选修2-3第一章计数原理教材分析

合集下载

高二数学(选修2-3人教B版)-计数原理全章总结

高二数学(选修2-3人教B版)-计数原理全章总结
解:(1)第三项的二项式系数 C52 10 .
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和. 解:(2)由通项可知,展开式的第三项是
T3 C52 13 (2x)2 40x2
所以,第三项的系数为40.
例6、求 (1 2x)5的展开式的:
表示?
(a b)n (a b)(a b) (a b)
n个a b
Tr1 Cnr anr br
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
解:首先将A、B、C、D排成一排,共有 A44 种排法,每一种
排法都会产生五个“空”,在这五个“空”中任选一个,将E
放入,共有 C51 种方法;其次,E中的两个元素可以交换,有 A22
种方法.
所以,共有 A44 C51 A22 240 种不同的排法.
问题4 (a b)n 的展开式中的系数为什么可以用组合数的形式

Cm n1
ቤተ መጻሕፍቲ ባይዱ
Cmn
Cm1 n
)?
作业: 1.一个集合由8个元素组成,这个集合含有3个元素的子集有多 少个? 2.将6名应届大学毕业生分配到两个用人单位,每个单位至少 两人,一共有多少种不同的分配方案? 3.求 (9x 1 )18 展开式的常数项,并说明它是展开式的第几项.
3x
入,共有 A43 种排法. 所以,一共有A33 A43 144 种不同的排法.
例5、有6位同学站成一排,符合下列各题要求的不同排法有多 少种? (2)甲、乙相邻. 解:(2) 设除甲、乙之外的另外四个同学为A、B、C、D. 因为甲、乙要相邻,所以可以把甲、乙“绑”在一起看作一个 元素(记为E).

人教版数学选修2-3第一章《计数原理》教案

人教版数学选修2-3第一章《计数原理》教案

XX中学课时教学设计模板XX中学课时教学设计模板XX中学课时教学设计模板一、复习知识点:1、分类计数原理:(1)加法原理:如果完成一件工作有k种途径,由第1种途径有n1种方法可以完成,由第2种途径有n2种方法可以完成,……由第k种途径有n k种方法可以完成。

那么,完成这件工作共有n1+n2+……+n k种不同的方法。

2,乘法原理:如果完成一件工作可分为K个步骤,完成第1步有n1种不同的方法,完成第2步有n2种不同的方法,……,完成第K步有n K种不同的方法。

那么,完成这件工作共有n1×n2×……×n k种不同方法二、典型例题1、.用5种不同颜色给图中的A、B、C、D四个区域涂色, 规定一个区域只涂一种颜色, 相邻区域必须涂不同的颜色, 不同的涂色方案有种。

2、将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两端异色,若只有5种颜色可用,则不同的染色方法共有多少种?3、用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为_______.4、用0,1,2,3,4五个数字(1)可以排出多少个三位数字的电话号码?(2)可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?5、用0,1,2,3,4,5可以组成无重复数字的比2000大的四位奇数______个。

XX中学课时教学设计模板求以按依次填个空位来考虑,排列数公式:=()说明:(1)公式特征:第一个因数是,后面每一个因数比它前面一个 少1,最后一个因数是,共有个因数;(2)全排列:当时即个不同元素全部取出的一个排列全排列数:(叫做n 的阶乘)4.例子:例1.计算:(1); (2); (3). 解:(1) ==3360 ; (2) ==720 ; (3)==360例2.(1)若,则 , .(2)若则用排列数符号表示 . 解:(1) 17 , 14 . (2)若则= .例3.(1)从这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?解:(1); (2); (3)课堂练习:P20 练习 第1题mn A m (1)(2)(1)m n A n n n n m =---+(1)(2)(1)m n A n n n n m =---+!()!n n m -,,m n N m n *∈≤n 1n m -+m n m =n (1)(2)21!nn A n n n n =--⋅=316A 66A 46A 316A 161514⨯⨯66A 6!46A 6543⨯⨯⨯17161554m n A =⨯⨯⨯⨯⨯n =m =,n N ∈(55)(56)(68)(69)n n n n ----n =m =,n N ∈(55)(56)(68)(69)n n n n ----1569n A -2,3,5,7,11255420A =⨯=5554321120A =⨯⨯⨯⨯=2141413182A =⨯=XX 中学课时教学设计模板解排列问题问题时,当问题分成互斥各类时,当问题考虑先后次序时,根据乘法原理,可用位置法;当问题的反面简单明了时,可通过求差排除采用间接法求解;问题可以用“捆绑法”;“分离”2)(n m -+(1)(2)21!n n n n =-⋅=等.解排列问题和组合问题,一定要防止“重复”与“遗漏”.互斥分类——分类法先后有序——位置法反面明了——排除法相邻排列——捆绑法分离排列——插空法例1求不同的排法种数:(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.例2在3000与8000之间,数字不重复的奇数有多少个?分析符合条件的奇数有两类.一类是以1、9为尾数的,共有P21种选法,首数可从3、4、5、6、7中任取一个,有P51种选法,中间两位数从其余的8个数字中选取2个有P82种选法,根据乘法原理知共有P21P51P82个;一类是以3、5、7为尾数的共有P31P41P82个.解符合条件的奇数共有P21P51P82+P31P41P82=1232个.答在3000与8000之间,数字不重复的奇数有1232个.例3 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?分析:(1)分两排照相实际上与排成一排照相一样,只不过把第3~6个位子看成是第二排而已,所以实际上是6个元素的全排列问题.(2)先确定甲的排法,有P21种;再确定乙的排法,有P41种;最后确定其他人的排法,有P44种.因为这是分步问题,所以用乘法原理,有P21·P41·P44种不同排法.(3)采用“捆绑法”,即先把甲、乙两人看成一个人,这样有P55种不同排法.然后甲、乙两人之间再排队,有P22种排法.因为是分步问题,应当用乘法原理,所以有P55·P22种排法.(4)甲在乙的右边与甲在乙的左边的排法各占一半,有P66种排法.(5)采用“插空法”,把3个女生的位子拉开,在两端和她们之间放进4张椅子,如____女____女____女____,再把3个男生放到这4个位子上,就保证任何两个男生都不会相邻了.这样男生有P43种排法,女生有P33种排法.因为是分步问题,应当用乘法原理,所以共有P43·P33种排法.(6)符合条件的排法可分两类:一类是乙站排头,其余5人任意排有P55种排法;一类是乙不站排头;由于甲不能站排头,所以排头只有从除甲、乙以外的4人中任选1人有P41种排法,排尾从除乙以外的4人中选一人有P41种排法,中间4个位置无限制有P44种排法,因为是分步问题,应用乘法原理,所以共有P41P41P44种排法.XX 中学课时教学设计模板一、复习引入:1.排列数公式及其推导:()2、解排列问题问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.二、典型例题1.满足不等式>12的n 的最小值为 ( ) A .7 B . 8C .9D .10【解析】选D .由排列数公式得:>12,即(n -5)(n -6)>12, 整理得n 2-11n +18>0, 所以n <2(舍去)或n >9. 又因为n ∈N *,所以n min =10. 2.若=89,则n =______.【解析】原方程左边==(n -5)(n -6)-1.(1)(2)(1)m n A n n n n m =---+,,m n N m n *∈≤所以原方程可化为(n-5)(n-6)-1=89,即n2-11n-60=0,解得n=15或n=-4(舍去).15>7满足题意.3.解关于x的不等式:>6.【解析】原不等式可变形为>,即(11-x)(10-x)>6,(x-8)(x-13)>0,所以x>13或x<8,又所以2<x≤9且x∈N*,所以2<x<8且x∈N*,所以原不等式的解集为.4.求证:+m+m(m-1)=(n,m∈N*,n≥m>2).【证明】因为左边=+m+m(m-1)======右边,所以等式成立.习题1.2 B组第2、3题XX 中学课时教学设计模板组合的概念:一般地,从个不同元素中取出个不同元素中取出个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同2)(n m -+(1)(2)21!n n n n =-⋅=n m(2);2)(1)!n m m -+710C2)(1)!n m m -+,m N ∈*且XX 中学课时教学设计模板.2)(1)!n m m -+mn n C -=XX 中学课时教学设计模板.=+2)(1)!n m m -+mn n C -=m C.2)(1)!n m m -+,N m ∈*且mn n C -=XX 中学课时教学设计模板a+b )相乘,每个(a+b )在相乘时,有两种选择,(r n r rn nn n C a b C b n N -++++∈叫二项式系数表示,即通项0,1,)n 1+1)1n r rn n n C C x x =+++++23344111)()()C x x x++(r n r rn nn n C a b C b n N -++++∈XX 中学课时教学设计模板9)的展开式常数项; (r n r r n nn n C a b C b n N -++++∈(r n r r n nn n C a b C b n N -++++∈XX 中学课时教学设计模板.二项展开式的通项公式:二项式系数表(杨辉三角)展开式的二项式系数,当依次取…时,二项式系数表,表)增减性与最大值.的增减情况由二项式系数逐渐增大.的,且在中间取得最大值;(r n r r n n n n C a b C b n N -++++∈1r n r rr n T C a b -+=n 1,2,32)(1)!n k k -+n,的展开式中,奇数项的二项式系数的和等于偶数项的二项,,,的展开式中,奇数项的二项式系数的和等于偶数项的二项式系说明:由性质(3)及例1知.,求:;); (.时,,展开式右边为,,∴ ,r r n n C x x ++++12rnn n n n C C C C ++++++(nr n r r n nn n a b C a b C b n N -++++∈23(1)n nn n n C C C +-++-13)()n n C C +-++13n n C C +=++021312n n n n n C C C C -++=++=7277(12)x a a x a x a x -=++++7a ++1357a a a a +++7||a ++1x =7(122)1-=-127a a a ++++27a a +++1=-1=127a a a +++=-0127a a a ++++1=-234567a a a a a a +-+-+-77)13a +=--(1+x)+(1+x)2+…+(1+x)+3x+2)5的展开式中,求本节课学习了二项式系数的性质 7||a ++=61)(a a +-。

