中考2011真题---分式方程应用题专题
分式方程计算30题(附答案、讲解)
分式方程计算30题(附答案、讲解)郭氏数学公益教学博客中考分式方程计算30题(附答案、讲解)一.解答题(共30小题)1.(2011•自贡)解方程:3.(2011•咸宁)解方程5.(2011•海)解方程:7.(2011•台州)解方程:9.(2011•陕西)解分式方程:.10.(2011•綦江县)解方程:..8.(2011•随州)解方程:..6.(2011•潼南县)解分式方程:..4.(2011•乌鲁木齐)解方程:=+1..2.(2011•孝感)解关于的方程:.[键入文字]11.(2011•攀枝花)解方程:13.(2011•茂名)解分式方程:15.(2011•菏泽)解方程:17.(2011•常州)解分式方程;18.(2011•巴中)解方程:.20.(2010•遵义)解方程:[键入笔墨].12.(2011•宁夏)解方程:..14.(2011•昆明)解方程:.16.(2011•大连)解方程:.(2)解分式方程:=+1.21.(2010•重庆)解方程:+=122.(2010•孝感)解方程:24.(2010•恩施州)解方程:26.(2009•聊城)解方程:28.(2009•南平)解方程:30.(2007•孝感)解分式方程:+.23.(2010•西宁)解分式方程:25.(2009•乌鲁木齐)解方程:=127.(2009•南昌)解方程:29.(2008•昆明)解方程:.[键入笔墨]答案与评分标准一.解答题(共30小题)1.(2011•自贡)解方程:.考点:解分式方程。
专题:计算题。
分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检修:当y=时,y(y﹣1)=×(﹣1)=﹣≠,∴y=是原方程的解,∴原方程的解为y=.点评:此题考察相识分式方程,(1)解分式方程的根本头脑是“转化头脑”,把分式方程转化为整式方程求解.(2)解分式方程肯定留意要验根.2.(2011•孝感)解关于的方程:.考点:解分式方程。
★2011中考真题120考点汇编★014:约分与通分,分式运算(含解析答案)
=x-6 故答案为:x-6 点评:本题主要考查分式的混合运算,通分.因式分解和约分是解答的关键. 8. (2011 年广西桂林,18,3 分)若 a1 1
1 1 1 , a2 1 , a3 1 ,… ;则 a2011 m a1 a2
=错误!未找到引用源。÷ 错误!未找到引用源。 ,
( x 1) 2 错误!未找到引用源。错误!未找到引用源。 = , x
=x﹣1. 故选 B. 点评:此题考查了分式的混合运算.解题时要注意运算顺序. m2 n2 6. (2011•南通)设 m>n>0,m2+n2=4mn,则 的值等于 mn A. 2 3 B. 3 C. 6 D. 3 考点:分式的化简求值;完全平方公式。 专题:计算题。 2 2 2 2 2 2 2 分析:先根据 m +n =4mn 可得出(m +n ) =16m n ,由 m>n>0 可知,错误!未 2 找到引用源。>0,故可得出错误!未找到引用源。=错误!未找到引用源。 ,再把(m ﹣ 2 2 2 2 2 2 2 n ) 化为(m +n ) ﹣4m n 代入进行计算即可. 2 2 解答:∵ m n 4mn ∴ m2 n2 2mn 6mn ,
(m 2)( m 2) 1 m2 m2
=错误!未找到引用源。 =1. 故选 B.
点评:本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键,属于基础题. 4. (2011 山东济南,8,3 分)化简:
m2 n2 的结果是( ) mn mn
A.m+n B.m﹣n C.n﹣m D.﹣m﹣n 考点:分式的加减法。 分析:本题需先把分母进行整理,再合并即分子分母进行约分.即可求出所要求的结果. 解答:解:
云南省贵州省2011年中考数学试题分类解析汇编 专题3 方程(组)和不等式(组)
某某某某2011年中考数学试题分类解析汇编专题3:方程(组)和不等式(组) 一、选择题1. (某某某某3分)若x 1,x 2是一元二次方程2x 2﹣7x+4=0的两根,则x 1+x 2与x 1•x 2的值分别是A 、﹣72,﹣2B 、﹣72,2C 、72,2D 、72,﹣2 【答案】C 。
【考点】一元二次方程根与系数的关系。
【分析】根据一元二次方程根与系数的关系得出x 1+x 2=-b a =-7722-=,x 1•x 2= c a =422=。
故选C 。
2.(某某某某、某某、某某、某某、某某、怒江、迪庆、某某3分)据调查,某市2011年的房价为4000元/2m ,预计2013年将达到4840元/2m ,求这两年的年平均增长率,设年平均增长率为x ,根据题意,所列方程为A.4000(1)4840x +=B.24000(1)4840x +=C.4000(1)4840x -=D.24000(1)4840x -=【答案】B 。
【考点】一元二次方程的应用(增长率问题)。
【分析】一年后,即2012年该市的房价是400040004000(1)x x +=+两年后,即2013年该市的房价是24000(1)4000(1)4000(1)(1)4000(1)x x x x x x +++=++=+所以,根据题意,所列方程为24000(1)4840x +=,故选B 。
3.(某某某某3分)方程2x -y=1和2x +y=7的公共解是⎩⎨⎧-==10.y x A ⎩⎨⎧==70.y x B C.⎩⎨⎧==51y x ⎩⎨⎧==32.y x D 【答案】D 。
【考点】方程组的解。
【分析】根据方程组的解的定义,把它们分别代入两个方程,使两个方程等式都成立的即为所求。
或求出方程组的解,与所给答案比较即可。
4.(某某某某3分)由于国家出台对房屋的限购令,我省某地的房屋价格原价为2400元/米2,通过连续两次降价率为a 后,售价变为2000元/米2,下列方程中正确的是A .2000)1(24002=-aB .2400)1(20002=-aC .2000)1(24002=+aD .2000)1(24002=-a【答案】D 。
2011年中考数学试题分类汇编__分式与分式方程2011年中考数学试题分类汇编__分式与分式方程
2011年全国各地中考数学试卷试题分类汇编第7章 分式与分式方程一、选择题1.(2011浙江金华,7,3分)计算1a-1 – aa-1的结果为( ) A. 1+a a -1 B. -aa-1C. -1D.1-a 【答案】C2. (2011山东威海,8,3分)计算:211(1)1mm m+÷⋅--的结果是( )A .221m m --- B .221m m -+-C .221m m --D .21m -【答案】B3. (2011四川南充市,8,3分) 当8、分式21+-x x 的值为0时,x 的值是( )(A )0 (B )1 (C )-1 (D )-2【答案】B4. (2011浙江丽水,7,3分)计算1a-1 – aa-1的结果为( )A. 1+aa -1B. -a a-1C. -1D.1-a【答案】C5. (2011江苏苏州,7,3分)已知2111=-b a ,则ba ab-的值是 A.21 B.-21C.2D.-2 【答案】D6. ( 2011重庆江津, 2,4分)下列式子是分式的是( )A.2x B.1+x x C. y x +2D. 3x 群区分的标志化学教案是饮食文化的真正边界试卷试题【答案】B.7. (2011江苏南通,10,3分)设m >n >0,m 2+n 2=4mn ,则22m n mn-的值等于A. 23B. 3C. 6D. 3【答案】A8. (2011山东临沂,5,3分)化简(x -x 1-x 2)÷(1-x1)的结果是( )A .x1 B .x -1 C .x1-x D .1-x x 【答案】B9. (2011广东湛江11,3分)化简22a b a b a b---的结果是 A a b + B a b - C 22a b - D 1 【答案】A 二、填空题1. (2011浙江省舟山,11,4分)当x 时,分式x-31有意义.【答案】3x ≠2. (2011福建福州,14,4分)化简1(1)(1)1m m -++的结果是 .【答案】m3. (2011山东泰安,22 ,3分)化简:(2x x+2-x x-2)÷xx 2-4的结果为 。
2011年中考数学真题分类汇编(150套) 分式专题
