高中物理牛顿运动定律经典练习题
【物理】物理牛顿运动定律练习题及答案及解析
(1)释放后,小滑块的加速度 al 和薄平板的加速度 a2; (2)从释放到小滑块滑离薄平板经历的时间 t。
【答案】(1) 4m/s2 ,1m/s2 ;(2) t 1s
【解析】
【详解】
(1)设释放后,滑块会相对于平板向下滑动,
对滑块 m :由牛顿第二定律有: mg sin 370 f1 ma1
其中 FN1 mg cos 370 , f1 1FN1
(1)小环的质量 m;
(2)细杆与地面间的倾角 a. 【答案】(1)m=1kg,(2)a=30°. 【解析】 【详解】
由图得:0-2s 内环的加速度 a= v =0.5m/s2 t
前 2s,环受到重力、支持力和拉力,根据牛顿第二定律,有: F1 mg sin ma 2s 后物体做匀速运动,根据共点力平衡条件,有: F2 mg sin
=4m/s2
解得滑雪者从静止开始到动摩擦因数发生变化所经历的时间:t= =1s
(2)由静止到动摩擦因素发生变化的位移:x1= a1t2=2m
动摩擦因数变化后,由牛顿第二定律得加速度:a2=
=5m/s2
由 vB2-v2=2a2(L-x1) 解得滑雪者到达 B 处时的速度:vB=16m/s (3)设滑雪者速度由 vB=16m/s 减速到 v1=4m/s 期间运动的位移为 x3,则由动能定理有:
;解得 x3=96m
速度由 v1=4m/s 减速到零期间运动的位移为 x4,则由动能定理有:
;解得 x4=3.2m
所以滑雪者在水平雪地上运动的最大距离为 x=x3+x4=96+ 3.2=99.2m
5.近年来,随着 AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动 分拣传送装置的简化示意图,水平传送带右端与水平面相切,以 v0=2m/s 的恒定速率顺时 针运行,传送带的长度为 L=7.6m.机械手将质量为 1kg 的包裹 A 轻放在传送带的左端,经过 4s 包裹 A 离开传送带,与意外落在传送带右端质量为 3kg 的包裹 B 发生正碰,碰后包裹 B 在水平面上滑行 0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹 A、B 与水平面 间的动摩擦因数均为 0.1,取 g=10m/s2.求:
高考物理牛顿运动定律题20套(带答案)含解析
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。
高中物理牛顿运动定律经典练习题
牛顿运动定律一、基础知识回顾:1、牛顿第一定律一切物体总保持,直到有外力迫使它改变这种状态为止。
注意:(1)牛顿第一定律进一步揭示了力不是维持物体运动(物体速度)的原因,而是物体运动状态(物体速度)的原因,换言之,力是产生的原因。
(2)牛顿第一定律不是实验定律,它是以伽利略的“理想实验“为基础,经过科学抽象,归纳推理而总结出来的。
2、惯性物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。
3、对牛顿第一运动定律的理解(1)运动是物体的一种属性,物体的运动不需要力来维持。
(2)它定性地揭示了运动与力的关系,力是改变物体运动状态的原因,是使物体产生加速度的原因。
(3)定律说明了任何物体都有一个极其重要的性质——惯性。
(4)牛顿第一定律揭示了静止状态和匀速直线运动状态的等价性。
4、对物体的惯性的理解(1)惯性是物体总有保持自己原来状态(速度)的本性,是物体的固有属性,不能克服和避免。
(2)惯性只与物体本身有关而与物体是否运动,是否受力无关。
任何物体无论它运动还是静止,无论运动状态是改变还是不改变,物体都有惯性,且物体质量不变惯性不变。
质量是物体惯性的唯一量度。
(3)物体惯性的大小是描述物体保持原来运动状态的本领强弱。
物体惯性(质量)大,保持原来的运动状态的本领强,物体的运动状态难改变,反之物体的运动状态易改变。
(4)惯性不是力。
5、牛顿第二定律的内容和公式物体的加速度跟成正比,跟成反比,加速度的方向跟合外力方向相同。
公式是:a=F合/ m 或F合 =ma6、对牛顿第二定律的理解(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律得出物体的运动规律。
反过来,知道运动规律可以根据牛顿第二运动定律得出物体的受力情况,在牛顿第二运动定律的数学表达式F合=ma中,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。
(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度。
物理牛顿运动定律的应用题20套(带答案)
物理牛顿运动定律的应用题20套(带答案)一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图甲所示,长为L =4.5 m 的木板M 放在水平地而上,质量为m =l kg 的小物块(可视为质点)放在木板的左端,开始时两者静止.现用一水平向左的力F 作用在木板M 上,通过传感器测m 、M 两物体的加速度与外力F 的变化关系如图乙所示.已知两物体与地面之间的动摩擦因数相同,且最大静摩擦力等于滑动摩擦力,g = 10m /s 2.求:(1)m 、M 之间的动摩擦因数;(2)M 的质量及它与水平地面之间的动摩擦因数;(3)若开始时对M 施加水平向左的恒力F =29 N ,且给m 一水平向右的初速度v o =4 m /s ,求t =2 s 时m 到M 右端的距离. 【答案】(1)0.4(2)4kg ,0.1(3)8.125m 【解析】 【分析】 【详解】(1)由乙图知,m 、M 一起运动的最大外力F m =25N , 当F >25N 时,m 与M 相对滑动,对m 由牛顿第二定律有:11mg ma μ=由乙图知214m /s a =解得10.4μ=(2)对M 由牛顿第二定律有122()F mg M m g Ma μμ--+=即12122()()F mg M m g mg M m g Fa M M Mμμμμ--+--+==+乙图知114M = 12()94mg M m g M μμ--+=-解得M = 4 kg μ2=0. 1(3)给m 一水平向右的初速度04m /s v =时,m 运动的加速度大小为a 1 = 4 m/s 2,方向水平向左,设m 运动t 1时间速度减为零,则111s v t a == 位移21011112m 2x v t a t =-=M 的加速度大小2122()5m /s F mg M m ga Mμμ--+==方向向左, M 的位移大小22211 2.5m 2x a t == 此时M 的速度2215m /s v a t ==由于12x x L +=,即此时m 运动到M 的右端,当M 继续运动时,m 从M 的右端竖直掉落,设m 从M 上掉下来后M 的加速度天小为3a ,对M 由生顿第二定律23F Mg Ma μ-=可得2325m /s 4a =在t =2s 时m 与M 右端的距离2321311()()8.125m 2x v t t a t t =-+-=.3.如图所示,倾角θ=30°的足够长光滑斜面底端A 固定有挡板P ,斜面上B 点与A 点的高度差为h .将质量为m 的长木板置于斜面底端,质量也为m 的小物块静止在木板上某处,整个系统处于静止状态.已知木板与物块间的动摩擦因数32μ=,且最大静摩擦力等于滑动摩擦力,重力加速度为g .(1)若对木板施加一沿斜面向上的拉力F 0,物块相对木板刚好静止,求拉力F 0的大小; (2)若对木板施加沿斜面向上的拉力F =2mg ,作用一段时间后撤去拉力,木板下端恰好能到达B 点,物块始终未脱离木板,求拉力F 做的功W . 【答案】(1) 32mg (2) 94mgh 【解析】(1)木板与物块整体:F 0−2mg sinθ=2ma 0 对物块,有:μmg cosθ−mg sinθ═ma 0 解得:F 0=32mg (2)设经拉力F 的最短时间为t 1,再经时间t 2物块与木板达到共速,再经时间t 3木板下端到达B 点,速度恰好减为零. 对木板,有:F −mg sinθ−μmg cosθ=m a 1 mg sinθ+μmg cosθ=ma 3对物块,有:μmg cosθ−mg sinθ=ma 2 对木板与物块整体,有2mg sinθ=2m a 4另有:1132212 ()a t a t a t t -=+ 21243 ()a t t a t +=222111123243111222sin h a t a t t a t a t θ+⋅-+= 21112W F a t =⋅解得W =94mgh 点睛:本题考查牛顿第二定律及机械能守恒定律及运动学公式,要注意正确分析物理过程,对所选研究对象做好受力分析,明确物理规律的正确应用即可正确求解;注意关联物理过程中的位移关系及速度关系等.4.滑雪运动中当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板和雪地之间形成暂时的“气垫”从而减小雪地对滑雪板的摩擦,然后当滑雪板的速度较小时,与雪地接触时间超过某一时间就会陷下去,使得它们间的摩擦阻力增大.假设滑雪者的速度超过4m/s 时,滑雪板与雪地间的动摩擦因数就会从0.25变为0.125.一滑雪者从倾角为θ=37°斜坡雪道的某处A 由静止开始自由下滑,滑至坡底B 处(B 处为一长度可忽略的光滑小圆弧)后又滑上一段水平雪道,最后停在水平雪道BC 之间的某处.如图所示,不计空气阻力,已知AB 长14.8m ,取g =10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)滑雪者从静止开始到动摩擦因数发生变化时(即速度达到4m/s )所经历的时间; (2)滑雪者到达B 处的速度;(3)滑雪者在水平雪道上滑行的最大距离. 【答案】(1)1s ;(2)12m/s ;(3)54.4m . 【解析】 【分析】(1)根据牛顿第二定律求出滑雪者在斜坡上从静止开始加速至速度v 1=4m/s 期间的加速度,再根据速度时间公式求出运动的时间.(2)再根据牛顿第二定律求出速度大于4m/s 时的加速度,球心速度为4m/s 之前的位移,从而得出加速度变化后的位移,根据匀变速直线运动的速度位移公式求出滑雪者到达B 处的速度.(3)分析滑雪者的运动情况,根据牛顿第二定律求解每个过程的加速度,再根据位移速度关系求解. 【详解】(1)滑雪者从静止开始加速到v 1=4m/s 过程中: 由牛顿第二定律得:有:mgsin37°-μ1mgcos37°=ma 1; 解得:a 1=4m/s 2; 由速度时间关系得 t 1=11v a =1s (2)滑雪者从静止加速到4m/s 的位移:x 1=12a 1t 2=12×4×12=2m 从4m/s 加速到B 点的加速度:根据牛顿第二定律可得:mgsin37°-μ2mgcos37°=ma 2; 解得:a 2=5m/s 2;根据位移速度关系:v B 2−v 12=2a 2(L −x 1) 计算得 v B =12m/s(3)在水平面上第一阶段(速度从12m/s 减速到v=4m/s ):a 3=−μ2g =−1.25m /s 222223341251.222 1.25B v v x m a --===-⨯ 在水平面上第二阶段(速度从4m/s 减速到0)a 4=−μ1g =−2.5m /s 2,2443.22vx m a -== 所以在水平面上运动的最大位移是 x=x 3+x 4=54.4m 【点睛】对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.5.如图1所示, 质量为M 的长木板,静止放置在粗糙水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度v 0从左端冲上木板。
牛顿运动定律习题集(含答案)
物理训练题 之 牛顿运动定律一、选择题1. 关于惯性,以下说法正确的是: ( )A 、在宇宙飞船内,由于物体失重,所以物体的惯性消失B 、在月球上物体的惯性只是它在地球上的1/6C 、质量相同的物体,速度较大的惯性一定大D 、质量是物体惯性的量度,惯性与速度及物体的受力情况无关2. 理想实验是科学研究中的一种重要方法,它把可靠事实和理论思维结合起来,可以深刻地揭示自然规律。
以下实验中属于理想实验的是: ( ) A 、验证平行四边形定则 B 、伽利略的斜面实验C 、用打点计时器测物体的加速度D 、利用自由落体运动测定反应时间3. 关于作用力和反作用力,以下说法正确的是: ( ) A 、作用力与它的反作用力总是一对平衡力 B 、地球对物体的作用力比物体对地球的作用力大 C 、作用力与反作用力一定是性质相同的力D 、凡是大小相等,方向相反,作用在同一条直线上的,并且分别作用在不同物体上的两个力一定是一对作用力和反作用力4. 在光滑水平面上,一个质量为m 的物体,受到的水平拉力为F 。
