平移4个单位长度,再向下平移1个单位长度,∵图形可知点A的坐标为(-2,6),∴则平移后的点A1坐标为(2,5).19.如图,四边形ABCD是菱形,O是两条对⾓线的交点,过O点的三条直线将菱形分成阴影和空⽩部分.当菱形的两条对⾓线的长分别为10和6时,则阴影部分的⾯积为_________.【答案】15【解析】【分析】根据中⼼对称的性质判断出阴影部分的⾯积等于菱形的⾯积的⼀半,即可得出结果.【详解】解:∵O是菱形两条对⾓线的交点,菱形ABCD是中⼼对称图形,∴△OEG≌△OFH,四边形OMAH≌四边形ONCG,四边形OEDM≌四边形OFBN,∴阴影部分的⾯积=12S菱形ABCD=12×(12×10×6)=15.故答案为15.【点睛】本题考查了中⼼对称,菱形的性质,熟记性质并判断出阴影部分的⾯积等于菱形的⾯积的⼀半是解题的关键.20.如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对⾓线交点D的坐标为____;若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为_____.【答案】(1). (1,1)(2). (-1,-1).【解析】【分析】根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点旋转后的坐标.【详解】∵菱形OABC的顶点O(0,0),B(2,2),得∴D点坐标为(1,1).∵每秒旋转45°,∴第60秒旋转45°×60=2700°,2700°÷360°=7.5周,即OD旋转了7周半,∴菱形的对⾓线交点D的坐标为(-1,-1),故答案为(1,1);(-1,-1)【点睛】本题考查了旋转的性质及菱形的性质,利⽤旋转的性质得出OD旋转的周数是解题关键.三、解答题(本⼤题共6 ⼩题,共60 分)21.如图,左右两幅图案关于y轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3),嘴⾓左右端点的坐标分别是(2,1),(4,1).(1)试确定左图案中的左右眼睛和嘴⾓左右端点的坐标;(2)从对称的⾓度来考虑,说⼀说你是怎样得到的;(3)直接写出右图案中的嘴⾓左右端点关于原点的对称点的坐标.【答案】(1)左眼睛坐标为(-4,3),右眼睛坐标为(-2,3),嘴⾓的左端点坐标为(-4,1),右端点坐标为(-2,1);(2)见解析;(3) (-2,-1),(-4,-1).【解析】【分析】(1)根据图形的位置关系可知:将右图案向左平移6个单位长度得到左图案等.(2)根据题意可知,这两个图是关于y轴对称的,所以根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”可知左图案的左右眼睛的坐标和嘴⾓左右端点的坐标;(3)根据“两点关于原点对称,横坐标互为相反数,纵坐标互为相反数”求解即可.【详解】(1)左图案中的左眼睛坐标为(-4,3),右眼睛坐标为(-2,3),嘴⾓的左端点坐标为(-4,1),右端点坐标为(-2,1).(2)关于y轴对称的两个图形横坐标互为相反数,纵坐标不变..(3) (-2,-1),(-4,-1).【点睛】主要考查了平⾯直⾓坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.22.为了了解江城中学学⽣的⾝⾼情况,随机对该校男⽣、⼥⽣的⾝⾼进⾏抽样调查.已知抽取的样本中,男⽣、⼥⽣的⼈数相同,根据所得数据绘制成如图所⽰的统计图表.组别⾝⾼(cm)A x<150B 150≤x<155C 155≤x<160D 160≤x<165E x≥165根据图表中提供的信息,回答下列问题:(1)在样本中,男⽣⾝⾼的中位数落在________组(填组别序号),⼥⽣⾝⾼在B组的⼈数有________⼈;(2)在样本中,⾝⾼在150≤x<155之间的⼈数共有________⼈,⾝⾼⼈数最多的在________组(填组别序号);(3)已知该校共有男⽣500⼈、⼥⽣480⼈,请估计⾝⾼在155≤x<165之间学⽣有多少⼈【答案】(1)D;12;(2)16;C;(3)⾝⾼在155≤x<165之间的学⽣约有541⼈.【解析】【分析】从频数分布直⽅图可得到男⽣的总⼈数,则中位数是第20、21个⼈⾝⾼的平均数,⼥⽣与男⽣⼈数相同,由此可得到题(1)的答案;结合上步所得以及各组的⼈数可求出⾝⾼在150≤x<155的总⼈数和⾝⾼最多的组别,从⽽解决(2);对于(3),可根据两幅统计图得到男⼥⽣⾝⾼在155≤x<165之间的学⽣的百分率,从⽽使问题得以解决.【详解】解:(1)因为在样本中,共有男⽣2+4+8+12+14=40(⼈),所以中位数是第20、21个⼈⾝⾼的平均数,⽽2+4+12=18⼈,所以男⽣⾝⾼的中位数位于D组,⼥⽣⾝⾼在B组的⼈数有40×(1-30%-20%-15%-5%)=12(⼈).(2)在样本中,⾝⾼在150≤x<155之间的⼈数共有4+12=16(⼈),⾝⾼⼈数最多的在C组;(3)500×121440?+480×(30%+15%)=541(⼈),故估计⾝⾼在155≤x<165之间的学⽣约有541⼈.【点睛】本题主要考查从统计图表中获取信息,中等难度,解题的关键是要读懂统计图.23.已知y是x的⼀次函数,当x=1时,y=1;当x=-2时,y=-14.(1)求这个⼀次函数的关系式;(2)在如图所⽰的平⾯直⾓坐标系中作出函数的图像;(3)由图像观察,当0≤x≤2时,函数y的取值范围.【答案】(1)y=5x-4;(2)详见解析;(3)-4≤y≤6.【解析】【分析】(1)设函数解析式y=kx+b,将题中的两个条件代⼊即可得出解析式;(2)根据题意可确定函数上的两个点(1,1)、(-2,-14),运⽤两点法即可确定函数图象.(3)根据图象可知,当0≤x≤2时,y的取值范围是-4≤x≤6.【详解】解:(1)设函数的关系式为y=kx+b,。