2011年中考数学真题分类汇编(150套)分式专题一、选择题1.(2011某某红河哈尼族彝族自治州)使分式x-31有意义的x 的取值是 A.x≠0 B. x≠±3 C. x≠-3 D. x≠3【答案】D2.(2011某某随州)化简:211()(3)31x x x x +-•---的结果是( ) A .2 B .21x - C .23x - D .41x x --【答案】B3.(2011 某某某某)当分式21-x 没有意义时,x 的值是( )A .2B .1C .0D .—2【答案】A4.(2011 某某某某)下列运算正确的是(A )1=---a b b b a a (B )b a nm b n a m --=- (C )a a b a b 11=+- (D )ba b a b a b a -=-+--1222 【答案】D5.(2011某某某某) 若分式221-2b-3b b - 的值为0,则b 的值是A. 1B. -1C.±1D. 2 【答案】A6.(2011 某某某某)化简22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x -- B .82x -C .82x -+ D .82x + 【答案】D7.(2011某某某某)化简211a a a a--÷的结果是 A .1a B .a C .a -1 D .11a - 【答案】C8.(2011某某威海)化简a a b a b -÷⎪⎭⎫⎝⎛-2的结果是A .1--aB .1+-aC .1+-abD .b ab +-【答案】B9.(2011某某某某)若分式1263+-x x 的值为0,则( ▲ ) (A )2-=x (B )21-=x (C )21=x(D )2=x【答案】D10.(2011某某某某)化简1111--+x x ,可得( ) A.122-x B.122--x C.122-x x D.122--x x 【答案】B11.(2011某某聊城)使分式1212-+x x 无意义的x 的值是( ) A .x =21- B .x =21C .21-≠x D .21≠x【答案】B12.(2011 某某某某)计算111xx x ---结果是( ).(A )0 (B )1 (C )-1 (D )x 【答案】C13.(2011 黄冈)化简:211()(3)31x x x x +-•---的结果是( ) A .2 B .21x - C .23x - D .41x x --【答案】B14.(2011 某某)化简ba b b a a ---22的结果是A .22b a -B .b a +C .b a -D .1 【答案】B15.(2011 某某株洲)若分式25x -有意义...,则x 的取值X 围是 A .5x ≠ B .5x ≠-C .5x >D .5x >-【答案】A16.(2011某某荆州)分式112+-x x 的值为0,则A..x=-1 B .x=1 C .x=±1 D .x=0 【答案】B17.(2011 某某某某南安)要使分式11x +有意义,则x 应满足的条件是( ).A .1x ≠B .1x ≠-C .0x ≠D .1x >【答案】B18.(2011某某某某)若分式x-32有意义,则x 的取值X 围是 A .x ≠3 B .x =3 C .x <3 D .x >3 【答案】A二、填空题1.(2011某某凉山)已知:244x x -+与 |1y -| 互为相反数,则式子()xy x y y x ⎛⎫-÷+ ⎪⎝⎭的值等于。
2011年中考数学试题汇编-分式
2011年中考数学试题汇编-分式一.选择题1.(2011淄博)已知a是方程x2+x﹣1=0的一个根,则的值为()A.B.C.﹣1 D.1解答:解:原式==,∵a是方程x2+x﹣1=0的一个根,∴a2+a﹣1=0,即a2+a=1,∴原式==1.故选D.2.(2011珠海)若分式中的a、b的值同时扩大到原来的10倍,则分式的值()A.是原来的20倍B.是原来的10倍C.是原来的D.不变解答:解:分别用10a和10b去代换原分式中的a和b,得==,可见新分式与原分式相等.故选D.3.(2011湛江)化简的结果是()A.a+b B.a﹣b C.a2﹣b2D.1解答:解:原式=,=,=a+b.故选A.4.(2011玉溪)下列说法正确的是()A.a2b3=a6B.5a2﹣3a2=2a2C.a0=1 D.(2)﹣1=﹣2解答:解:A.a2b3=a5,故本选项错误;B.5a2﹣3a2=2a2,正确;C.a0=1,a≠0是无意义,故本选项错误;D.(2)﹣1=,故本选项错误.故选B.5.(2011烟台)(﹣2)0的相反数等于()A.1 B.﹣1 C.2 D.﹣2解答:解:∵(﹣2)0=1,1的相反数是﹣1,∴(﹣2)0的相反数是﹣1.故选B.6.(2011孝感)化简的结果是()A.B.C.D.y解答:解:=•=•=.故选B.7.(2011仙桃天门潜江江汉油田)化简的结果是()A.0 B.1 C.﹣1 D.(m+2)2解答:解:原式=÷(m+2),=,=1.故选B.8.(2011乌鲁木齐)下列运算正确的是()A.4x6÷(2x2)=2x3B.2x﹣2=C.(﹣2a2)3=﹣8a6D.解答:解:A.4x6÷(2x2)=2x4,故本选项错误,B.2x﹣2=,故本选项错误,C.(﹣2a2)3=﹣8a6,故本选项正确,D.=a+b,故本选项错误.故选C.9.(2011威海)计算1÷的结果是()A.﹣m2﹣2m﹣1 B.﹣m2+2m﹣1 C.m2﹣2m﹣1 D.m2﹣1解答:解:1÷=1××(m+1)(m﹣1)=﹣(m﹣1)2=﹣m2+2m﹣1.故选B.10.(2011遂宁)下列分式是最简分式的()A.B.C.D.解答:解:A.=,故本选项错误;B.=,故本选项错误;C.,不能约分,故本选项正确;D.==,故本选项错误;故选C.11.(2011随州)计算﹣22+(﹣2)2﹣(﹣)﹣1的正确结果是()A.2 B.﹣2 C.6 D.10解答:解:原式=﹣4+4+2=2.故选A.12.(2011苏州)已知,则的值是()A.B.﹣C.2 D.﹣2解答:解:∵,∴,∴=﹣2.故选D.13.(2011宁德)已知:a1=x+1(x≠0且x≠﹣1),a2=1÷(1﹣a1),a3=1÷(1﹣a2),…,a n=1÷(1﹣a n﹣1),则a2011等于()A.x B.x+1 C. D.解答:解:∵a1=x+1(x≠0且x≠﹣1),a2=1÷(1﹣a1),a3=1÷(1﹣a2),…,a n=1÷(1﹣a n﹣1),∴a2=﹣,a3=,a4=x+1,…,∴a3n=,a3n+1=x+1,a3n+2=﹣,∵2011=670×3+1,∴a2011=x+1.故选B.14.(2011南通)设m>n>0,m2+n2=4mn,则=()A.2 B.C.D.3解答:解:∵m2+n2=4mn,∴(m2+n2)2=16m2n2,∵m>n>0,∴>0,∴=,∵(m2﹣n2)2=(m2+n2)2﹣4m2n2,∴原式=====2.故选A.15.(2011南充)若分式的值为零,则x的值是()A.0 B.1 C.﹣1 D.﹣2解答:解:∵x﹣1=0且x+2≠0,∴x=1.故选B.16.(2011牡丹江)下列计算正确的是()A.2a3+a2=2a5B.(﹣2ab)3=﹣2ab3C.2a3÷a2=2a D.解答:解:A.2a3+a2≠2a5,不是同类项不能合并,故本选项错误;B.(﹣2ab)3=﹣8a3b3,故本选项错误;C.2a3÷a2=2a,故本选项正确;D.a÷b•=,故本选项错误.故选C.17.(2011眉山)化简的结果是()A.﹣m﹣1 B.﹣m+1 C.﹣mn+m D.﹣mn﹣n解答:解:原式=(﹣)×=﹣m+1.故选B.18.(2011茂名)计算:﹣1﹣(﹣1)0的结果正确是()A.0 B.1 C.2 D.﹣2解答:解:原式=﹣1﹣1=﹣2.故选D.19.(2011临沂)化简(x﹣)÷(1﹣)的结果是()A.B.x﹣1 C.D.解答:解:(x﹣)÷(1﹣),=÷,=•,=x﹣1.故选B.20.(2011来宾)计算﹣的结果是()A.﹣B.C.D.解答:解:﹣===﹣.故选A.21.(2011金华)计算的结果为()A.B.C.﹣1 D.2解答:解:﹣===﹣1故选C.22.(2011江津区)下列式子是分式的是()A.B.C. D.解答:解:∵,+y,的分母中均不含有字母,因此它们是整式,而不是分式.分母中含有字母,因此是分式.故选B.23.(2011济南)化简:﹣的结果是()A.m+n B.m﹣n C.n﹣m D.﹣m﹣n解答:解:﹣==故选A.24.(2011鸡西)下列各式:①a0=1;②a2a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤解答:解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2=,根据负整数指数幂的定义a﹣p=(a≠0,p为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确;⑤x2+x2=2x2,符合合并同类项的法则,本小题正确.故选D.25.(2011葫芦岛)下列运算,正确的是()A.a•2a=2a B.(a3)2=a6 C.3a﹣2a=1 D.=﹣a2解答:解:A.a•2a=2a2,故本选项错误;B.(a3)2=a6,故本选项正确;C.3a﹣2a=a,故本选项错误;D.=1﹣a,故本选项错误.故选B.26.(2011贺州)70等于()A.0 B.1 C.7 D.﹣7解答:解:70=1.故选B.27.(2011河北)计算30的结果是()A.3 B.30 C.1 D.0解答:解:30=1,故选C.28.(2011鄂州)计算的正确结果是()A.2 B.﹣2 C.6 D.10解答:解:原式=﹣4+4﹣(﹣2)=2.故选A.29.(2011德州)下列计算正确的是()A.(﹣8)﹣8=0 B.(﹣)×(﹣2)=1 C.﹣(﹣1)0=1 D.|﹣2|=﹣2解答:解:A.(﹣8)﹣8=﹣16,此选项错误;B.(﹣)×(﹣2)=1,此选项正确;C.﹣(﹣1)0=﹣1,此选项错误;D.|﹣2|=2,此选项错误.30.(2011常德)下列计算错误的是()A.20110=1 B.=±9 C.()﹣1=3 D.24=16解答:解:A.20110=1,故本选项正确,不符合题意;B.=9,故本选项错误,符合题意;C.()﹣1=3,故本选项正确,不符合题意;D.24=16,故本选项正确,不符合题意.故选B.二、填空题31.(2011玉溪)如果分式有意义,那么x的取值范围是.解答:解:根据题意,得分母x+1≠0,即x≠﹣1.故答案是:x≠﹣1.32.