物体由静止开始做匀加速直线运动,经过时间t ,物体的位移为s ,速度为v ,则: ( ) A 、由公式α=可知,加速度a 由速度的变化量和时间决定B 、由公式a 由物体受到的合力和物体的质量决定C 、由公式αa 由物体的速度和位移s 决定D 、由公式αa 由物体的位移s 和时间决定5.力F 1a 1=3m/s 2,力F 2作用在该物体上产生的加速度a 2=4m/s 2,则F 1和F 2( ) A 、 7m/s 2B 、 5m/s 2C 、 1m/s 2D 、 8m/s26.电梯的顶部挂有一个弹簧秤,秤下端挂了一个重物,电梯匀速直线运动时,弹簧秤的示数为10N ,在某时刻电梯中的人观察到弹簧秤的示数变为8N ,关于电梯的运动,以下说法正确的是: ( ) A 、电梯可能向上加速运动,加速度大小为2m/s 2B 、电梯可能向下加速运动,加速度大小为2m/s 2C 、电梯可能向上减速运动,加速度大小为2m/s 2D 、电梯可能向下减速运动,加速度大小为2m/s 2 7.下国际单位制中的单位,属于基本单位的是:( ) A 、力的单位:N B 、 质量的单位:kg C 、 长度的单位:m D 、时间的单位:s8. 关于物体的运动状态和所受合力的关系,以下说法正确的是: ( ) A 、物体所受外力为零,物体一定处于静止状态 B 、只有合力发生变化时,物体的运动状态才会发生变化 aD、物体所受的合力不变且不为零,物体的运动状态一定变化9.以下说法中正确的是: ( )A、牛顿第一定律反映了物体不受外力作用时的运动规律B、静止的物体一定不受外力的作用C、在水平地面上滑动的木块最终要停下来,是由于没有外力维持木块的运动D、物体运动状态发生变化时,物体必须受到外力作用10.做自由落体运动的物体,如果下落过程中某时刻重力突然消失,物体的运动情况将是:A、悬浮在空中不动B、速度逐渐减小C、保持一定速度向下匀速直线运动D、无法判断11.人从行驶的汽车上跳下来容易: ( )A 、向汽车行驶的方向跌倒 B、向汽车行驶的反方向跌倒C、从向车右侧方向跌倒D、向车左侧方向跌倒12.下面说法中正确的是: ( )A、只有运动的物体才能表现出它的惯性;B、只有静止的物体才能表现出它的惯性C、物体的运动状态发生变化时,它不具有惯性D、不论物体处于什么状态,它都具有惯性13.下列事例中,利用了物体的惯性的是:( )A、跳远运动员在起跳前的助跑运动B、跳伞运动员在落地前打开降落伞C、自行车轮胎有凹凸不平的花纹D、铁饼运动员在掷出铁饼前快速旋转14.火车在长直水平轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回车上原处,这是因为: ( )A、人跳起后,厢内空气给他以向前的力,带着他随同火车一起向前运动;B、人跳起的瞬间,车厢的地板给他一个向前的力,推动他随同火车一起向前运动;C、人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后距离很小,不明显而已;D、人跳起后直到落地,在水平方向上人和车始终具有相同的速度。
牛顿运动定律-经典习题汇总
牛顿运动定律经典练习题一、选择题1.下列关于力和运动关系的说法中,正确的是 ( )A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现B .物体受力越大,运动得越快,这是符合牛顿第二定律的C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动C .竖直向上做减速运动D .竖直向下做减速运动3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( )A .速度方向、加速度方向、合力方向三者总是相同的B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( )A .等于人的推力B .等于摩擦力C .等于零D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3,则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反B .F 1、F 2、F 3大小相等,方向相同C .F 1、F 2是正的,F 3是负的D .F 1是正的,F 1、F 3是零6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与水平面间的动摩擦因数均为μ。
现对M 施加一个水平力F ,则以下说法中不正确的是( )A .若两物体一起向右匀速运动,则M 受到的摩擦力等于FB .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmgC .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M aD .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。
高考物理牛顿运动定律的应用题20套(带答案)
高考物理牛顿运动定律的应用题20套(带答案)一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物体在水平面上运动的加速度大小a 1; (2)物体运动到B 处的速度大小v B ; (3)物体在斜面上运动的时间t .【答案】(1)4m/s 2 (2)8m/s (3)2.4s 【解析】 【分析】(1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间. 【详解】(1)在水平面上,根据牛顿第二定律得:1F mg ma μ-=代及数据解得:214/a m s =(2)根据运动学公式:2102B v a s =代入数据解得:8/B v m s =(3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得:23737mgsin mgcos ma μ︒+︒=①物体沿斜面向上运动的时间:22Bv t a =② 物体沿斜面向上运动的最大位移为:222212s a t = ③因3737mgsin mgcos μ︒>︒,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动根据牛顿第二定律得:33737mgsin mgcos ma μ︒-︒=④ 物体沿斜面下滑的时间为:223312s a t =⑤ 物体在斜面上运动的时间:23t t t =+⑥联立方程①-⑥代入数据解得:()2312 2.4t t t s s =+=+≈ 【点睛】本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上的总时间,不是上滑时间.3.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。
高考物理牛顿运动定律题20套(带答案)
高考物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度. (2)小物块离开传送带时的速度大小. 【答案】(1)1.25m;6m (2)55/5m s 【解析】 【分析】 【详解】(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带向下的分力sin 37mg o,在传送带方向,对小物块根据牛顿第二定律有:cos37sin 37mg mg ma μ-=o o解得:20.4/a m s =小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度为0时没有滑落,根据运动公式有:2112v x a=解得:1 1.25x m =,12Lx <,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m =小物块向下滑动的时间为11=v t a传送带运动的距离101s v t = 联立解得15s m =小物块相对传送带运动的距离11x s x ∆=+解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ; (2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动 设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:22122L v a x ⎛⎫=+ ⎪⎝⎭解得:255/v m s =20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55/m s .2.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.3.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t =5s 时离地面的高度h ; (2)当无人机悬停在距离地面高度H =100m 处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落到地面时的速度v ;(3)接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t 1.【答案】(1)75m (2)40m/s (355s 【解析】 【分析】 【详解】(1)由牛顿第二定律 F ﹣mg ﹣f=ma 代入数据解得a=6m/s 2上升高度代入数据解得 h=75m . (2)下落过程中 mg ﹣f=ma 1 代入数据解得落地时速度 v 2=2a 1H , 代入数据解得 v=40m/s(3)恢复升力后向下减速运动过程 F ﹣mg+f=ma 2 代入数据解得设恢复升力时的速度为v m ,则有由 v m =a 1t 1 代入数据解得.4.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:(1)滑块A 的加速度大小a A ; (2)相遇前瞬间,恒力F 2的功率P .【答案】(1)2A 8m/s a =;(2)50W P =【解析】 【详解】(1)A 、B 受力如图所示:A 、B 分别向下、向上做匀加速直线运动,对A : 水平方向:N 1F F = 竖直方向:A A A m g f m a -= 且:N f F μ=联立以上各式并代入数据解得:2A 8m/s a =(2)对A 由位移公式得:212A A x a t = 对B 由位移公式得:212B B x a t =由位移关系得:B A x h x =- 由速度公式得B 的速度:B B v a t = 对B 由牛顿第二定律得:2B B B F m g m a -= 恒力F 2的功率:2B P F v = 联立解得:P =50W5.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5m a g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-=木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.6.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+ 由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:13/2max c v v s ==同理得:/min v s =0//s v s ≤≤7.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m 【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgs inθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.8.一长木板静止在水平地面上,木板长5l m =,小茗同学站在木板的左端,也处于静止状态,现小茗开始向右做匀加速运动,经过2s 小茗从木板上离开,离开木板时小茗的速度为v=4m/s ,已知木板质量M =20kg ,小茗质量m =50kg ,g 取10m/s 2,求木板与地面之间的动摩擦因数μ(结果保留两位有效数字).【答案】0.13 【解析】 【分析】对人分析,由速度公式求得加速度,由牛顿第二定律求人受到木板的摩擦力大小;由运动学的公式求出长木板的加速度,由牛顿第二定律求木板与地面之间的摩擦力大小和木板与地面之间的动摩擦因数. 【详解】对人进行分析,由速度时间公式:v=a 1t 代入数据解得:a 1=2m/s 2 在2s 内人的位移为:x 1=2112a t 代入数据解得:x 1=4m由于x 1=4m <5m ,可知该过程中木板的位移:x 2=l-x 1=5-4=1m 对木板:x 2=2212a t可得:a 2=0.5m/s 2对木板进行分析,根据牛顿第二定律:f-μ(M+m )g=Ma 2 根据牛顿第二定律,板对人的摩擦力f=ma 1 代入数据解得:f=100N 代入数据解得:μ=90.1370≈. 【点睛】本题主要考查了相对运动问题,应用牛顿第二定律和运动学公式,再结合位移间的关系即可解题.本题也可以根据动量定理解答.9.一种巨型娱乐器械可以使人体验超重和失重.一个可乘十多个人的环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下.落到一定位置时,制动系统启动,到地面时刚好停下.已知座舱开始下落时的高度为75m ,当落到离地面30m 的位置时开始制动,座舱均匀减速.重力加速度g 取102/m s ,不计空气阻力. (1)求座舱下落的最大速度; (2)求座舱下落的总时间;(3)若座舱中某人用手托着重30N 的铅球,求座舱下落过程中球对手的压力. 【答案】(1)30m/s (2)5s .(3)75N . 【解析】试题分析:(1)v 2=2gh; v m =30m/s⑵座舱在自由下落阶段所用时间为:2112h gt =t 1=3s 座舱在匀减速下落阶段所用的时间为:t 2=2hv ==2s 所以座舱下落的总时间为:t =t 1+t 2=5s⑶对球,受重力mg 和手的支持力N 作用,在座舱自由下落阶段,根据牛顿第二定律有mg-N=mg解得:N=0根据牛顿第三定律有:N′=N=0,即球对手的压力为零在座舱匀减速下落阶段,根据牛顿第二定律有mg-N=ma根据匀变速直线运动规律有:a=222vh-=-15m/s2解得:N=75N(2分)根据牛顿第三定律有:N′=N=75N,即球对手的压力为75N考点:牛顿第二及第三定律的应用10.如图所示,质量1m kg=的小球套在细斜杆上,斜杆与水平方向成30α=o角,球与杆之间的滑动摩擦因数36μ=,球在竖直向上的拉力20F N=作用下沿杆向上滑动.(210/g m s=)求:(1)求球对杆的压力大小和方向;(2)小球的加速度多大;(3)要使球以相同的加速度沿杆向下加速运动,F应变为多大.【答案】(1)53N方向垂直于杆向上(2)22.5m/s(3) 0N【解析】(1)小球受力如图所示:建立图示坐标,沿y方向,有:(F−mg)cos30∘−FN=0解得:FN=53N根据牛顿第三定律,球对杆的压力大小为3N,方向垂直于杆向上.(2)沿x方向由牛顿第二定律得(F−mg)sin30∘−f=ma而f=μFN解得:a=2.5m/s2(3)沿y方向,有:(mg −F)cos30∘−FN=0沿x方向由牛顿第二定律得(mg −F)sin30∘−f=ma而f=μFN解得:F=0N。
高一物理牛顿运动定律练习及答案.
