人教版数学九年级下册知识点总结:第二十九章、投影与视图
人教版九年级下册数学《投影》投影与视图说课教学课件复习导学
区别
光线 形状大小
(物体与投影 面平行时)
联系
平行投影 平行 中心投影 从一点
发出
都是物体在光线的 照射下,在某个平
面内形成的影子 (即都是投影)
小练习
把下列物体与它们的投影用线连接起来。
观察
下面两幅图中的投影线有什么区别? 它们分别形成了什么投影?
中心投影 投影线 集中于一点
平行投影 互相平行
下面两幅图中的投影线有什么区别? 它们分别形成了什么投影? 它们的投影线与投影面的位置关系有什么区别?
平行投影
投影线
互相平行
投影线与投影 投影线斜着 面的位置 照射投影面
平行投影
互相平行 投影线垂直 照射投影面
知识要点
投影线垂直于投影面产生的投影 叫做正投影。
固定投影面,改变小棒的摆放位置和方向, 它的影子分别发生了什么变化?
把下列物体与它们的投影用线连接起来:
【例1】(1)它们 是太阳的光线还是 灯光的光线?
它们是灯光的光线!
它们不是平行光线, 是发散光线
(2)下图是两棵小树在同一时刻的影子.请你在图中画出 形成树影的光线.它们是太阳的光线下形成的还是灯光下 形成的?画出同一时刻旗杆的影子,并与同伴交流这样做的 理由.
一般由平行光线形成的投影是平行投影。 3. 中心投影:
由同一点(电光源)发出的光线形成的投 影叫做中心投影。
4. 平行投影与中心投影的异同:
区别
形状
联系
光线 (物体与投影
面平行时)
平行投影 平行
中心投影
从一点 发出
全等
都是物体在光线的
照射下,在某个平
放大
面内形成的影子
(位似变换) (即都是投影)
最新人教版九年级数学下册第二十九章《投影与视图》本章概要
第二十九章投影与视图本章概要数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从现实世界中抽象出来的.很明显,关于投影和视图的知识是从实际需要(建筑、制造等)中产生的,它们与实际模型联系得非常紧密.本章的主要内容包括投影和视图的基础知识,一些基本几何体的三视图,简单立体图形与它的三视图的相互转化,根据三视图制作立体模型的实践活动,既是七年级“图形识别初步”的延续,又是高中“立体几何”的基础,全章分为三节.第29.1节“投影”中,首先从物体在日光或灯光下的影子说起,引出投影、平行投影、中心投影、正投影等概念;然后以铁丝和正方形纸板的影子为例,讨论当直线和平面多边形与投影面成三种不同的位置关系时的正投影,归纳出其中蕴涵的正投影的一般规律;最后以正方体为例,讨论立体图形与投影面成不同位置关系时的正投影.整个讨论过程是按照一维、二维和三维的顺序发展的.第29.2节“三视图”讨论的重点是三视图,其中包括三视图的成像原理、三视图的位置和度量规定、一些基本几何体的三视图、简单立体图形(包括相应的表面展开图)与它的三视图的相互转化等.这一节是全章的重点内容.第29.3节“课题学习制作立体模型”中,安排了观察、想象、制作相结合的实践活动,这是动脑与动手并重的学习内容.进行这个课题学习既可以采用独立完成的形式,也可以采用合作式学习的方式.应该把对这个课题的学习看作是对前面学习过的内容是否切实理解掌握以及能否灵活运用的一次联系实际的检验.学习策略本章内容有两个特点:第一,它与直观图形的关系密切,需要在图形形状方面进行想象和判断,要完成的题目多是识图、画图、制作模型等类型的问题,而很少涉及定量的计算;第二,它将平面图形与立体图形紧密地联系起来,从“由物画图”和“由图想物”两个角度讨论平面图形与立体图形之间的相互转化,这些联系与转化的基础是投影规律.注意观察、想象、制作相结合,可以合作式学习. 重视相关内容与实际的联系,可用橡皮泥等工具制作模型,不刻意追求对概念的透彻理解程度,结合例子了解空间位置关系,归纳基本规律. 例如,学习正投影规律时,选择铁丝、正方形纸板和正方体模型,按照维数从1到3的顺序去理解有关平行、斜交和垂直的位置关系.重视基本几何体的学习与识记,对球、柱、锥适当归类,寻找各自在三视图中的共同点.。
人教版初三下学期数学第29章知识点汇总
人教版初三下学期数学第29章知识点汇总
29.1投影
一、知识要点
1、投影 (1)投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影 (projection),照射光线叫做投影线,投影所在的平面叫做投影面。
(2)平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。
由平行光线形成的投影是平行投影(parallel projection).
gt;gt;gt;gt;初三数学知识点总结:投影与视图
29.2三视图
1.光线从几何体的前面向后面正投影得到的投影图,
叫做几何体的正视图.
