八年级数学图形的旋转综合练习题
北师大版八年级数学下册第三章图形的平移与旋转:3.2 图形的旋转 同步练习题(含答案)
![北师大版八年级数学下册第三章图形的平移与旋转:3.2 图形的旋转 同步练习题(含答案)](https://img.taocdn.com/s3/m/65df25446137ee06eef91857.png)
第三章图形的平移与旋转3.2图形的旋转(1)一、选择题1.观察下列图案,其中旋转角最大的是()2.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD. 下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC3.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60°C.90°D.120°4.如图,在△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,则点B到C′的距离是()A.4 B.4 2C.4 3 D.35.如图,将△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,连接CC′,若CC′∥AB,则∠BAC的大小是()A.55°B.60°C.65°D.70°6.如图,将等腰直角三角形ABC绕点A逆时针旋转15°得到△AEF,若AC=3,则阴影部分的面积为()A.1 B.1 2C.32D. 37.如图,将矩形ABCD绕点A顺时针旋转90°后,得到矩形AB′C′D′,若CD=8,AD=6,连接CC′,那么CC′的长是()A.20 B.100C.10 3 D.10 28.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3C.2 D.1二、填空题9.将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是.10.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm. 将△AOB 绕顶点O按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=.11.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为.12.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C 按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为.三、解答题13.如图,已知AC⊥BC,垂足为C,AC=4,BC=33,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=4;(2)求线段DB的长度.14.如图1,在△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图1中的△BCD绕点B顺时针旋转得到△BC′D′. 当点D′恰好落在BC边上时,如图2所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD′≌△CAE.15.如图,四边形ABCD是正方形,BM=DF,AF垂直AM,M、B、C在一条直线上,且△AEM与△AEF恰好关于AE所在直线成轴对称,已知EF=x,正方形边长为y.(1)图中△ADF可以绕点A按顺时针方向旋转后能与重合;(2)用x、y的代数式表示△AEM与△EFC的面积为S△AME=;S△CEF=.3.2图形的旋转(2)一、选择题1.△AOB绕点O旋转180°得到△DOE,则下列作图正确的是( )2.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是( )A.55°B.60°C.65°D.70°3.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是( )A.∠BCB′=∠ACA′B.∠B′CA=∠B′ACC.∠ACB=2∠B D.B′C平分∠BB′A′4.如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )A.75°B.65°C.55°D.85°5.如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°). 若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°6.将一副三角板按图1的位置摆放,将△DEF 绕点A (F)逆时针旋转60°后,得到图2,测得CG =62,则AC 长是( )A .9B .6+2 3C .10D .6+6 37.如图,在△OAB 中,OA =OB ,∠AOB =15°,在△OCD 中,OC =OD ,∠COD =45°,且点C 在边OA 上,连接CB ,将线段OB 绕点O 逆时针旋转一定角度得到线段OE ,使得DE =CB ,则∠BOE 的度数为( )A .15°B .15°或45°C .45°D .45°或60°8.如图,OA ⊥OB ,等腰直角三角形CDE 的腰CD 在OB 上,∠ECD =45°,将三角形CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC CD的值为( )A .12B .13C .22D .33二、填空题9.如图,点P 是等边三角形ABC 内的一点,若将△PAB 绕点A 逆时针旋转到△P ′AC ,则∠PAP ′的度数为 .10.如图,在△ABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到△A′B′C′,且点A在A′B′上,则旋转角为.11.如图,在等边△ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长度为.12.如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是.三、解答题13.(1)如图1选择点O为对称中心,画出线段AB关于点O的对称线段A′B′.(2)如图2选择△ABC内一点P为对称中心,画出△ABC关于点P的对称△A′B′C′.14.在下面的网格图中,每个小正方形的边长均为1个单位长度,在Rt△ABC 中,∠C=90°,AC=3,BC=6.(1)试作出△ABC以A为旋转中心、沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-5,5),试建立合适的直角坐标系,并写出A、C两点的坐标.15.如图,在四边形ABCD中,AB=3,BC=2,若AC=AD且∠ACD=60°,则对角线BD的长最大值为.