相关习题:(牛顿运动定律)一、牛顿第一定律练习题一、选择题1.下面几个说法中正确的是[ ]A.静止或作匀速直线运动的物体,一定不受外力的作用B.当物体的速度等于零时,物体一定处于平衡状态C.当物体的运动状态发生变化时,物体一定受到外力作用D.物体的运动方向一定是物体所受合外力的方向2.关于惯性的下列说法中正确的是[ ]A.物体能够保持原有运动状态的性质叫惯性B.物体不受外力作用时才有惯性C.物体静止时有惯性,一开始运动,不再保持原有的运动状态,也就失去了惯性D.物体静止时没有惯性,只有始终保持运动状态才有惯性3.关于惯性的大小,下列说法中哪个是正确的?[ ]A.高速运动的物体不容易让它停下来,所以物体运动速度越大,惯性越大B.用相同的水平力分别推放在地面上的两个材料不同的物体,则难以推动的物体惯性大C.两个物体只要质量相同,那么惯性就一定相同D.在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小4.火车在长直的轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到原处,这是因为[ ]A.人跳起后,车厢内空气给他以向前的力,带着他随火车一起向前运动B.人跳起的瞬间,车厢的地板给人一个向前的力,推动他随火车一起运动C.人跳起后,车继续前进,所以人落下必然偏后一些,只是由于时间很短,偏后的距离不易观察出来D.人跳起后直到落地,在水平方向上人和车具有相同的速度5.下面的实例属于惯性表现的是[ ]A.滑冰运动员停止用力后,仍能在冰上滑行一段距离B.人在水平路面上骑自行车,为维持匀速直线运动,必须用力蹬自行车的脚踏板C.奔跑的人脚被障碍物绊住就会摔倒D.从枪口射出的子弹在空中运动6.关于物体的惯性定律的关系,下列说法中正确的是[ ]A.惯性就是惯性定律B.惯性和惯性定律不同,惯性是物体本身的固有属性,是无条件的,而惯性定律是在一定条件下物体运动所遵循的规律C.物体运动遵循牛顿第一定律,是因为物体有惯性D.惯性定律不但指明了物体有惯性,还指明了力是改变物体运动状态的原因,而不是维持物体运动状态的原因7.如图所示,劈形物体M的各表面光滑,上表面水平,放在固定的斜面上.在M的水平上表面放一光滑小球m,后释放M,则小球在碰到斜面前的运动轨迹是[ ] A.沿斜面向下的直线B.竖直向下的直线C.无规则的曲线D.抛物线二、填空题8.行驶中的汽车关闭发动机后不会立即停止运动,是因为____,汽车的速度越来越小,最后会停下来是因为____。
高中物理牛顿运动定律试题经典及解析
t1)
L
包裹 A 在传送带上加速度的大小为 a1,v0=a1t1
包裹 A 的质量为 mA,与传输带间的动摩檫因数为 μ1,由牛顿运动定律有:μ1mAg=mAa1
解得:μ1=0.5
(2)包裹 A 离开传送带时速度为 v0,设第一次碰后包裹 A 与包裹 B 速度分别为 vA 和 vB,
由动量守恒定律有:mAv0=mAvA+mBvB
1 2
mv共2
,
解得: s ' 0.7m ,
车的最小长度:故 L s相对 s ' 6.7m ;
5.近年来,随着 AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动 分拣传送装置的简化示意图,水平传送带右端与水平面相切,以 v0=2m/s 的恒定速率顺时 针运行,传送带的长度为 L=7.6m.机械手将质量为 1kg 的包裹 A 轻放在传送带的左端,经过 4s 包裹 A 离开传送带,与意外落在传送带右端质量为 3kg 的包裹 B 发生正碰,碰后包裹 B 在水平面上滑行 0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹 A、B 与水平面 间的动摩擦因数均为 0.1,取 g=10m/s2.求:
(1)释放后,小滑块的加速度 al 和薄平板的加速度 a2; (2)从释放到小滑块滑离薄平板经历的时间 t。
【答案】(1) 4m/s2 ,1m/s2 ;(2) t 1s
【解析】
【详解】
(1)设释放后,滑块会相对于平板向下滑动,
对滑块 m :由牛顿第二定律有: mg sin 370 f1 ma1
其中 FN1 mg cos 370 , f1 1FN1
解得: a1 g sin 370 1g cos 370 4m / s2
对薄平板 M ,由牛顿第二定律有: Mg sin 370 f1 f2 Ma2
物理牛顿运动定律的应用练习题20篇及解析
(2)滑块在 B 点时的速度大小为 滑块从 B 点运动到 C 点过程中,由牛顿第二定律有: 可得加速度 设滑块到达 C 点时的速度大小为 vC,有: 解得:
此过程所经历的时间为: 故滑块通过传送带的过程中,以地面为参考系,滑块的位移 x1=L=6m, 传送带的位移 x2=vt=4m; 传送带和滑块克服摩擦力所做的总功为: 代入数据解得: 【点睛】 此题需注意两点,(1)要利用滑块沿 BC 射入来求解滑块到 B 点的速度;(2)计算摩擦力对物 体做的功时要以地面为参考系来计算位移。
4.如图所示,长 L=10m 的水平传送带以速度 v=8m/s 匀速运动。质量分别为 2m、m 的小 物块 P、Q,用不可伸长的轻质细绳,通过固定光滑小环 C 相连。小物块 P 放在传送带的最 左端,恰好处于静止状态,C、P 间的细绳水平。现在 P 上固定一质量为 2m 的小物块(图中 未画出),整体将沿传送带运动,已知 Q、C 间距大于 10 m,重力加速度 g 取 10m/s2.求:
由牛顿第二定律得:F=m vB2 r
解得:F=5 2 N
由牛顿第三定律知小球对细管作用力大小为 5 2 N,
6.如图所示,在竖直平面内有一倾角 θ=37°的传送带 BC.已知传送带沿顺时针方向运行的 速度 v=4 m/s,B、C 两点的距离 L=6 m。一质量 m=0.2kg 的滑块(可视为质点)从传送带上 端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC 方向滑人传送 带,滑块与传送带间的动摩擦因数 μ=0.5,取重力加速度 g=10m/s2 ,sin37°= 0.6,cos 37°=0.8。求:
(1)经历多长时间 A 相对地面速度减为零;
(物理)物理牛顿运动定律的应用练习题20篇
(物理)物理牛顿运动定律的应用练习题20篇一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为m=2kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=4kg,地面光滑,现对斜面体施一水平推力F,要使物块m相对斜面静止,求:(取sin37°=0.6,cos37°=0.8,g=10m/s2)(1)若斜面与物块间无摩擦力,求m加速度的大小及m受到支持力的大小;(2)若斜面与物块间的动摩擦因数为μ=0.2,已知物体所受滑动摩擦力与最大静摩擦力相等,求推力F的取值.(此问结果小数点后保留一位)【答案】(1)7.5m/s2;25N (2)28.8N≤F≤67.2N【解析】【分析】(1)斜面M、物块m在水平推力作用下一起向左匀加速运动,物块m的加速度水平向左,合力水平向左,分析物块m的受力情况,由牛顿第二定律可求出加速度a和支持力.(2)用极限法把F推向两个极端来分析:当F较小(趋近于0)时,由于μ<tanθ,因此物块将沿斜面加速下滑;若F较大(足够大)时,物块将相对斜面向上滑,因此F不能太小,也不能太大,根据牛顿第二定律,运用整体隔离法求出F的取值范围.【详解】(1)由受力分析得:物块受重力,斜面对物块的支持力,合外力水平向左.根据牛顿第二定律得:mgtanθ=ma得a=gtanθ=10×tan37°=7.5m/s2m受到支持力20N=25N cos cos37NmgFθ==︒(2)设物块处于相对斜面向下滑动的临界状态时的推力为F1,此时物块的受力如下图所示:对物块分析,在水平方向有 Nsinθ﹣μNcosθ=ma 1竖直方向有 Ncosθ+μNsinθ﹣mg=0对整体有 F 1=(M+m )a 1代入数值得a 1=4.8m/s 2 ,F 1=28.8N设物块处于相对斜面向上滑动的临界状态时的推力为F 2,对物块分析,在水平方向有 N ′sin θ﹣μN′cos θ=ma 2竖直方向有 N ′cos θ﹣μN ′sin θ﹣mg =0对整体有 F 2=(M +m )a 2代入数值得a 2=11.2m/s 2 ,F 2=67.2N综上所述可以知道推力F 的取值范围为:28.8N≤F ≤67.2N .【点睛】解决本题的关键能够正确地受力分析,抓住临界状态,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.2.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:,(1)A 、B 两球开始运动时的加速度.(2)A 、B 两球落地时的动能.(3)A 、B 两球损失的机械能总量.【答案】(1)25m/s A a =27.5m/s B a = (2)850J kB E = (3)250J【解析】【详解】(1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得:对A :A A A A m g f m a -=对B :B B B B m g f m a -=A B f f =0.5A A f m g =联立以上方程得:25m/s A a = 27.5m/s B a =(2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t = 212B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =,15m B h =,10m/s A V =,15m/s B V =A 、B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有:21()2kA A A A A E m v m g H h =+- 400J kA E = 21()2kB B B B B E m v m g H h =+- 850J kB E = (3)两球损失的机械能总量为E ∆,()A B kA kB E m m gH E E ∆=+--代入以上数据得:250J E ∆=【点睛】(1)轻质物体两端的力相同,判断A 、B 摩擦力的性质,再结合受力分析得到.