人教啊B版选修2-3高中数学《第一章计数原理》单元教材教学分析

人教啊B版选修2-3高中数学《第一章计数原理》单元教材教学分析
1.复杂问题简单化,以简驭繁,化难为易
2.通过实例,由难到易,逐步加深学生对两个计数原理的理解
3.通过具体的实例概括得出排列、组合的概念,应用分步乘法计数原理得出排列数公式,应用分步计数原理和排列数公式推出组合数公式
4.二项式定理的学习先猜后证
学生思想教育和行为习惯的培养及学习方法
1.借助章前图提供的两幅古今结合,时代气息浓厚画面所反映出的计数原理的实际应用价值,激发学生的学习兴趣,培养其对科学知识的追求欲望。
2.通过实例引导学说认识到现实世界中的计数问题普遍存在,通过两个计数原理的学习学生体会将综合问题化解为单一问题的组合,再对单一问题各个击破,可以达到以简驭繁,化难为易的目的,
3.引导学生通过类比加法与乘法的关系,体会引进乘法运算是为了简便快捷地计算,明确研究计数原理的最基本的指导思想也是探究计数的技巧。
第十二课时:二项式定式系数的性质
第十四课时:小结
说明
教学基本流程
1.创设情境,提出分类计数问题
2.归纳得出分类加法计数原理
3.分类加法计数原理的推广
4.类比引出分步计数问题
5.归纳得出分步乘法计数原理
6.分步乘法计数原理的推广
用分类加法计数原理解决问题就是将一个复杂问题分解为若干“类别”,然后分类解决,各个击破;应用分步乘法计数原理则是将一个复杂问题的解决过程分解为若干“步骤”,先对每一个步骤进行细致分析,再整合为一个完整的过程,这样做的目的都是为了分解问题、简化问题.由于排列、组合及二项式定理的研究都是作为两个计数原理的典型应用而设计的。因此,理解和掌握两个计数原理是学好本章内容的关键。
课时安排
第一课时:分类加法计数原理
第二课时:分类加法计数原理的应用
第三课时:分步乘法计数原理

计数原理教材分析ppt 人教课标版

计数原理教材分析ppt 人教课标版
从而加深对两个原理的理解. • 例5、 模块命名 • 例6、 RNA分子构成 • 例7、 计算机字节 • 例8、 程序测试中执行路径 • 例9、 设置汽车牌照
例5-例9背景丰富、信息量大、综合性强,让学生在 复杂的背景下分清楚“一件事情”是什么、何时分类、何 时分步.最后让学生自己总结用两个计数原理解决问题的 一般思路.
1
y
11
121
1331
14641
1 5 10 10 5 1
O
x
29
通过实例,总结出分类加法计数原理、分步乘法计数原 理;能根据具体问题的特征,选择分类加法计数原理或分步 乘法计数原理解决一些简单实际问题. (2).排列与组合
通过实例,理解排列、组合的概念; 能利用计数原理推导排列数公式、组合数公式,并能解 决简单的实际问题. (3).二项式定理 能用计数原理证明二项式定理; 会用二项式定理解决与二项展开式有关的简单问题.
★与以往“教学大纲”基本一致,唯一不同的是“教学大
纲”要求“掌握组合数的两个性质,并能用它解决一些简单
的应用问题”,而这里没有这个内容和要求.
7
2.本章重点和难点 (1)重点:
两个计数原理,排列、组合的意义及排列 数、组合数计算公式,二项式定理.
两个计数原理是最基本而重要的. (2)难点:
正确运用两个计数原理以及排列、组合 概念分析和解决问题.
15
两个计数原理教学建议
1、注意使用“树形图”分析问题 2.正确理解“完成一件事”在不同背景下的含义
如 从甲地到乙地;从甲地经过丙地到乙地. 从中任取一本书;从中任取语文、数学各一本书.
3.明确两个计数原理的区别 分类:类类互斥 、不重不漏 分步:步步相依、步骤完整