(2011永州)化简= .解答:解:原式=﹣==1.故答案为:1.33.(2011盐城)化简= .解答:解:==x+3.34.(2011徐州)30﹣2﹣1= .解答:解:原式=1﹣=,故答案为.35.(2011天津)若分式的值为0,则x的值等于.解答:解:由分式的值为零的条件得x2﹣1=0,x+1≠0,由x2﹣1=0,得x=﹣1或x=1,由x+1≠0,得x≠﹣1,∴x=1,故答案为1.36.(2011泰安)化简:的结果为.解答:解:原式=×=×=x﹣6故答案为:x﹣637.(2011泉州)计算:= .解答:解:原式==1.故答案为:1.38.(2011南充)计算(π﹣3)0= .解答:解:(π﹣3)0=1,故答案为1.39.(2011内江)如果分式的值为0,则x的值应为.解答:解:由分式的值为零的条件得3x2﹣27=0且x﹣3≠0,由3x2﹣27=0,得3(x+3)(x﹣3)=0,∴x=﹣3或x=3,由x﹣3≠0,得x≠3.综上,得x=﹣3,分式的值为0.故答案为:﹣3.40.(2011聊城)化简:÷= .解答:解:原式=•=.故答案为:41.(2011莱芜)若a=3﹣tan60°,则÷= .解答:解:a=3﹣tan60°=3﹣,∴原式=×===﹣=﹣.故答案为:﹣.42.(2011昆明)计算:= .解答:解:原式=(+)•=•===a.故答案是:a43.(2011荆州)若等式成立,则x的取值范围是.解答:解:根据被开放数≥0,得到:≥0 ①根据公式a0=1(a≠0),得到:≠0 ②由①解得x≥0,由②解得x≠12,故答案为:x≥0且x≠12.44.(2011嘉兴)当x 时,分式有意义.解答:解:要使分式有意义,必须3﹣x≠0,即x≠3.故答案为≠3.45.(2011湖州)当x=2时,分式的值是.解答:解:当x=2时,原式==1.故答案为:1.46.(2011呼和浩特)若x2﹣3x+1=0,则的值为.解答:解:由已知x2﹣3x+1=0变换得x2=3x﹣1将x2=3x﹣1代入======故答案为.47.(2011杭州)已知分式,当x=2时,分式无意义,则a= ;当a<6时,使分式无意义的x的值共有个.解答:解:由题意,知当x=2时,分式无意义,∴分母=x2﹣5x+a=22﹣5×2+a=﹣6+a=0,∴a=6;当x2﹣5x+a=0时,△=52﹣4a=25﹣4a,∵a<6,∴△>0,∴对于每个符合题意的a,都有两个x的值使分式无意义,∴方程x2﹣5x+a=0有2个实数根,故当a<6时,使分式无意义的x的值共有2个.故答案为6,2.48.(2011桂林)若,,,…;则a2011的值为.(用含m的代数式表示)解答:解:,,,…;则a2011的值为:1﹣.故答案为:1﹣.49.(2011贵港)若记y=f(x)=,其中f(1)表示当x=1时y的值,即f(1)==;f()表示当x=时y的值,即f()=;…;则f(1)+f(2)+f()+f(3)+f()+…+f(2011)+f()= .解答:解:∵y=f(x)=,∴f()==,∴f(x)+f()=1,∴f(1)+f(2)+f()+f(3)+f()+…+f(2011)+f()=f(1)+[f(2)+f()]+[f(3)+f()]+…+[f(2011)+f()] =+1+1+…+1=+2010=2010.故答案为:2010.50.(2011福州)化简的结果是.解答:解:=(m+1)﹣1=m故答案为:m51.(2011德州)当时,= .解答:解:﹣1=﹣1=﹣==,将x=代入上式中得,原式===.故答案为:.52.(2011德阳)化简:= .解答:解:原式=1﹣×=1﹣==﹣,故答案是﹣.53.(2011大连)化简:= .解答:解:简:=÷=×=a﹣1故答案为:a﹣154.(2011郴州)当x= 时,分式的值为0.解答:解:根据题意,得x﹣1=0,且x+1≠0,解得x=1.故答案是:1.55.(2011常州)计算:= ;= ;= ;= .解答:解:=;=;=1;=﹣2.故答案为:,,1,﹣2.56.(2011长沙)化简:= .解答:解:===1.故答案为:1.57.(2011北京)若分式的值为0,则x的值等于.解答:解:x﹣8=0,x=8,故答案为:8.58.(2011保山)计算= .解答:解:原式=2+1=3.故答案为3.59.(2011包头)化简,其结果是.解答:解:原式=••(a+2)+=+===.故答案为:60.(2011巴彦淖尔)化简+÷的结果是.解答:解:+÷===1.故答案为:1.三、解答题61.(2011遵义)先化简,再求值:,其中x=2,y=﹣1.解答:解:,=,=,当x=2,y=﹣1时,原式==.62.(2011资阳)化简:.解答:解:=÷=÷=×=.63.(2011株洲)当x=﹣2时,求的值.解答:解:原式===x+1,(3分)当x=﹣2时,原式=x+1=﹣2+1=﹣1.(4分)64.(2011肇庆)先化简,再求值:,其中a=﹣3.解答:解:•(1﹣)=•==a+2,当a=﹣3时,原式=﹣3+2=﹣1.65.(2011重庆)先化简,再求值:,其中x满足x2﹣x﹣1=0.解答:解:原式=×,,,,=×=,∵x2﹣x﹣1=0,∴x2=x+1,将x2=x+1代入化简后的式子得:==1.66.(2011张家界)先化简,再把x取一个你最喜欢的数代入求值:.解答:解:原式=[﹣]•=•=•=,当x=6时,原式=1.67.(2011岳阳)先化简,再选择一个你喜欢的数代入求值..解答:解:原式=÷[+1],=÷(),=÷,=÷,=•,=,当a=2时,原式==2011.68.(2011玉溪)化简:()•(x2﹣9).解答:解:()•(x2﹣9)==x(x﹣3)﹣(x+3)=x2﹣3x﹣x﹣3=x2﹣4x﹣3.69.(2011营口)先化简:再求值:(1﹣)÷,其中a=2+.解答:解:(1﹣)÷,=•,(4分)=.(6分)当a=2+时,原式===+1.(8分)70.(2011宜昌)先将代数式化简,再从﹣1,1两数中选取一个适当的数作为x的值代入求值.解答:解:原式=x(x+1)×=x,当x=﹣1时,分母为0,分式无意义,故不满足,当x=1时,成立,代数式的值为1.故答案为:1.71.(2011扬州)计算:(1)|﹣|﹣(﹣2011)0+4÷(﹣2)3(2).解答:解:(1)|﹣|﹣(﹣2011)0+4÷(﹣2)3,=﹣1+4÷(﹣8),=﹣,=0;(2),=•,=.72.(2011烟台)先化简再计算:,其中x是一元二次方程x2﹣2x﹣2=0的正数根.解答:解:原式=÷=•解方程得x2﹣2x﹣2=0得,x1=1+>0,x2=1﹣<0,所以原式==.73.(2011雅安)先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..解答:解:原式=×=(x+2)×=2x;观察分式可知:x﹣2≠0,x≠0,x+2≠0,解得x≠2且x≠0,x≠﹣2,将x=1代入原式=2×1=2.74.(2011徐州)计算:(a﹣)÷;解答:解:原式==×=a+1;75.(2011新疆)先化简,再求值:(+1)÷,其中x=2.解答:解:原式=•=x+1.当x=2时,x+1=3.76.(2011襄阳)先化简再求值:,其中x=tan60°﹣1.解答:解:=•=﹣,当x=tan60°﹣1=﹣1时,原式=﹣=﹣=﹣1.77.(2011湘潭)先化简,再求值:,其中.解答:解:原式=x•,=x•,当x=﹣1时,原式===.故答案为:.78.(2011厦门)化简:•.解答:解:原式==a.79.(2011武汉)先化简,再求值:÷(x﹣),其中x=3.解答:解:原式=÷(),=×,=,x=3时,原式=.80.(2011潼南县)先化简,再求值:,其中a=﹣1.解答:解:原式=•,=a+1,把a=﹣1代入得,原式=﹣1+1=.81.(2011苏州)先化简,再求值:(a﹣1+)÷(a2+1),其中a=﹣1.解答:解:原式=()•,=•,=,当a=﹣1时,原式==.82.(2011邵阳)已知=1,求+x﹣1的值.解答:解:∵=1,∴x﹣1=1,∴+x﹣1=2+1=3.83.(2011山西)先化简.再求值:,其中.解答:解:原式=•﹣=﹣===,当a=﹣时,原式==﹣2;84.(2011日照)化简,求值:,其中m=.解答:解:原式=,=,=,=,=,=.∴当m=时,原式=.85.(2011曲靖)先化简,再求值:,其中a=.解答:解:原式=﹣×=﹣==,当a=﹣2时,原式==.86.(2011清远)先化简、再求值:,其中.解答:解:原式=•=x﹣1,当x=+1时,原式=+1﹣1=.87.(2011青海)请你先化简分式,再取恰当x的值代入求值.解答:解:=====,∵x2﹣1≠0,x+3≠0,x﹣1≠0,x+1≠0,∴取x=2,代入得:原式==.88.(2011青岛)化简:÷.解答:解:原式=•=.89.(2011黔东南州)先化简,再求值:,其中x=2.解答:解:=÷[﹣]=÷=•=,当x=2时,原式==.90.(2011綦江县)先化简,再求值:,其中x=.解答:解:原式=÷,=×,=,当x=时,原式=,=.91.(2011莆田)化简求值:,其中a=﹣5.解答:解:原式=﹣3a+6=a+2﹣3a+6=﹣2a+8,当a=﹣5时,原式=﹣2×(﹣5)+8=18.92.(2011盘锦)先化简,再求值:•÷,其中a为整数且﹣3<a<2.解答:解:原式=••(a+1)(a﹣1)=a(a+1);∵a≠±1、﹣2时分式有意义,又﹣3<a<2且a为整数,∴a=0.(7分)∴当a=0时,原式=0×(0+1)=0.(8分)93.(2011南京)计算(﹣)÷.