2.光线从几何体的左面向右面正投影得到的投影图,
叫做几何体的侧视图.
gt;gt;gt;gt;九年级数学《三视图》知识点梳理初三下学期数学第29章知识点就到这儿了,体会每篇文章的不同,摘取自己想要的,友情提醒,理解最重要哦!!!数学知识点帮助大家轻松愉快地总结功课~。
(人教版)南京九年级数学下册第二十九章《投影与视图》知识点总结
一、选择题1.下面几何体的左视图是( )A.B.C.D.2.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是()A.正方形B.平行四边形C.矩形D.等边三角形3.用大小和形状完全相同的小正方体木块搭成一-个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A.22个B.19个C.16个D.13个4.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成()A.12B.13C.14D.155.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.6.如图,王华用橡皮泥做了个圆柱,再用手工刀切去一部分,则其左视图是()A .B .C .D . 7.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm 8.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有( )A .4个B .5个C .6个D .7个9.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时 刻,一根长为l 米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( )A .米B .12米C .米D .10米 10.如图是由五个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D . 11.如图,∠APD=90°,AP=PB=BC=CD ,则下列结论成立的是( )A.△PAB∽△PCA B.△ABC∽△DBA C.△PAB∽△PDA D.△ABC∽△DCA 12.下列几何体中,其主视图、俯视图和左视图分别是图中三个图形的是()A.B.C.D.13.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是() A.B.C.D.14.下面的三视图对应的物体是()A.B.C.D.15.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.二、填空题16.如图是一个几何体的三视图,则这个几何体的侧面积是______.(结果保留 )17.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=______m.18.如图,用棱长为1cm的小立方块组成一个几何体,从正面看和从上面看得到的图形如图所示,则这样的几何体的表面积的最小值是__cm2.19.一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状如下,那么搭成这样一个几何体,最少需要_____个这样的小立方块,最多需要_____个这样的小立方块.20.若要使图中平面展开图按虚线折叠成正方体后,相对面上的两个数为相反数,则x+y =________.21.甲同学的身高为1.5m,某一时刻它的影长为1m,此时一塔影长为20m,则该塔高为____________m。
人教版数学九年级下示范课件:第29章摄影与视图
平行的投射线 从一点出发的投射 线
放大 (位似变换)
都是物体在光线 的照射下,在某 个平面内形成的 影子.(即都是投 影)
29.1
投影
第2课时
1、能根据正投影的性质画出简单的平面图形的正投影;
2、培养动手实践能力,发展空间想象能力.
1.什么叫投影? 一般地,用 光线 照射物体,在 的影子叫做物体的投影.
思考:平行投影和中心投影有什么区别和联系呢?
把下列物体与它们的投影用线连接起来:
变式训练:1、如图是一根电线杆在一天中不同时 刻的影长图,试按其一天中时间先后顺序排列,正 确的是( ) C
北 北 北 北
① (A)①②③④ (C)④①③②
①
东
②
② ③ (B)④②③① (D)④③②①
③
东
东
④
④
东
【例1】(1)它们 是太阳的光线还是 灯光的光线? 它们是灯光的光线!
知 识 点 一 投 影
物体在日光或灯光的照射下,会在地面、墙壁等处 形成影子,影子与物体的形状有密切的关系。
2、一般地,用光线照射物体,在某个平面(地板、 __ _________ 墙壁等)上得到的 影子 叫做物体的投影. ___ _____叫做投影线,投影所在的 平面 叫做 照射光线 投影面.
三、研读课文 练一练
不同 位置 物体 线段 面
物体平行于 投影面
形状、大小不 变(全等) 形状、大小不 变(全等)
物体倾斜于 投影面
大小变化 形状、大小均 变化
物体垂直于 投影面 点 线
当物体的某个面平行于投影面时,这个面的正 投影与这个面的形状、大小完全相同.
【例】画出如图摆放的正方体在投影面P上的正投影. (1)正方体的一个面ABCD平行于投影面P; (2)正方体的一个面ABCD倾斜于投影面P,上底面ADEF垂直 于投影面P,并且对角线AE垂直于投影面P.
人教版九年级下册数学《由三视图确定几何体的面积或体积》投影与视图教学说课复习课件
知1-讲
知1-讲
例1〈泸州〉如图所示的几何体的左视图是( C )
导引: 左视图是从物体的左面看到的视图,从圆柱的左 边向右边看,看到的是一个矩形,故选C.
总结
知1-讲
单个几何体的三视图直接根据常见的几何体三 视图中识别.
知1-练
1 把图中的几何体与它们对应的三视图用线连接起来.
知1-练
2 【中考·海南】如图是由四个相同的小正方体组成 的几何体,则它的主视图为( A )
分析:支架的形状是由两个大 小不等的长方体 构成的 组合体.画三视图时要注 意这两个长方体的上 下、 前后位置关系.
解:下图是支架的三视图.
知2-讲
总结
知2-讲
画组合体的三视图时,构成组合体的各部分的视图也要遵 守“长对正,高平齐, 宽相等”的规律.