2020年人教版八年级(下)期末数学试卷及答案

2020年人教版八年级(下)期末数学试卷及答案

八年级(下)期末数学试卷一、选择题1.二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤22.下列计算正确的是()A.2= B.= C.4﹣3=1 D.3+2=53.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.94.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.936.菱形的两条对角线长分别为9cm与4cm,则此菱形的面积为()cm2.A.12 B.18 C.20 D.367.一次函数y=2x+4的图象与y轴交点坐标()A.(2,0) B.(﹣2,0)C.(0,﹣4)D.(0,4)8.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()A.4 B.16 C. D.4或二、填空题9.若实数a、b满足|a+1|+=0,则的值为.10.化简:=.11.数集5、7、6、6、6的众数为,平均数为.12.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是(填“甲”或“乙“).13.已知一次函数y=ax+b的图象如图,根据图中信息请写出不等式ax+b≥2的解集为.14.如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AC=6cm,BC=8cm,则CD的长为cm.15.如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.16.正方形A1B1C1O,A2B2C2B1、A3B3C3B2,…,按如图的方式放置,点A1、A2、A3,…和点C1、C2、C3,…分别在直线y=x+1和x轴上,则点B2015的纵坐标是.三、解答题(一)17.计算:×()18.如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.四、解答题(二)19.已知一次函数的图象经过点(1,1)和点(﹣1,﹣3).(1)求这个一次函数的解析式;(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x增大时y如何变化?20.如图,在Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD.求证:EF=CD.21.如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD 于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值.五、解答题(三)22.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?23.如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.24.甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原件为x(x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.六、附加题25.(1)如图,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直线边经过点B,另一条直角边交边DC于点E,求证:PB=PE.(2)如图2,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC的延长线于点E,PB=PE还成立吗?若成立,请证明,若不成立,请说明理由.八年级(下)期末数学试卷参考答案与试题解析一、选择题1.二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0,解得x≥2.故选C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.下列计算正确的是()A.2= B.= C.4﹣3=1 D.3+2=5【考点】二次根式的加减法;二次根式的性质与化简.【分析】直接利用二次根式加减运算法则分别化简求出答案.【解答】解:A、2=2×=,故此选项正确;B、+无法计算,故此选项错误;C、4﹣3=,故此选项错误;D、3+2无法计算,故此选项错误;故选:A.【点评】此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.9【考点】中位数.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故选:C.【点评】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.【专题】数形结合.【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.5.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.93【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:95×20%+90×30%+88×50%=90(分).即小彤这学期的体育成绩为90分.故选B.