(2)根据运动性质和动能定理可得到.(3)由能量守恒定律可求出.3.如图,一块长度为9L m =、质量为1M kg =的长木板静止放置在粗糙水平地面上.另有质量为1m kg =的小铅块(可看做质点),以012/v m s =的水平初速度向右冲上木板.已知铅块与木板间的动摩擦因数为10.4μ=,木板与地面间的动摩擦因数为20.1μ=,重力加速度取210/g m s =,求:()1铅块刚冲上木板时,铅块与木板的加速度1a 、2a 的大小;()2铅块从木板上滑落所需时间;()3为了使铅块不从木板上滑落,在铅块冲上木板的瞬间,对长木板施加一水平向右的恒定拉力F ,求恒力F 的范围.【答案】(1)4m/s 2;2m/s 2(2)1s (3)2N≤F≤10N【解析】【分析】(1)对铅块、木板根据牛顿第二定律求解加速度大小;(2)从开始到滑落过程,铅块和木板的位移之差等于L ,求解时间;(3)根据两种临界态:到右端恰好共速以及共速后不能从左侧滑下求解力F 的范围;【详解】(1)铅块:11mg ma μ=解得a 1=4m/s 2;对木板:122()mg M m g Ma μμ-+=解得a 2=2m/s 2(2)从开始到滑落过程:2201112111()22v t a t a t L +-= 解得t 1=1s 10118/v v a t m s =-=2212/v a t m s ==(3)到右端恰好共速:2202122211()22v t a t a t L '+-= '01222v a t a t -= 解得a ′2=4m/s 2木板:'122()F mg M m g Ma μμ+-+= 解得F ≥2N ;共速后不能从左侧滑下:2-()()F M m g M m a μ+=+共,1a g μ≤共 解得F ≤10N , 则F 的范围:2N ≤F ≤10N【点睛】本题主要是考查牛顿第二定律的综合应用,对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.4.如图所示,质量均为3kg m =的物体A 、B 紧挨着放置在粗糙的水平面上,物体A 的右侧连接劲度系数为100N/m k =的轻质弹簧,弹簧另一端固定在竖直墙壁上,开始时两物体压紧弹簧并恰好处于静止状态。
物理牛顿运动定律题20套(带答案)
物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。
【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.2.如图所示,在光滑水平面上有一段质量不计,长为6m 的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A 、B ,现同时对A 、B 两滑块施加方向相反,大小均为F=12N 的水平拉力,并开始计时.已知A 滑块的质量mA=2kg ,B 滑块的质量mB=4kg ,A 、B 滑块与绸带之间的动摩擦因素均为μ=0.5,A 、B 两滑块与绸带之间的最大静摩擦力等于滑动摩擦力,不计绸带的伸长,求:(1)t=0时刻,A 、B 两滑块加速度的大小; (2)0到3s 时间内,滑块与绸带摩擦产生的热量.【答案】(1)22121,0.5m ma a ss ==;(2)30J【解析】 【详解】(1)A 滑块在绸带上水平向右滑动,受到的滑动摩擦力为A f ,水平运动,则竖直方向平衡:A N mg =,A A f N =;解得:A f mg μ= ——① A 滑块在绸带上水平向右滑动,0时刻的加速度为1a , 由牛顿第二定律得:1A A F f m a -=——② B 滑块和绸带一起向左滑动,0时刻的加速度为2a 由牛顿第二定律得:2B B F f m a -=——③;联立①②③解得:211m /s a =,220.5m /s a =;(2)A 滑块经t 滑离绸带,此时A B 、滑块发生的位移分别为1x 和2x1221122221212L x x x a t x a t ⎧+=⎪⎪⎪=⎨⎪⎪=⎪⎩代入数据解得:12m x =,21m x =,2s t =2秒时A 滑块离开绸带,离开绸带后A 在光滑水平面上运动,B 和绸带也在光滑水平面上运动,不产生热量,3秒时间内因摩擦产生的热量为:()12A Q f x x =+ 代入数据解得:30J Q =.3.在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。
牛顿运动定律的10种典型例题
9.传送带有关的问题。
8.面接触物体分离的条件及应用
相互接触的物体间可能存在弹力相互作用。对于面接触的物体,在接触面间弹力变为零时,它们将要分离。抓住相互接触物体分离的这一条件,就可顺利解答相关案例。下面举例说明。0.2s内F是变力,在t=0.2s以后F是恒力,所以在t=0.2s时,P离开秤盘。此时P受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。在0_____0.2s这段时间内P向上运动的距离: x=mg/k=0.4m 因为 ,所以P在这段时间的加速度 当P开始运动时拉力最小,此时对物体P有N-mg+Fmin=ma,又因此时N=mg,所以有Fmin=ma=240N. 当P与盘分离时拉力F最大,Fmax=m(a+g)=360N.
1. 力和运动的关系
加速度与力有直接关系,速度与力没有直接关系。 速度如何变化需分析加速度方向与速度方向之间的关系: 加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。
1.力和运动的关系
例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是( ) 探测器加速运动时,沿直线向后喷气 探测器加速运动时,竖直向下喷气 探测器匀速运动时,竖直向下喷气 探测器匀速运动时,不需要喷气
高中物理 必修一【牛顿运动定律整合】典型题(带解析)
高中物理必修一一、【牛顿运动定律】1.伽利略的斜面实验证明了()A.使物体运动必须有力的作用,没有力的作用,物体将静止B.使物体静止必须有力的作用,没有力的作用,物体将运动C.物体不受外力作用时,一定处于静止状态D.物体不受外力作用时,总保持原来的匀速直线运动状态或者静止状态解析:选D.伽利略的斜面实验证明了:运动不需要力来维持,物体不受外力作用时,总保持原来的匀速直线运动状态或静止状态,故D正确.2.关于运动状态与所受外力的关系,下面说法中正确的是()A.物体受到恒定的力作用时,它的运动状态不发生改变B.物体受到不为零的合力作用时,它的运动状态要发生改变C.物体受到的合力为零时,它一定处于静止状态D.物体的运动方向与它所受的合力方向一定相同解析:选B.力是改变物体运动状态的原因,只要物体受力(合力不为零),它的运动状态就一定会改变,A错误,B正确;物体受到的合力为零时,物体可能处于静止状态,也可能处于匀速直线运动状态,C错误;物体所受合力的方向可能与物体的运动方向相同或相反,也可能不在一条直线上,D错误.3.某同学为了取出如图所示羽毛球筒中的羽毛球,一只手拿着球筒的中部,另一只手用力击打羽毛球筒的上端,则()A.此同学无法取出羽毛球B.羽毛球会从筒的下端出来C.羽毛球筒向下运动过程中,羽毛球受到向上的摩擦力才会从上端出来D.该同学是在利用羽毛球的惯性解析:选D.羽毛球筒被手击打后迅速向下运动,而羽毛球具有惯性要保持原来的静止状态,所以会从筒的上端出来,D 正确.4.(多选)下列说法正确的是( )A .运动越快的汽车越不容易停下来,是因为汽车运动得越快,惯性越大B .同一物体在地球上不同的位置受到的重力是不同的,但它的惯性却不随位置的变化而变化C .一个小球竖直上抛,抛出后能继续上升,是因为小球运动过程中受到了向上的推力D .物体的惯性大小只与本身的质量有关,质量大的物体惯性大,质量小的物体惯性小 解析:选BD .惯性是物体本身的固有属性,其大小只与物体的质量大小有关,与物体的受力及运动情况无关,故选项B 、D 正确;速度大的汽车要停下来时,速度变化大,由Δv =at 可知需要的时间长,惯性未变,故选项A 错误;小球上抛时是由于惯性向上运动,并未受到向上的推力,故选项C 错误.5.夸克(quark)是一种基本粒子,也是构成物质的基本单元.其中正、反顶夸克之间的强相互作用势能可写为E p =-k 4αs 3r,式中r 是正、反顶夸克之间的距离,αs 是无单位的常量,k 是与单位制有关的常数,则在国际单位制中常数k 的单位是( )A .N ·mB .NC .J/mD .J ·m解析:选D .由题意有k =-3E p r 4αs,αs 是无单位的常量,E p 的国际单位是J ,r 的国际单位是m ,在国际单位制中常数k 的单位是J ·m ,D 正确,A 、B 、C 错误.6. (多选)如图所示,质量为m 的小球被一根橡皮筋AC 和一根绳BC 系住,当小球静止时,橡皮筋处在水平方向上.下列判断中正确的是( )A .在AC 被突然剪断的瞬间,BC 对小球的拉力不变B .在AC 被突然剪断的瞬间,小球的加速度大小为g sin θC .在BC 被突然剪断的瞬间,小球的加速度大小为g cos θD .在BC 被突然剪断的瞬间,小球的加速度大小为g sin θ解析:选BC .设小球静止时BC 绳的拉力为F ,AC 橡皮筋的拉力为T ,由平衡条件可得:F cos θ=mg ,F sin θ=T ,解得:F =mg cos θ,T =mg tan θ.