解答:解:原式=(﹣)•=(﹣)•(﹣),=﹣•,=﹣.94.(2011南充)先化简,再求值:(﹣2),其中x=2.解答:解:原式==×=,当x=2时,原式=﹣=﹣1.95.(2011南昌)先化简,再求值:,其中a=.解答:解:原式=(﹣)÷a=×=,当a=+1时,原式===.96.(2011牡丹江)先化简,再求值:,其中x所取的值是在﹣2<x≤3内的一个整数.解答:解:原式=•,=,当x=1时,原式=﹣2.97.(2011泸州)先化简,再求值:,其中.解答:解:原式=×=×=将x=代入原式==2.98.(2011娄底)先化简:()÷.再从1,2,3中选一个你认为合适的数作为a的值代入求值.解答:解:原式=•=•=.∵a≠1,a≠﹣1,a≠0.∴在1,2,3中,a只能取2或3.当a=2时,原式=.当a=3时,原式=.注:在a=2,a=3中任选一个算对即可.99.(2011龙岩)先化简,再求值:,其中.(结果精确到0.01)解答:解:原式=,当a=﹣2时,原式==≈0.58.故答案为:2,0.58.100.(2011六盘水)先化简代数式:,再从你喜欢的数中选择一个恰当的作为x的值,代入求出代数式的值.解答:解:==.(注:若x取±1或0,以下步骤不给分)当x=2时,原式=1.101.(2011辽阳)先化简,再求值:(﹣1)÷,其中a=.解答:解:原式=•×(3分)=.(6分)当a=时,原式==.(8分)102.(2011锦州)先化简,再求值:()÷(x+1),其中x=tan60°+1.解答:解:原式=[﹣(x+1)]•(3分)=•=•(4分)=,(5分)当x=tan60°+1时,原式====.(8分)103.(2011江西)先化简,再求值:,其中.解答:解:原式=,=.(3分)当时,原式=.(6分)104.(2011江津区)计箅:先化简,再求值:,其中.解答:解:原式=÷,=×,=1﹣x;当x=时,原式=1﹣=.105.(2011济宁)化简:÷(a﹣).解答:解:原式===.106.(2011吉林)先化简﹣,再选一个合适的x值代入求值.解答:解:原式=﹣=﹣=.当x=2时,原式=1.107.(2011鸡西)先化简,再求值:(1﹣)÷,其中a=sin60°.解答:解:原式=(﹣)•=•=a+1(3分)把a=sin60°=代入(1分)原式==(1分)108.(2011黄石)先化简,后求值:,其中.解答:解:原式=•=xy,∵,∴xy=1,∴原式=1.109.(2011呼伦贝尔)先化简,再求值:,其中x=5.解答:解:原式=×=,当x=5时,原式==.110.(2011黑龙江)先化简,再求值:÷(2x﹣),其中x=+1.解答:解:原式=÷(1分)=•.(2分)=.(1分)当x=+1时,原式===.(1分)111.(2011河南)先化简,然后从﹣2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.解答:原式=(3分)=.(5分)x满足﹣2≤x≤2且为整数,若使分式有意义,x只能取0,﹣2.(7分)当x=0时,原式=(或:当x=﹣2时,原式=).(8分)112.(2011哈尔滨)先化简,再求代数式的值,其中x=2cos45°﹣3.解答:解:原式=•(x﹣3)=当x=2cos45°﹣3时,原式===.故答案为:.113.(2011贵阳)在三个整式x2﹣1,x2+2x+1,x2+x中,请你从中任意选择两个,将其中一个作为分子,另一个作为分母组成一个分式,并将这个分式进行化简,再求当x=2时分式的值.解答:解:==,当x=2时,原式==2.114.(2011广元)先化简÷,再选取一个既使原式有意义,又是你喜欢的数代入求值.解答:解:(﹣)÷=•=•=﹣x﹣9,∵x﹣3≠0,x+3≠0,x≠0,∴x取1,代入得:原式=﹣1﹣9=﹣10.115.(2011广安)先化简,然后从不等组的解集中,选取一个你认为符合题意的x的值代入求值.解答:解:原式=(+)•=•=x+5,解不等式①,得x≥﹣5,解不等式②,得x<6,∴不等式组的解集为﹣5≤x<6,取x=1时,原式=6.本题答案不唯一.116.(2011阜新)先化简,再求值:(﹣2)÷,其中x=﹣4.解答:解:原式=(﹣)÷=÷=•=•=﹣,当x=﹣4时,原式=﹣=﹣=.117.(2011抚顺)先化简,再求值:÷﹣,其中x=2.解答:原式=×﹣=.当x=2时,原式==.118.(2011佛山)化简:.解答:解:====x﹣2.119.(2011恩施州)先化简分式:(a﹣)÷•,再从﹣3、﹣3、2、﹣2中选一个你喜欢的数作为a的值代入求值.解答:解:原式=••=a+3,当a=﹣3时,原式=﹣3+3=.120.(2011东营)先化简,再求值:,其中.解答:解:原式=÷,=,=,当x=时,原式==.121.(2011大庆)已知x、y满足方程组,先将化简,再求值.解答:解:由程组,解得:,则,=×,=,把代入上式得:=,=﹣1.122.(2011达州)先化简,再求值:,其中a=﹣5.解答:解:原式=,(1分)=,(2分)当a=﹣5时,原式=,(3分)=,=,=3.(4分)123.(2011成都)先化简,再求值:,其中.解答:解:原式=×=×=2x,当x=时,原式=2×=.124.(2011朝阳)先化简,再求值:,其中x=﹣.解答:解:原式=•=x﹣1,当x=﹣时,原式=﹣﹣1=﹣.125.(2011常州)①计算:;②化简:.解答:解:①原式=﹣+=+2=2;②原式====.126.(2011常德)先化简,再求值,(+)÷,其中x=2.解答:解:原式=()×=×=;将x=2代入原式==2.127.(2011长春)先化简,再求值:,其中a=.解答:解:=+,=+,=,当a=时,原式==6.128.(2011本溪)先化简,再求值:÷,其中x=﹣4.解答:解:÷,=[﹣]•,=•,=,=x+4,当x=﹣4时,原式=﹣4+4=.129.(2011北海)先化简,再求值:﹣•,其中x=3.解答:解:原式=•==,当x=3时,原式==2.130.(2011保山)先化简,再从﹣1、0、1三个数中,选择一个你认为合适的数作为x的值代入求值.解答:解:∵,=,=,=,∴.取x=0代入上式得,=02+1=1.131.(2011百色)已知a=+1,b=.求下列式子的值,.解答:解:原式====当a=+1,b=时,原式==.132.(2011鞍山)化简求值:+÷,从0,1,2三个数中选择一个合适的数值作为x 值代入求值.解答:解:原式=+×=+=,当x=2时,原式=.133.(2011安顺)先化简,再求值:,其中a=2﹣.解答:解:原式===•=.当a=时,原式=.134.(2011安徽)先化简,再求值:,其中x=﹣2.解答:解:原式=,当x=﹣2时,原试==﹣1.135.(2011青岛)问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M﹣N,若M﹣N>0,则M>N;若M﹣N=0,则M=N;若M﹣N<0,则M<N.问题解决如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.解:由图可知:M=a2+b2,N=2ab.∴M﹣N=a2+b2﹣2ab=(a﹣b)2.∵a≠b,∴(a﹣b)2>0.∴M﹣N>0.∴M>N.类别应用(1)已知小丽和小颖购买同一种商品的平均价格分别为元/千克和元/千克(a、b是正数,且a≠b),试比较小丽和小颖所购买商品的平均价格的高低.(2)试比较图2和图3中两个矩形周长M1、N1的大小(b>c).联系拓广小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b>a>c>0),售货员分别可按图5、图6、图7三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由.解答:解:类比应用(1)﹣=,∵a、b是正数,且a≠b,∴>0,∴>,∴小丽所购买商品的平均价格比小颖的高;(2)由图知,M1=2(a+b+c+b)=2a+4b+2c,N1=2(a﹣c+b+3c)=2a+2b+4c,M1﹣N1=2a+4b+2c﹣(2a+2b+4c)=2(b﹣c),∵b>c,∴2(b﹣c)>0,即:M1﹣N1>0,∴M1>N1,∴第一个矩形大于第二个矩形的周长.联系拓广设图5的捆绑绳长为L1,则L1=2a×2+2b×2+4c×2=4a+4b+8c,设图6的捆绑绳长为L2,则L2=2a×2+2b×2+2c×2=4a+4b+4c,设图7的捆绑绳长为L3,则L3=3a×2+2b×2+3c×2=6a+4b+6c,∵L1﹣L2=4a+4b+8c﹣(4a+4b+4c)=4c>0,∴L1>L2,∵L3﹣L2=6a+4b+6c﹣(4a+4b+4c)=2a+2c>0,∴L3﹣L1=6a+4b+6c﹣(4a+4b+8c)=2(a﹣c),∵a>c,∴2(a﹣c)>0,∴L3>L1.∴第二种方法用绳最短,第三种方法用绳最长.。
2011全国中考数学模拟汇编一 10分式方程