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.6.菱形的两条对角线长分别为9cm与4cm,则此菱形的面积为()cm2.A.12 B.18 C.20 D.36【考点】菱形的性质.【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.【解答】解:根据对角线的长可以求得菱形的面积,根据S=ab=×4cm×9cm=18cm2,故选:B.【点评】本题考查了根据对角线计算菱形的面积的方法,根据菱形对角线求得菱形的面积是解题的关键,难度一般.7.一次函数y=2x+4的图象与y轴交点坐标()A.(2,0) B.(﹣2,0)C.(0,﹣4)D.(0,4)【考点】一次函数图象上点的坐标特征.【分析】求与y轴的交点坐标,令x=0可求得y的值,可得出函数与y轴的交点坐标【解答】解:令x=0,代入y=2x+4解得y=4,∴一次函数y=2x+4的图象与y轴交点坐标这(0,4),故选D.【点评】本题主要考查函数与坐标轴的交点坐标,掌握求函数与坐标轴交点的求法是解题的关键,即与x轴的交点令y=0求x,与y轴的交点令x=0求y.8.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()A.4 B.16 C. D.4或【考点】勾股定理.【专题】分类讨论.【分析】此题要分两种情况:当3和5都是直角边时;当5是斜边长时;分别利用勾股定理计算出第三边长即可.【解答】解:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选:D.【点评】此题主要考查了利用勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.二、填空题9.若实数a、b满足|a+1|+=0,则的值为﹣2.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+1=0,b﹣2=0,解得a=﹣1,b=2,所以=﹣2.故答案为:﹣2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.化简:=2.【考点】二次根式的性质与化简.【专题】计算题;二次根式.【分析】原式化为最简二次根式即可.【解答】解:==2,故答案为:2【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.11.数集5、7、6、6、6的众数为6,平均数为6.【考点】众数;算术平均数.【分析】根据众数和平均数的概念求解.【解答】解:6出现的次数最多,故众数为6,平均数为:=6.故答案为:6,6.【点评】本题考查了众数和平均数的概念:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.12.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是乙(填“甲”或“乙“).【考点】方差.【分析】直接根据方差的意义求解.【解答】解:∵S甲2=2,S乙2=1.5,∴S甲2>S乙2,∴乙的射击成绩较稳定.故答案为:乙.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.13.已知一次函数y=ax+b的图象如图,根据图中信息请写出不等式ax+b≥2的解集为x≥0.【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】观察函数图形得到当x≥0时,一次函数y=ax+b的函数值不小于2,即ax+b≥2.【解答】解:根据题意得当x≥0时,ax+b≥2,即不等式ax+b≥2的解集为x≥0.故答案为x≥0.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14.如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AC=6cm,BC=8cm,则CD的长为5 cm.【考点】直角三角形斜边上的中线;勾股定理.【分析】利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:有勾股定理得,AB===10cm,∵∠ACB=90°,D为斜边AB的中点,∴CD=AB=×10=5cm.故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.15.如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是2.【考点】轴对称-最短路线问题;菱形的性质.【分析】连接BD,根据菱形的对角线平分一组对角线可得∠BAD=∠ADC=60°,然后判断出△ABD 是等边三角形,连接DE,根据轴对称确定最短路线问题,DE与AC的交点即为所求的点P,PE+PB 的最小值=DE,然后根据等边三角形的性质求出DE即可得解.【解答】解:如图,连接BD,∵四边形ABCD是菱形,∴∠BAD=∠ADC=×120°=60°,∵AB=AD(菱形的邻边相等),∴△ABD是等边三角形,连接DE,∵B、D关于对角线AC对称,∴DE与AC的交点即为所求的点P,PE+PB的最小值=DE,∵E是AB的中点,∴DE⊥AB,∵菱形ABCD周长为16,∴AD=16÷4=4,∴DE=×4=2.故答案为:2.【点评】本题考查了轴对称确定最短路线问题,菱形的性质,等边三角形的判定与性质,熟记性质与最短路线的确定方法找出点P的位置是解题的关键.16.