在AC 被突然剪断的瞬间,BC上的拉力F也发生了突变,小球的加速度方向沿与BC垂直的方向且斜向下,大小为a=mg sin θ=g sin θ,B正确,A错误;在BC被突然剪断的瞬间,橡皮筋AC的拉力不变,小m=球的合力大小与BC被剪断前拉力的大小相等,方向沿BC方向斜向下,故加速度a=Fm gcos θ,C正确,D错误.7. (多选)搭载着“嫦娥三号”的“长征三号乙”运载火箭在西昌卫星发射中心发射升空,下面关于卫星与火箭升空的情形叙述正确的是()A.火箭尾部向下喷气,喷出的气体反过来对火箭产生一个反作用力,从而让火箭获得了向上的推力B.火箭尾部喷出的气体对空气产生一个作用力,空气的反作用力使火箭获得飞行的动力C.火箭飞出大气层后,由于没有了空气,火箭虽然向后喷气,但也无法获得前进的动力D.卫星进入运行轨道之后,与地球之间仍然存在一对作用力与反作用力解析:选AD.火箭升空时,其尾部向下喷气,火箭箭体与被喷出的气体是一对相互作用的物体.火箭向下喷气时,喷出的气体对火箭产生向上的反作用力,即为火箭上升的推动力.此动力并不是由周围的空气对火箭的反作用力提供的,因而与是否飞出大气层、是否存在空气无关,选项B、C错误,A正确;火箭运载卫星进入轨道之后,卫星与地球之间依然存在相互吸引力,即地球吸引卫星,卫星吸引地球,这就是一对作用力与反作用力,故选项D正确.8.如图,一截面为椭圆形的容器内壁光滑,其质量为M,置于光滑水平面上,内有一质量为m的小球,当容器受到一个水平向右的力F作用向右匀加速运动时,小球处于图示位置,此时小球对椭圆面的压力大小为()A .m g 2-⎝⎛⎭⎫F M +m 2B .m g 2+⎝⎛⎭⎫F M +m 2C .m g 2+⎝⎛⎭⎫F m 2D .(mg )2+F 2解析:选B .先以整体为研究对象,根据牛顿第二定律得:加速度为a =F M +m,再对小球研究,分析受力情况,如图所示,由牛顿第二定律得到:F N =(mg )2+(ma )2=m g 2+⎝ ⎛⎭⎪⎫F M +m 2,由牛顿第三定律可知小球对椭圆面的压力大小为m g 2+⎝ ⎛⎭⎪⎫F M +m 2,故B 正确.9.如图所示,将两个相同的条形磁铁吸在一起,置于桌面上,下列说法中正确的是( )A .甲对乙的压力的大小小于甲的重力的大小B .甲对乙的压力的大小等于甲的重力的大小C .乙对桌面的压力的大小等于甲、乙的总重力大小D .乙对桌面的压力的大小小于甲、乙的总重力大小解析:选C .以甲为研究对象,甲受重力、乙的支持力及乙的吸引力而处于平衡状态,根据平衡条件可知,乙对甲的支持力大小等于甲受到的重力和吸引力的大小之和,大于甲的重力大小,由牛顿第三定律可知,甲对乙的压力大小大于甲的重力大小,故A 、B 错误;以整体为研究对象,整体受重力、支持力而处于平衡状态,故桌面对乙的支持力等于甲、乙的总重力的大小,由牛顿第三定律可知乙对桌面的压力大小等于甲、乙的总重力大小,故C 正确,D 错误.10.如图所示为英国人阿特伍德设计的装置,不考虑绳与滑轮的质量,不计轴承、绳与滑轮间的摩擦.初始时两人均站在水平地面上,当位于左侧的甲用力向上攀爬时,位于右侧的乙始终用力抓住绳子,最终至少一人能到达滑轮.下列说法正确的是( )A.若甲的质量较大,则乙先到达滑轮B.若甲的质量较大,则甲、乙同时到达滑轮C.若甲、乙质量相同,则乙先到达滑轮D.若甲、乙质量相同,则甲先到达滑轮解析:选A.由于滑轮光滑,甲拉绳子的力等于绳子拉乙的力,若甲的质量大,则由甲拉绳子的力等于乙受到的绳子拉力,得甲攀爬时乙的加速度大于甲,所以乙会先到达滑轮,选项A正确,B错误;若甲、乙的质量相同,甲用力向上攀爬时,甲拉绳子的力等于绳子拉乙的力,甲、乙具有相同的加速度和速度,所以甲、乙应同时到达滑轮,选项C、D错误.11.如图所示,跳水运动员最后踏板的过程可以简化为下述模型:运动员从高处落到处于自然状态的跳板上,随跳板一同向下做变速运动到达最低点,然后随跳板反弹,则()A.运动员与跳板接触的全过程中只有超重状态B.运动员把跳板压到最低点时,他所受外力的合力为零C.运动员能跳得高的原因从受力角度来看,是因为跳板对他的作用力远大于他的重力D.运动员能跳得高的原因从受力角度来看,是因为跳板对他的作用力远大于他对跳板的作用力解析:选C.运动员与跳板接触的下降过程中,先向下加速,然后向下减速,最后速度为零,则加速度先向下,然后向上,所以下降过程中既有失重状态也有超重状态,同理上升过程中也存在超重和失重状态,故A错误;运动员把跳板压到最低点时,跳板给运动员的弹力大于运动员受到的重力,合外力不为零,故B错误;从最低点到运动员离开跳板过程中,跳板对运动员的作用力做正功,重力做负功,二力做功位移一样,运动员动能增加,因此跳板对他的作用力大于他的重力,故C正确;跳板对运动员的作用力与运动员对跳板的作用力是作用力与反作用力,大小相等,故D错误.12.如图所示,甲、乙两人在冰面上“拔河”.两人中间位置处有一分界线,约定先使对方过分界线者为赢.若绳子质量不计,冰面可看成光滑,则下列说法正确的是()A.甲对绳的拉力与绳对甲的拉力是一对平衡力B.甲对绳的拉力与乙对绳的拉力是作用力与反作用力C.若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利D.若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利解析:选C.根据牛顿第三定律可知甲对绳的拉力与绳对甲的拉力是一对作用力与反作用力,选项A错误;因为甲对绳的拉力和乙对绳的拉力作用在同一个物体(绳)上,故两力不可能是作用力与反作用力,故选项B错误;若甲的质量比乙大,则甲的惯性比乙的大,故运动状态改变比乙难,故乙先过界,选项C正确;“拔河”比赛的输赢只与甲、乙的质量有关,与收绳速度无关,选项D错误.13.(山东省2020等级考试) (多选)如图所示,某人从距水面一定高度的平台上做蹦极运动.劲度系数为k的弹性绳一端固定在人身上,另一端固定在平台上.人从静止开始竖直跳下,在其到达水面前速度减为零.运动过程中,弹性绳始终处于弹性限度内.取与平台同高度的O点为坐标原点,以竖直向下为y轴正方向,忽略空气阻力,人可视为质点.从跳下至第一次到达最低点的运动过程中,用v、a、t分别表示人的速度、加速度和下落时间.下列描述v与t、a与y的关系图象可能正确的是()解析:选AD.人在下落的过程中,弹性绳绷紧之前,人处于自由落体状态,加速度为g;弹性绳绷紧之后,弹力随下落距离均匀增加,人的加速度随下落距离先均匀减小后反向均匀增大,C 错误,D 正确;人的加速度先减小后反向增加,可知速度时间图象的斜率先减小后反向增加.B 错误,A 正确.14.(多选)某物体在光滑的水平面上受到两个恒定的水平共点力的作用,以10 m/s 2的加速度做匀加速直线运动,其中F 1与加速度的方向的夹角为37°,某时刻撤去F 1,此后该物体( )A .加速度可能为5 m/s 2B .速度的变化率可能为6 m/s 2C .1 秒内速度变化大小可能为20 m/sD .加速度大小一定不为10 m/s 2解析:选BC .根据牛顿第二定律得F 合=ma =10m ,F 1与加速度方向的夹角为37°,根据几何知识可知,F 2有最小值,最小值为F 2min =F 合sin 37°=6m ,所以当F 1撤去后,合力的最小值为F min =6m ,此时合力的取值范围为F 合≥6m ,所以最小的加速度为a min =F min m=6 m/s 2,故B 、C 正确. 15.如图所示,在倾角为θ=30°的光滑斜面上,物块A 、B 质量分别为m 和2m .物块A 静止在轻弹簧上面,物块B 用细线与斜面顶端相连,A 、B 紧挨在一起,但A 、B 之间无弹力,已知重力加速度为g ,某时刻把细线剪断,当细线剪断瞬间,下列说法正确的是( )A .物块A 的加速度为0B .物块A 的加速度为g 3C .物块B 的加速度为0D .物块B 的加速度为g 2 解析:选B .剪断细线前,弹簧的弹力:F 弹=mg sin 30°=12mg ,细线剪断的瞬间,弹簧的弹力不变,仍为F 弹=12mg ;剪断细线瞬间,对A 、B 系统分析,加速度为:a =3mg sin 30°-F 弹3m =g 3,即A 和B 的加速度均为g 3,方向沿斜面向下. 16.(多选) 如图所示,两轻质弹簧a 、b 悬挂一质量为m 的小球,整体处于平衡状态,弹簧a 与竖直方向成30°,弹簧b 与竖直方向成60°,弹簧a 、b 的形变量相等,重力加速度为g ,则( )A .弹簧a 、b 的劲度系数之比为 3∶1B .弹簧a 、b 的劲度系数之比为 3∶2C .若弹簧a 下端松脱,则松脱瞬间小球的加速度大小为3gD .若弹簧b 下端松脱,则松脱瞬间小球的加速度大小为g 2解析:选AD .由题可知,两个弹簧相互垂直,对小球受力分析,如图所示,设弹簧的伸长量都是x ,由受力分析图知,弹簧a 中弹力F a =mg cos 30°=32mg ,根据胡克定律可知弹簧a 的劲度系数为k 1=F a x =3mg 2x ,弹簧b 中的弹力F b =mg cos 60°=12mg ,根据胡克定律可知弹簧b 的劲度系数为k 2=F b x =mg 2x,所以弹簧a 、b 的劲度系数之比为3∶1,A 正确,B 错误;弹簧a 中的弹力为32mg ,若弹簧a 的下端松脱,则松脱瞬间弹簧b 的弹力不变,故小球所受重力和弹簧b 弹力的合力与F a 大小相等、方向相反,小球的加速度大小a =F a m=32g ,C 错误;弹簧b 中弹力为12mg ,若弹簧b 的下端松脱,则松脱瞬间弹簧a 的弹力不变,故小球所受重力和弹簧a 弹力的合力与F b 大小相等、方向相反,故小球的加速度大小a ′=F b m=12g ,D 正确.二、【牛顿第二定律的应用】1. (多选)如图所示,一木块在光滑水平面上受一恒力F 作用,前方固定一足够长的水平轻弹簧,则当木块接触弹簧后,下列判断正确的是( )A .木块立即做减速运动B .木块在一段时间内速度仍增大C .当F 等于弹簧弹力时,木块速度最大D .