知2-练
1 画出如图所示的正三棱柱、圆锥、半球的三视图.
(2) 请指出三视图、立体图形、展开图之间的对应边.
讲授新课
三视图的有关计算 合作探究
例1 某工厂要加工一批密封罐,设计者给出了密封罐的三视图,请你按照三 视图确定制作每个密封罐所需钢板的面积 (图中尺寸单位:mm).
分析: 1. 应先体__形__状____; 2. 画出物体的 展开图 .
1. 一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为
()
B
A. 6
B. 8
C. 12
D. 24
2. 如图是一个几何体的三视图,根据图中提供的数据 (单位:cm),可求得
这个几何体的体积为3 cm3 .
3 主视图
1 1 左视图 俯视图
2π 3. 如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为
29.2 三视图 初中数学人教版九年级下册精品讲义
第二十九章投影与视图29.2 三视图课程标准课标解读1.会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,能判断简单物体的视图,并会根据视图描述简单的几何体。
2.了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制作模型。
3.通过实例,了解上述视图与展开图在现实生活中的应用。
理解和掌握三视图的基本概念,能够画出棱柱、圆柱、圆锥、球的主视图,能够正确判断简单物体的三视图。
知识点01 三视图1.三视图有关的概念(1)视图:从某一方向观察一个物体时,所看到的平面图形叫作物体的一个视图。
(2)三视图:从3个互相垂直的方向观察物体,在正面内得到的由前向后观察物体的视图,叫作主视图;在水平面内得到的由上向下观察物体的视图,叫作俯视图;在侧面内得到的由左向右观察物体的视图,叫作左视图。
【微点拨】(1)视图的本质就是正投影;物体的主视图,等同于一束平行光线自物体的前方向后方照射,在正面投影面上得到的正投影;俯视图、左视图类似。
(2)三视图中的各视图,分别从不同方向表示物体的形状,三者结合能够较全面地反映物体的形状.2. 三视图之间的关系三视图的摆放一般是,主视图在左上方,它下方应是俯视图,左视图在右边.在物体的三视图中,主视图可反映出物体的长和高,俯视图可反映出物体的长和宽,左视图可反映出物体的高和宽.【微点拨】三视图中,主视图与俯视图表示同一物体的长;主视图与左视图表示同一物体的高;左视图与俯视图表示同一物体的宽.【即学即练1】如图所示的几何体,其主视图是()A .B .C .D .【答案】A 【分析】从正面看所得到的图形即为主视图,据此求解即可.【详解】解:从正面看看到的是一个长方形,中间有两条竖着的虚线,即,故选A 知识点02 画三视图1.画几何体的三视图画一个几何体的三视图时,先观察几何体,判断出从3个方向看几何体得到的平面图形,即三视图;然后把三视图按照一定位置画出来。
画三视图时,一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,被其他部分遮挡而看不见的画成虚线,不能漏掉。
人教版九年级下册第29章 三视图的相关概念和性质(21页)
主视图 左视图
高
长
宽
宽 俯视图
3. 在主视图正右方画出左视图,注意与主视图高平齐,
与俯视图宽相等;
4. 为表示圆柱、圆锥等的对称轴,规定在视图中加画 点划线表示对称轴.
注意:不可见的轮廓线,用虚线画出.
例2 画出如图所示的支架的三视图,其中支架的两个 台阶的高度和宽度相等.
解:下图是支架的三视图.
图
高
图
长
宽
俯视图
宽 俯视图
三视图是主视图、俯视图、左视图的统称.它是从 三个方向分别表示物体形状的一种常用视图.
典例精析
二、三视图的画法
例1 画出图中基本几何体的三视图:
解:如图所示: 主视图 左视图
主视图 左视图
俯视图
俯视图 宽
主视图
左视图 俯视图
归纳总结
三视图的具体画法为: 1. 确定主视图的位置,画出主视图; 2. 在主视图正下方画出俯视图,注
主
左
视
视
图
图
俯 视 图
练一练
画出图中的几何体的三视图.
例3 画出图中简单组合体的三视图:
解:三视图如下:
主视图
左视图
俯视图
练一练
找出对应的的三视图.
主视图 (A) 左视图 (A) 俯视图 (B)
A
B
C
当堂检测
1.下图的几何体中,主视图、左视图、俯视图均相
同的是
(D )
A
B
C
D
2.一个几何体的三视图形状都相同,大小均等,那
模块的俯视图的是
( A)
①
②
③
④
⑤
A.② B.③ C.④ D.⑤
人教版九年级下册数学《平行投影与中心投影》投影与视图PPT课件
例题精讲
解:如图所示,OP为路灯,AE为第一-次竖起的竹竿,其影子为AC,BF为第二次竖 起,的竹竿,其影子为BD.