第三章图形的平移与旋转3.2图形的旋转(1)答案与解析一、选择题1.观察下列图案,其中旋转角最大的是(A)2.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD. 下列结论一定正确的是(C)A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC3.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为(C)A.30°B.60°C.90°D.120°4.如图,在△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,则点B到C′的距离是(A)A.4 B.4 2C.4 3 D.35.如图,将△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,连接CC′,若CC′∥AB,则∠BAC的大小是(D)A.55°B.60°C.65°D.70°6.如图,将等腰直角三角形ABC绕点A逆时针旋转15°得到△AEF,若AC=3,则阴影部分的面积为(C)A.1 B.1 2C.32D. 37.如图,将矩形ABCD绕点A顺时针旋转90°后,得到矩形AB′C′D′,若CD=8,AD=6,连接CC′,那么CC′的长是(D)A.20 B.100C.10 3 D.10 28.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是(B)A.4 B.3C.2 D.1二、填空题9.将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是60°.10.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm. 将△AOB 绕顶点O按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=1.5 cm.11.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为6.12.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C 按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为60°、2三、解答题13.如图,已知AC⊥BC,垂足为C,AC=4,BC=33,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=4;(2)求线段DB的长度.解:(2)作DE⊥BC于点E.∵△ACD是等边三角形,∴∠ACD=60°,又∵AC⊥BC,∴∠DCE=∠ACB-∠ACD=90°-60°=30°,∴Rt△CDE中,DE=12DC=2,由勾股定理得CE=23,∴BE=BC-CE=33-23= 3. 在Rt△BDE中,BD=DE2+BE2=22+(3)2=7.14.如图1,在△ABC 中,AC =BC ,∠A =30°,点D 在AB 边上且∠ADC =45°.(1)求∠BCD 的度数;(2)将图1中的△BCD 绕点B 顺时针旋转得到△BC ′D ′. 当点D ′恰好落在BC 边上时,如图2所示,连接C ′C 并延长交AB 于点E .①求∠C ′CB 的度数;②求证:△C ′BD ′≌△CAE .解:(1)∵AC =BC ,∠A =30°,∴∠CBA =∠CAB =30°.∵∠ADC =45°,∴∠BCD =∠ADC -∠CBA =15°;(2)①由旋转可得CB =C ′B =AC ,∠C ′BD ′=∠CBD =∠A =30°,∴∠CC ′B =∠C ′CB =75°;②证明:∵AC =C ′B ,∠C ′BD ′=∠A ,∴∠CEB =∠C ′CB -∠CBA =45°,∴∠ACE =∠CEB -∠A =15°,∴∠BC ′D ′=∠BCD =∠ACE ,在△C ′BD ′和△CAE 中,⎩⎨⎧∠BC ′D ′=∠ACEAC =BC ′∠C ′BD ′=∠A,∴△C ′BD ′≌△CAE (ASA).15.如图,四边形ABCD 是正方形,BM =DF ,AF 垂直AM ,M 、B 、C 在一条直线上,且△AEM 与△AEF 恰好关于AE 所在直线成轴对称,已知EF =x ,正方形边长为y .(1)图中△ADF 可以绕点A 按顺时针方向旋转90°后能与△ABM 重合;(2)用x 、y 的代数式表示△AEM 与△EFC 的面积为S △AME =12xy ;S △CEF =y 2-xy .3.2图形的旋转(2)一、选择题1.△AOB绕点O旋转180°得到△DOE,则下列作图正确的是(C)2.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是(C)A.55°B.60°C.65°D.70°3.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是(B)A.∠BCB′=∠ACA′B.∠B′CA=∠B′ACC.∠ACB=2∠B D.B′C平分∠BB′A′4.如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为(A)A.75°B.65°C.55°D.85°5.如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°). 若∠1=112°,则∠α的大小是(D)A .68°B .20°C .28°D .22°6.将一副三角板按图1的位置摆放,将△DEF 绕点A (F)逆时针旋转60°后,得到图2,测得CG =62,则AC 长是(B)A .9B .6+2 3C .10D .6+6 37.如图,在△OAB 中,OA =OB ,∠AOB =15°,在△OCD 中,OC =OD ,∠COD =45°,且点C 在边OA 上,连接CB ,将线段OB 绕点O 逆时针旋转一定角度得到线段OE ,使得DE =CB ,则∠BOE 的度数为(B)A .15°B .15°或45°C .45°D .45°或60°8.如图,OA ⊥OB ,等腰直角三角形CDE 的腰CD 在OB 上,∠ECD =45°,将三角形CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC CD的值为(C)A .12B .13C .22D .33二、填空题9.如图,点P 是等边三角形ABC 内的一点,若将△PAB 绕点A 逆时针旋转到△P ′AC ,则∠PAP ′的度数为60°.10.如图,在△ABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到△A′B′C′,且点A在A′B′上,则旋转角为50°.11.