计数原理教材分析

计数原理教材分析

选修2-3第一章《计数原理》教材分析计数原理是数学的重要研究对象,分类加法计数原理、分步乘法计数原理是解决计数原理问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具.本章在整个高中数学中占有重要地位以计数问题为主要内容的排列与组合,属于现在发展很快且在计算机领域获得广泛应用的组合数学的最初步知识,它不仅有着许多直接应用,是学习概率理论的准备知识,而且由于其思维方法的新颖性与独特性,它也是培养学生思维能力的不可多得的好素材.作为初中一种多项式乘法公式推广二项式定理,不仅使前面组合等一、内容分析1.本章从学习加法原理和乘法原理开始,应该说,这两个基本原理在本章的学习中占有重要地位;其作用并不限于用来推导排列数、组合数公式,实际上其解决问题的思想方法贯穿在整个学习的始终:当将一个较复杂的问题通过分类进行分解时,用的是加法原理;当将它通过分步进行分解时,用的是乘法原理此基础上,研究排列与组合,运用归纳法导出排列数公式与组合数公式,并提出随后研究的二项式定理,在本章中起着承上启下的作用:它不仅将前面的组合的学习深2.排列、组合是两类特殊而重要的计数原理,而解决它们的基本思想和工具就是两个计数原理.教材从简化运算的角度提出排列和组合的学习任务,通过具体的实例得出排列和组合的概念、排列数公式、组合数公式及其在解决问题中的应用.3.二项式定理的学习过程是应用两个计数原理解决问题的典型过程,教材主要是运用组合数两个性质推导出二项式定理,同时通过对二项式系数的性质的学习,深化对组合数的认识.二、教学要求12.理解排列、组合的意义,掌握排列数、组合数计算公式,并能用它们解决3.掌握二项式定理和二项展开式的性质三、考点诠释(1)两个原理(分类计数原理、分步计数原理)分类和分步的区别,关键是看事件能否完成,事件完成了就是分类;必须要连续若干步才能完成的则是分步.分类要用加法原理将种数相加;分步要用乘法原理,分步后再将种数相乘.(2)两个概念(排列、组合)排列与组合是既有联系又有区别的两类问题,它们都是从n 个不同元素中任取m 个不同元素.但是前者要求将元素排成一个顺序,后者对此不做要求.若不理解排列问题和组合问题的区别,在分析实际问题时就会犯错误.(3)两类基本公式排列数公式 !(1)(2)(1)()!m n n A n n n n m n m =---+=- 规定:0!=1 组合数公式 )!(!!m n m n A A C m m m n mn-== 特别地:10==n n n C C (4)两类基本性质排列性质:11-++=m nm n m n mA A A 组合性质:性质1.m n n m n C C -=, 性质2.11-++=m nm n m n C C C 在解决排列组合的计算或证明以及解方程,解不等式等问题时,经常用排列数公式、组合数公式以及组合数的两个性质.解这类题的关键是准确、熟练地运用这些公式及性质,但是在使用公式时要注意:计算题与证明题的类型不同,要求选择公式的形式就不同.排列数公式与组合数公式都有两种形式:乘积形式和阶乘形式前者多用于数字计算,后者多用于证明恒等式,同时要注意公式的倒用,即由)!(!!m n m n -写出m n C . 排列数m n A 与组合数m n C 里的m 、n 的关系是 )(N n m n m ∈≤、牢记:0!=1;.1;!;;;1;11100======n n n n n n n nC n A n C n A C A(5)排列组合的综合应用排列与顺序有关,或者说与所有顺序有关.组合与顺序无关,或者说与一种顺序有关.例如:从1、2、3、4四个数字中任取3个不同的数字,可组成多少个不同的三位数?这是排列问题,有34A 个,而组成的三位数中个位、十位、百位上的数字递增的三位数有多少个?这是一种确定的顺序,是组合问题34C 个不同的三位数.按元素的性质分类,按事件发生的连续过程分步,是处理排列组合问题的基本数学思想方法,要注意题设中“至少”、“至多”等限制词的意义.处理排列组合的综合性问题,一般的思想方法是对于要取出的元素不是一次完成的排列问题,要注意先选取元素,直到把应取的元素都取出来后,再进行排在排列问题中,某几个元素必须在某几个固定位置,某几个元素不能在某几个位置,某几个元素必须在一起,某几个元素互不相邻等,是排列中的几种基本类型.在组合问题中,某些元素必须在内,某些元素都不在内,某些元素恰有一个在内,某些元素至少有一个在内,某些元素至多有一个在内等,是组合的几种基本类型.(6)二项式定理的有关概念第一、对通项要注意以下几点:①它表示二项展开式中的任意项,只要n 与r 确定,该项也随之确定.②公式表示的是第r+1项,而不是第r 项.③公式中a 、b 的位置不能颠倒,它们的指数和一定为n.第二、要注意区分,展开式的第r+1项的二项式系数与第r+1项的系数是两个不同的概念,千万不能混在一起.(7)二项式系数的性质①展开式中与首末两端“等距离”的两项的二项式系数相等.②若二项式的幂指数是偶数,则展开式的中间一项即第12+n 项的二项式系数最大;若二项式系数的幂指数是奇数,则展开式的中间两项即第(121+-n )项和第(121++n )项的二项式系数相等且最大. ③展开式的所有二项式系数的和等于n 2.即n n n n n nC C C C 2210=++++ ④展开式中的奇数项的二项式系数的和等于偶数项的二项式系数的和.即 +++=+++531420n n n n n nC C C C C C =12-n 注意:①用二项式定理进行幂的近似计算时,首先要将幂的底数拆成两项,构造二项式;其次要根据题设的精确度选取展开的项数.②利用二项式定理证明整除性问题,也应灵活处理底数,使之符合需要.③赋值法是解决二项展开式中有关系数问题的重要手段,许多复杂的与系数有关的问题均可以通过正确的、简单的赋值得到解决.四、教学建议1.在深刻理解的基础上,严格要求按照两个原理去做.分类计数原理和分步计数原理是两个基本原理,它们既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.从以上的分析可以看出,分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题.只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础.2. 指导判定与顺序有无关系,分清排列与组合排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.下面几种方法可供参考.(1) 指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.(2) 能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别.(3) 学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.3. 引导联系现实情景,正确领会问题的实质排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据笔者观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.4.倡导一题多解优化解法,交流合作互相启发排列、组合问题解题方法比较灵活,问题思考的角度不同,就会得到不同的解法.若选择的切入角度得当,则问题求解简便,否则会变得复杂难解.教学中既要注意比较不同解法的优劣,更要注意提醒学生体会如何对一个问题进行认识思考,才能得到最优方法.排列与组合方法数比较多,无法逐一进行验证.为了防止重复、避免遗漏,除了一题多解之外,另一种切实有效的办法是倡导同学之间的交流与合作.排列、组合问题的分析与解答的过程不长,且逻辑性强,特别有利于语言交流.交流与合作不仅仅是解出题目、对答案,还要根据自己的理解说明分类还是分步的理由,每类或每步中.m n A 、m n C 及n 、m 取值的理由,不断反思自己的思考过程,让别的同学能在你思考的基础上进一步的思考,看清问题的其他方面.这样相互启发、多角度的考虑,定会加深对问题的理解,激发学习的兴趣.。

人教B版数学选修2-3《1.1基本计数原理》说课稿

人教B版数学选修2-3《1.1基本计数原理》说课稿

人教B版数学选修2-3《1.1基本计数原理》说课稿各位老师,大家好,我今天说课的课题是《基本计数原理》,我将从教材、学情、教学策略、教学过程、板书设计、教学反思等几个方面对本节课进行说明。

一、教材分析本节课是人教B版的数学教材选修2-3第一章第一节第一课,本节课所讲授的两个基本计数原理,即分类加法原理与分步乘法原理,是本章继续学习排列、组合的基础,学生能否理解并能应用两个基本原理,是学好本章知识的一个关键,本节课建议安排两课时,本节为第一课时,根据其在教材中的地位,结合课标的要求,设置了如下的教学目标:1、知识目标理解分类加法计数原理和分步乘法计数原理,并能应用两个基本原理分析、解决一些简单的应用问题。