根据题意,得AE= BF=2米,AC=1米,BD=2米,AB=4米,设OP=x米. ∵AE//OP,∴△POC△AEC, ∴PO/PC=AE/AC= ½,则PC= ½OP= ½x m. ∴AP=CP-CA=( ½ x-1) m 同理△POD∽△BFD, 则BF/BD=PO/DP,即2/2=PO/DP, ∴PO=DP 又∵DP=DB+BA+AP=2+4+(½ x +1)=5+ ½ x. ∴x=5+ ½ x.解得x=10, 即路灯的高为10米.
BA
_____.
α A1
BA 12
第 42 页
BA B
B A3(B 2 3)
探数学新知
如图,把一块正方形硬纸板P (记为正 方形ABCD) 放在三个不同位置:(1) 纸板平 行于投影面;(2) 纸板倾斜于投影面;(3) 纸板垂直于投影面.
三种情形下纸板的正投影各是什么形状?
通过观察、测量可知: (1) 当纸板P平行于投影面β时,P的正投影与P的
第 31 页
练所获之理
下图中的三幅图是我国北方地区某地某天上午不同时刻的同一位 置拍摄的在三个不同的时刻,同一棵树的影子长度不同,请你将它 们按拍摄的先后顺序进行排列,并说明你的理由.
第 32 页
顺序为:3 → 2 → 1
觉题目之殊
思考:在同一时刻,大树和小树的影子与它们的高 度之间有什么关系?与同伴交流。
'
A' B
'
A DC ''
A' B
人教版数学九年级下册:第二十九章《投影与视图》知识点
第29章投影与三视图一、目标与要求1.会从投影的角度理解视图的概念2.会画简单几何体的三视图3.通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系4.明确正投影与三视图的关系5.经历探索简单立体图形的三视图的画法,能识别物体的三视图6.培养动手实践能力,发展空间想象能力。
二、知识框架四、重点、难点重点:从投影的角度加深对三视图的理解和会画简单的三视图,能够做出简单立体图形的三视图的画法。
难点:对三视图概念理解的升华及正确画出三棱柱的三视图,三视图中三个位置关系的理解。
四、中考所占分数及题型分布本章在中考中会出1道选择或者填空,也有可能不出。
在简答题中会在几何题中穿插应用,本章约占3-5分。
第29章 投影与三视图29.1 投影1.投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
2.平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。
由平行光线形成的投影是平行投影.3.中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
例.把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状?通过观察、测量可知:(1)当线段AB 平行于投影面P 时,它的正投影是线段11A B ,线段与它的投影的大小关系为11AB A B =;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段22A B ,线段与它的投影的大小关系为22AB A B =;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点3A .例.把一正方形硬纸板P (记正方形ABCD )放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面。
人教版九年级数学下册说课稿:第29章投影与视图29.2由三视图确定几何体
-掌握几何体的分类及其特征。
-学会通过三视图确定几何体的方法。
2.过程与方法:
学生在解决实际问题时,能够运用所学的知识和方法,发展空间想象能力,提高解决问题的能力。具体目标如下:
-能够运用三视图的概念和方法,解决实际问题。
-在实践中培养空间想象能力,提高解决问题的效率。
-学会从多角度观察和分析问题,形成严谨的思维方式。
-利用互动式教学,如小组讨论、角色扮演等,让学生在合作中发现问题、解决问题,增强学习的趣味性。
-设计有趣的游戏和竞赛活动,如“视图猜谜”、“几何体拼图比赛”等,激发学生的竞争意识和探索欲望。
-给予学生充分的鼓励和肯定,尤其是当他们能够成功解决复杂问题时,以提高他们的自信心和学习动力。
三、教学方法与手段
-学生对空间想象能力的差异,可能导致部分学生对三视图的理解困难。
-小组合作中可能出现分工不均或交流不畅的情况。
应对策略包括:
-为不同水平的学生提供不同难度的练习,以适应他们的学习需求。
-明确小组合作的规则和期望,确保每个学生都参与其中。
课后,我将通过学生的课堂表现、作业完成情况和小组反馈来评估教学效果。具体的反思和改进措施包括:
1.三视图的基本概念,即正视图、侧视图和俯视图。
2.几何体的分类,包括柱体、锥体、球体等。
3.通过三视图确定几何体的方法,包括视图的对应关系、几何体的特征等。
4.空间想象能力的培养,即如何从三视图还原出几何体的真实形态。
(二)教学目标
1.知识与技能:
学生能够了解三视图的基本概念,掌握通过三视图确定几何体的方法,能够准确识别和绘制正视图、侧视图和俯视图。具体目标如下:
-互动软件:利用互动式教学软件,让学生在计算机上绘制和观察几何体的三视图,增强学习的互动性和趣味性。
新人教版九年级数学下册全套PPT课件 第二十九章 投影与视图全章课件汇总
(3)如果上图中小三角形的边长为1,那么对应的多面体的体积和表面 积各是多少?