如图,在等边△ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长度为12.如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM三、解答题13.(1)如图1选择点O为对称中心,画出线段AB关于点O的对称线段A′B′.(2)如图2选择△ABC内一点P为对称中心,画出△ABC关于点P的对称△A′B′C′.答案如下图:14.在下面的网格图中,每个小正方形的边长均为1个单位长度,在Rt△ABC 中,∠C=90°,AC=3,BC=6.(1)试作出△ABC以A为旋转中心、沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-5,5),试建立合适的直角坐标系,并写出A、C两点的坐标.解:(1)如图:(2)A(-2,-1);C(-5,-1).15.如图,在四边形ABCD中,AB=3,BC=2,若AC=AD且∠ACD=60°,则对角线BD的长最大值为5.。
八年级数学上旋转练习题及答案
![八年级数学上旋转练习题及答案](https://img.taocdn.com/s3/m/812e5085844769eae109ed82.png)
《旋转》训练题1、经过旋转,图形上的每一点都绕沿相同方向转动了,任意一对对应点与的连线所成的角都是旋转角,对应点到的距离相等.2、下列说法不正确的是()A、图形旋转后对应线段,对应角相等;B、旋转不改变图形的形状和大小;C、旋转后对应点的连线的垂直平分线经过旋转中心;D、旋转形成的图形是由旋转中心和旋转方向决定的.3、要使正十二边形旋转后能与自身重合,至少应将它绕中心逆时针方向旋转()A、30°B、45°C、60°D、75°4、如图1所示的五角星旋转多少度能与自身重合?5、如图2所示,若正方形ABCD可由正方形CDEF旋转后得到,则图形所在平面上可以作为旋转中心的共有几个?6、(2010年天津市)如图3,已知正方形ABCD的边长为3,E为CD边上一点,1DE=.以点A 为中心,把△ADE顺时针旋转90︒,得△ABE',连接EE',则EE'的长等于.7、图4中的两个正方形的边长相等,请你指出图中可以通过绕点O旋转而相互得到的图形并说明旋转的角度.8、如图5,△ACE、△ABF都是等腰三角形,∠BAF=∠CAE=90°,那么△AFC是以点为旋转中心,旋转度之后能与另三角形重合,点F的对应点是.9、如图6,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.则(1)三角尺旋转了度;(2)连接CD,可判断△CDB的形状是三角形;(3)∠BDC的度数是度.10、如图7,四边形A/B/C/D/是四边形ABCD绕点O顺时针旋转90°后得到的,请你作出旋转前的图形ABCD.11、如图8所示,四边形ABCD绕某点旋转后成四边形A/B/C/D/,请你帮助找出它们的旋转中心.12、如图9,∠AOB=90°,∠B=25°,△A/OB/可以看做是由△AOB绕点O顺时针旋转α角度得到的,若点A/在AB上,则旋转角α的大小可以是()A、25°B、30°C、45°D、50°13、如图10,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB/C/的位置,使得CC/∥AB,则∠BAB/=( )A、30°B、35°C、40°D、50°14、两块完全一样的含30°角的三角板重叠在一起,若绕长直角边的中点M转动,使上面一块的斜边刚好过下面一块的直角顶点,如图11,∠A=30°,AC=10,则此时两直角顶点C、C/间的距离是.15、如图12,在等边三角形ABC内有一点P,PA=10,PB=8,PC=6.求∠BPC的度数.16、如图13所示,观察图(1)和图(2),请回答下列问题:(1)请简述由图(1)变换成图(2)的形成过程?(2)若AD=3,BD=4,△ADE与△BDF的面积和是多少?17、(2008湖北咸宁)如图,在Rt△ABC中,,D、E是斜边BC 上两点,且∠DAE=45°,将△绕点顺时针旋转90后,得到△,连接,下列结论:①△≌△;②△≌△;③;④其中正确的是() A.②④;B.①④;C.②③;D.①③.18、(2008年浙江省嘉兴市)如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到△AB1C1.(1)在正方形网格中,作出△AB1C1;(2)设网格小正方形的边长为1,求旋转过程中动点B所经过的路径长.19、如图15,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以点D为顶点作一个60°的角,角的两边分别交AB、AC边于M、N两点,连接MN.请探究:线段BM,MN,NC之间的关系,并说明理由.20、如图16,△ABC中,∠BAC=120°,以BC为边向形外作等边△BCD,把△ABD绕着D点按顺时针方向旋转60°后到△ECD的位置.若AB=3,AC=2,求∠BAD的度数和AD的长.答案:2、D ;3、A;4、五角星顺时针旋转72、144、216、288都能与自身重合。
2021年八上数学同步练习-图形的变换_平移、旋转变换_旋转的性质-综合题专训及答案
![2021年八上数学同步练习-图形的变换_平移、旋转变换_旋转的性质-综合题专训及答案](https://img.taocdn.com/s3/m/537356db4b73f242326c5f04.png)
2021年八上数学同步练习-图形的变换_平移、旋转变换_旋转的性质-综合题专训及答案2021八上数学同步练习-图形的变换_平移、旋转变换_旋转的性质-综合题-专训1、(2020嵩.八上期末) 如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN 是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).2、(2019南关.八上期末) 感知:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD.(1)求证:△ACB≌△BED;(2)△BCD的面积为(用含m的式子表示).(3)拓展:如图②,在一般的Rt△ABC,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接C D,用含m的式子表示△BCD的面积,并说明理由.(4)应用:如图③,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为;若BC=m,则△BCD的面积为(用含m的式子表示).3、(2019玄武.八上期末)(1)【初步探究】如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连接AE 、DE.