2、能力目标在概念形成的过程中培养学生的总结与概括能力,在解决实际问题过程中锻炼学生逻辑思维能力。

3、情感目标让学生体验知识从生活中来又应用到生活中去得过程,培养学生用数学的眼光观察世界和用数学的思想思考世界的习惯。

教学重点是两个基本计数原理的内容。

难点是如何正确是用两个基本计数原理来解决实际问题。

二、学情分析高二学段的高中生已经具备较好的计算能力和基本的逻辑思维能力,但是对于实际问题的生活背景了解不多,对问题中创设的实际背景和如何完成一件事的含义的理解将成为学生运用两个基本计数原理解决问题是的瓶颈,所以找到如何完成一项实际任务的方法,是应用过程中难点。

三、教学策略本课由于内容比较简单学生通过预习多都能够看懂,在实际授课时,我将使用更能贴近学生生活的实例,以激发学生的求知欲和学习热情。

采用教师启发、学生小组合作学习方式进行教学,利用多媒体课件展示引例的问题环境,引导学生思维,具体的分析比较进而归纳出两个基本计数原理,遵循从特殊到一般的思维过程,在学生现有的认知基础上,促使其获取知识,让学生始终保持高水平的思维活动水平,增强学习效果。

四、教学过程1、设置情景,引入新课使用多媒体课件展示郑板桥《咏雪》让学生齐读古诗并请学生对古诗进行自由鉴赏。

第一章教材分析

第一章教材分析

选修2-3第一章:“计数原理”教材分析与教学建议一、地位与作用计数问题是数学中的重要研究象之一,分类加法计数原理与分步乘法计数原理是解决计数问题的最基本、最重要的方法,它们为解决很多实际问题提供了思想和工具。

计数原理是学习统计与概率以及相关分支的基础。

计数原理的思想方法独特灵活,有利于培养和发展学生的抽象能力和逻辑思维能力。

二、本章重点、难点1.重点:(1)分类加法计数原理、分步乘法计数原理;(2)排列与组合的意义;(3)排列数公式与组合数公式;(4)二项式定理。

2.难点:(1)如何利用原理和有关公式解决应用问题。

三、课程标准1.分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题。

2.排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题。

3.二项式定理能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题。

四、教学安排与课时分配本章教学约需14课时,具本分配时间如下,仅供参考:这部分的内容与《大纲》没有太大的区别,在处理方式上,相对于排列、组合来说,《标准》更强调基本的计数原理,而把排列、组合、二项式定理的证明作为计数原理的应用实例。

就计数原理本身而言,《标准》强调对计数思想的理解,两个版本相比,A版更加注重体现课标的精神,比如:从内容编排上看,非常强调基本计数原理的思想及其应用,第一节安排了有梯度的9个例题,计划用4课时,让学生通过丰富的实例来熟悉原理及其基本应用,而同样内容B版为3个例题,2课时;注重学生对新概念、新公式的探究。

避免抽象的讨论计数原理,而且强调计数原理在实际中的应用。

教学用时比《大纲》少了4课时。

六、教材分析(一)计数原理1.分类加法计数原理(1)原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N m n=+种不同的方法.(2)特点:两类方案中的任何一类的任何一种方法都可以完成这件事,并且两类方案中所有方法互不相同.(3)一般结论:完成一件事有n 类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,…,在第n 类方案中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++ 种不同的方法.(4)注意事项:完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法是不同的方法,只有满足这些条件,即做到“不重不漏”,才能用分类计数原理.2.分步乘法计数原理(1)原理:完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法.那么完成这件事共有N m n =⨯种不同的方法.(2)特点:两个步骤缺一不可,并且经过两个步骤恰好完成这件事.(3)一般结论:完成一件事需要n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯ 种不同的方法.(4)注意事项:在分步乘法计数原理中,完成一件事分为若干个有联系的步骤,只有前一个步骤完成后,才能进行下一个步骤.当各个步骤都依次完成后,这件事才算完成.但每个步骤中可以有多种不同的方法,而这些方法之间是相互独立的.3.区别与联系(1)区别:在分类计数中,完成一件事,每一类中的每一种方法都可以达到目的,即都可以完成这件事.在分步计数中,完成一件事,只有各个步骤都完成,才算完成此事.(2)联系:①都是探讨完成一件事情的方法种数,即计数问题.②两个原理在处理问题时相互交织、互相渗透.4.特别提示(1)理解分类加法计数原理,要注意以下三点:①清楚完成“一件事”的含意,即知道做“一件事”,或完成一个“事件”在每个题中的具体所指; ②解决“分类”问题用分类加法计数原理.需要分类的事件不妨叫做“独立事件”,即完成事件通过途径A ,就不必再通过途径B 就可以完成,每类办法都可以完成这件事.注意各类之间的独立性和并列性,否则,不独立会出现重复,不并列会出现遗漏;③每个问题中,标准不同,分类也不同.分类的基本要求是,每一种方法必属于某一类(不漏),任意不同类的两种方法是不同的(不重复).(2)理解分步乘法计数原理,要注意以下三点:①清楚完成“一件事”的含意,即知道完成一个事件,在每个题中需要经过哪几个步骤;②“分步”用乘法原理,需要分成若干个步骤,每个步骤都完成了,才算完成了一个事件,不妨称此为“相关事件”.要注意各步骤之间的连续性;③每个问题中,标准不同,分步也不同.分步的基本要求是完成一件事,必须且只需连续做完几步,既不漏步也不重复,二是两个步骤的方法之间是无关的,不能互相替代.5.典例分析a.明确题目要完成什么事情,如何去完成例1 甲同学有若干本课外参考书,其中有5本不同的数学书,4本不同的物理书,3本不同的化学书,现在乙同学向甲同学借书.(1)若借一本书,则有多少种不同的借法?(2)若每科各借一本,则有多少种不同的借法?(3)若借两本不同学科的书,则有多少种不同的借法?解:(1)因为需完成的事情是“借一本”书,所以借给他数学、物理、化学书中的任何一本,都可以完成这件事情.故用分类加法计数原理,共有5+4+3=12种不同的借法;(2)需完成的事情是“每科各借一本”书,意味着要借给乙3本书,只有从数学、物理、化学三科中各借一本,才能完成这件事情,故用分步乘法计数原理,共有5×4×3=60种不同的借法;(3)需完成的事情是“从三种学科的书中借两本不同学科的书”,要分三种情况:①借一本数学书和一本物理书,只有两本书都借,事情才能完成,由分步计数原理,知有5×4=20种借法;②借一本数学书和一本化学书,同理由分步乘法计数原理,知有5×3=15种借法;③借一本物理书和一本化学书,同理由分步计数原理,知有4×3=12种借法.而上述的每一种借法都可以独立完成这件事情,由分类计数原理,知共有20+15+12=47种不同的借法.b.“类与类”之间相互独立且并列,分类过程不重不漏一种颜色,相邻的区域不能同色,则共有多少种不同的涂色方法?解:由题意知,必有两个区域涂相同的颜色,从图形的形状可知1与3;1与5;2与5;3与5的区域可涂相同的颜色.这样可将问题分成四类,每一类均有4×3×2×1=24种涂色方法.所以共有4×24=96种涂色方法.c.“步与步”之间相依且连续,但不能交叉重复例3 从3名男生,2名女生中选3名同学参加代表大会,要求3名同学的性别不全相同,有多少种选法?解:第一类:有1名女生,2名男生,选法为2×3=6(种);第二类:有2名女生,1名男生,选法为1×3=3(种).所以共有6+3=9种选法.(二)排列与组合1.排列与组合的意义排列与组合是既有联系又有区别的两类问题,它们都是从n 个不同元素中任取m 个不同元素.但是前者要求将元素排成一个顺序,后者对此不做要求.若不理解排列问题和组合问题的区别,在分析实际问题时就会犯错误.2.两类基本公式(1)排列数公式 !(1)(2)(1)()!m n n A n n n n m n m =---+=- 规定:0!=1 (2)组合数公式 )!(!!m n m n A A C m m m n m n-== 特别地:10==n n n C C 3.两类基本性质(1)排列性质:11-++=m nm n m n mA A A (2)组合性质:性质1.m n n m n C C -=, 性质2.11-++=m nm n m n C C C 在解决排列组合的计算或证明以及解方程,解不等式等问题时,经常用排列数公式、组合数公式以及组合数的两个性质.解这类题的关键是准确、熟练地运用这些公式及性质,但是在使用公式时要注意:计算题与证明题的类型不同,要求选择公式的形式就不同.排列数公式与组合数公式都有两种形式:乘积形式和阶乘形式前者多用于数字计算,后者多用于证明恒等式,同时要注意公式的倒用,即由)!(!!m n m n -可得出m n C . 排列数m n A 与组合数m n C 中m 、n 的关系是 )(N n m n m ∈≤、;牢记:0!=1;.1;!;;;1;11100======n n n n n n n n C n A n C n A C A组合数派生性质:k n n k n n k k k C C C C C -+-++=++++1221101121++++=++++k n k n k k k k k k C C C C C4.排列组合的综合应用排列与顺序有关,或者说与所有顺序有关.组合与顺序无关,或者说与一种顺序有关.例如:从1、2、3、4四个数字中任取3个不同的数字,可组成多少个不同的三位数?这是排列问题,有34A 个,而组成的三位数中个位、十位、百位上的数字递增的三位数有多少个?这是一种确定的顺序,是组合问题,有34C 个不同的三位数.按元素的性质分类,按事件发生的连续过程分步,是处理排列组合问题的基本数学思想方法,要注意题设中“至少”、“至多”等限制词的意义.处理排列组合的综合性问题,一般的思想方法是对于要取出的元素不是一次完成的排列问题,要注意先选取元素,直到把应取的元素都取出来后,再进行排列在排列问题中,某几个元素必须在某几个固定位置,某几个元素不能在某几个位置,某几个元素必须在一起,某几个元素互不相邻等,是排列中的几种基本类型.在组合问题中,某些元素必须在内,某些元素都不在内,某些元素恰有一个在内,某些元素至少有一个在内,某些元素至多有一个在内等,是组合的几种基本类型.5.典例分析排列组合应用题的解题方法既有一般的规律,又有很多特别的技巧,它要求我们要认真地审题,对题目中的信息进行科学地加工处理。

