数理方程PPT
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⇒ T2 = T1 = T. = ρuttdx. = ρuttdx. = utt. = utt, = utt.
Full Screen
Close
Quit
Home Page
Title Page
Page 5 of 82
Go Back
2. ‚—Ý•ρþ!R^ [u‚3x = 0à ½§3åŠ^e§R†]!§î•.§˜e§¦ƒ‰‡ î Ä"Á Ñ Ä•§"(30©) ) u • •L§ ï á‹IXXm㤠« " ^(x, t)L « u 3 ž •x, t? î • £ § luþ? ˜ã ux x + ∆x u‚§© ÛÙ¢Š^å" Y²••Üåµ Tu = ρ∆xutt , Y†••Üåµ Tx = ρg ∆x.
dT = −ρg. dx é þ ª ' uxÈ © § ¿ | ^ 3x = 0? § Ü åT T Ð uu g-ρgL§ µ
Page 6 of 82
T = ρg (L − x).
Go Back
3Y²••Ü啵 (2)
Full Screen
T (x + ∆x)sin(α2) − T (x)sin(α1) = ρ∆xutt.
Quit
Home Page
²Lz{$Ž §
Title Page
>ØÚ>6 •§•µ
uxx − LCutt − (LG + RC )ut − RGu = 0, CR = GL, I xx − LCI tt − (LG + RC )I t − RGI = 0. u(x, t) = e− L tv(x, t)§ “ \ • § > Øu(x, t)• §
17 2 1 −1
Title Page
·17 0 53 + 152 ·17 53 + 152 0
? • § Œ ± z { • µ361uξη = 0 ⇒ uξη = 0§ ) ƒ :
u(ξ, η ) = f1(ξ ) + f2(η ).
Page 16 of 82
òξ, η
Lˆª“\þª¥§
•§ )•µ
Full Screen
Close
Quit
Home Page
pªDÑ‚•§(> )
•§)
Title Page
Page 10 of 82
Go Back
Full Screen
pªDÑ‚•§>´ã(Xþ㤫)§Šâ>´ n§ Œ± >Øu(x, t)†>6I (x, t)¤±÷v •§µ
Close
−ux = RI + LI t, −I x = Gu + Cut.
= 0. = ρdsutt. ≈ 1 = α2 , ≈ tan(α1), ≈ ux, ≈ √ 1 + (tan(α))2 1 + α2 ≈ dx.
Close
1 + (ux)2 =
Quit
Home Page
Title Page
¤±§k
Page 4 of 82
Go Back
T2 − T1 = 0 T (ux |x+∆x − ux |x ) − ρg dx + F dx ∂ ∂u T dx − ρg dx + F dx ∂x ∂x T F (a2 = , f = ), a2uxx + f (x, t) − g ρ ρ ˜‘ÅÄ•§( g), a2 uxx + f (x, t) n‘ÅÄ•§ a2 ∇2 u + f (x, y, z, t)
Go Back
Full Screen
Close
Quit
Home Page
Title Page
Page 20 of 82
Go Back
Full Screen
Close
Quit
Home Page
^©lCþ{¦)½)¯K 1.¦ e >Š¯K kŠÚ ’3.113K) (1). (9) )
∂2u ∂t2 u = a2 ∂ + f. ∂x2
2
Page 14 of 82
~µÅÄ•§
Go Back
a11 = 1, a12 = 0, a22 = −a2, = a122 − a11a22 = a2 > 0
~µ9D
u •§ ∂u = a2 ∂ + f. ∂t ∂x2
2
⇒ ÅÄ•§´V-. .
Full Screen
u|t=0 =
SY
x, ut|t=0 = 0.
Quit
‡©•§a. éu‡©•§
Home Page
ä
Title Page
∂ 2u ∂ 2u ∂u ∂u ∂ 2u + a22 2 + b1 + b2 + cu = f . a11 2 + 2a12 ∂x ∂x∂y ∂y ∂x ∂y
e > 0, V-.; 2 = a12 − a11a22 = 0, Ô.; < 0, ý ..
Home Page
Title Page
ên•§Ï"ESKÀù The last class reviews for the last examination of the mathematical equation for physics
October 27, 2014
Page 1 of 82
Go Back
Page 3 of 82
Go Back
Full Screen
T2cos(α2) − T1cos(α1) T2sin(α2) − T1sin(α1) − ρg ds + F ds α1 α1 = 1 − + ··· 2! sin(α1) sin(α2) ≈ tan(α2), tan(α) ds = (dx)2 + (dy )2 =
Close
Quit
a11 = 0, a12 = 0, a22 = −a2, = a122 − a11a22 = 0
⇒ 9D •§´ Ô. .
4. ä • §uxx − 15uxy − 34uyy = 0 a . § ¿ ¦ )"(20©) ) dKŒ•a11 = 1, a12 = − 15 , a22 = −34§¤± 2
Close
qϕ
Quit
sin(α2) ≈ tan(α2) ≈ ux(x + ∆x), α2 → 0, sin(α1) ≈ tan(α1) ≈ ux(x), α1 → 0.
Home Page
Title Page
¤±ª(2)Œ±z•µ
T (x + ∆x)ux(x + ∆x) − T (x)ux(x) = ρ∆xutt. (3) T (x)ux |x+∆x − T (x)ux |x = ρ∆xutt.
Quit
Home Page
Title Page
9D •§ Ñ 3. Ñ!Ÿ…3z˜Ó%¥þ •§" )
§
á¥N
9D
dtž m S Ï LS16 \
¥Š S
Page 8 of 82
Uþ•
Q1 = −kur (r, t)4πr2dt.