弹簧压缩量最大时,木块速度为零但加速度不为零解析:选BCD .木块刚开始接触弹簧时,弹簧对木块的作用力小于外力F ,木块继续向右做加速度逐渐减小的加速运动,直到二力相等,而后,弹簧对木块的作用力大于外力F ,木块继续向右做加速度逐渐增大的减速运动,直到速度为零,但此时木块的加速度不为零,故选项A 错误,B 、C 、D 正确.2.质量为1 t 的汽车在平直公路上以10 m/s 的速度匀速行驶,阻力大小不变,从某时刻开始,汽车牵引力减少2 000 N ,那么从该时刻起经过6 s ,汽车行驶的路程是( )A .50 mB .42 mC .25 mD .24 m解析:选C .汽车匀速行驶时,F =F f ①,设汽车牵引力减小后加速度大小为a ,牵引力减少ΔF =2 000 N 时,F f -(F -ΔF )=ma ②,解①②得a =2 m/s 2,与速度方向相反,汽车做匀减速直线运动,设经时间t 汽车停止运动,则t =v 0a =102s =5 s ,故汽车行驶的路程x =v 02t =102×5 m =25 m ,故选项C 正确. 3. (多选)建设房屋时,保持底边L 不变,要设计好屋顶的倾角θ,以便下雨时落在房顶的雨滴能尽快地滑离屋顶,雨滴下滑时可视为小球做无初速度、无摩擦的运动.下列说法正确的是( )A .倾角θ越大,雨滴下滑时的加速度越大B .倾角θ越大,雨滴对屋顶压力越大C .倾角θ越大,雨滴从顶端O 下滑至屋檐M 时的速度越大D .倾角θ越大,雨滴从顶端O 下滑至屋檐M 时的时间越短解析:选AC .设屋檐的底角为θ,底边长度为L ,注意底边长度是不变的,屋顶的坡面长度为x ,雨滴下滑时加速度为a ,对雨滴受力分析,只受重力mg 和屋顶对雨滴的支持力F N ,垂直于屋顶方向:mg cos θ=F N ,平行于屋顶方向:ma =mg sin θ.雨滴的加速度为:a=g sin θ,则倾角θ越大,雨滴下滑时的加速度越大,故A正确;雨滴对屋顶的压力大小:F N′=F N=mg cos θ,则倾角θ越大,雨滴对屋顶压力越小,故B错误;根据三角关系判断,屋顶坡面的长度x=L2cos θ,由x=12g sin θ·t2,可得:t=2Lg sin 2θ,可见当θ=45°时,用时最短,D错误;由v=g sin θ·t可得:v=gL tan θ,可见θ越大,雨滴从顶端O下滑至M时的速度越大,C正确.4.如图所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量为m=2 kg的无人机,其动力系统所能提供的最大升力F=36 N,运动过程中所受空气阻力大小恒定,无人机在地面上从静止开始,以最大升力竖直向上起飞,在t=5 s时离地面的高度为75 m(g取10 m/s2).(1)求运动过程中所受空气阻力大小;(2)假设由于动力设备故障,悬停的无人机突然失去升力而坠落.无人机坠落地面时的速度为40 m/s,求无人机悬停时距地面高度;(3)假设在第(2)问中的无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上的最大升力.为保证安全着地,求飞行器从开始下落到恢复升力的最长时间.解析:(1)根据题意,在上升过程中由牛顿第二定律得:F-mg-F f=ma由运动学规律得,上升高度:h=12at2联立解得:F f=4 N.(2)下落过程由牛顿第二定律:mg-F f=ma1得:a1=8 m/s2落地时的速度v 2=2a 1H 联立解得:H =100 m.(3)恢复升力后向下减速,由牛顿第二定律得: F -mg +F f =ma 2 得:a 2=10 m/s 2设恢复升力后的速度为v m ,则有 v 2m 2a 1+v 2m2a 2=H 得:v m =4053 m/s由:v m =a 1t 1 得:t 1=553s.答案:(1)4 N (2)100 m (3)553s5.一质量为m =2 kg 的滑块能在倾角为θ=30°的足够长的斜面上以加速度a =2.5 m/s 2匀加速下滑.如图所示,若用一水平向右的恒力F 作用于滑块,使之由静止开始在t =2 s 内能沿斜面运动位移x =4 m .求:(g 取10 m/s 2)(1)滑块和斜面之间的动摩擦因数μ; (2)恒力F 的大小.解析:(1)对滑块,根据牛顿第二定律可得: mg sin θ-μmg cos θ=ma , 解得:μ=36. (2)使滑块沿斜面做匀加速直线运动,有加速度沿斜面向上和向下两种可能. 由x =12a 1t 2,得a 1=2 m/s 2,当加速度沿斜面向上时:F cos θ-mg sin θ-μ(F sin θ+mg cos θ)=ma 1,代入数据解得:F=7635N;当加速度沿斜面向下时:mg sin θ-F cos θ-μ(F sin θ+mg cos θ)=ma1,代入数据解得:F=437N.答案:(1)36(2)7635N或437N6.(多选)一个质量为2 kg的物体,在5个共点力作用下处于平衡状态.现同时撤去大小分别为15 N和10 N的两个力,其余的力保持不变,关于此后该物体的运动的说法中正确的是()A.一定做匀变速直线运动,加速度大小可能是5 m/s2B.一定做匀变速运动,加速度大小可能等于重力加速度的大小C.可能做匀减速直线运动,加速度大小是2.5 m/s2D.可能做匀速圆周运动,向心加速度大小是5 m/s2解析:选BC.根据平衡条件得知,其余力的合力与撤去的两个力的合力大小相等、方向相反,则撤去大小分别为15 N和10 N的两个力后,物体的合力大小范围为5 N≤F合≤25 N,根据牛顿第二定律a=Fm得:物体的加速度范围为2.5 m/s2≤a≤12.5 m/s2.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向不在同一直线上,物体做匀变速曲线运动,加速度大小可能为5 m/s2,故A错误.由于撤去两个力后其余力保持不变,则物体所受的合力不变,一定做匀变速运动,加速度大小可能等于重力加速度的大小,故B正确.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向相同时,物体做匀减速直线运动,故C正确.由于撤去两个力后其余力保持不变,在恒力作用下不可能做匀速圆周运动,故D错误.7.如图所示,几条足够长的光滑直轨道与水平面成不同角度,从P点以大小不同的初速度沿各轨道发射小球,若各小球恰好在相同的时间内到达各自的最高点,则各小球最高点的位置()A .在同一水平线上B .在同一竖直线上C .在同一抛物线上D .在同一圆周上解析:选D .设某一直轨道与水平面成θ角,末速度为零的匀减速直线运动可逆向看成初速度为零的匀加速直线运动,则小球在直轨道上运动的加速度a =mg sin θm =g sin θ,由位移公式得l =12at 2=12g sin θ·t 2,即l sin θ=12gt 2,不同的倾角θ对应不同的位移l ,但l sin θ相同,即各小球最高点的位置在直径为12gt 2的圆周上,选项D 正确.8.如图所示,B 是水平地面上AC 的中点,可视为质点的小物块以某一初速度从A 点滑动到C 点停止.小物块经过B 点时的速度等于它在A 点时速度的一半.则小物块与AB 段间的动摩擦因数μ1和BC 段间的动摩擦因数μ2的比值为( )A .1B .2C .3D .4解析:选C .物块从A 到B 根据牛顿第二定律,有μ1mg =ma 1,得a 1=μ1g .从B 到C 根据牛顿第二定律,有μ2mg =ma 2,得a 2=μ2g .设小物块在A 点时速度大小为v ,则在B 点时速度大小为v 2,由于AB =BC =l ,由运动学公式知,从A 到B :⎝⎛⎭⎫v 22-v 2=-2μ1gl ,从B到C ∶0-⎝⎛⎭⎫v 22=-2μ2gl ,联立解得μ1=3μ2,故选项C 正确,A 、B 、D 错误.9.有一个冰上滑木箱的游戏节目,规则是:选手们从起点开始用力推箱一段时间后,放手让箱向前滑动,若箱最后停在有效区域内,视为成功;若箱最后未停在有效区域内就视为失败.其简化模型如图所示,AC 是长度为L 1=7 m 的水平冰面,选手们可将木箱放在A 点,从A 点开始用一恒定不变的水平推力推木箱,BC 为有效区域.已知BC 长度L 2=1 m ,木箱的质量m =50 kg ,木箱与冰面间的动摩擦因数μ=0.1.某选手作用在木箱上的水平推力F =200 N ,木箱沿AC 做直线运动,若木箱可视为质点,g 取10 m/s 2.那么该选手要想游戏获得成功,试求:(1)推力作用在木箱上时的加速度大小; (2)推力作用在木箱上的时间满足的条件.解析:(1)设推力作用在木箱上时的加速度大小为a 1,根据牛顿第二定律得F -μmg =ma 1, 解得a 1=3 m/s 2.(2)设撤去推力后,木箱的加速度大小为a 2,根据牛顿第二定律得 μmg =ma 2, 解得a 2=1 m/s 2.推力作用在木箱上时间t 内的位移为x 1=12a 1t 2.撤去推力后木箱继续滑行的距离为x 2=(a 1t )22a 2.为使木箱停在有效区域内,要满足 L 1-L 2≤x 1+x 2≤L 1, 解得1 s ≤t ≤76s. 答案:(1)3 m/s 2 (2)1 s ≤t ≤76s 10.如图所示,一儿童玩具静止在水平地面上,一名幼儿用沿与水平面成30°角的恒力拉着它沿水平地面运动,已知拉力F =6.5 N ,玩具的质量m =1 kg ,经过时间t =2.0 s ,玩具移动的距离x =2 3 m ,这时幼儿将手松开,玩具又滑行了一段距离后停下.(g 取10 m/s 2)求:(1)玩具与地面间的动摩擦因数. (2)松手后玩具还能滑行多远?(3)幼儿要拉动玩具,拉力F 与水平方向夹角θ为多少时拉力F 最小? 解析:(1)玩具做初速度为零的匀加速直线运动,由位移公式可得 x =12at 2,解得a = 3 m/s 2, 对玩具,由牛顿第二定律得 F cos 30°-μ(mg -F sin 30°)=ma , 解得μ=33. (2)松手时,玩具的速度v =at =2 3 m/s松手后,由牛顿第二定律得μmg =ma ′, 解得a ′=1033m/s 2.由匀变速运动的速度位移公式得 玩具的位移x ′=0-v 2-2a ′=335 m.(3)设拉力与水平方向的夹角为θ,玩具要在水平面上运动,则 F cos θ-F f >0,F f =μF N , 在竖直方向上,由平衡条件得 F N +F sin θ=mg , 解得F >μmgcos θ+μsin θ.因为cos θ+μsin θ=1+μ2sin(60°+θ),所以当θ=30°时,拉力最小. 答案:(1)33 (2)335m (3)30°三、【动力学中的“板块”“传送带”模型】1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处 B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2L a= 2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:。