高中数学选修2-3精品课件1:第一章 计数原理

高中数学选修2-3精品课件1:第一章  计数原理
第一章 计数原理
§1.3.1二项式定理
高中数学选修2-3·同步课件
教学目标
1.理解两个原理,并会应用解题; 2.掌握排列组合的概念并且会灵活运用; 3.掌握二项式定理的内容和熟练运用解题.
知识梳理
1.排列的概念及排列数公式; 2.组合的概念及组合数公式; 3.二项式定理及二项式系数的性质;
(2)二项展开式的通项 Tr+1=Crnan-rbr,r=0,1,2,…,n,其中 Crn叫做二项式系数. (3)二项式系数的性质 ①对称性:与首末两端“等距离”两项的二项式系数相等, 即 C0n=Cnn,C1n=Cnn-1,…,Ckn=Cnn-k,…. ②最大值:当 n 为偶数时,中间的一项的二项式系数取得最大值;当 n 为奇 数时,中间的两项的二项式系数相等,且同时取得最大值. ③各二项式系数的和 a.C0n+C1n+C2n+…+Ckn+…+Cnn=2n;
(1)它表示二项展开式的任意项,只要 n 与 r 确定,该项就随之确定; (,b 的指数和为 n 且 a,b 不能随便颠倒位置; (4)要将通项中的系数和字母分离开,以便于解决问题; (5)对二项式(a-b)n 展开式的通项公式要特别注意符号问题.
题型二 排列与组合 例 2 4 个不同的球,4 个不同的盒子,把球全部放入盒内. (1)恰有 1 个盒不放球,共有几种放法? (2)恰有 1 个盒内有 2 个球,共有几种放法? (3)恰有 2 个盒不放球,共有几种放法? 分析: (1)确定一个空盒→将四个球放入 3 个盒内→选 2 个球放入一 个盒内. (2)与(1)的含义相同. (3)4 个球放入 2 个盒子,可以平均放也可以不平均放.
b.C0n+C2n+…+C2nr+…=Cn1+Cn3+…+C2nr+1+…=12·2n=2n-1.

人教a版数学【选修2-3】第1章《计数原理》归纳总结ppt课件

人教a版数学【选修2-3】第1章《计数原理》归纳总结ppt课件

2.(2012·浙江理,6)若从1、2、3、„、9这9个整数中同
时取4个不同的数,其和为偶数,则不同的取法共有( A.60种 C.65种 [答案] D B.63种 D.66种 )
[解析] 本题考查了排列与组合的相关知识.取出的 4 个 数和为偶数,可分为三类.
4 2 2 四个奇数 C4 5,四个偶数 C4,二奇二偶,C5C4. 4 2 2 共有 C4 + C + C 5 4 5C4=66 种不同取法. [点评] 分类讨论思想在排列组合题目中应用广泛.
1 n n ③各二项式系数的和:C0 + C +„+ C = 2 . n n n
第一章
章末归纳总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
(4)解决二项式定理问题的注意事项
n-k k ①运用二项式定理一定要牢记通项 Tk+1=Ck a b ,注意(a n
+b)n 与(b+a)n 虽然相同, 但具体到它们展开式的某一项时是不 同的.另外,二项式系数与项的系数是两个不同概念,前者指
第一章
章末归纳总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
3.在(x2+x+1)(x-1)5的展开式中,含x4项的系数是(
)
A.-25
C.5 [答案] B
B.-5
D.25
[解析] (x2+x+1)(x-1)5=(x3-1)(x-1)4,其展开式中 x4
中任何一种方法都不能完成这件事情,只能完成事件的某一部
分,只有当各步全部完成时,这件事情才完成.
第一章 章末归纳总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
2.排列与组合 (1)排列与组合的定义