Go Back
dtžmSÏLS26\¥Š S Uþ• Q2 = −kur (r + dr, t)4π (r + dr)2dt. dtžmS¥Š Sá UþQ3•
Go Back
u(x, t) = f1(17x + y ) + f2(2x − y ).
∂ 5µ ∂η ∂u ∂ξ
Full Screen
= 0§éη È©µ ∂u = f (ξ ) " ∂ξ
2éξ È©µ
Close
u(ξ, η ) =
Quit
f (ξ )dξ + f2(η )
Leabharlann Baidu
= f 1 ( ξ ) + f 2 (η ).
~µ Š’(3.1)1˜ K ½)¯K•µ utt = a2 uxx , 0 < x < L, t > 0 u| = 0, u|x=L = 0, (6) x=0
ut|t=0 = 0, u(x, 0) = ϕ(x).
h (−x L−C h x, 0 C
Close
Ù¥ϕ(x) =
Quit
≤x≤C + L), C < x ≤ L.
Full Screen
Close
Quit
dY†••Üå µ (1)
Home Page
T (x + ∆x)cos(α2) − T (x)cos(α1) = −ρg ∆x.
î §
qÏ•´‡
Title Page
Ä § ¤ ±α1 , α2 é cos(α2) ≈ cos(α1) = 1§Kdª(1) µ
éª(3)†à^¥Š½n§…-∆x → 0§
Page 7 of 82
µ
T (x)ux |x = ρutt.
qT = ρg (L − x)§‘\þª¥= u î Ä•§µ
Go Back
Full Screen
utt = g [(L − x)ux] |x = g
∂ ∂u ( L − x) ∂x ∂x
.
Close
Full Screen
Close
Quit
Home Page
Title Page
1
Ù ½)¯K† ‡©•§nØ Ñ Ñ
• ÅÄ•§ • 9D •§
Page 2 of 82
• ½.^‡ • ü‡gCþ‚5 ‡©•§ ©a
Go Back
Full Screen
Close
Quit
Home Page
Title Page
= −17, ⇒ = 2.
17x + y = 0, 2x − y = 0.
Close
-
ξ = 17x + y, K η = 2x − y, |Q| = ξx ξy 17 1 = = 0. ηx ηy 2 −1
Quit
¤±§k
Home Page
a11 a12 a21 a22
= =
17 1 2 −1
1 − 15 2 15 − 2 −34 .
¥§
R
Page 11 of 82
(4)
v tt = a2v xx, −∞ < x < +∞, t > 0, a2 = v (x, 0) = ϕ(x), v t(x, 0) = ψ (x).
R
1 . LC
Go Back
I(x, t) = e− L tw(x, t)§“\•§>ØI(x, t)•§¥§ wtt = a2wxx, −∞ < x < +∞, t > 0, a2 = w(x, 0) = ϕ(x), wt(x, 0) = ψ (x).
Full Screen
Close
Q3 = cρ4πr2dr[u(r, t + dt) − u(r, t)] = cρ4πr2drutdt.
Quit
Home Page
Title Page
¤±
Page 9 of 82
Go Back
Q3 = Q1 − Q2. cρ4πr2drutdt = kur (r + dr, t)4π (r + dr)2dt −kur (r, t)4πr2dt. ∂ = 4πk (r2ur )drdt. ∂r k 1 ∂ 2 ut = (r ur ). cρ r2 ∂r
1 . LC
Full Screen
(5)
Close
Quit
Home Page
½)^‡ 1. Ð ©^‡ u ĵ
Title Page
u(x, 0) = ϕ(x),
9D Щ§ÝÜ©µ
∂u |t=0 = ψ (x). ∂t
u(x, 0) = ϕ(x).
Page 12 of 82
Go Back
Full Screen
1
Home Page
Ù©lCþ{
Title Page
Page 17 of 82
Go Back
Full Screen
Close
Quit
Home Page
Title Page
Page 18 of 82
Go Back
Full Screen
Close
Quit
Home Page
Title Page
Page 19 of 82
ÅÄ•§ Ñ 1. k ˜ Š þ ! R^ ‚u‚ § ˜ à ½ 3 ‹ I : § , ˜ à ÷x¶ . ; ½ 3x¶ þ L? § É 6 ħm©÷x¶(²ï ˜)þe‰‡ î Ä([u‚þ ˆ : $ Ä • • R † ux¶)" Á ï á [u‚ þ? ¿ : £¼êu(x, t)¤÷v 5Æ" ) x, x + dx§•Ýds§—Ý•ρ§ ÉåT1 , T2 , F ds, ρg ds"
Home Page
∆ = a122 − a11a22 =
Title Page
225 + 34 > 0, 4
•§´V- ." dKŒ• •§ A -‚•µ
(8)
Page 15 of 82
dy dx
2
+ 15
dy − 34 = 0. dx
)ƒ µ
Go Back
Full Screen
dy dx dy dx
Home Page
Title Page
2. > .^‡
• (1)1˜aµu|>. = f1;
Page 13 of 82
∂u • (2)1 aµ ∂n |>. = f2; ∂u • (3)1naµ u + k ∂n | >. = f3.
Go Back
Full Screen
Close
~µ Š’(3.1)1Ô K utt = a2 uxx , 0 < x < L, t > 0 u|x=0 = 0, ux|x=L = 0, (7) F0