四套牛顿运动定律专题练习题(带答案)高中物理必修1
B.物块的质量为1.5kg
C.物块在6-9s内的加速度大小是2m/s2
D.物块前6s内的平均速度大小是4.5m/s
6、如图所示,质量为M的长平板车放在光滑的倾角为
的斜面上,车上站着一质量为m的人,若要平板车静止在斜面上,车上的人必须()
A.匀速向下奔跑
B.以加速度 向下加速奔跑
解得:
牛顿运动定律练习2
一、选择题
1.在太空站的完全失重环境中,下列仪器可以使用的是()
A.体重计B.打点计时器
C.天平D.弹簧测力计
2.甲乙两车某时刻由同一地点沿同一方向开始做直线运动,若以该时刻作为计时起点,得到两车的位移——时间图像(s-t)图像如图所示,则下列说法正确的是()
A.t1时刻乙车从后面追上甲车
D、自由落下的物体处于完全失重状态,但物体的惯性并没有消失
2、关于牛顿第二定律,正确的说法是:()
A、物体的质量跟外力成正比,跟加速度成反比
B、加速度跟合外力成正比,跟物体的质量成反比
C、加速度的方向一定与合外力的方向一致
D、由于加速度跟合外力成正比,整快砖的重力加速度一定是半块砖重力加速度的2倍
3、跳高运动员从地面上起跳的瞬间,下列说法中正确的是:()
6、一物体从某高度自由落下,恰好落在直立于地面上的轻弹簧上,如图所示,在A点物体开始与弹簧接触,到B点时物体速度为零,以后被弹回、那么下列说法中正确的是:()
A、下降时物体在AB段的速度越来越小
B、上升时物体在AB段的速度越来越大
C、物体在AB段下降时和在AB段上升时其速度是先增大后减小
D、在B点时因为物体速度为零,所以它受到的合外力也为零
B.力F在时间 t内可以使质量 m的物体移动的距离为s
【高考物理必刷题】牛顿运动定律(后附答案解析)
上的张力先增大后减小上的张力先增大后减小1D.的大小不变,而方向与角,物块也恰好做匀速直线运动,物块与桌面间的动摩擦因数为()2由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)3实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对4表示滑块下滑的加速度大小,用表示挡光片前端到达光电门时滑块的瞬时速度大的关系式为.,.(结果保留3位有效数字)56,放在静止于水平地面上的木板的两;木板的质量为,与地面间的动摩擦因数为两滑块开始相向滑动,初速度大小均为.、相遇时,与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小为.求:开始运动时,两者之间的距离.1上的张力先增大后减小上的张力先增大后减小的合力大小方向不变,且与先增后减,始终变大.2D.;由,可知摩擦力为:,代入数据为:联立可得:,故C正确.故选C.相互作用共点力平衡多个力的动态平衡由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)34实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对56开始运动时,两者之间的距离.考点时和板共速和板共速后得加速度:再经过,和板共速,(2)牛顿运动定律牛顿运动定律专题滑块问题。
高中物理牛顿运动定律练习题(含解析)
高中物理牛顿运动定律练习题学校:___________姓名:___________班级:___________一、单选题1.关于电流,下列说法中正确的是( )A .电流跟通过截面的电荷量成正比,跟所用时间成反比B .单位时间内通过导体截面的电量越多,导体中的电流越大C .电流是一个矢量,其方向就是正电荷定向移动的方向D .国际单位制中,其单位“安培”是导出单位2.2000年国际乒联将兵乓球由小球改为大球,改变前直径是0.038m ,质量是2.50g ;改变后直径是0.040m ,质量是2.70g 。
对此,下列说法正确的是( )A .球的直径大了,所以惯性大了,球的运动状态更难改变B .球的质量大了,所以惯性大了,球的运动状态更难改变C .球的直径大了,所以惯性大了,球的运动状态更容易改变D .球的质量大了,所以惯性大了,球的运动状态更容易改变3.在物理学的探索和发现过程中常用一些方法来研究物理问题和物理过程,下列说法错误的是( )A .在伽利略研究运动和力的关系时,采用了实验和逻辑推理相结合的研究方法B .在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,再把各小段位移相加,这里运用了理想化模型法C .在不需要考虑物体本身的大小和形状时用质点来代替物体,运用了理想化模型法D .比值定义包含“比较”的思想,例如,在电场强度的概念建立过程中,比较的是相同的电荷量的试探电荷受静电力的大小4.下列说法中正确的是( )A .物体做自由落体运动时没有惯性B .物体速度小时惯性小,速度大时惯性大C .汽车匀速行驶时没有惯性,刹车或启动时才有惯性D .惯性是物体本身的属性,无论物体处于何种运动状态,都具有惯性5.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为6N 时,物体处于静止状态。
若小车以20.8m /s 的加速度向右加速运动(取210m /s g ),则( )A .物体A 受到的弹簧拉力不变B .物体相对小车向左运动C .物体A 相对小车向右运动D .物体A 受到的摩擦力增大6.下列说法中错误的是( ) A .沿着一条直线且加速度存在且不变的运动,叫做匀变速直线运动B .为了探究弹簧弹性势能的表达式,把拉伸弹簧的过程分为很多小段,拉力在每一小段可以认为是恒力,用各小段做功的代数和代表弹力在整个过程所做的功,物理学中把这种研究方法叫做微元法C .从牛顿第一定律我们得知,物体都要保持它们原来的匀速直线运动或静止的状态,或者说,它们都具有抵抗运动状态变化的“本领”D .比值定义法是一种定义物理量的方法,即用两个已知物理量的比值表示一个新的物理量,如电容的定义式Q C U=,表示C 与Q 成正比,与U 成反比,这就是比值定义的特点7.一辆货车运载着圆柱形光滑的空油桶。
高中物理牛顿运动定律题20套(带答案)及解析.docx
高中物理牛顿运动定律题20 套( 带答案 ) 及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体 B 和质量为m=0.2kg 的物体 C,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体 C 竖直向下缓慢压下一段距离后释放,物体 C 就上下做简谐运动,且当物体 C 运动到最高点时,物体 B 刚好对地面的压力为 0.已知重力加速度大小为g=10m/s2.试求:①物体 C 做简谐运动的振幅;②当物体 C 运动到最低点时,物体 C 的加速度大小和此时物体 B 对地面的压力大小.【答案】① 0.07m ②35m/s 214N【解析】【详解】①物体 C 放上之后静止时:设弹簧的压缩量为x0.对物体 C,有: mg kx0解得: x0=0.02m设当物体 C 从静止向下压缩x 后释放,物体 C 就以原来的静止位置为平衡位置上下做简谐运动,振幅 A=x当物体 C 运动到最高点时,对物体B,有:Mg k( A x0)解得: A=0.07m②当物体 C 运动到最低点时,设地面对物体 B 的支持力大小为F,物体 C 的加速度大小为a.x0 )mg ma对物体,有: k ( AC解得: a=35m/s 2对物体 B,有:F Mg k( A x0 )解得: F=14N所以物体 B 对地面的压力大小为14N2.在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。
如图所示,水平传送带匀速运行速度为v=2m/s ,传送带两端AB 间距离为 s0=10m,传送带与行李箱间的动摩擦因数μ=0.2,当质量为 m=5kg 的行李箱无初速度地放上传送带 A 端后,传送到 B 端,重力加速度 g 取 10m/ 2;求:(1)行李箱开始运动时的加速度大小a;(2)行李箱从 A 端传送到 B 端所用时间t ;(3)整个过程行李对传送带的摩擦力做功W。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿运动定律一、基础知识回顾:1、牛顿第一定律一切物体总保持,直到有外力迫使它改变这种状态为止。
注意:(1)牛顿第一定律进一步揭示了力不是维持物体运动(物体速度)的原因,而是物体运动状态(物体速度)的原因,换言之,力是产生的原因。
(2)牛顿第一定律不是实验定律,它是以伽利略的“理想实验“为基础,经过科学抽象,归纳推理而总结出来的。
2、惯性物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。
3、对牛顿第一运动定律的理解(1)运动是物体的一种属性,物体的运动不需要力来维持。