判断△AED的形状,并说明理由.(2)【解决问题】如图2,在长方形ABCD中,点P是边CD上一点,在边BC、AD上分别作出点E、F,使得点F、E 、P是一个等腰直角三角形的三个顶点,且PE=PF,∠FPE=90°.要求:仅用圆规作图,保留作图痕迹,不写作法.(3)【拓展应用】如图3,在平面直角坐标系xOy中,已知点A(2,0),点B(4,1),点C在第一象限内,若△A BC是等腰直角三角形,则点C的坐标是.(4)如图4,在平面直角坐标系xOy中,已知点A(1,0),点C是y轴上的动点,线段CA绕着点C按逆时针方向旋转90°至线段CB,CA=CB,连接BO、BA,则BO+BA的最小值是.4、(2019北碚.八上期末) 如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.5、(2017丰都.八上期末) 如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C顺时针方向旋转60°,到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由.(3)探索:当α为多少度时,△AOD是等腰三角形.6、(2017陕西.八上期末) 综合题(1)发现如图,点为线段外一动点,且, .填空:当点位于时,线段的长取得最大值,且最大值为.(用含,的式子表示)(2)应用点为线段外一动点,且, .如图所示,分别以,为边,作等边三角形和等边三角形,连接, .①找出图中与相等的线段,并说明理由;②直接写出线段长的最大值.(3)拓展如图,在平面直角坐标系中,点的坐标为,点的坐标为,点为线段外一动点,且,,,求线段长的最大值及此时点的坐标.7、(2018兰溪.八上期中) 如图,等腰直角△ABC中,∠ABC=90°,点P在AC上,将△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ.(1) 求∠PCQ 的度数;(2) 当AB=4,AP :BP=1:3时,求PQ 的长;(3) 当点P 在线段AC 上运动时(P 不与A 、C 重合),请写出一个反映PA 、PC 、PB 之间关系的等式,并加以证明.8、(2020榆树.八上期中) 如图①,在△ABC 中,AB=AC ,D 是射线BC 上一点(点D 不与点B 重合),连结AD ,将AD 绕着点A 逆时针旋转∠BAC 的度数得到AE ,连结DE 、CE 。
八年级数学旋转经典练习题
![八年级数学旋转经典练习题](https://img.taocdn.com/s3/m/93cf6b97284ac850ad02423b.png)
1、如图△ABD和△BCD均为等边三角形,E为AD上的一个动点,F是CD上的一个动点,且∠EBF=60°。
(1)判断△EBF的形状并说明理由。
(2)若AB=4,求△EBF面积的最小值。
2、如图,在等腰直角三角形MNC中.CN=MN= ,将△MNC绕点C顺时针旋转60°,得到△ABC,连接AM,BM,BM交AC于点O.(1)求证:△CAM为等边三角形;(2)连接AN,求线段AN的长.3、如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺时针方向旋转90°后得到△CBE.(1)求∠DCE的度数;(2)当AB=4,AD:DC=1:3时,求DE的长.4、如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;5、如图,AD∥BC,∠D=90°.(1)如图1,若∠DAB的平分线与∠CBA的平分线交于点P,试问:点P是线段CD的中点吗?为什么?(2)如图2,如果P是DC的中点,BP平分∠ABC,∠CPB=35°,求∠PAD的度数为多少?6、已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.(1)请问:AB、BD、DC有何数量关系?并说明理由.(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.7、如图,已知△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,它的两边分别交AB于M,交AC于N,连接MN,求证:MN=BM+CN.8、如图,已知D是等边△ABC内一点,P是△ABC外一点,DB=DA,BP=AB,∠DBP=∠DBC.求∠BPD的度数.9、如图①已知△ACB和△DCB为等腰直角三角形,按如图的位置摆放,直角顶点C重合.(1)求证:AD=BE;(2)将△DCE绕点C旋转得到图②,点A、D、E在同一直线上时,若CD=√2,BE=3,求AB的长;(3)将△DCE绕点C顺时针旋转得到图③,若∠CBD=45°,AC=6,BD=3,求BE的长.10、(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为______;②线段AD,BE之间的数量关系为______.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.1、如图,∠AOB=90°,∠B=30°,△COD可以看作是由△AOB绕点O顺时针旋转α角度得到的.若点C在AB上,则α的大小为______.2、如图,P是正等边△ABC内一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后,得到△P′AB,求点P与P′之间的距离的PP与∠APB的度数3、给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.(1)求证:△BCE是等边三角形;(2)求证DC2+BC2=AC2,即四边形ABCD是勾股4、两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C逆时针旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F,已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,求CF的长5、如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC会全等吗?请说说你的理由;(2)试说明AE∥BC的理由;(3)如图(2),将(1)动点D运动到边BA的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.6、如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度.7、如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G ,求的值。
图形的旋转(8类热点题型讲练)(原卷版) 八年级数学下册