答案:
√
×
√
2、找出图中三视图所对应的直观图。
(1)
(√2)
(3)
(4)
课堂小结
1. 数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空 间形式是从现实世界中抽象出来的。
(2)正方体的一个面ABCD倾斜于投影面P,上底面ADEF垂直于投影面P,并 且上底面的对角线AE垂直于投影面P。
A’
D’
B’
C’
A
D
B
C
例、画出如图摆放的正方体在投影面P上的正投影。
(1)正方体的一个面ABCD平行于投影面P;
(2)正方体的一个面ABCD倾斜于投影面P,上底面ADEF垂直于投影面P,并 且上底面的对角线AE垂直于投影面P。
二、工具准备 刻度尺、剪刀、小刀、胶水、硬纸板、马铃薯(或萝卜)等.
观察
探究
以上的立体图形,都是通过拼接平面图形得 到的。
如何制作平面图形,从而拼接得到立体图形 呢?
观察三视图,并 综合考虑各视图所表 示的意思以及视图间 的联系,可以想象出 三视图所表示的立体图形的形状,这 是由视图转化为立体图形的过程。
长,且上面正方形位于下面正方形的中间.故选B.
2.下列几何体中,左视图是圆的是( D) 中考链接
解析:图形A的左视图是等腰三角形;图形B的左视图是 长方形;图形C的左视图是梯形;图形D的左视图是圆.故 选D.
中考链接
3.在①长方体、②球、③圆锥、④竖放的圆柱、
⑤竖放的正三棱柱这五种几何体中,其主视图、
人教版九年级下册数学:第29章 29.2.1《三视图》第1课时
新识探究
一个物体〔例如一个长方体〕在三个投影面内同时进行
正投影,在正面内得到的由前向后观察物体的视图,叫做主
视图〔从前面看〕;
在水平面内得到的由上向下观察物体的视图,叫做俯视图
〔从上面看〕
在侧面内得到由左向右观察物体的视图,叫做左视图〔从
新识探究
主
左
四
视
视
棱
图
图
柱
俯 视 图
【规律方法】在画图时,看见的局部的轮廓线通常 画成实线,看不见局部的轮廓线通常画成虚线.
课堂练习
知识点 2
9.画出下列物体或组合体的三视图.
解:如图:
课堂小结
三视图 主视图——从正面看到的图 左视图——从左面看到的图 俯视图——从上面看到的图
祝同学们学习进步! 再见
3.(20xx荆门)下面几个几何体中.俯视图为四边
形的是〔 D 〕
4.〔20xx遵义)以下几何体的主视图与其他三个
不同的是〔 C 〕
5.(20xx佛山)如下图的几何体是由假设干大小相
同的小立方块搭成,那么这个几何体的左视图是 D
〔〕
B
6.(20xx安徽)以下几何体中.俯视图是矩形的 〔〕
7.(20xx桂林)以下四个物体的俯视图与给出视图一
左面看〕.
主视图
投影面
左视图
正面
俯视图
侧面 水平面
新识探究
将三个投影面展开在一个平面内,得 到这一物体的一张三视图
三视图是主视图、俯视图、左视图的 统称。它是从三个方向分别表示物体形状 的一种常用视图。
课堂练习
九年级数学下册第二十九章《投影与视图》综合知识点总结(培优)
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图由5个相同的小正方体组成的-个立体图形,其俯视图是()A.B.C.D.2.用大小和形状完全相同的小正方体木块搭成一-个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A.22个B.19个C.16个D.13个3.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.4.如图,王华用橡皮泥做了个圆柱,再用手工刀切去一部分,则其左视图是()A.B.C.D.5.如图,该几何体的俯视图是()A.B.C.D.6.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.7.下列几何体各自的三视图中,有且仅有....两个视图相同的是()A.①②B.②③C.①④D.②④8.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m9.如图所示是某几何体从三个方向看到的图形,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥10.如图,水杯的俯视图是()A.B.C.D.11.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()A.B.C.D.12.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.13.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.14.如图所示的立体图形的主视图是()A.B.C.D.二、填空题15.如图所示,是由一些相同的小立方体搭成的几何体分别从正面、左面、上面看到的该几何体的形状图,那么构成这个立体图形的小正方形有________个.16.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60 角时,第二次是阳光与地面成30角时,两次测量的影长相差8米,则树高______米.(结果保留根号)17.10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是____________.18.八中食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……现在分别从三个方向上看若干碟子,得到的三视图如图所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度为_____cm.19.一般把物体从正面看到的视图叫主视图,从左面看到的视图叫左视图,从上面看到的视图叫俯视图,一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为______.20.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.21.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是________.22.如图是某几何体的三视图,则该几何体左视图的面积为_________.23.如图,一几何体的三视图如图:那么这个几何体是______.24.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.25.图中几何体的主视图是().A BC D26.如图,将19个棱长为a的正方体按如图摆放,则这个几何体的表面积是_____.