【人教A版】高中数学选修2-3课件:第1章《计数原理》高效整合ppt课件

【人教A版】高中数学选修2-3课件:第1章《计数原理》高效整合ppt课件
数学 选修2-3
第一章 计数原理
知能整合提升 热点考点例析
第一 章
计数原理
数学 选修2-3
第一章 计数原理
知能整合提升 热点考点例析
章末高效整合
数学 选修2-3
第一章 计数原理
知能整合提升 热点考点例析
知能整合提升
数学 选修2-3
第一章 计数原理
知能整合提升 热点考点例析
1.两个计数原理的区别与联系
两端.
数学 选修2-3
第一章 计数原理
知能整合提升 热点考点例析
④直接计数困难的问题,采用间接法,即从方法总数中减 去不符合条件的方法数.
⑤排列和组合的综合题,采用“先组后排”,即先选出元
素,再排序.
数学 选修2-3
第一章 计数原理
知能整合提升 热点考点例析
4.二项式定理及二项式系数的性质
n 1 n 1 r n (1)二项式定理:公式(a+b)n=C 0 a + C a b +„+ C n n na
第一章 计数原理
知能整合提升 热点考点例析
有3封信,4个信简. (1)把3封信都寄出,有多少种寄信方法? (2)把3封信都寄出,且每个信简中最多一封信,有多少种
寄信方法?
[ 思维点击 ] 本题关键是要搞清楚以 “ 谁 ” 为主研究问 题.解决这类问题,切忌死记公式,应清楚哪类元素必须应该 用完,就以它为主进行分析,再用分步计数原理求解.
答案: C
数学 选修2-3
第一章 计数原理
知能整合提升 热点考点例析
排列组合应用题的处理方法与策略
点拨: 解决排列组合应用题的处理方法与策略 ①特殊元素优先安排的策略; ②合理分类和准确分步的策略; ③排列、组合混合问题先选后排的策略; ④正难则反、等价转化的策略;

【北师大版】数学选修2-3教案:第一章 第三课时 基本计数原理(三)

【北师大版】数学选修2-3教案:第一章 第三课时 基本计数原理(三)

一、教学目标:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题二、教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解三、教学方法:探析归纳,讨论交流四、教学过程(一)、复习:分类计数原理(加法原理)与分步计数原理(乘法原理)及它们的区别. (二)、典例探析例1.要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?解:P5分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法的种数问题.区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事,分步乘法计数原理针对的是“分步”问题,各个步骤中的方法互相依存,只有各个步骤都完成才算做完这件事.例2.核糖核酸(RNA)分子是在生物细胞中发现的化学成分一个 RNA 分子是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据.总共有 4 种不同的碱基,分别用A,C,G,U表示.在一个 RNA 分子中,各种碱基能够以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类 RNA 分子由 100 个碱基组成,那么能有多少种不同的 RNA 分子?分析:用图1. 1一2 来表示由100个碱基组成的长链,这时我们共有100个位置,每个位置都可以从A , C , G , U 中任选一个来占据.解:100个碱基组成的长链共有 100个位置,如图1 . 1一2所示.从左到右依次在每一个位置中,从 A , C , G , U 中任选一个填人,每个位置有 4 种填充方法.根据分步乘法计数原理,长度为 100 的所有可能的不同 RNA 分子数目有1001004444⋅⋅⋅=(个)例3.电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态.因此计算机内部就采用了每一位只有 O 或 1 两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由 8 个二进制位构成.问:(1)一个字节( 8 位)最多可以表示多少个不同的字符? (2)计算机汉字国标码(GB 码)包含了6 763 个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?分析:由于每个字节有 8 个二进制位,每一位上的值都有0,1两种选择,而且不同的顺序代表不同的字符,因此可以用分步乘法计数原理求解本题.解:(1)用图1.1一3 来表示一个字节.图 1 . 1 一 3一个字节共有 8 位,每位上有 2 种选择.根据分步乘法计数原理,一个字节最多可以表示 2×2×2×2×2×2×2×2= 28 =256 个不同的字符;( 2)由( 1 )知,用一个字节所能表示的不同字符不够 6 763 个,我们就考虑用2 个字节能够表示多少个字符.前一个字节有 256 种不同的表示方法,后一个字节也有 256 种表示方法.根据分步乘法计数原理,2个字节可以表示 256×256 = 65536个不同的字符,这已经大于汉字国标码包含的汉字个数 6 763.所以要表示这些汉字,每个汉字至少要用 2 个字节表示.例4.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母和 3 个不重复的阿拉伯数字,并且 3 个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?分析:按照新规定,牌照可以分为 2类,即字母组合在左和字母组合在右.确定一个牌照的字母和数字可以分6个步骤.解:将汽车牌照分为 2 类,一类的字母组合在左,另一类的字母组合在右.字母组合在左时,分6个步骤确定一个牌照的字母和数字:第1步,从26个字母中选1个,放在首位,有26种选法;第2步,从剩下的25个字母中选 1个,放在第2位,有25种选法;第3步,从剩下的24个字母中选 1个,放在第3位,有24种选法;第4步,从10个数字中选1个,放在第 4 位,有10种选法;第5步,从剩下的 9个数字中选1个,放在第5位,有9种选法;第6步,从剩下的 8个字母中选1个,放在第6位,有8种选法.根据分步乘法计数原理,字母组合在左的牌照共有26 ×25×24×10×9×8=11 232 000(个) .同理,字母组合在右的牌照也有11232 000 个.所以,共能给11232 000 + 11232 000 = 22464 000(个) .辆汽车上牌照.用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析―需要分类还是需要分步.分类要做到“不重不漏”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到“步骤完整”―完成了所有步骤,恰好完成任务,当然步与步之间要相互独立.分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.(三)、课堂小结:1、分类加法计数原理和分步乘法计数原理是排列组合问题的最基本的原理,是推导排列数、组合数公式的理论依据,也是求解排列、组合问题的基本思想.2、理解分类加法计数原理与分步乘法计数原理,并加区别分类加法计数原理针对的是“分类”问题,其中各种方法相对独立,用其中任何一种方法都可以完成这件事;而分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,只有各个步骤都完成后才算做完这件事.3、运用分类加法计数原理与分步乘法计数原理的注意点:分类加法计数原理:首先确定分类标准,其次满足:完成这件事的任何一种方法必属于某一类,并且分别属于不同的两类的方法都是不同的方法,即"不重不漏". 分步乘法计数原理:首先确定分步标准,其次满足:必须并且只需连续完成这n个步骤,这件事才算完成.(四)、巩固练习:练习册第8页5、6、8(五)、课外作业:练习册第8页中 4 、7 、10。