正方形A1B1C1O,A2B2C2B1、A3B3C3B2,…,按如图的方式放置,点A1、A2、A3,…和点C1、C2、C3,…分别在直线y=x+1和x轴上,则点B2015的纵坐标是22014.【考点】正方形的性质;一次函数图象上点的坐标特征.【专题】规律型.【分析】根据直线解析式先求出OA1=1,得出B1的纵坐标是1,再求出B2的纵坐标是2,B3的纵坐标是22,得出规律,即可得出结果.【解答】解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,即B1的纵坐标是1,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴A2C1=2=21,即B2的纵坐标是2,同理得:A3C2=4=22,即B3的纵坐标是22,…,∴点B2015的纵坐标是22014;故答案为:22014.【点评】本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出B1、B2、B3的纵坐标得出规律是解决问题的关键.三、解答题(一)17.计算:×()【考点】二次根式的混合运算.【分析】首先利用单项式与多项式的乘法,然后进行化简即可.【解答】解:原式=﹣=6﹣2=4.【点评】本题考查的是二次根式的混合运算,在进行此类运算时,一定要把二次根式化为最简二次根式的形式.18.如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.【考点】平行四边形的判定与性质.【专题】证明题.【分析】由平行四边形的性质可知:AE∥CF,又因为AE=CF,所以四边形AECF是平行四边形,所以AF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,∴AE∥CF,又∵AE=CF,∴四边形AECF是平行四边形,∴AF=CE.【点评】本题考查了平行四边形的性质和判定,题目比较简单.四、解答题(二)19.已知一次函数的图象经过点(1,1)和点(﹣1,﹣3).(1)求这个一次函数的解析式;(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x增大时y如何变化?【考点】待定系数法求一次函数解析式;一次函数的图象.【专题】计算题.【分析】(1)设一次函数解析式为y=kx+b,将已知两点坐标代入求出k与b的值,即可确定出解析式;(2)做出函数图象,如图所示,根据增减性即可得到结果.【解答】解:(1)设一次函数解析式为y=kx+b,将(1,1)与(﹣1,﹣3)代入得,解得:k=2,b=﹣1,则一次函数解析式为y=2x﹣1;(2)如图所示,y随着x的增大而增大.【点评】此题考查了待定系数法求一次函数解析式,以及一次函数的图象,熟练掌握待定系数法是解本题的关键.20.如图,在Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD.求证:EF=CD.【考点】矩形的判定与性质;三角形中位线定理.【专题】证明题.【分析】由DE、DF是△ABC的中位线,可证得四边形DECF是平行四边形,又由在Rt△ABC中,∠ACB=90°,可证得四边形DECF是矩形,根据矩形的对角线相等,即可得EF=CD.【解答】证明:∵DE、DF是△ABC的中位线,∴DE∥BC,DF∥AC,∴四边形DECF是平行四边形,又∵∠ACB=90°,∴四边形DECF是矩形,∴EF=CD.【点评】此题考查了矩形的判定与性质以及三角形中位线的性质.此题难度不大,注意掌握数形结合思想的应用.21.如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD 于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值.【考点】翻折变换(折叠问题).【分析】(1)根据矩形的性质、轴对称的性质可得到AD=EC,AE=DC,即可证到△DEC≌△EDA (SSS);(2)易证AF=CF,设DF=x,则有AF=4﹣x,然后在Rt△ADF中运用勾股定理就可求出DF的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,AB=DC.由折叠可得:EC=BC,AE=AB,∴AD=EC,AE=DC,在△ADE与△CED中,,∴△DEC≌△EDA(SSS).(2)解:∵∠ACD=∠BAC,∠BAC=∠CAE,∴∠ACD=∠CAE,∴AF=CF,设DF=x,则AF=CF=4﹣x,在RT△ADF中,AD2+DF2=AF2,即32+x2=(4﹣x)2,解得;x=,即DF=.【点评】本题主要考查了矩形的性质、全等三角形的判定与性质、等腰三角形的判定、轴对称的性质等知识,解决本题的关键是明确折叠的性质,得到相等的线段,角.五、解答题(三)22.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中m的值为15;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】图表型.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.23.如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.【考点】菱形的判定;平行四边形的性质.【专题】证明题.【分析】(1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证;(2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可.