(2)它定性地揭示了运动与力的关系,力是改变物体运动状态的原因,是使物体产生加速度的原因。
(3)定律说明了任何物体都有一个极其重要的性质——惯性。
(4)牛顿第一定律揭示了静止状态和匀速直线运动状态的等价性。
4、对物体的惯性的理解(1)惯性是物体总有保持自己原来状态(速度)的本性,是物体的固有属性,不能克服和避免。
(2)惯性只与物体本身有关而与物体是否运动,是否受力无关。
任何物体无论它运动还是静止,无论运动状态是改变还是不改变,物体都有惯性,且物体质量不变惯性不变。
质量是物体惯性的唯一量度。
(3)物体惯性的大小是描述物体保持原来运动状态的本领强弱。
物体惯性(质量)大,保持原来的运动状态的本领强,物体的运动状态难改变,反之物体的运动状态易改变。
(4)惯性不是力。
5、牛顿第二定律的内容和公式物体的加速度跟成正比,跟成反比,加速度的方向跟合外力方向相同。
公式是:a=F合/ m 或F合 =ma6、对牛顿第二定律的理解(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律得出物体的运动规律。
反过来,知道运动规律可以根据牛顿第二运动定律得出物体的受力情况,在牛顿第二运动定律的数学表达式F合=ma中,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。
(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度。
(3)牛顿第二定律公式:F合=ma是矢量式,F、a都是矢量且方向相同。
(4)牛顿第二定律F合=ma定义了力的单位:“牛顿”。
7、牛顿第三定律的内容两个物体之间的作用力与反作用力总是大小相等、方向相反,作用在同一条直线上8、对牛顿第三定律的理解(1)作用力和反作用力的同时性。
它们是同时产生同时变化,同时消失,不是先有作用力后有反作用力。
(2)作用力和反作用力的性质相同,即作用力和反作用力是属于同种性质的力。
若作用力是弹力,反作用力必定是弹力。
(3)作用力和反作用力不可叠加性。
作用力和反作用力分别作用在两个不同的物体上,各产生各的效果,不可求它们的合力,两力的作用效果不能相互抵消。
二、重点、难点分析:1.惯性和惯性定律的区别(1)惯性:是物体本身的固有属性,仅由质量决定。
(2)惯性定律:是在理想条件下的一种运动规律。
2.加速度和运动状态的改变(1)运动状态的改变:物体的速度发生了改变,我们就说物体的运动状态发生了改变。
由于速度是矢量,既有大小又有方向,所以运动状态的改变有三种情况:①如:②如:③如:(2)力是产生加速度的原因牛顿第一定律表明,力是改变物体运动状态的原因,而运动状态改变必然有加速度,所以力是产生加速度的原因。
3.质量与惯性的关系(1)惯性的普遍性和差异性:一切物体在任何条件下都具有惯性,这表明了惯性的普遍性。
当物体受到外力作用时,物体运动状态的改变又有难易之别,质量大的物体运动状态难以改变,质量小的物体运动状态容易改变,这表明不同物体的惯性大小具有差异性。
(2)质量是惯性大小的量度:因为惯性是物体固有的性质,所以物体惯性的大小只能由物体自身来决定。
4.关于牛顿第二定律(1)同体性:F、m、a是研究同一个物体的三个物理量。
(2)同时性:(3)同向性:(4)力的独立性:作用在物体上的每个力都将产独立地产生各自的加速度,与其他力无关,合外力的加速度即是这些加速度的矢量和。
5.牛顿运动定律只适用于宏观、低速的物体,不适用于微观、高速的物体,只适用于惯性参考系,不适用于非惯性参考系。
三、典型例题精讲:【例1】关于惯性的大小,以下说法正确的是哪一个?错误的说法如何修正。
A.只有处于静止或匀速运动状态的物体才具有惯性。
B.推动地面上静止的物体比保持这个物体做匀速运动所需的力大,所以静止的物体惯性大。
C.在光滑的水平面上,用相同的水平推力推一辆空车和一辆装满货物的车,空车启动的快,所以质量小的物体惯性小。
D.在月球上举起重物比地球上容易,所以同一物体在月球上比地球上惯性小。
【例2】火车在长直水平轨道上匀速行驶,门窗紧闭的车厢内有一个人向上跳起,发现仍落回到车上原处,这是因为:A.人跳起后,车厢内空气给他向前的力,带着他随同火车一起向前运动。
B.人跳起的瞬间,车厢的地板给他一个向前的力,推动他随同火车一起向前运动。
C.人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短偏后距离太短看不出来。
D.人跳起后直到落地,在水平方向上和车始终具有相同的速度。
【例3】当高速行驶的公共汽车突然刹车,乘客会向什么方向倾斜?为什么?若公共汽车向左转弯,乘客会向什么方向倾斜?为什么?为什么在高速公路上行驶的小车中的司机和乘客必须系好安全带?【例4】一向右运动的车厢顶上悬挂两单摆M与N,它们只能在图示平面内摆动,某一瞬时出现图示情景,由此可知车厢的运动及两单摆相对车厢的运动的可能情况是A.车厢做匀速直线运动,M在摆动,N静止()B.车厢做匀速直线运动,M在摆动,N也在摆动Array C.车厢做匀速直线运动,M静止,N在摆动D.车厢做匀加速直线运动,M静止,N也静止【例5】如图3-3所示,小车从足够长的光滑斜面自由下滑,斜面倾角为α,小车上吊着小球mC为该圆周的最低点,b、c滑,则:A.环b将先到达点AB.环c将先到达点AC.两环同时到达点AD.因两杆的倾角不知道,无法判断谁先到达A点【例7】如图所示,质量为m 的人站在自动扶梯上,扶梯正以加速度a向上减速运动, a与水平方向的夹角为θ,求人受到的支持力与摩擦力。
【例8小球相连,另一端分别用销钉M、N钉M的瞬间,小球加速度大小为12m/s2若不拔出销钉M球的加速度可能是(取 g=10m/ s2)A.22m/ s2,方向竖直向下 B.22 m/ s2C.2m/ s2,方向竖直向上 D.2m/ s2【例9】一物体受绳子的拉力作用由静止开始前进,先做加速运动;然后改为匀速运动;再改做减速运动,则下列说法中正确的是:()A.加速前进时,绳子拉物体的力大于物体拉绳子的力B.减速前进时,绳子拉物体的力小于物体拉绳子的力C.只有匀速前进时,绳子拉物体的力与物体拉绳子的力大小相等D.不管物体如何前进,绳子拉物体的力与物体拉绳子的力大小总相等【例10】一个物体放在水平桌面上,下列说法正确是:()A.桌面对物体的支持力的大小等于物体的重力,这两个力是一对平衡力B.物体所受的重力和桌面对它的支持力是一对作用力和反作用力C.物体对桌面的压力就是物体的重力,这两个力是同一性质的力D.物体对桌面的压力和桌面对物体的支持力是一对平衡力【例11】甲、乙两队进行拔河比赛,结果甲队获胜,则比赛过程中()A.甲队拉绳子的力大于乙队拉绳子的力B.甲队与地面间的摩擦力大于乙队与地面间的摩擦力C.甲、乙两队与地面间的摩擦力大小相等,方向相反D.甲、乙两队拉绳子的力大小相等,方向相反【例12】若在例题3中不计绳子的质量,则:()A.甲队拉绳子的力大于乙队拉绳子的力B.甲队与地面间的摩擦力大于乙队与地面间的摩擦力C.甲、乙两队与地面间的摩擦力大小相等,方向相反D.甲、乙两队拉绳子的力大小相等,方向相反四、课后跟踪练习:1 下列物体的运动状态保持不变的是()A.匀速行驶的列车B.地球同步卫星C.自由下落的小球D.在水面上浮动的木块2. 有关加速度的说法,正确的是()A.物体加速度的方向与物体运动的方向不是同向就是反向B.物体加速度方向与物体所受合外力的方向总是相同的C.当物体速度增加时,它的加速度也就增大D.只要加速度为正值,物体一定做加速运动3.下面关于惯性的说法中,正确的是()A. 运动速度大的物体比速度小的物体难以停下来,所以运动速度大的物体具有较大的惯性B. 物体受的力越大,要它停下来就越困难,所以物体受的推力越大,则惯性越大C. 物体的体积越大,惯性越大D. 物体含的物质越多,惯性越大4.在粗糙水平面上放着一个箱子,前面的人用水平方向成仰角θ1的力F1拉箱子,同时后面的人用与水平方向成俯角θ2的推力F2推箱子,如图所示,此时箱子的加速度为a,如果此时撤去推力F2,则箱子的加速度()A.一定增大B.一定减小C.可能不变D.不是增大就是减小,不可能不变5.如图单所示,有两个物体质量各为m1、m2,m1原来静止,m2以速度v o向右运动,如果它们加上完全相同的作用力F,在下述条件下,哪些可使它们的速度有达到相同的时刻 ( )A.F方向向右 m1>m2 B.F方向向右 m1<m2C.F方向向左 m l>m2 D.F方向任意 m1=m26.如图,质量为m1的粗糙斜面上有一质量为m的木块匀减速下滑,则地面受到的正压力应当是 ( ).A.等于(m l+m2)g B.大于(m l+m2)gC .小于(m l +m 2)g D. 以上结论都不对7.在验证“牛顿第二定律”的实验中,打出的纸带如图单所示,相邻计数点间的时间间隔为0.1s ,由此可算出小车的加速度a=______,若实验中交流电频率变为40Hz ,但计算中仍引用50Hz ,这样测定的加速度将变_______(填“大”或“小”),该实验中,为验证小车质量M 不变时,a 与F 成正比,小车质量M 和砂及桶质量m 分别选取下列四组值.A 、M=500g ,m 分别为50g 、70g 、100g 、125gB 、M=500g ,m 分别为20g 、30g 、 40g 、 50gC 、M=200g ,m 分别为50g 、70g 、100g 、125gD 、M=200g ,m 分别为30g 、40g 、 50g 、 60g若其它操作正确,那么在选用__________组值测量时所画出的a 一F 的图线较准确.9.质量为m 的物体放在倾角为a 的斜面上,物体和斜面间的动摩擦因数为µ,如沿水平方向加一个力F , 使物体沿斜面向上以加速度a 做匀加速直线运动(如图),求F=?10.如图所示,一质量为M 的楔形木块放在水平桌面上,它的顶角为90°,两底角为ɑ和β;a,b 为两个位于斜面上质量均为m 的小木块.已知所有接触面都是光滑的。