数学人教B版选修2-3本章整合 第一章计数原理 含解析

数学人教B版选修2-3本章整合 第一章计数原理 含解析

本章整合知识网络专题探究专题一:正确运用两个计数原理【应用1】从集合{O,P,Q,R,S}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O,Q和数字0至多只出现一个的不同排法种数是__________.(用数字作答)解析:把排法分成三类:①当无字母O,Q和数字0时,有排法C23·C29·A44种;②当无字母O,Q,但有数字0时,有排法C23·C19·A44种;③当无数字0,但有字母O,Q其中之一时,有排法C12·C13·C29·A44种.综上,符合题意的不同排法种数是C23·C29·A44+C23·C19·A44+C12·C13·C29·A44=8 424.答案:8 424【应用2】随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需要扩容.交通管理部门出台了一种汽车牌照组成办法,每个汽车牌照都必须有3个不重复的英文字母和3个不重复的阿拉伯数字,并且3个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?提示:按照新规定,牌照可以分为2类,即字母组合在左和字母组合在右.确定一个牌照的字母和数字可以分6个步骤.解:将汽车牌照分为2类,一类的字母组合在左,另一类的字母组合在右.字母组合在左时,分6个步骤确定一个牌照的字母和数字:第1步,从26个字母中选1个,放在首位,有26种选法;第2步,从剩下的25个字母中选1个,放在第2位,有25种选法;第3步,从剩下的24个字母中选1个,放在第3位,有24种选法;第4步,从10个数字中选1个,放在第4位,有10种选法;第5步,从剩下的9个数字中选1个,放在第5位,有9种选法;第6步,从剩下的8个字母中选1个,放在第6位,有8种选法.根据分步乘法计数原理,字母组合在左的牌照共有26×25×24×10×9×8=11 232 000(个).同理,字母组合在右的牌照也有11 232 000个.所以,共能给11 232 000+11 232 000=22 464 000辆汽车上牌照.专题二:解排列组合应用题区别排列与组合的重要标志是“有序”与“无序”,无序的问题用组合知识解答,有序的问题属于排列问题.解含有约束条件的排列、组合问题,应先观察取出的元素是否有顺序,从而确定是排列问题还是组合问题,然后仔细审题,弄清怎样才算完成一件事,从而确定是分类完成,还是分步完成.分类时需要满足两个条件:(1)类与类之间要互斥(保证不重复);(2)总数要完备(保证不遗漏).分步时应按事件发生的连贯过程进行分步,做到步与步之间相互独立、互不干扰,并确保连续性.解决受条件限制的排列、组合问题的一般策略有:(1)特殊元素优先安排的策略;(2)正难则反、等价转化的策略;(3)相邻问题捆绑处理的策略;(4)不相邻问题插空处理的策略;(5)定序问题排除法处理的策略;(6)“小集团”排列问题中先整体后局部的策略;(7)平均分组问题运用除法处理的策略;(8)构造模型的策略.【应用1】7名学生站成一排,下列情况各有多少种不同排法?(1)甲、乙必须排在一起;(2)甲不在排头,乙不在排尾;(3)甲、乙、丙互不相邻;(4)甲、乙之间必须隔一人.解:(1)(捆绑法)先将甲、乙看作一个人,有A66种排法,然后对甲、乙进行排列,所以不同的排法有A22·A66=1 440(种).(2)(间接法)甲在排头或乙在排尾排法共2A66种,其中都包含甲在排头且乙在排尾的情形,故有不同的排法A77-2A66+A55=3 720(种).(3)(插空法)把甲、乙、丙插入其余4名学生产生的5个空中,有A44·A35=1 440(种)排法.(4)先从其余5人中选1人有5种选法,放在甲、乙之间,将三人看作一个整体有A55种排法,然后甲乙换位有A22种,共有5A55·A22=1 200(种)排法.【应用2】有4个不同的球,四个不同的盒子,把球全部放入盒内.(1)共有多少种放法?(2)恰有一个盒不放球,有多少种放法?(3)恰有一个盒内有2个球,有多少种放法?解:(1)一个球一个球地放到盒子里去,每只球都可有4种独立的放法,由分步乘法计数原理,放法共有44=256(种).(2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个,即将4个球分成2,1,1的三组,有C24种分法;然后再从三个盒子中选一个放两个球,其余两个球,两个盒子,全排列即可.由分步乘法计数原理,共有放法:C14·C24·C13·A22=144(种).(3)“恰有一个盒内放2个球”,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒子放2球”与“恰有一个盒子不放球”是一回事.故也有144种放法.【互动探究】本例中的4个小球若只放入4个盒子中的两个盒子,即只有两个空盒子,共有多少种放法?解:先从四个盒子中任意拿走两个有C24种,问题转化为:“4个球,两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为(3,1),(2,2)两类.第一类:可从4个球中先选3个,然后放入指定的一个盒子中即可,有C34·C12种放法;第二类:有C24种放法.因此共有C34·C12+C24=14(种).由分步乘法计数原理得“恰有两个盒子不放球”的放法有C24·14=84(种).专题三:二项式定理应用【应用1】 ⎝⎛⎭⎫x 2+2x 8的展开式中x 4的系数是( ) A .16 B .70C .560D .1 120解析:设二项展开式的第(r +1)项含有x 4,则T r +1=C r 8(x 2)8-r ⎝⎛⎫2x r =C r 8·2r ·x 16-3r,令16-3r =4,求得r =4.所以x 4的系数为C 48·24=1 120. 答案:D【应用2】 若⎝⎛⎭⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( ) A .10 B .20C .30D .120解析:利用二项式系数的性质和通项公式求常数项.⎝⎛⎭⎫x +1x n 展开式的二项式系数和为C 0n +C 1n +C 2n +…+C n n =64=2n ,解得n =6.设第(r +1)项为常数项,则T r +1=C r 6·x 6-r ·⎝⎛⎭⎫1x r =C r 6·x 6-2r,令6-2r =0,解得r =3,所以T r +1=T 4=C 36=20.答案:B【应用3】 设(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为( )A .-2B .-1C .1D .2解析:采用赋值法,要使等式右边为a 0+a 1+a 2+…+a 11,应该令x +2=1,即x =-1,于是可得a 0+a 1+a 2+…+a 11=2×(-1)9=-2.答案:A。

数学选修23第一章计数原理2

数学选修23第一章计数原理2

数学选修系列
2-3
8
普通高中课程标准实验教科书(人教A版)
二、编写意图及教学建议
1.编写意图
(1)加强基本概念的发生发展过程
“问题情境——引导探究——归纳概括”
(2)强调数学思想方法的渗透和总结
本章内容涉及分类、化归、从特殊到一般、 多元联系表示等众多数学思想方法.
(3)强调对基本概念本质的理解
数学选修系列
数学选修系列
2-3
7
普通高中课程标准实验教科书(人教A版)
(四) 教科书特点
1. 突出分类加法计数和分步乘法计数两 种基本思想方法
2. 学以致用的思想贯穿本章内容的始终
两个计数原理几乎是一种常识,这样
简单朴素的原理易学、好懂、能懂、
好用,但要达到会用的境界,则需要
经过一定量的应用性训练
3. 关注数学文化
(2)突出计数原理的基本思想方法,将古典概率
的计算作为其应用,不会对后续理科选修部分的
概率学习产生不良影响,完全可以达到大纲教材
的效果.
数学选修系列
2-3
3
普通高中课程标准实验教科书(人教A版)
(二) 目标及变化
1. 分类加法计数和分步乘法计数原理
(1)目标:通过实例,总结出分类加法计 数原理、分步乘法计数原理;能根据具体问 题的特征,选择分类加法计数原理或分步乘 法计数原理解决一些简单的实际问题.
1. 分类加法计数和分步乘法计数是处理计数问题 的两种基本思想方法
2. 返璞归真地看两个计数原理,它们实际上是加 法运算与乘法运算的推广,是解决计数问题的 理论基础
3. 排列、组合是两类特殊而重要的计数问题,解 决它们的基本思想和工具就是两个计数原理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修2-3第一章:“计数原理”教材分析与教学建议
一、地位与作用
计数问题是数学中的重要研究象之一,分类加法计数原理与分步乘法计数原理是解决计数问题的最基本、最重要的方法,它们为解决很多实际问题提供了思想和工具。

计数原理是学习统计与概率以及相关分支的基础。

计数原理的思想方法独特灵活,有利于培养和发展学生的抽象能力和逻辑思维能力。

二、本章重点、难点
1.重点:(1)分类加法计数原理、分步乘法计数原理;(2)排列与组合的意义;(3)排列数公式与组合数公式;(4)二项式定理。

2.难点:(1)如何利用原理和有关公式解决应用问题。

三、课程标准
1.分类加法计数原理、分步乘法计数原理
通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题。

2.排列与组合
通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题。

3.二项式定理
能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题。

四、教学安排与课时分配
这部分的内容与《大纲》没有太大的区别,在处理方式上,相对于排列、组合来说,《标准》更强调基本的计数原理,而把排列、组合、二项式定理的证明作为计数原理的应用实例。