【解答】证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠ABE=∠EAD;(2)∵AD∥BC,∴∠ADB=∠DBE,∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB,∴∠ABD=∠ABE﹣∠DBE=2∠ADB﹣∠ADB=∠ADB,∴AB=AD,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.【点评】本题考查了菱形的判定,平行四边形的性质,平行线的性质,等边对等角的性质,等角对等边的性质,熟练掌握平行四边形与菱形的关系是解题的关键.24.甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原件为x(x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.【考点】一次函数的应用.【分析】(1)根据单价乘以数量,可得函数解析式;(2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案.【解答】解;(1)甲商场写出y关于x的函数解析式y1=0.85x,乙商场写出y关于x的函数解析式y2=200+(x﹣200)×0.75=0.75x+50;(2)由y1>y2,得0.85x>0.75x+50,x>500,当x>500时,到乙商场购物会更省钱;由y1=y2得0.85x=0.75x+50,x=500时,到两家商场去购物花费一样;由y1<y2,得0.85x<0.75x+500,x<500,当x<500时,到甲商场购物会更省钱;综上所述:x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.【点评】本题考查了一次函数的应用,分类讨论是解题关键.六、附加题25.(1)如图,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直线边经过点B,另一条直角边交边DC于点E,求证:PB=PE.(2)如图2,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC的延长线于点E,PB=PE还成立吗?若成立,请证明,若不成立,请说明理由.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)根据正方形的性质,可得BC=CD,∠ACB=∠ACD=45°,根据全等三角形的判定与性质,可得∠PBC=∠PDC,PB=PD,根据圆内接四边形的性质,可得∠PBC+∠PEC=180°,根据补角的性质,可得∠PED=∠PDE,根据等腰三角形的判定,可得答案;(2)根据正方形的性质,可得BC=CD,∠ACB=∠ACD=45°,根据全等三角形的判定与性质,可得∠PBC=∠PDC,PB=PD,根据三角形的内角和,可得∠PBC=∠PEC,根据等腰三角形的判定,可得答案.【解答】(1)证明:如图1,连接PD,∵四边形ABCD是正方形,∴BC=CD,∠ACB=∠ACD=45°.在△PBC和△PDC中,,∴△PBC≌△PDC (SAS),∴∠PBC=∠PDC,PB=PD.∵∠BPE,∠BCD,∠PBC,∠PEC是圆内接四边形的内角,∠BPE+∠BCD=180°,∴∠PBC+∠PEC=180°,∴∠PED=∠PDE,∴PD=PE,∴PB=PE;(2)仍然成立,理由如下:连接PD,如图2:,∵四边形ABCD是正方形,∴BC=CD,∠ACB=∠ACD=45°,在△PBC和△PDC中,,∴△PBC≌△PDC (SAS),∴∠PBC=∠PDC,PB=PD.若BC与PE相交于点O,在△PBO和△CEO中,∠POB=∠EOC,∠OPB=∠OCE,∠PBC=180°﹣∠OPB﹣∠POB,∠PEC=180°﹣∠EOC﹣∠OCE,∴∠PBC=∠PEC,∴∠PEC=∠PDC,∴PD=PE,∴PB=PE.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,圆内接四边形的性质,补角的性质,等腰三角形的判定.。

2020人教版八年级下册数学《期末考试试题》及答案

2020人教版八年级下册数学《期末考试试题》及答案
请根据图表信息回答下列问题:
(1)在频数分布表中, , .
(2)请频数直方图补充完整;
(3)若测试成绩不低于120分为优秀,则本次测试的优秀率是多少?
23.如图,在矩形 中, 、 分别是 、 的中点, 、 分别是 、 的中点.
求证: ;
四边形 是什么样 特殊四边形?请说明理由.
24. 一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
7.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离 (米)与时间 (分钟)之间关系的大致图象是( )
A. B.
C. D.
【答案】B
【解析】
【分析】
生活中比较运动快慢通常有两种方法,即比较相同时间内通过的路程多少或通过相同路程所用时间的多少,但统一的方法是直接比较速度的大小.
解题思路是:将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP′.
(1)△P′PB是三角形,△PP′A是三角形,∠BPC=°;
(2)利用△BPC可以求出△ABC的边长为.
如图丙,在正方形ABCD内有一点P,且PA= ,BP= ,PC=1;
(3)求∠BPC度数的大小;
(4)求正方形ABCD的边长.
(1)画出 关于 轴的对称图形 ,并写出其顶点坐标;
(2)画出将 先向下平移4个单位,再向右平移3单位得到的 ,并写出其顶点坐标.