![图形的旋转(8类热点题型讲练)(原卷版) 八年级数学下册](https://img.taocdn.com/s3/m/e2440abd534de518964bcf84b9d528ea81c72fac.png)
第02讲图形的旋转(8类热点题型讲练)1.掌握旋转的概念,了解旋转中心,旋转角,旋转方向,对应点的概念及其应用;2.掌握旋转的性质,应用概念及性质解决一些实际问题;(重点,难点)3.能够根据旋转的性质进行简单的旋转作图.知识点01旋转的概念(1)旋转的概念:把一个平面图形绕着平面内某一点O转动一定角度的变换.点O叫作旋转中心;转动的角度叫作旋转角;图形上点P旋转后得到点P’,这两个点叫作对应点.(2)旋转三要素:①旋转方向;②旋转中心;③旋转角度注:旋转中心可在任意位置.即可在旋转图形上,也可不在旋转图形上.知识点02旋转的性质旋转的性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等;两组对应点分别与旋转中心连线所成的角相等.知识点03确定旋转中心确定旋转中心:由旋转的性质可得,对应点到旋转中心的距离相等,所以旋转中心位于对应点连线的垂直平分线上,即旋转中心是两对对应点所连线段的垂直平分线的交点.知识点04旋转作图旋转作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.题型01判断生活中的旋转现象【例题】(2023上·内蒙古呼和浩特·九年级校考期中)下列运动形式属于旋转的是()A .足球在地上的滚动B .电梯的运行C .热气球点火升空D .钟摆的摆动【变式训练】1.(2023上·广西玉林·九年级统考期中)下列现象属于旋转的是()A .电梯的上下移动B .飞机起飞后冲向空中的过程C .幸运大转盘转动的过程D .笔直的铁轨上飞驰而过的火车2.(2023上·福建福州·九年级校考阶段练习)下列生活中的实例是旋转的是()A .钟表的指针的转动B .汽车在笔直的公路上行驶C .传送带上,瓶装饮料的移动D .足球飞入球网中题型02找旋转中心、旋转角、对应点【例题】(2023上·天津东丽·九年级校联考期中)如图,P 为正方形ABCD 内一点,1PC ,CDP △将绕点C 逆时针旋转得到CBE △,(1)旋转中心是______.旋转角为______度.(2)求PE 的长度.【变式训练】1.(2023上·辽宁大连·九年级统考期中)如图,四边形ABCD 是正方形,E 是CD 上的一点,ABF △是ADE V 的旋转图形.(1)由ADE V 顺时针旋转到△(2)连接EF ,判断并说明AEF △2.(2023上·湖南永州·八年级校考开学考试)(1)旋转中心为点,并求出旋转角=度;(2)求出BAE ∠的度数和AE 的长.题型03根据旋转的性质求解【变式训练】1.(2023上·浙江·九年级专题练习)如图,将若AD BE ,则CAE ∠的度数为2.(2024上·广东肇庆·九年级统考期末)∠与AC交于点G.若B题型04求绕原点旋转90°点的坐标【例题】(2023上·江苏苏州点B,则点B的坐标为2.(2023下·江苏泰州·八年级校联考阶段练习)点B到x轴的距离是8,将题型05求绕某点(非原点)旋转90°点的坐标【例题】(2023上·全国·将AC绕A点顺时针旋转【变式训练】2.(2023·湖北宜昌·统考模拟预测)如图,点点A 按逆时针方向旋转90︒得到线段题型06平面直角坐标系中旋转作图【例题】(2024上·吉林松原·九年级校联考期中)如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平而直角坐标系,OAB 的顶点都在格点上,已知点()4,2A --,()2,6B --.(1)将OAB 向右平移4个单位长度得到111O A B △,请画出111O A B △;(2)将OAB 绕点O 顺时针旋转90︒,画出所得的22OA B △.【变式训练】1.(2023上·四川自贡·九年级校考期中)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点()5,5A ,()6,3B ,()2,1C 均在格点上,(1)画出将ABC 向下平移4个单位长度得到的111A B C △;(2)画出ABC 绕点C 逆时针旋转90︒后得到的22A B C ,并写出点2A 的坐标;2.(2024上·陕西延安·九年级统考期末)如图,网格中每个小正方形的边长都是单位1,ABC 是格点三角形.(1)画出将ABC 向右平移2个单位得到的111A B C △;(2)画出将ABC 绕点O 顺时针方向旋转90︒得到的222A B C △,并写出点2B 的坐标.题型07坐标与旋转规律问题【变式训练】1.(2023上·辽宁鞍山·九年级校考阶段练习)如图,在平面直角坐标系中,将11AB C △的位置,点B 、O 分别落在点1B 、1C 处,点1B 在x 轴上,再将的位置,点2C 在x 轴上,将112A B C V 绕点2C 顺时针旋转到222A B C △的位置,点()()B 2.(2023下.广西.七年级广西大学附属中学校考期中)如图,已知点向连续翻转241次,点A 依次落在点1A ,2A ,3A , (241)题型08旋转综合题——几何变换【例题】(2023上·北京朝阳·九年级校考期中)如图,在ABC 中,,BAC AB AC α∠==,点D 为BC 边上一点(不与点B 重合),连接AD ,将ABD △绕点A 逆时针旋转得到ACE △.(1)若80α=︒,写出旋转角及其度数;(2)当α度数变化时,DAE ∠与DCE ∠之间存在某种不变的数量关系.请你写出结论并证明.【变式训练】(1)将ADE V 绕A 点旋转到图2位置时,写出BD 、CE 的数量关系;(2)当90BAC ∠=︒时,将ADE V 绕A 点旋转到图3位置.①猜想BD 与CE 有什么数量关系和位置关系?请就图3的情形进行证明;②当点C 、D 、E 在同一直线上时,直接写出ADB ∠的度数.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD (2)【探究】:把DCE △绕点C 旋转到如图2的位置,连接AD ,(3)【拓展】:把DCE △绕点C 在平面内自由旋转,若6AC =,CE 时,直接写出BE 的长.一、单选题1.(2024上·安徽合肥·九年级统考期末)垃圾分类是对垃圾收集处置传统方式的改革,是对垃圾进行有效处置的一种科学管理方法.你认识垃圾分类的图标吗?请选出其中的旋转对称图形()A .可回收物B .有害垃圾C .厨余垃圾D .其他垃圾2.(2024上·河北唐山·七年级统考期末)如图,OAB 绕点O 逆时针旋转70︒,得到OCD ,若15AOB ∠=︒,则AOD ∠等于()A .85︒B .70︒C .55︒D .45︒3.