三、解答题27.如图,若干个完全相同的小正方体堆成一个几何体.(1)请在图中方格中画出该几何体的左视图和俯视图.(2)用若干小立方体搭一个几何体,使得它的左视图和俯视图与你在方格中所画的一致,则这样的几何体最多要个小立方块.(3)若小正方体的棱长为1cm,如果将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,求需喷漆部分的面积.28.如图是由10个同样大小的小正方体搭成的物体.(1)请画阴影分别表示从正面、上面观察得到的平面图形的示意图;(2)分别从正面、上面观察这个图形,得到的平面图形不变的情况下,你认为最多还可以添加个小正方体.从正面看从上面看29.如图,是由一些大小相同的小正方体组合成的简单几何体.根据要求完成下列题目.(1)请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影);(2)图中共有个小正方体.30.在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆AB=2米,它的影子BC=1.6米,木杆PQ的影子有一部分落在墙上,PM=1.2米,MN=0.8米,求木杆PQ的长度.【参考答案】一、选择题1.C2.D3.B4.A5.A6.B7.D8.A9.D10.A11.C12.A13.D14.A二、填空题15.5【分析】易得这个几何体共有2层由俯视图可得第一层正方体的个数由主视图和左视图可得第二层正方体的个数相加即可【详解】解:由从上面看到的图形易得最底层有4个正方体第二层有1个正方体那么共有4+1=5(16.【分析】设出树高利用所给角的正切值分别表示出两次影子的长然后作差建立方程即可【详解】如图在中设AB为x∴同理:∵两次测量的影长相差8米∴∴则树高为米故答案为:【点睛】本题考查了平行投影的应用太阳光线17.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的18.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x时碟子的高度为2+15(x﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=2319.【解析】【分析】易得此几何体为圆柱底面直径为2cm高为圆柱侧面积底面周长高代入相应数值求解即可【详解】解:主视图和左视图为长方形可得此几何体为柱体俯视图为圆可得此几何体为圆柱故侧面积故答案为【点睛】20.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键21.09m【分析】根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB∥CD∴△PAB∽△PCD∴假设P到AB距离为x则=x=09故答案为09m【点睛22.【解析】【分析】由视图知此几何体的侧视图为一个长方形故由题设条件求出侧视图的面积即可【详解】由几何体的主视图与俯视图可得几何体为三棱柱所以该几何体的左视图的面积为2×6=12故答案为:【点睛】本题考23.圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体由俯视图是圆形可判断出这个几何体应该是圆锥故答案为圆锥考点:由三视图判断几何体24.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△ECD∴解25.C【解析】试题分析:根据几何体的三视图知识几何体的主视图即从正面看到的图形此几何体从正面看到的图形为上下两层下面有两个小正方形上面靠左有一个小正方形如图C 所示故选C考点:几何体的三视图26.54a2【分析】求这个几何体的表面积就要数出这个几何体中小正方体漏在外面的面的个数从前后左右上下方向上来数然后用一个面的面积乘面的个数即可【详解】解:从前后左右上下方向看到的面数分别为:101088三、解答题27.28.29.30.【参考解析】一、选择题1.C解析:C【分析】根据立体图形三视图的性质进行判断即可.【详解】根据立体图形三视图的性质,该立体图形的俯视图为故答案为:C.【点睛】本题考查了立体图形的三视图,掌握立体图形三视图的性质是解题的关键.2.D解析:D【分析】先根据俯视图判断出这个几何体的行列数,然后根据正视图推算每列小正方体的最少个数,最后将各列的小正方体个数求和即可得.【详解】由俯视图可得,这个几何体共有3行3列,其中左边一列有2行,中间一列有2行,右边一列有3行由正视图可得,左边一列2行中的最高层数为2,则这列小正方体最少有213+=个中间一列2行中的最高层数为3,则这列小正方体最少有314+=个右边一列3行中的最高层数为4,则这列小正方体最少有4116++=个因此,这个几何体的一种可能的摆放为2,3,41,1,10,0,1(数字表示所在位置小正方体的个数),小正方体最少有34613++=个故选:D.【点睛】本题考查了三视图(俯视图、正视图)的定义,根据俯视图和正视图得出几何体的实际可能摆放是解题关键.另一个重要概念是左视图,这是常考知识点,需掌握.3.B解析:B【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.【详解】由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形.故选B.【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.4.A解析:A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】从左边看是上下两个矩形,矩形的公共边是虚线.故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.A解析:A【解析】分析:找到从几何体的上面所看到的图形即可.详解:从几何体的上面看可得,故选:A.点睛:此题主要考查了简单几何体的三视图,关键是掌握所看的位置.6.B解析:B【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B.【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.7.D解析:D【分析】逐个分析几何体的三视图,作出解答.【详解】解:正方体的三个视图都是正方形,三棱台的三个视图都不同,所以①③都不满足题意;圆锥的正视图、左视图都是等腰三角形,俯视图是有圆心的圆,满足题意;正四棱锥正视图、侧视图都是等腰三角形,俯视图是正方形和两条对角线,满足题意. 