20.如图,点 在同一直线上, , , .求证: .
21.正比例函数 和一次函数 的图象都经过点 ,且一次函数的图象交 轴于点 .
(1)求正比例函数和一次函数的表达式;
(2)在如图所示的平面直角坐标系中分别画出这两个函数的图象;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下学期期末综合检测卷一、单选题(18分)1.(3分)下列图形中既是中心对称又是轴对称的图形的是()A.B.C. D.2.(3分)在四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种3.(3分)如图,点D、E、F分别是△ABC三边的中点,则下列判断错误的是()A.四边形AEDF一定是平行四边形B.若AD平分∠A,则四边形AEDF是正方形C.若AD⊥BC,则四边形AEDF是菱形D.若∠A=90°,则四边形AEDF是矩形4.(3分)若点M(-7,m)、N(-8,n)都在函数y=-(k2+2k+4)x+1(k为常数)的图象上,则m和n的大小关系是()A.m>nB.m<nC.m=nD.不能确定5.(3分)a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为06.(3分)如图,在矩形ABCD中,AB=6,BC=8,M是AD上任意一点,且ME⊥AC于E,MF⊥BD于F,则ME+MF为()A. B. C. D.不能确定二、填空题(18分)7.(3分)如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,且A(4,0)、B(6,2)、M(4,3).在平面内有一条过点M的直线将平行四边形OABC的面积分成相等的两部分,请写出该直线的函数表达式.8.(3分)如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为.9.(3分)如图,在正方形ABCD和正方形CEFG中,D在CG上,BC=1,CG=3,H是AF的中点,则CH的长是.10.(3分)在平面直角坐标系中,已知平行四边形ABCD的点A(0,-2)、点B(3m,4m+1)(m≠-1),点C(6,2),则对角线BD的最小值是.11.(3分)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为.12.(3分)如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出个平行四边形.三、解答题(84分)13.(6分)一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.(1)若将这种水果每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示).(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?14.(6分)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE 延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形.(2)若四边形ACEF是菱形,求∠B的度数.15.(6分)如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE.(1)求证:OE=CB.(2)如果OC:OB=1:2,CD=,求菱形的面积.16.(6分)如图,直线AB与轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式.(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.17.(6分)阅读下面材料:在数学课上,老师提出如下问题:已知:如图,四边形ABCD是平行四边形;求作:菱形AECF,使点E,F分别在BC,AD上.小凯的作法如下:(1)连接AC;(2)作AC的垂直平分线EF分别交BC,AD于E,F.(3)连接AE,CF,所以四边形AECF是菱形.老师说:“小凯的作法正确”.回答下列问题:根据小凯的做法,小明将题目改编为一道证明题,请你帮助小明完成下列步骤:(1)已知:在平行四边形ABCD中,点E、F分别在边BC、AD上,.(补全已知条件)求证:四边形AECF是菱形.(2)求证:四边形AECF是菱形.(写出证明过程)18.(8分)已知关于x的方程(a-1)x2+2x+a-1=0.(1)若该方程有一根为2,求a的值及方程的另一根.(2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.19.(8分)如图,平行四边形ABCD中,AE、DE分别平分∠BAD、∠ADC,E点在BC上.(1)求证:BC=2AB.(2)若AB=3 cm,∠B=60°,一动点F以1 cm/s的速度从A点出发,沿线段AD运动,CF交DE于G,当CF∥AE时:①求点F的运动时间t的值;②求线段AG的长度.20.