(2024上·江西上饶·九年级统考期末)如图,将一块含有30︒的直角三角板ABC (假定90C ∠=︒,30B ∠=︒)绕顶点A 逆时针旋转100︒得到AB C ''△,则BB C ''∠等于()A .5︒B .10︒C .15︒D .20︒4.(2024上·广东肇庆·九年级统考期末)如图,将线段AB 绕点O 顺时针旋转90︒,得到线段A B '',那么()2,5A -的对应点A '的坐标是()A .()5,2-B .()2,5-C .()5,2D .()2,55.(2024上·山东烟台·八年级统考期末)如图,已知ABC 中,20CAB ∠=︒,30ABC ∠=︒,将ABC 绕A 点逆时针旋转50︒得到AB C ''△,以下结论:①BC B C ''=,②AC C B '' ,③C B BB '''⊥,④ABB ACC ''∠=∠,正确的有()A .①②③B .②③④C .①③④D .①②④二、填空题7.(2023上·安徽淮南·九年级统考期末)如图将为(,)a b ,则A 的坐标为.8.(2024上·辽宁大连·九年级统考期末)如图,将点B '恰在边AC 上,若2AB =9.(2024上·天津宁河·九年级统考期末)在平面直角坐标系中,点针旋转,得11A BO △,点A O ,为,点1A 的坐标为10.(2024上·辽宁盘锦·九年级校考期末)如图,D 为AB 的中点,点E 在是直角三角形时,AE '的长为三、解答题(1)将ABC 绕坐标原点O 顺时针旋转(2)求111A B C △的面积.12.(2024上·湖北武汉·九年级统考期末)点B 顺时针旋转90°到CBE '△的位置((1)判断BEE ' 的形状为(2)若2AE =,4BE =,13.(2024上·湖北武汉·九年级统考期末)如图,在Rt ABC △中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转90︒得到DEC ,延长ED 交AB 于点F .(1)直接写出AFE ∠的度数;(2)若67.5A Ð=°,求证:2DE AF =.14.(2023上·陕西渭南·九年级统考期末)如图,将一个钝角ABC (其中120ABC ∠=︒)绕点B 顺时针旋转得111A B C △,使得C 点落在AB 的延长线上的点1C 处,连接1AA .(1)求证:1AA BC ∥;(2)若120A AC ∠=︒,求11AA C ∠的度数.15.(2024上·甘肃武威·九年级校联考期末)如图,在ABC 中,点E 在BC 边上,AE AB =,将线段AC 绕A 点旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF 、EF 与AC 交于点G .(1)求证:BC EF =;(2)若64ABC ∠=︒,25ACB ∠=︒,求AGE ∠的度数.16.(2024上·浙江台州·九年级统考期末)如图,在ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到DEC ,旋转角为α,CD ,DE 分别交AB 于点F ,G ,连接BD .(1)求证:AGD α∠=;(2)若2BC =,30a =︒,BD AC ∥.①求AB 的长;②连接AD ,BE ,AE ,求四边形ADBE 的面积.17.(2024上·陕西西安·七年级校考期末)如图,已知ABC 中,90B Ð=°,将ABC 沿着射线BC 方向平移得到DEF ,其中点A 、点B 、点C 的对应点分别是点D 、点E 、点F ,且CE DE =.(1)如图①,如果6AB =,3BC =,那么平移的距离等于______;(请直接写出答案)(2)如图②,将DEF 绕着点E 逆时针旋转90︒得到CEG ,连接AG ,如果AB a =,BC b =,求ACG 的面积;(3)如图③,在(2)题的条件下,分别以AB ,BC 为边向外作正方形,正方形的面积分别记为1S ,2S ,且满足1216S S -=,如果平移的距离等于8,求出ACG 的面积.(1)如图1,当EC 与BC 重合,30α=︒时,ACD ∠=;(2)如图2,三角形ABC 固定不动,将三角形CDE 绕点C 旋转,使点E 落到AB 的延长线上,当射线EC 平分DEA ∠时,求ECB ∠的度数;(3)三角形ABC 固定不动,将三角形CDE 绕点C 旋转,当25ACE ∠=︒且射线CD 平分。
初二数学图形的平移和旋转练习题
![初二数学图形的平移和旋转练习题](https://img.taocdn.com/s3/m/e611ba860d22590102020740be1e650e52eacf07.png)
初二数学图形的平移和旋转练习题题目一:平移图形
给定一个图形,如下所示:
(在这里插入图形示例)
1. 将该图形向右平移4个单位,向上平移3个单位。
请计算平移后的新坐标,并画出平移后的图形。
2. 将平移后的图形再向左平移2个单位,向下平移1个单位。
请计算最终平移后的新坐标,并画出图形。
题目二:旋转图形
给定一个图形,如下所示:
(在这里插入图形示例)
1. 将该图形以原点为中心,逆时针旋转90度。
请计算旋转后的新坐标,并画出旋转后的图形。
2. 将旋转后的图形再顺时针旋转180度。
请计算最终旋转后的新坐标,并画出图形。
题目三:综合练习
给定一个复杂图形,如下所示:
(在这里插入图形示例)
1. 将该图形向右平移5个单位,向上平移2个单位。
请计算平移后的新坐标,并画出平移后的图形。
2. 将平移后的图形以中心为轴顺时针旋转120度。
请计算旋转后的新坐标,并画出旋转后的图形。
3. 将旋转后的图形再向左平移3个单位,向下平移1个单位。
请计算最终平移后的新坐标,并画出图形。
通过以上练习题的实践操作,初二的学生们可以更好地理解和掌握数学图形的平移和旋转。
这些技能在解题过程中能够提高他们的几何思维和空间想象力,同时也为日常生活中的空间定位和方向感提供了基础。
希望同学们能够认真完成这些练习,不断巩固和提升自己的数学能力。
(文章正文结束)。
2020-2021学年北师大版八年级下册数学 3.2图形的旋转 同步习题(含解析)
![2020-2021学年北师大版八年级下册数学 3.2图形的旋转 同步习题(含解析)](https://img.taocdn.com/s3/m/339985c8650e52ea541898aa.png)