分式方程.一、选择题1、(某某一中初2011级10—11学年度下期3月月考)某公司承担了制作600个某某亚运会道路交通指引标志的任务, 原计划x 天完成,实际平均每天多制作了10个,因此提前5天完成任务.根据题意,下列方程正确的是( )A .600600105x x -=- B .600600105x x -=+ C .600600510x x -=+ D .600600105x x +=-[ 答案:A2、(2011年某某省某某市模拟)分式方程131x x x x +=--的解为( ) A .1 B .-1 C .-2 D .-3 答案:D3、(2011年某某某某27模)分式方程1x-2 —1 = 12-x 的解是( )A .0B .2C .4D .无解 答案:C4、(某某某某靖江2011模拟)分式方程1x-2 —1 = 12-x 的解是(原创 )( )A .0B .2C .4D .无解 答案:C二、填空题1、(2011年四中四模)用换元法解方程==+-+⋅-+-y x x x x 时应设012122122____. 答案:⎪⎭⎫⎝⎛-+--212122x x x x 或 2.(某某省某某市瓜沥镇初级中学2011年中考数学模拟试卷)关于x 的方程232x ax +=+的解是负数,则a 的取值X 围是 . 答案: a <6且a ≠4 3、(四中模拟)方程453x x=-的解是 答案:x=54、(2011某某模拟26)关于x 的方程232x ax +=+的解是负数,则a 的取值X 围是 . 答案:a <6且a ≠45.(2011.某某某某安次区一模)X 明与李强共同清点一批图书,已知X 明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比X 明多清点10本,则X 明平均每分钟清点图书的数量本. 答案:206.(2011四中二模)正在修建的西塔(某某——塔尔寺)高速公路上,有一段工程,若甲、乙两个工程队单独完成,甲工程队比乙工程队少用10天;若甲、乙两队合作,12天可以完成.若设甲单独完成这项工程需要x 天.则根据题意,可列方程为____________. 答案:11112121101210x x x x +=+=++或三、解答题1、(2011年四中四模)解方程.11213122=-++++--x x x x x 答案:去分母,得.12)1)(3()1)(2(2-=+-+++-x x x x x 整理后,得.022=-+x x解这个方程,得.1,221=-=x x 检验:把x = -2代入,12-x 它不等于0, 所以x =-2是原方程的根;把x =1代入,12-x 它等于0,所以x =1是增根.∴原方程的根是x =-2.2、(2011年四中五模)小强老师为了今年的升中考试,他先用120元买了若干本数学复习资料,后来又用240元买同样的数学复习资料:这次比上次多20本,而且店家给予优惠,每本降价4元.请问第一次他买了多少本复习资料?解:设第一次买了x 本,(1分)则:420x 240x 120=+- (3分) ∴x =10 或x =-60(舍去)(5分) 答:(略)(6分)3.(某某市启明外国语学校2010-2011学年度第二学期初三数学期中试卷) 解方程:144222=-++-x x x . 答案:x=2,检验x=2是原方程的增根,原方程无解4.(2011年某某省某某市城南初级中学中考数学模拟试题)阅读下列材料解答下列问题: 观察下列方程:○132=+x x ;○256=+x x ;○3712=+xx ……(1)按此规律写出关于x 的第n 个方程为,此方程的解为 (2)根据上述结论,求出)2(221)1(≥+=-++n n x n n x 的解。
全国2011年中考数学试题分类解析汇编 专题5分式
全国2011年中考数学试题分类解析汇编(181套)专题5:分式一、选择题1.(某某江津4分)下列式子是分式的是A 、2x B 、1x x + C 、2x y + D 、xπ【答案】B 。
【考点】分式的定义。
【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式: ∵2x ,2x y +,x π的分母中均不含有字母,∴它们是整式,而不是分式;1xx +分母中含有字母,因此是分式。
故选B 。
2.(某某某某、某某3分)计算111aa a ---的结果为A 、11aa +-B 、1aa -- C 、﹣1 D 、2【答案】C 。
【考点】分式的加减法。
【分析】根据同分母的分式加减,分母不变,分子相加减的运算法则,得111111a a a a a --==----。
故选C 。
3.(某某来宾3分)计算11x x y--的结果是A 、()yx x y --B 、()2x yx x y +-C 、()2x yx x y --D 、()yx x y -【答案】A 。
【考点】分式的加减法。
【分析】首先通分,然后根据同分母的分式加减运算法则求解即可求得答案:()()()11x y x y x x y x x y x x y x x y --=-=-----。
故选A 。
4.(某某某某3分)已知1112a b -=,则ab a b -的值是 A .12 B .-12C .2D .-2【答案】D 。
【考点】代数式变形。
【分析】观察已知和所求的关系,容易发现把已知通分后,再求倒数即可:1111222b a aba b ab a b--=⇒=⇒=--。
故选D 。
5.(某某某某3分)设0m>n>,224m n mn +=,则22m n mn-=A .2 3B . 3C . 6D .3 【答案】A 。
【考点】代数式变换,完全平方公式,平方差公式,根式计算。
【分析】由224m n mn +=有()()2262m n mn m n mn +=-= ,,因为0m>n>,所以6m n mn += ,2m n mn -= ,则()()22621223m n m n m n mn mn mn mn mn+--⋅====。
2011全国中考真题解析120考点汇编☆分式方程及增根的基本概念
新世纪教育网精选资料 版权全部 @新世纪教育网(2012 年 1 月最新最细) 2011 全国中考真题分析 120 考点汇编☆分式方程及增根的基本观点一、选择题1. ( 2011 福建省漳州市, 6,3 分) 分式方程 错误!未找到引用源。
的解是()A 、﹣ 1B 、0C 、1D 、 3错误!未找到引用源。
2考点 :解分式方程。
剖析 :本题需先依据解分式方程的步骤分别进行计算,再对结果进行查验即可求出答案. 解答 :解:错误!未找到引用源。
=1, 2=x+1,x=1,查验:当 x=1 时, x+1=1+1=2≠0,∴ x =1 是原方程的解,应选 C .评论 :本题主要考察认识分式方程, 在解题时要注意解分式方程的步骤并对结果进行查验是本题的重点.2. (2011 黑龙江省黑河, 18,3 分)分式方程x m 1 错误!未找到引用源。
=x1x 1 x 2错误!未找到引用源。
有增根,则 m 的值为()A 、0和 3B 、 1C 、1 和﹣ 2D 、3【考点】分式方程的增根;解一元一次方程。
【专题】计算题。
【剖析】依据分式方程有增根,得出 x ﹣ 1=0, x+2=0 ,求出即可.【解答】解:∵分式方程错误!未找到引用源。
x 1 错误!未找到引用源。
x 1m=有增根,x 1 x 2∴ x ﹣ 1=0, x+2=0 ,∴ x=1 ,x= ﹣ 2.两边同时乘以( x ﹣ 1)( x+2 ),原方程可化为 x ( x+2)﹣( x ﹣ 1)( x+2 ) =m ,整理得, m=x+2 ,当 x=1 时, m=1+2=3 ; 当 x= ﹣2 时, m=﹣ 2+2=0. 应选 A .【评论】 本题主要考察对分式方程的增根, 解一元一次方程等知识点的理解和掌握, 理解分式方程的增根的意义是解本题的重点.3. ( 2011x 1m有增根,则 m 的值黑龙江鸡西, 7,3 分)分式方程( x 1)( x 2)x1为()A .0 和 3B .1C.1和-2D .3考点 :分式方程的增根;解一元一次方程 剖析 :依据分式方程有增根,得出 x ﹣ 1=0, x+2=0 ,求出即可. 解答: 解:∵分式方程﹣ 2.x m增根,∴ x ﹣ 1=0, x+2=0 ,∴ x=1, x=1(x 1)( x 2)x 1两边同时乘以( x ﹣ 1)( x+2 ),原方程可化为 x ( x+2 )﹣( x ﹣ 1)( x+2 )=m ,整理得, m=x+2 ,当 x=1 时, m=1+2=3 ;当 x=﹣ 2 时, m=﹣ 2+2=0.应选 A .评论 :本题主要考察对分式方程的增根, 解一元一次方程等知识点的理解和掌握,理解分式方程的增根的意义是解本题的重点.二、填空题1. ( 2011 新疆建设兵团, 10, 5 分)方程2x + 1错误!未找到引用源。
(9月最新修订版)2011全国各地中考数学试题分类汇编考点5_分式(含答案)
分 式A一、选择题1. (2011浙江金华,7,3分)计算1a -1 – aa -1的结果为( )A.1+a a -1B. -aa -1 C. -1 D.1-a【答案】C2. (2011山东威海,8,3分)计算:211(1)1mm m+÷⋅--的结果是( ) A .221m m --- B .221m m -+- C .221m m --D .21m -【答案】B3. (2011四川南充市,8,3分) 当8、分式21+-x x 的值为0时,x 的值是( ) (A )0 (B )1 (C )-1 (D )-2 【答案】B4. (2011浙江丽水,7,3分)计算1a -1 – aa -1的结果为( )A. 1+aa -1B. -a a -1C. -1D.1-a【答案】C5. (2011江苏苏州,7,3分)已知2111=-b a ,则ba ab-的值是 A.21 B.-21C.2D.-2 【答案】D6. ( 2011重庆江津, 2,4分)下列式子是分式的是( ) A.2x B.1+x x C. y x +2 D. 3x 【答案】B.7. (2011江苏南通,10,3分)设m >n >0,m 2+n 2=4mn ,则22m n mn-的值等于A. B.C.D. 3【答案】A8. (2011山东临沂,5,3分)化简(x -x 1-x 2)÷(1-x1)的结果是( ) A .x1B .x -1C .x 1-xD .1-x x【答案】B9. (2011广东湛江11,3分)化简22a b a b a b---的结果是 A a b + B a b - C 22a b - D 1【答案】A10.(2010湖北孝感,6,3分)化简x y x yy x x ⎛⎫--÷⎪⎝⎭的结果是( ) A.1yB. x y y +C. x yy - D. y【答案】B 二、填空题1. (2011浙江省舟山,11,4分)当x 时,分式x-31有意义. 【答案】3x ≠2. (2011福建福州,14,4分)化简1(1)(1)1m m -++的结果是 .【答案】m3. (2011山东泰安,22 ,3分)化简:(2x x+2-x x-2)÷xx 2-4的结果为 。