(8分)如图,抛物线y=x2+bx+c与x轴交于A(1,0),B(-3,0),与y轴交于C.(1)求该抛物线的解析式,并写出抛物线的对称轴.(2)设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标.(3)若P是直线y=x+1上的一点,P点的横坐标为,M是第二象限抛物线上的一点,当∠MPD=∠ADC时,求M点的坐标.21.(9分)如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A 出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长.(2)当P、C两点的距离为时,求t的值.(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在时刻t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.22.(9分)已知在菱形ABCD中,∠ABC=60°,M、N分别是边BC,CD上的两个动点,∠MAN=60°,AM、AN分别交BD于E、F两点.(1)如图1,求证:CM+CN=BC.(2)如图2,过点E作EG∥AN交DC延长线于点G,求证:EG=EA.(3)如图3,若AB=1,∠AED=45°,直接写出EF的长.23.(12分)某超市店庆期间开展了促销活动,出售A,B两种商品,A种商品的标价为60元/件,B种商品的标价为40元/件,活动方案有如下两种,顾客购买商品时只能选择其中的一种方案:A B方案一按标价的“七折”优惠按标价的“八折”优惠方案二若所购商品达到或超过35件(不同商品可累计),均按标价的“七五折”优惠若某单位购买A种商品x件(x>15),购买B种商品的件数比A种商品件数多10件,求该单位选择哪种方案才能获得更多优惠?答案1^6:DBBBBA7.y=2x-58.9. 10. 6 11. -1 12. 1513.【答案】(1)解:将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x(斤).(2)解:根据题意得:(4-2-x)(100+200x)=300,解得:x1=,x2=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.答:水果店需将每斤的售价降低1元.14.【答案】(1)证明:∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠BED=∠CED,∵AF=AE,∴∠F=∠AEF,∵∠BED=∠AEF,∴∠CED=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形.(2)解:∵四边形ACEF是菱形,∴AC=CE,由(1)知,AE=CE,∴AC=CE=AE,∴△AEC是等边三角形,∴∠CAE=60°,在Rt△ABC中,∠B=90°-∠CAE=90°-60°=30°.15.【答案】(1)证明:∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD.∴四边形OCEB是矩形,∴OE=CB.(2)解:∵四边形ABCD是菱形,∴BC=CD=,∵AC⊥BD,OC:OB=1:2,∴在Rt△BOC中,由勾股定理得 BC2=OC2+OB2,∴CO=1,OB=2.∴AC=2,BD=4,∴菱形ABCD的面积=BD·AC=4.16.【答案】(1)解:设直线AB的解析式为.∵直线AB过点A(1,0)、B(0,-2),∴,解得,∴直线AB的解析式为.(2)解:设点C的坐标为.∵S△BOC=2,∴,解得.∵直线AB的解析式为,∴当时,y=2×2-2=2,∴点C的坐标是(2,2).17.【答案】(1)EF垂直平分AC(2)证明:∵EF垂直平分AC,∴EA=EC,FA=FC,AC⊥EF,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAC=∠ECA,∵EA=EC,∴∠ECA=∠EAC,∴∠EAC=∠DAC,∴AC平分EF,即AC与EF互相垂直平分,∴四边形AECF是菱形.18.【答案】(1)解:将x=2代入方程(a-1)x2+2x+a-1=0,解得:a=.将a=代入原方程得-x2+2x-=0,解得:x1=,x2=2.∴a=,方程的另一根为.(2)解:①当a=1时,方程为2x=0,解得:x=0;②当a≠1时,由b2-4ac=0得4-4(a-1)2=0,解得:a=2或0.当a=2时,原方程为:x2+2x+1=0,解得:x1=x2=-1;当a=0时,原方程为:-x2+2x-1=0,解得:x1=x2=1.综上,当a=1或0或2时,方程的根仅有唯一的值.当a=1时,此时方程的根x=0;当a=2时,此时方程的根x1=x2=-1;当a=0时,此时方程的根x1=x2=1.19.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∴∠DAE=∠AEB,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,同理:CE=CD,∴BE=CE=AB,∴BC=BE+CD=2AB.