3.2图形的旋转同步习题一.选择题1.下列图形中,不是旋转对称图形的是()A.正三角形B.等腰梯形C.正五边形D.正六边形2.下列各图中,能通过一个三角形绕一点旋转一次得到另一三角形的图形是()A.B.C.D.3.把如图的五角星绕着它的中心旋转一定角度后与自身重合,则这个旋转角度可能是()A.36°B.72°C.90°D.108°4.如图,把△OAB绕点O逆时针旋转80°,得到△OCD,则下列结论错误的是()A.BD=OB B.AB=CD C.∠AOC=∠BOD D.∠A=∠C5.如图,在△ABC中,∠B=50°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,则∠CB′C′的度数为()A.50°B.60°C.80°D.100°6.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B 的对应点为E,连接BE,下列四个结论:①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC;其中一定正确的是()A.①②B.②③C.③④D.②③④7.如图,在△ABC中,AB=AC=10,BC=16,点D是边BC上一点(点D不与点B,点C重合),将AC绕点A顺时针旋转至AC1,AC1交BC于点H,且AD平分∠CAC1,若DC1∥AB,则点B到线段AD的距离为()A.2B.C.4D.38.如图,将△ABC绕A点逆时针旋转60°得到△ADE,连接CD,若∠CDE=90°,则∠BCD 的度数是()A.110°B.120°C.130°D.150°9.如图,Rt△ABC中,∠BAC=30°,∠C=90°,将△ABC绕点A旋转,使得点C的对应点C′落在AB上,则∠BB′C′的度数为()A.12°B.15°C.25°D.30°10.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=4,点D是BC上的一点,BD=1,点P是AC上的一个动点,连接DP,将线段DP绕点D顺时针旋转90°得到线段BQ,连接BQ,则线段BQ长的最小值是()A.1B.2C.D.二.填空题11.如图,在△ABC中,∠BAC=105°,将△ABC绕点A逆时针旋转得到△AB′C′.若点B 恰好落在BC边上,且AB′=CB′,则∠C′的度数为°.12.如图,Rt△ABC和Rt△DCE中,∠ACB=∠DCE=90°,∠A=30°,∠E=45°.B,C,E三点共线,Rt△ABC不动,将△DCE绕点C逆时针旋转α(0°<α<360°),当DE∥BC 时,α=.13.如图,等边△ABC,边长为4,动点D从点B出发,沿射线BC方向移动,以AD为边在右侧作等边△ADE,取AC中点F,连接EF,当EF的值最小时,BD=.14.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M 是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.15.如图,在Rt△ABC中,∠C=90°,∠A=30°,点P在AC边上,以点P为中心,将△ABC 顺时针旋转90°,得到△DEF,DE交边AC于G,当P为中点时,AG:DG的值为.三.解答题16.如图,D是△ABC的边BC延长线上一点,连接AD,把△ACD绕点A顺时针旋转60°恰好得到△ABE,其中D,E是对应点,若∠CAD=18°,求∠EAC的度数.17.如图,P是等边△ABC内的一点,且P A=5,PB=4,PC=3,将△APB绕点B逆时针旋转,得到△CQB.(1)求点P与点Q之间的距离;(2)求∠BPC的度数;(3)求△ABC的面积.18.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).分别画出下列图形.(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0);(2)若△ABC和△A2B2C2关于原点O成中心对称图形;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3.参考答案一.选择题1.解:A、正三角形旋转120°,可以与原图形重合,是旋转对称图形,不合题意;B、等腰梯形,不是旋转对称图形,符合题意;C、正五边形旋转72°,可以与原图形重合,是旋转对称图形,不合题意;D、正六边形旋转60°,可以与原图形重合,是旋转对称图形,不合题意;故选:B.2.解:根据旋转的定义,A,B,C中的三角形绕一点旋转一次不能得到另一三角形,不符合题意,选项D符合题意.故选:D.3.解:五角星可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360°÷5=72°,故选:B.4.解:∵△OAB绕点O逆时针旋转80°得到△OCD,∴∠A=∠C,∠AOC=∠BOD,AB=CD,OB=OD,∵∠BOD≠90°,∴BD≠OB.故选:A.5.解:∵将△ABC绕点A按逆时针方向旋转得到△A′B′C′,∴AB=AB′,∠C′B′A=∠B,∴∠AB′B=∠B,∵∠B=50°,∴∠C′B′A=∠AB′B=50°,∴∠CB′C′=180°﹣∠C′B′A﹣∠AB′B=80°,故选:C.6.解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,BC=CE,AB=DE,故①错误,③正确;∴∠ACD=∠BCE,∴∠A=∠ADC=,∠CBE=,∴∠A=∠EBC,故④正确;∵∠A+∠ABC不一定等于90°,∴∠ABC+∠CBE不一定等于90°,故②错误.故选:C.7.解:如图,过点B作BF⊥AD于F,过点A作AE⊥BC于E,∵AB=AC=10,BC=16,AE⊥BC,∴CE=BE=8,∠C=∠ABC,∴AE===6,∵将AC绕点A顺时针旋转至AC1,∴AC=AC1,∵AD平分∠CAC1,∴∠CAD=∠C1AD,在△ACD和△AC1D中,,∴△ACD≌△AC1D(SAS),∴∠C=∠C1,∵DC1∥AB,∴∠C1=∠HAB,∵∠ADB=∠C+∠CAD,∠DAB=∠DAC1+∠HAB,∴∠DAB=∠ADB,∴AB=DB=10,∴DE=BD﹣BE=2,∴AD===2,∵S△ABD=×BD×AE=×AD×BF,∴10×6=2×BF,∴BF=3,故选:D.8.解:∵将△ABC绕点A逆时针旋转60°得到△ADE,∴∠CAE=60°,∠E=∠ACB,∴∠CAE+∠CDE=360°﹣(∠ACD+∠E),∵∠BCD=360°﹣∠ACB﹣∠ACD=360°﹣(∠ACD+∠E),∴∠BCD=∠CDE+∠CAE=60°+90°=150°,故选:D.9.解:由旋转的性质可知,∠B′AB=∠BAC=30°,AB=AB′,∴∠ABB′=∠AB′B=(180°﹣30°)=75°,∵∠BCB=90°,∴∠BB′C=90°﹣75°=15°,故选:B.10.解:过点D作DT⊥BC交AC于点T,在DC上取一点G,使得DG=DT,连接TG,GQ,过点B作BR⊥QG于R.∵∠TDC=∠PDQ=90°,∴∠PDT=∠GDQ,在△PDT和△QDG中,,∴△PDT≌△QDG(SAS),∴∠DTP=∠DGQ,∴点Q在射线GQ上运动,∠DGQ是定值,∵∠TDC=∠B=90°,∴DT∥AB,∴=,∠DTC=∠A,∴=,∠DGQ=∠A,∴DT=DG=,∵∠ABC=90°,AB=2,BC=4,∴AC===2,∴sin∠DGR=sin∠A,∴=,∴=,∴BR=,根据垂线段最短可知,当BQ与BR重合时,BQ的值最小,最小值为.故选:D.二.填空题11.