江苏13市2011年中考数学试题分类解析汇编专题3:方程
江苏13市2011年中考数学试题分类解析汇编专题3:方程(组)和不等式(组)一、选择题1.(苏州3分)不等式组30,32x x -≥⎧⎪⎨<⎪⎩的所有整数解之和是A .9B .12C .13D .15 【答案】B 。
【考点】解一元一次不等式组。
【分析】先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解),得36x <≤,其间所有整数解之和是3+4+5=12。
故选B 。
2.(苏州3分)下列四个结论中,正确的是A .方程12x x +=-有两个不相等的实数根 B .方程11x x +=有两个不相等的实数根C .方程12x x +=有两个不相等的实数根D .方程1x a x+=(其中a 为常数,且2a >)有两个不相等的实数根【答案】D 。
【考点】一元二次方程根的判别式。
【分析】把所给方程整理为一元二次方程的一般形式,根据根的判别式判断解的个数即可:A 、整理得:2210x x ++=,△=0,∴原方程有2个相等的实数根,选项错误;B 、整理得:210x x -+=,△<0,∴原方程没有实数根,选项错误;C 、整理得:2210x x -+=,△=0,∴原方程有2个相等的实数根,选项错误;D 、整理得:210x ax -+=,当2a >时, 240a >∆=-,∴原方程有2个不相等的实数根,选项正确。
故选D 。
3. (无锡3分) 若a >b ,则 A .a >b - B .a <b - C .22a >b -- D .22a <b -- 【答案】D 。
【考点】不等式运算法则。
【分析】根据不等式运算法则,直接得出结果。
故选D 。
4.(南通3分)若3是关于方程x 2-5x +c =的一个根,则这个方程的另一个根是A .-2B .2C .-5D .5 【答案】B 。
【考点】一元二次方程根与系数的关系。
【史上最全】2011中考数学真题解析29-用去分母法或换元法求分式方程的解(含答案)
(2012年1月最新最细)2011全国中考真题解析120考点汇编用去分母法或换元法求分式方程的解一、选择题1. (2011•江苏宿迁,5,3)方程11112+=-+x x x 的解是( ) A 、﹣1 B 、2 C 、1 D 、0考点:解分式方程。
专题:计算题。
分析:观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x+1),得2x ﹣x ﹣1=1,解得x=2.检验:把x=2代入(x+1)=3≠0.∴原方程的解为:x=2.故选B .点评:本题考查了解分式方程:注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2. (2011山西,9,2分)分式方程1223x x =+的解为( ) A .1x =- B . 1x = C . 2x = D . 3x =考点:分式方程专题:分式方程分析:解分式方程的一般步骤:先化分式方程为整式方程, 解这个整式方程, 验根, 点明原分式方程的根.解答:B点评:掌握解分式方程的一般步骤即可,解分式方程切记要验根.3. (2011四川凉山,10,4分)方程24321x x x x x ++=++的解为( )A .124,1x x ==B .12x x == C .4x = D .124,1x x ==-考点:解分式方程.专题:计算题.分析:把等号左边的第一项分母分解因式后,观察发现原分式方程的最简公分母为x (x+1),方程两边乘以最简公分母,将分式方程转化为整式方程求解.解答:解:原方程可化为:132)1(4+=+++x x x x x , 方程两边都乘以x (x +1)得:x +4+2x (x +1)=3x 2,即x 2-3x -4=0,即(x -4)(x +1)=0,解得:x =4或x =-1,检验:把x =4代入x (x +1)=4×5=20≠0;把x =-1代入x (x +1)=-1×0=0,∴原分式方程的解为x =4.故选C .点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.学生要认识到分式方程验根的原因是在方程两边乘以最简公分母转化为整式方程后,整式方程与分式方程不一定是同解方程. 4. (2011湖北荆州,6,3分)对于非零的两个实数a 、b ,规定a ⊗b= 1b-1a .若1⊗(x+1)=1,则x 的值为( )A 、32B 、13C 、312D 、-124考点:解分式方程.专题:新定义.分析:根据规定运算,将1⊗(x+1)=1转化为分式方程,解分式方程即可.解答:解:由规定运算,1⊗(x+1)=1可化为,1x+1-1=1,即1x+1=2,解得x=- 12,故选D.点评:本题考查了解分式方程的方法:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.点评:本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.6.(2011•山西9,2分)分式方程1223x x=+的解为()A、x=﹣1B、x=1C、x=2D、x=3 考点:解分式方程。
重庆四川2011年中考数学试题分类解析汇编 专题3 方程(组)和不等式(组)
某某某某2011年中考数学试题分类解析汇编专题3:方程(组)和不等式(组)一、选择题1.(某某綦江4分)在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000 个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装x 个鸡蛋,根据题意下列方程正确的是 A 、10000100001050=x x+- B 、10000100001050=x x --C 、10000100001050=x x -- D 、10000100001050=x+x- 【答案】B 。
【考点】由实际问题抽象出分式方程。
【分析】由已知,单独使用甲型包装箱用10000x 个,单独使用乙型包装箱用1000050x -个,根据若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,即单独用乙型包装箱个数-单独用甲型包装箱个数=10,可列出分式方程:10000100001050=x x--。
故选B 。
2.(某某江津4分)已知3是关于x 的方程2x -a =1的解,则a 的值是A 、﹣5B 、5C 、7D 、2【答案】B 。
【考点】一元一次方程的解的解一元一次方程。
【分析】首先根据一元一次方程的解的定义,将x =3代入关于x 的方程2x -a =1,然后解关于a 的一元一次方程即可:6-a =1,a =5。
故选B 。
3.(某某江津4分)已知关于x 的一元二次方程()21210a x x --+=有两个不相等的实数根,则a 的取值X 围是A 、a <2B 、a >2C 、a <2且a ≠lD 、a <﹣2【答案】C 。
【考点】一元二次方程定义和根的判别式,解一元一次不等式。
【分析】利用一元二次方程一元二次方程定义a -1≠0和根的判别式△=4﹣4(a ﹣1)列不等式,解不等式求出a 的取值X 围:()44102110a >a <a a ⎧--⎧⎪⇒⎨⎨≠-≠⎪⎩⎩。
2011-2012全国各中考数学试题分考点解析汇编 分式方程
A.-1B.0C.1D.
【答案】C。
【考点】解分式方程。
【分析】首先去掉分母,然后解一元一次方程,最后检验即可求解:
,检验:当 时, 。∴ 是原方程的解。故选C。
二、填空题
1.(2011某某3分)若分式 的值为0,则 的值等于▲。
【答案】1。
【考点】解分式方程。
2011-2012全国各中考数学试题分考点解析汇编分式方程
一、选择题
1.(2011某某省某某、某某、某某、大兴安岭、鸡西3分)分式方程 有增根,则 的值为
A、0和3 B、1 C、1和-2 D、3
【答案】A。
【考点】分式方程的增根,解分式和一元一次方程。
【分析】根据分式方程有增根,得出 -1=0, +2=0,∴ =1, =-2。 两边同时乘以( -1)( +2),原方程可化为 ( +2)-( -1)( +2)= ,整理得, = +2,
【答案】-1。
【考点】解分式方程。
【分析】首先去掉分母,然后解一元一次方程,最后检验即可求解。
7.(2011某某某某3分)分式方程 的解是_ ▲.