故选D【点睛】本题考查几何体的三视图,掌握各立体图形的特点以及三视图的概念是解题的关键. 8.A解析:A【解析】∵BE ∥AD ,∴△BCE ∽△ACD , ∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m .故选A . 9.D解析:D【解析】试题∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选D .10.A解析:A【解析】【分析】找到从上面看所得到的图形即可.【详解】根据几何体的三视图,可知该几何体的俯视图是一个圆和一条线段.故选A.11.C解析:C【解析】【分析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:.故选:C.【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.12.A解析:A【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为A.【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.13.D解析:D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看易得第一层左侧有1个正方形,第二层有3个正方形.故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.14.A解析:A【解析】解:此立体图形从正面看所得到的图形为矩形,里面有一条竖线且为实线,故选A.点睛:此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.二、填空题15.5【分析】易得这个几何体共有2层由俯视图可得第一层正方体的个数由主视图和左视图可得第二层正方体的个数相加即可【详解】解:由从上面看到的图形易得最底层有4个正方体第二层有1个正方体那么共有4+1=5(解析:5【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【详解】解:由从上面看到的图形易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5(个)正方体组成.故答案为5.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.16.【分析】设出树高利用所给角的正切值分别表示出两次影子的长然后作差建立方程即可【详解】如图在中设AB为x∴同理:∵两次测量的影长相差8米∴∴则树高为米故答案为:【点睛】本题考查了平行投影的应用太阳光线解析:43【分析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.【详解】如图在Rt ABC中,设AB为xtan ∠=AB ACB BC , ∴tan tan 60AB x BC ACB ==∠︒, 同理:tan 30x BD =, ∵两次测量的影长相差8米,∴8tan 30tan 60x x -=︒︒, ∴43x ,则树高为43米.故答案为:43.【点睛】本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案. 17.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的 解析:2236a cm【分析】先画出这个图形的三视图,从而可得上下面、前后面、左右面的小正方形的个数,再根据正方形的面积公式即可得.【详解】由题意,画出这个图形的三视图如下:则这个图形的表面积是()()22226262636a a cm ⨯+⨯+⨯=, 故答案为:2236a cm .【点睛】本题考查了求几何体的表面积,正确画出图形的三视图是解题关键.18.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x 时碟子的高度为2+15(x ﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=23解析:23【分析】根据三视图得出碟子的总数,由(1)知每个碟子的高度,即可得出答案.【详解】可以看出碟子数为x 时,碟子的高度为2+1.5(x ﹣1);由三视图可知共有15个碟子,∴叠成一摞的高度=1.5×15+0.5=23(cm ).故答案为:23cm.【点睛】本题考查了图形的变化类问题及由三视图判断几何体的知识,找出碟子个数与碟子高度的之间的关系式是此题的关键.19.【解析】【分析】易得此几何体为圆柱底面直径为2cm 高为圆柱侧面积底面周长高代入相应数值求解即可【详解】解:主视图和左视图为长方形可得此几何体为柱体俯视图为圆可得此几何体为圆柱故侧面积故答案为【点睛】 解析:26πcm【解析】【分析】易得此几何体为圆柱,底面直径为2cm ,高为3cm.圆柱侧面积=底面周长⨯高,代入相应数值求解即可.【详解】解:主视图和左视图为长方形可得此几何体为柱体,俯视图为圆可得此几何体为圆柱, 故侧面积2π236πcm =⨯⨯=.故答案为26πcm .【点睛】此题主要考查了由三视图判断几何体及几何体的展开图的知识;本题的易错点是得到相应几何体的底面直径和高.20.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键解析:6.4【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】 解:由题可知:1.628=树高, 解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.21.09m【分析】根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB∥CD∴△PAB∽△PCD∴假设P 到AB距离为x则=x=09故答案为09m【点睛解析:0.9m【分析】根据AB∥CD,易得,△PAB∽△PCD,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.【详解】∵AB∥CD,∴△PAB∽△PCD,∴ 2.7ABx CD,假设P到AB距离为x,则2.7x=26,x=0.9.故答案为0.9m.【点睛】考查了相似三角形的性质和判定.本题考查了相似三角形的判定和性质,常用的相似判定方法有:平行线,AA,SAS,SSS;常用到的性质:对应角相等;对应边的比值相等;相似三角形对应高之比等于对应边之比;面积比等于相似比的平方.解此题的关键是把实际问题转化为数学问题(三角形相似问题).22.