就计数原理本身而言,《标准》强调对计数思想的理解,
两个版本相比,A版更加注重体现课标的精神,比如:从内容编排上看,非常强调基本计数原理的思想及其应用,第一节安排了有梯度的9个例题,计划用4课时,让学生通过丰富的实例来熟悉原理及其基本应用,而同样内容B版为3个例题,2课时;注重学生对新概念、新公式的探究。

避免抽象的讨论计数原理,而且强调计数原理在实际中的应用。

教学用时比《大纲》少了4课时。

六、教材分析
(一)计数原理
1.分类加法计数原理
(1)原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N m n
=+种不同的方法.
(2)特点:两类方案中的任何一类的任何一种方法都可以完成这件事,并且两类方案中所有方法互不相同.
(3)一般结论:完成一件事有n 类不同方案,在第1类方案中有1m 种不同的方法,在第
2类方案中有2m 种不同的方法,…,在第n 类方案中有n m 种不同的方法.那么完成这件事
共有12n N m m m =+++ 种不同的方法.
(4)注意事项:完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法是不同的方法,只有满足这些条件,即做到“不重不漏”,才能用分类计数原理.
2.分步乘法计数原理
(1)原理:完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法.那么完成这件事共有N m n =⨯种不同的方法.
(2)特点:两个步骤缺一不可,并且经过两个步骤恰好完成这件事.
(3)一般结论:完成一件事需要n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯ 种不同的方法.
(4)注意事项:在分步乘法计数原理中,完成一件事分为若干个有联系的步骤,只有前一个步骤完成后,才能进行下一个步骤.当各个步骤都依次完成后,这件事才算完成.但每个步骤中可以有多种不同的方法,而这些方法之间是相互独立的.
3.区别与联系
(1)区别:在分类计数中,完成一件事,每一类中的每一种方法都可以达到目的,即都可以完成这件事.在分步计数中,完成一件事,只有各个步骤都完成,才算完成此事.
(2)联系:①都是探讨完成一件事情的方法种数,即计数问题.
②两个原理在处理问题时相互交织、互相渗透.
4.特别提示
(1)理解分类加法计数原理,要注意以下三点:
①清楚完成“一件事”的含意,即知道做“一件事”,或完成一个“事件”在每个题中的具体所指;
②解决“分类”问题用分类加法计数原理.需要分类的事件不妨叫做“独立事件”,即完成事件通过途径A ,就不必再通过途径B 就可以完成,每类办法都可以完成这件事.注意各类之间的独立性和并列性,否则,不独立会出现重复,不并列会出现遗漏;
③每个问题中,标准不同,分类也不同.分类的基本要求是,每一种方法必属于某一类(不漏),任意不同类的两种方法是不同的(不重复).
(2)理解分步乘法计数原理,要注意以下三点:
①清楚完成“一件事”的含意,即知道完成一个事件,在每个题中需要经过哪几个步骤; ②“分步”用乘法原理,需要分成若干个步骤,每个步骤都完成了,才算完成了一个事件,
不妨称此为“相关事件”.要注意各步骤之间的连续性;
③每个问题中,标准不同,分步也不同.分步的基本要求是完成一件事,必须且只需连续做完几步,既不漏步也不重复,二是两个步骤的方法之间是无关的,不能互相替代.
(二)排列与组合
1.排列与组合的意义
排列与组合是既有联系又有区别的两类问题,它们都是从n 个不同元素中任取m 个不同元素.但是前者要求将元素排成一个顺序,后者对此不做要求.若不理解排列问题和组合问题的区别,在分析实际问题时就会犯错误.
2.两类基本公式
(1)排列数公式 !(1)(2)(1)()!
m n n A n n n n m n m =---+=- 规定:0!=1 (2)组合数公式 )!(!!m n m n A A C m m m n m n
-== 特别地:10==n n n C C 3.两类基本性质
(1)排列性质:11-++=m n
m n m n mA A A (2)组合性质:性质1.m n n m n C C -=, 性质2.11-++=m n
m n m n C C C 在解决排列组合的计算或证明以及解方程,解不等式等问题时,经常用排列数公式、组合数公式以及组合数的两个性质.解这类题的关键是准确、熟练地运用这些公式及性质,但是在使用公式时要注意:计算题与证明题的类型不同,要求选择公式的形式就不同.排列数公式与组合数公式都有两种形式:乘积形式和阶乘形式证明恒等式,同时要注意公式的倒用,即由)!
(!!m n m n -可得出m n C . 排列数m n A 与组合数m n C 中m 、n 的关系是 )(N n m n m ∈≤、;牢记:0!=1;
.1;!;;;1;11100======n n n n n n n n C n A n C n A C A
组合数派生性质:k n n k n n k k k C C C C C -+-++=++++122110
1121++++=++++k n k n k k k k k k C C C C C
4.排列组合的综合应用
排列与顺序有关,或者说与所有顺序有关.组合与顺序无关,或者说与一种顺序有关.例如:从1、2、3、4四个数字中任取3个不同的数字,可组成多少个不同的三位数?这是排列问题,有3
4A 个,而组成的三位数中个位、十位、百位上的数字递增的三位数有多少个?这是一种确定的顺序,是组合问题,有34C 个不同的三位数.
按元素的性质分类,按事件发生的连续过程分步,是处理排列组合问题的基本数学思想
方法,要注意题设中“至少”、“至多”等限制词的意义.
处理排列组合的综合性问题,一般的思想方法是对于要取出的元素不是一次完成的排列问题,要注意先选取元素,直到把应取的元素都取出来后,再进行排列在排列问题中,某几个元素必须在某几个固定位置,某几个元素不能在某几个位置,某几个元素必须在一起,某几个元素互不相邻等,是排列中的几种基本类型.
在组合问题中,某些元素必须在内,某些元素都不在内,某些元素恰有一个在内,某些元素至少有一个在内,某些元素至多有一个在内等,是组合的几种基本类型.
(三)二项式定理
1.二项式定理的内容:(a+b )n =C n 0a n +Cn 1a n-1b+…+n n C b
n 2.对通项公式的理解:
(1)对通项要注意以下几点:
①它表示二项展开式中的任意项,只要n 与r 确定,该项也随之确定.
②公式表示的是第r+1项,而不是第r 项.
③公式中a 、b 的位置不能颠倒,它们的指数和一定为n.
(2)要注意区分,展开式的第r+1项的二项式系数与第r+1项的系数是两个不同的概念,千万不能混在一起.
3.二项式系数的性质
(1)展开式中与首末两端“等距离”的两项的二项式系数相等.
(2)若二项式的幂指数是偶数,则展开式的中间一项即第
12
+n 项的二项式系数最大;若二项式系数的幂指数是奇数,则展开式的中间两项即第(121+-n )项和第(121++n )项的二项式系数相等且最大.
(3)展开式的所有二项式系数的和等于n
2.即n n n n n n C C C C 2210=++++ (4)展开式中的奇数项的二项式系数的和等于偶数项的二项式系数的和.即
+++=+++531420n n n n n n C C C C C C =12-n
4.注意的几个问题:
(1)用二项式定理进行幂的近似计算时,首先要将幂的底数拆成两项,构造二项式;其次要根据题设的精确度选取展开的项数.
(2)利用二项式定理证明整除性问题,也应灵活处理底数,使之符合需要.
(3)赋值法是解决二项展开式中有关系数问题的重要手段,许多复杂的与系数有关的问题均可以通过正确的、简单的赋值得到解决.。

相关文档
最新文档