【答案】 = 。
【考点】解分式方程。
【分析】首先去掉分母,然后解一元一次方 Nhomakorabea,最后检验即可求解。
8.(2011某某某某3分)方程 的解是▲
【答案】 =3。
A. B. C. D.
【答案】B。
【考点】解分式方程。
【分析】观察可得最简公分母是2 ( +3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解:方程的两边同乘2 ( +3),得 +3=4 ,解得 =1.检验:把 =1代入2 ( +3)=8≠0。∴原方程的解为: =1。故选B。
2011中考数学真题解析26_分式方程的应用(含答案)
2011全国中考真题解析分式方程的应用一、选择题1. (2011重庆綦江,8,4分)在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000 个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用 乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个 甲型包装箱可装x 个鸡蛋,根据题意下列方程正确的是( )A .x 10000-5010000+x =10B .5010000-x -x 10000=10C .x 10000-5010000-x =10D .5010000+x -x10000=10 2. (2011吉林长春,6,3分)小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设小玲步行的平均速度为x 米/分,根据题意,下面列出的方程正确的是( ) A .28002800304-=x x B .28002800304-=x x C .28002800305-=x x D .2800280030-=5x x3.(2011辽宁沈阳,8,3)小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得( )A 、6010%)801(3025=+-x xB 、10%)801(3025=+-xx C 、601025%)801(30=-+x x D 、1025%)801(30=-+x x 4.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得( )A .00253010(18060x x -=+)B .00253010(180x x -=+)C .00302510(18060x x -=+D .00302510(180x x -=+5. (2011湖南衡阳,10,3分)某村计划新修水渠3600米,为了让水渠尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成任务,若设原计划每天修水渠x 米,则下面所列方程正确的是( )A . 3600x = 36001.8xB . 36001.8x -20=3600xC . 3600x - 36001.8x =20D . 3600x + 36001.8x=20 二、填空题1. (2011•安顺)某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x 元/立方米,则所列方程为_________________2. (2011山东青岛,11,3分)某车间加工120个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用1小时,采用新工艺前每小时加工多少个零件?若设采用新工艺前每小时加工x 个零件,则根据题意可列方程为_________________3. (2011辽宁阜新,8,3分)甲、乙两名同学同时从学校出发,去15千米处的景区游玩,甲比乙每小时多行1千米,结果比乙早到半小时,甲、乙两名同学每小时各行多少千米?若设乙每小时行x 千米,根据题意列出的方程是 .三、解答题1. (2011江苏淮安,22,8分)七(1)班的大课间活动丰富多彩,小峰与小月进行跳绳比赛.在相同的时间内,小峰跳了100个,小月跳了140个.如果小月比小峰每分钟多跳20个,试求出小峰每分钟跳绳多少个?2.(2011江苏连云港,21,6分)根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分钟缩短为36分钟,其速度每小时将提高260km,求提速后的火车速度.(精确到1km/h)3.(2011•南通)在社区全民健身活动中,父子俩参加跳绳比赛.相同时间内父亲跳180个,儿子跳210个.已知儿子每分钟比父亲多跳20个,父亲、儿子每分钟各跳多少个?4.(2011•江苏徐州,22,6)徐州至上海的铁路里程为650km.从徐州乘“C”字头列车A,“D”字头列车B都可到达上海,已知A车的平均速度为B车的2倍,且行驶时间比B车少2.5h.(1)设A车的平均速度是xkm/h,根据题意,可列分式方程:;(2)求A车的平均速度及行驶时间.5.(2011•广东汕头)某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?6.(2011•河池)大众服装店今年4月用4000元购进了一款衬衣若干件,上市后很快售完,服装店于5月初又购进同样数量的该款衬衣,由于第二批衬衣进货时价格比第一批衬衣进货时价格提高了20元,结果第二批衬衣进货用了5000元.(1)第一批衬衣进货时的价格是多少?(2)第一批衬衣售价为120元/件,为保证第二批衬衣的利润率不低于第一批衬衣的利润率,那么第二批衬衣每件售价至少是多少元?7.(2011•柳州)某校为了创建书香校园,去年又购进了一批图书.经了解,科普书的单价比文学书的单价多4元,用1200元购进的科普书与用800元购进的文学书本数相等.(1)求去年购进的文学羽和科普书的单价各是多少元?(2)若今年文学书和科普书的单价和去年相比保持不变,该校打算用1000元再购进一批文学书和科普书,问购进文学书55本后至多还能购进多少本科普书?8.(2011•德州,21,10分)为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.9.(2011•莱芜)莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨.(1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?(2)在(1)的条件下,若批发每吨获得利润为2000元,零售每吨获得利润为2200元,计算实际获得的总利润.10.(2011泰安,25,8分)某工厂承担了加工2100个机器零件的任务,甲车间单独加工了900个零件后,由于任务紧急,要求乙车间与甲车间同时加工,结果比原计划提前12天完成任务.已知乙车间的工作效率是甲车间的1.5倍,求甲.乙两车间每天加工零件各多少个?11.(2011四川遂宁,20,9分)一场特大暴雨造成遂渝高速公路某一路段被严重破坏.为抢修一段120米长的高速公路,施工队每天比原计划多修5米,结果提前4天完成抢修任务.问原计划每天抢修多少米?12.(2011河北,22,8分)甲.乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲.乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?13.(2011广东肇庆,21,分)肇庆市某施工队负责修建1800米的绿道.为了尽量减少施工对周边环境的影响,实际工作效率比原计划提高了20%,结果提前两天完成.求原计划平均每天修绿道的长度.15.(2011广东珠海,14,6分)八年级学生到距离学校15千米的农科所参观,一部分学生骑自行车先走,过了40分钟后,其余同学乘汽车出发,结果两者同时到达.若汽车的速度是骑自行车同学速度的3倍,求骑自行车同学的速度.16.(2011广西崇左,20)今年入春以来,湖南省大部分地区发生了罕见的旱灾,连续几个月无有效降水.为抗旱救灾,驻湘某部计划为驻地村民新建水渠3600米,为使水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?18.(2011广西来宾,21,10分)某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?19.(2011梧州,24,10分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?20.(2011•玉林,24,8分)上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?21.(2011黔南,21,10分)为了美化都匀市环境,打造中国优秀旅游城市,现欲将剑江河进行清淤疏通改造,现有两家清淤公司可供选择,这两家公司提供信息如表所示:(1)若剑江河首批需要清淤的淤泥面积大约为1.2万平方米,平均厚度约为0.4米,那么请哪个清淤公司进行清淤费用较省,请说明理由(体积可按面积@高进行计算)(2)若甲公司单独做了2天,乙公司单独做了3天,恰好完成全部清淤任务的一半;若甲公司先做2天,剩下的清淤工作由乙公司单独完成,则乙公司所用时间恰好比甲公司单独完成清淤任务所用时间多1天,则甲、乙两公司单独完成清淤任务各需多少时间?22.(2011•湖南张家界,21,8)湖南张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?23.(2011辽宁本溪,21,10分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?24.(2011•丹东,23,10分)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕.两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?27. (2011北京,18,5分)列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的73.小王用自驾车方式上班平均每小时行驶多少千米?28. (2011福建厦门,21)甲、乙两辆汽车同时分别从A 、B 两城沿同一条高速公路匀速驶向C 城.已知A 、C 两城的距离为360km ,B 、C 两城的距离为320km ,甲车比乙车的速度快10km /h ,结果两辆车同时到达C 城.设乙车的速度为xkm /h .(1)根据题意填写下表:(2)求甲、乙两车的速度.。
全国各地中考数学试题分类汇编考点10 分式方程及应用
全国各地中考数学试题分类汇编考点10 分式方程及应用一、选择题1. (2011安徽芜湖,5,4分) 分式方程25322x x x-=--的解是( ). A .2x =- B .2x =C .1x =D .12x x ==或【答案】C2. (2011江苏宿迁,5,3分)方程11112+=-+x x x 的解是(▲) A .-1 B .2 C .1 D .0 【答案】B3. (2011四川宜宾,5,3分)分式方程2112=-x 的解是( ) A .3 B .4 C .5 D .无解 【答案】C4. (2011重庆綦江,8,4分)在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装x 个鸡蛋,根据题意下列方程正确的是( )A .10501000010000=+-x xB .10100005010000=--x x C .10501000010000=--x x D .10100005010000=-+xx【答案】:B5. (2011四川凉山州,10,4分)方程24321x xx x x ++=++的解为( )A .124,1x x ==B .12x x == C .4x = D .124,1x x ==- 【答案】C6. (2011安徽芜湖,5,4分)分式方程25322x x x-=--的解是( ). A .2x =- B .2x =C .1x =D .12x x ==或【答案】C7. (2011湖南衡阳,10,3分)某村计划新修水渠3600米,为了让水渠尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成任务,若设原计划每天修水渠x 米,则下面所列方程正确的是( )A .360036001.8x x =B .36003600201.8x x -=C .36003600201.8x x -=D .36003600201.8x x+=【答案】C8. (2011山东东营,6,3分)分式方程312422x x x -=--的解为( ) A .52x = B .53x =C .5x =D .无解【答案】B二、填空题1. (2011广东广州市,13,3分)方程1x = 3x+2的解是 .【答案】x =12. (2011湖南益阳,12,4分)分式方程231-=x x 的解为 . 【答案】1x =-3. (2011四川成都,13,4分) 已知1=x 是分式方程xkx 311=+的根,则实数k =___________.【答案】61. 4. (2011四川广安,18,3分)分式方程2212525x x x -=-+的解x =_____________【答案】3565. (2011湖南怀化,15,3分)方程21011x x -=+-的解是___________. 【答案】x=36. (2011山东临沂,16,3分)方程3x x --6x 21-=21的解是 . 【答案】x =-27. (2011湖北襄阳,16,3分)关于x 的分式方程1131=-+-xx m 的解为正数,则m 的取值范围是 . 【答案】m >2且m≠38. (2011贵州安顺,14,4分)某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x 元/立方米,则所列方程为 . 【答案】826%)201(50=-+xx三、解答题1. (2011广东东莞,16,7分)某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?【答案】设该品牌饮料一箱有x 瓶,由题意,得26260.63x x -=+ 解这个方程,得1213,10x x =-=经检验,1213,10x x =-=都是原方程的根,但113x =-不符合题意,舍去. 答:该品牌饮料一箱有10瓶.2. (2011山东菏泽,16(1),6分)解方程:1123x x x ++=解:原方程两边同乘以 6x 得 3(x +1)=2x ·(x +1) 整理得2x 2-x -3=0 解得x =-1或x =32经验证知它们都是原方程的解,故原方程的解为x =-1或x =32(若开始两边约去x +1 ……… 由此得解x =32………可得3分) 3. (2011山东济宁,21,8分)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同. (1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.【答案】(1)设甲工程队每天能铺设x 米,则乙工程队每天能铺设(20x -)米.根据题意得:35025020x x =-. ·················· 2分 解得70x =.检验: 70x =是原分式方程的解.答:甲、乙工程队每天分别能铺设70米和50米. ··········· 4分 (2)设分配给甲工程队y 米,则分配给乙工程队(1000y -)米.由题意,得10,70100010.50yy ⎧≤⎪⎪⎨-⎪≤⎪⎩解得500700y ≤≤. ········· 6分所以分配方案有3种.方案一:分配给甲工程队500米,分配给乙工程队500米; 方案二:分配给甲工程队600米,分配给乙工程队400米;方案三:分配给甲工程队700米,分配给乙工程队300米.………………8分4. (2011山东泰安,25 ,8分)某工厂承担了加工2100个机器零件的任务,甲车间单独加工了900个零件后,由于任务紧急,要求乙车间与甲车间同时加工,结果比原计划提前12天完成任务,已知乙车间的工作效率是甲车间的1.5倍。