【解析】【分析】由视图知此几何体的侧视图为一个长方形故由题设条件求出侧视图的面积即可【详解】由几何体的主视图与俯视图可得几何体为三棱柱所以该几何体的左视图的面积为2×6=12故答案为:【点睛】本题考解析:2【解析】【分析】由视图知,此几何体的侧视图为一个长方形,故由题设条件求出侧视图的面积即可.【详解】由几何体的主视图与俯视图可得,几何体为三棱柱,所以该几何体的左视图的面积为=,故答案为:2.【点睛】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三视图中的侧视图面积,解决本题的关键是由题设条件得出侧视图的形状及侧视图的几何特征.求解本题的关键是准确熟练理解三视图的投影规则,其规则是:主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.23.圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体由俯视图是圆形可判断出这个几何体应该是圆锥故答案为圆锥考点:由三视图判断几何体解析:圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥.故答案为圆锥.考点:由三视图判断几何体.24.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△EC D∴解解析:16【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA,DE AB220==,解得OA=16.故答案为16.25.C【解析】试题分析:根据几何体的三视图知识几何体的主视图即从正面看到的图形此几何体从正面看到的图形为上下两层下面有两个小正方形上面靠左有一个小正方形如图C所示故选C考点:几何体的三视图解析:C.【解析】试题分析:根据几何体的三视图知识,几何体的主视图即从正面看到的图形,此几何体从正面看到的图形为上下两层,下面有两个小正方形,上面靠左有一个小正方形,如图C所示.故选C.考点:几何体的三视图.26.54a2【分析】求这个几何体的表面积就要数出这个几何体中小正方体漏在外面的面的个数从前后左右上下方向上来数然后用一个面的面积乘面的个数即可【详解】解:从前后左右上下方向看到的面数分别为:101088解析:54a2【分析】求这个几何体的表面积,就要数出这个几何体中小正方体漏在外面的面的个数,从前、后、左、右、上、下方向上来数,然后用一个面的面积乘面的个数即可.【详解】解:从前、后、左、右、上、下方向看到的面数分别为:10,10,8,8,9,9所以表面积为(10+10+8+8+9+9 )a2=54a2,故答案为:54a2.【点睛】本题主要考查组合体的表面积,分析图形,掌握表面积的计算公式是解题的关键.三、解答题27.30cm(1)见解析;(2)14;(3)2【分析】(1)从上面看得到从左往右3列正方形的个数依次为3,2,1,依此画出图形即可;从左面看得到从左往右3列正方形的个数依次为3,2,1,;依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可;(3)数一数有多少个正方形露在外面即可求得面积.【详解】解:(1)如图所示:(2)由俯视图易得最底层有6个小立方块,第二层最多有5个小立方块,第三层最多有3个小立方块,所以最多有6+5+3=14个小立方块.故答案为:14;(3)若将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,30cm,则需要喷6×2+6×2+6=30个小正方形,面积为230cm.故需喷漆部分的面积为2【点睛】本题考查了作图-三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,俯视图决定底层立方块的个数,易错点是由左视图得到其余层数里最多的立方块个数.28.(1)见解析;(2)3【分析】(1)左视图有3列,每列小正方数形数目分别为3,1,2,俯视图有3列,每列小正方形数目分别为3,2,1.再根据小正方形的位置可画出图形;(2)根据两个平面图形不变的情况下,得出可以添加的小正方体个数.【详解】解:(1)如图,从上面看从正面看(2)在上面两个平面图形不变的情况下,可以将多添加的小正方体放在最左侧的那一列上,最多还可以添加 3个小正方体.故答案为:3.【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.29.(1)见解析;(2)9.【分析】(1)依据几何体的形状,即可得到它的左视图和俯视图;(2)可以直接从图中数出小正方体的个数.【详解】解:(1)左视图和俯视图如下:(2)由图可得,该几何体由9块小正方体组成,故答案为:9.【点睛】本题考查了作三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.30.2.3米【分析】先根据同一时刻物高与影长成正比求出QD 的影长,再根据此影长列出比例式即可【详解】解:如图,过点N 作ND ⊥PQ 于D ,则DN=PM ,∴△ABC ∽△QDN ,AB QD BC DN∴=. ∵AB=2米,BC=1.6米,PM=1.2米,NM=0.8米, 2 1.21.6AB DN QD BC ⨯===1.5(米), ∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(米).答:木杆PQ 的长度为2.3米.【点睛】此题考查相似三角形的应用和平行投影,解题关键在于掌握运算法则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二1.三视图
主视图 俯视图 左视图
2.三视图的对应关系
(1)长对正:主视图与俯视图的长相等,且相互对正;
(2)高平齐:主视图与左视图的高相等,且相互平齐;
(3)宽相等:俯视图与左视图的宽相等,且相互平行.
3.常见几何体的三视图常见几何体的三视图
正方体:正方体的三视图都是正方形.
圆柱:圆柱的三视图有两个是矩形,另一个是圆.
圆锥:圆锥的三视图中有两个是三角形,另一个是圆.
球的三视图都是圆.
例:长方体的主视图与俯视图如图所示,则这个长方体的体积是36 .
知识点二 :投影
4.平行投影
由平行光线形成的投影.
在平行投影中求影长,一般把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出的影长.
例:小明和他的同学在太阳下行走,小明身高1.4米,他的影长为1.75米,他同学的身高为1.6米,则此时他的同学的影长为2米.
5.中心投影
由同一点(点光源)发出的光线形成的投影.