(2)解:①由(1)知,CE=CD=AB,∵AB=3 cm,∴CE=3 cm,∵四边形ABCD是平行四边形,∴AD∥BC∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE=3 cm,∴点F的运动时间t=3÷1=3(秒);②由(1)知AB=BE,∵∠B=60°,∴△ABE是等边三角形,∴∠AEB=60°,AE=AB=3 cm,∵四边形ABCD是平行四边形,∴∠B+∠BCD=180°,∵∠B=60°,∴∠BCD=120°,∵AE∥CF,∴∠ECF=∠AEB=60°,∴∠DCF=∠BCD-∠ECF=60°=∠ECF,由(1)知,CE=CD=AB=3 cm,∴CF⊥DE,∴∠CGE=90°,在Rt△CGE中,∠CEG=90°-∠ECF=30°,CG=CE=,∴EG=CG=,∵∠AEB=60°,∠CEG=30°,∴∠AEG=90°,在Rt△AEG中,AE=3,根据勾股定理得,AG=.20.【答案】(1)解:∵A(1,0),B(-3,0)关于直线x=-1对称,∴抛物线的对称轴为x=-1,抛物线的解析式为y=(x-1)(x+3)=x2+2x-3.(2)解:设点E(m,m2+2m-3).∵AD=2,OC=3,∴S△ACD=×AD·OC=3.∵S△ACE=,∴S△ACE=10.设直线AE的解析式为y=kx+t,把点A和点E的坐标代入得:,解得:.∴直线AE的解析式为y=(m+3)x-m-3.设直线AE交y轴于F,∴F(0,-m-3).∵C(0,-3),∴FC=-m-3+3=-m,∴S△EAC=×FC×(1-m)=10,即-m(1-m)=20,解得:m=-4或m=5(舍去),∴E(-4,5).(3)解:如图所示:过点D作DN⊥DP,交PM的延长线与点N,过点N作NL⊥x轴,垂足为L,过点P作PE⊥x轴,垂足为E.∵∠MPD=∠ADC,∠NDP=∠DOC,∴△NPD∽△CDO,∴=,∴==3.又∵△NLD∽△DEP,∴===3,∴NL=7,DL=7,∴N(-8,7),∴直线PN的解析式为y=-x-3.联立y=x2+2x-3与y=-x-3,解得:x=(舍去)或x=-4,∴M(-4,5).21.【答案】(1)解:∵AB=AC=13,AD⊥BC,∴BD=CD=5 cm,且∠ADB=90°,∴AD2=AC2-CD2,∴AD=12 cm.(2)解:∵AP=t,∴PD=12-t,在Rt△PDC中,,CD=5,根据勾股定理得,PC2=CD2+PD2,∴29=52+(12-t)2,∴t=10或t=14(舍),即t的值为10 s.(3)解:假设存在t,使得S△PMD=S△ABC.∵BC=10,AD=12,∴S△ABC=BC×AD=60.①若点M在线段CD上,即时,PD=12-t,DM=5-2t,由S△PMD=S△ABC,即(12-t)(5-2t),2t2-29t+43=0,解得(舍去),.②若点M在射线DB上,即.由S△PMD=S△ABC,得(12-t)(2t-5)=,2t2-29t+77=0,解得 t=11或,综上,存在t的值为s或 11 s或s,使得S△PMD=S△ABC.22.【答案】(1)证明:∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∴∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵AB=AC,∠B=∠ACN=60°,∴△BAM≌△CAN,∴BM=CN,∴CM+CN=CM+BM=BC.(2)证明:如图2中,连接EC.∵BA=BC,∠ABE=∠CBE,BE=BE,∴△ABE≌△CBE,∴EA=EC,∠BAE=∠BCE,∵EG∥AN,∴∠G=∠AND,∵∠AND=∠CAN+∠ACN=60°+∠CAN,∠ECG=60°+∠ECB,∵∠ECB=∠BAE=∠CAN,∴∠ECG=∠AND=∠G,∴EC=EG,∴EA=EG.(3)解:如图3中,将△ABE绕点A逆时针旋转120°得到△ADQ,易证△AFE≌△AFQ,∴∠AEF=∠AQF=45°,∵∠AEB=∠AQD=135°,∴∠FQD=90°,∴在四边形AEDQ中,∠QDF=360°-120°-45°-135°=60°,设DQ=BE=x,则DF=2x,EF=FQ=x,∵AB=AD=1,∠ABD=30°,∴BD=,∴x+2x+x=,∴x=,∴EF=x=.23.【答案】解:根据题意得:某单位购买A种商品x件,则购买B种商品(x+10)件,按方案一购买花费为:y1=60×0.7x+40×0.8(x+10),按方案二购买花费为:y2=60×0.75x+40×0.75(x+10),y1-y2=-x+20,∵x>15,∴-x<-15,∴-x+20<5,若y1<y2,则-x+20<0,即x>20时,方案一的花费少于方案二,若y1=y2,则-x+20=0,即x=20时,方案一的花费等于方案二,若y1>y2,则-x+20>0,即15<x<20时,方案二的花费少于方案一,答:当购买A商品的数量多于20件时,选择方案一,当购买A商品的数量为20件时,选择方案一或方案二都可以,当购买A商品的数量多于15件少于20件时,选择方案二,这样才能获得更多优惠.。

相关文档
最新文档