分式方程25题(2011年中考)
1.(2010四川眉山)解方程:2111x x x x++=+2.(2010浙江嘉兴)(2)解方程:211=-++xx x x .3.(2010 浙江台州市)(2)解方程:123-=x x.4.(2010 浙江义乌)(2)解分式方程:)解分式方程: 22122x x x +=+5.(2010 重庆)解方程:111=+-x x x.6.(2010 福建德化)(8分)如图,点A ,B 在数轴上,它们所对应的数分别是3-和xx --21,且点A ,B 到原点的距离相等,求x 的值的值. . 7.(2010江苏宿迁)(本题满分8分)解方程:分)解方程:0322=--x x .8.(2010 山东济南)解分式方程:解分式方程:13-x -)1(2-+x x x =0 9.(2010江苏无锡)(1)解方程:233xx =+;10.(2010四川攀枝花)解方程21—x +3=xx ——2111.(2010 河北)解方程:1211+=-x x .12.(2010江西)解方程:224124x x x -+=+- 全13.(2010 四川巴中)解:分式方程:2316111x x x +=+--14.(2010江苏常州)解方程2311x x =-+15.(2010湖北荆州)解方程:13321++=+x xx x16.(2010湖北恩施自治州)解方程:14143=-+--x x x17.(2010北京)解分式方程:解分式方程: 212423=---x xx 18.(2010福建南平)解方程:x x +1 + 2x -1 =1 19.(2010四川达州)对于代数式12x -和321x +,你能找到一个合适的x 值,使它们的值相等吗?写出你的解题过程.-3 xx --21B .0 A .20.(2010江西省南昌)解方程:144222=-++-x x x . 21.(2010 湖北孝感)(本题满分6分)分) 解方程:013132=--+--xx x22.(2010贵州遵义)解方程:23--x x +1=23-x 23.(2010 重庆江津)解方程:()()31112x x x x -=--+24.(2010 山东荷泽)解分式方程xx x -=+--2122125.(2010青海西宁)解分式方程:2641313-=--x x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考2010真题——分式方程应用题专题1、(2010福建宁德课改,10分)我国“八纵八横”铁路骨干网的第八纵通道——温(州)福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、(2010广东河池非课改,8分)某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.3、(2010广西南宁课改,10分)南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,若2007年每天的污水处理率比2006年每天的污水处理率提高40%(污水处理率 污水处理量污水排放量).(1)求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?(结果保留整数)(2)预计我市2010年平均每天的污水排放量比2007年平均每天污水排放量增加20%,按照国家要求“2010年省会城市的污水处理率不低于...70%”,那么我市2010年每天污水处理量在2007年每天污水处理量的基础上至少..还需要增加多少万吨,才能符合国家规定的要求?4、(2010广西玉林课改,3分)甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天B.4天 C.3天 D.2天5、(2010河北课改,2分)炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602xx =-B .66602x x=- C .66602xx =+D .66602x x=+6、(2010吉林长春课改,5分)张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、(2010江苏南通课改,3分)有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =-C .9001500300x x =+D .9001500300x x=- 8、(2010辽宁12市课改,8分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:你们是用9天完成4800米长的大坝加固任务的?我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍.通过这段对话,请你求出该地驻军原来每天加固的米数.9、(2010辽宁沈阳课改,10分)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、(2010山东济宁课改,3分)南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、(2010山东聊城课改,10分)某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)12、(2010山东青岛课改,3分)某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、(2010山东日照课改,7分)今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、(2010山东泰安课改,9分)某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?15、(2010山东威海课改,7分)甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、(2010四川德阳课改,8分)某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、(2010广东深圳课改,8分)A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、(2010甘肃庆阳课改,3分)轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是千米/时.2010分式方程的应用题 答案1、解:设通车后火车从福州直达温州所用的时间为x 小时.1分依题意,得29833122xx =⨯+. 5分解这个方程,得14991x =. 8分经检验14991x =是原方程的解. 9分148 1.6491x =≈.答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=350 4分化简得x 2-10x -1200=0 5分 解方程得x 1=40,x 2=-30(不合题意舍去) 6分经检验,x 1=40,x 2=-30都是原方程的解,但x 2=-30不合题意,舍去. 7分答: 每盒粽子的进价为40元. 8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分341040%1.05x x -= 4分 解得56x ≈ 5分 经检验,56x ≈是原方程的解 6分1.0559x∴≈ 答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天的污水排放量约为1.05x万吨) (2)解:59(120%)70.8⨯+=8分70.870%49.5⨯= 9分 49.563415.-=答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨. 10分 4、D 5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.经检验20x =是原方程的解.答:张明平均每分钟清点图书20本. 5分 注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得1分926004800600=-+xx . 3分 去分母,得 1200+4200=18x (或18x =5400) 5分 解得 300x =. 6分检验:当300x =时,20x ≠(或分母不等于0). ∴300x =是原方程的解. 7分 答:该地驻军原来每天加固300米.8分9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天, ……………………1分根据题意,得10x+1245x=1 ………………………………… 4分解这个方程,得x =25 ………………………………………6分 经检验,x =25是所列方程的根 ……………………………7分 当x =25时,45x =20 …………………………………………9分答:甲、乙两个施工队单独完成此项工程分别需25天和20天.……………10分10、22402240220x x-=- 11、解:设这种计算器原来每个的进价为x 元, 1分根据题意,得4848(14)1005100(14)x xx x---⨯+=⨯-%%%%%. 5分解这个方程,得40x =. 8分 经检验,40x =是原方程的根.9分答:这种计算器原来每个的进价是40元.10分12、240024008(120)x x -=+%13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,……………………………………2分去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分 经检验,x 1=160,x 2=-200都是原方程的解, 但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时. ……………………… 7分14、解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x += 4分 解得:5x =经检验5x =是原方程的解 6分所以第一次购书为12002405=(本). 第二次购书为24010250+=(本) 第一次赚钱为240(75)480⨯-=(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元) 所以两次共赚钱48040520+=(元) 8分 答:该老板两次售书总体上是赚钱了,共赚了520元.9分15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 4分 解这个方程,得80x =. 5分 经检验,80x =是所列方程的根. 6分80 3.2256∴⨯=(千米/时).所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x ⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分 111220x x +=, 3分 解得 30x =.经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分 ∴应付甲队30100030000⨯=(元). 应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分 17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里 ………………………1分根据题意, 得311818=+-x x ………………………4分 解得21=x ,32-=x ………………………6分 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ………………………7分∴31=+x答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里.………………………8分 18、 20。