解:∵∠BAC=105°,∴∠B+∠C=75°,∵AB′=CB′,∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C,∵将△ABC绕点A逆时针旋转得到△AB′C′,∴AB=AB',∴∠B=∠AB'B=2∠C,∴∠C=25°,故答案为:25.12.解:如图1,当DE位于BC的上方,∵DE∥BC,∴∠D=∠BCD,∵∠E=45°,∠DCE=90°,∴∠D=90°﹣∠E=45°,∴∠BCD=45°,∴α=∠ACD=45°,如图2,当DE位于BC的下方,∵DE∥BC,∴∠E=∠BCE=45°,∴α=∠ACB+∠BCE+∠ECD=90°+45°+90°=225°,∴当DE∥BC时,α=45°或225°.故答案为:45°或225°.13.解:如图,连接CE,∵点F是AC的中点,∴AF=CF=2,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴CE=BD,∠ABD=∠ACE=60°,∴点E在∠ACB的外角的角平分线上运动,∴当EF⊥CE时,EF有最小值,∴∠CFE=30°,∴CE=CF=1,∴BD=1,故答案为1.14.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为:3.15.解:设BC=x,在Rt△ABC中,∠A=30°,∴AB=2x,AC=x,∵点P是AC中点,∴PC=P A=x,由旋转得,DP=DF=AC=x,DG=DE=AB=x,根据勾股定理得,PG===x,∴AG=AP﹣PG=x﹣x,∴==.故答案为.三.解答题16.解:∵把△ACD绕点A顺时针旋转60°恰好得到△ABE,∴∠DAE=60°,∴∠EAC=∠EAD﹣∠CAD=42°.17.解:(1)连接PQ,如图1,∵△ABC是等边三角形,∴∠ABC=60°,BA=BC,∵△QCB是△P AB绕点B逆时针旋转得到的,∴△QCB≌△P AB,∴BP=BQ,∠PBQ=∠ABC=60°,CQ=AP=5,∵BP=BQ=4,∠PBQ=60°,∴△PBQ是等边三角形,∴PQ=PB=4;(2)∵QC=5,PC=3,PQ=4,而32+42=52,∴PC2+PQ2=CQ2,∴△PCQ是直角三角形,且∠QPC=90°,∵△PBQ是等边三角形,∴∠BPQ=60°,∴∠BPC=∠BPQ+∠QPC=60°+90°=150°;(3)如图2,过点C作CH⊥BP,交BP的延长线于H,∵∠BPC=150°,∴∠CPH=30°,∴CH=PC=,PH=HC=,∴BH=4+,∴BC2=BH2+CH2=+(4+)2=25+12,∵S△ABC=BC2,∴S△ABC=(25+12)=+9.18.解:(1)如图,△A1B1C1即为所求作.(2)如图,△A2B2C2即为所求作.(3)如图,△A3B3C3即为所求作.。
八年级数学下学期区下发23章旋转练习
![八年级数学下学期区下发23章旋转练习](https://img.taocdn.com/s3/m/7afea938fd4ffe4733687e21af45b307e871f9ed.png)
第二十三章 旋转1. 如图,所给图形中是中心对称图形但不是轴对称图形的是( )A .B .C .D .2.右图可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是( )A .900B .600C .450D .300 3. 在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( ).A .点AB .点BC .点CD .点D4.已知点A 关于x 轴的对称点坐标为(﹣1,2),则点A 关于原点的对称点的坐标为( ) A . (1,2) B . (﹣1,﹣2) C . (2,﹣1) D . (1,﹣2) 5.平面直角坐标系中,直线y=2x+3关于原点对称的解析式为_________.6.如图,正方形OABC 的各顶点A 、B 、C 的坐标如图,则点A 、B 、C 分别关于x 轴,y 轴,原点对称的坐标分别是_________. 7.如图,将正方形ABCD 以点B 为旋转中心顺时针旋转120°得到正方形''''D C B A ,''A C DO ⊥于O ,若'31A O =-,则正方形ABCD 的边长为 .8.如图,AB 是长为3cm 的线段,CD ⊥AB 于O ,则图中阴影部分的面积等于 .9.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE , 将△BCE 绕点C 顺时针方向旋转90°得到△DCF ,连接EF ,则∠CEF = 度.AB C D MNP P 1M 1N 1 FAB CE D第8题图B 'D 'C 'D CB A ACODB第9题图第10题图第11题图E(0,6)D(2,6)OC(2,1)B(4,1)A(4,0)y x10.如图,将矩形ABCD 绕点A 顺时针旋转90°后,得到矩形AB ′C ′D ′,如果CD =2DA =2,那么CC ′= .11.如图,△COD 是△AOB 绕点O 旋转40°后所得的图形,点C 恰好在AB 上,∠AOD =90°,则∠B 的度数= .12.如图,等腰直角△ABC 绕直角顶点A 按逆时针方向旋转60°后得到△ADE ,且AB =1,则EC = .13.如图,已知正方形ABCD ,点E 在BC 边上,将三角形DCE 绕某点G 旋转得到三角形CBF ,点F 恰好在AB 边上.若正方形的边长为2a ,当CE = 时,三角形FGE 与三角形FBE 面积相等.14.已知一个六边形OABCDE 六个顶点的坐标如图所示,直线l 平分该六边形的面积,写出满足条件的一条直线l 的解析式 .15.正方形ABCD 内一点E 到A 、B 、C 三点的距离之和的最小值为62+,则此正方形的边长为 . 16. 如图,已知A (-3,-3),B (-2,-1),C (-1,-2)是直角坐标平面上三点.(1)请画出△ABC 关于原点O 对称的△A 1B 1C 1;(2)将△ABC 绕原点O 顺时针旋转90度,写出各顶点旋转后的坐标;(3)请写出点B 关于y 轴对称点B 2的坐标.若将点B 2向上平移h 个单位,使其落在△A 1B 1C 1的内部,指出h 的取值范围.17.如图,正方形ABCD 内一点P ,PA :PB :PC =1:2:3,求.的度数APB ∠ECB AD第12题图 第13题图 第14题图xyOAB C18. 如图,∆ABC BAC AD P Q R 中,,是高,点、、∠>90分别在AB 、BC 、AC 上,求证∆PQR AD 的周长。
八年级数学下册11.2.1图形的旋转同步练习新版青岛版20170630219
![八年级数学下册11.2.1图形的旋转同步练习新版青岛版20170630219](https://img.taocdn.com/s3/m/1226095fcaaedd3383c4d3db.png)
11.2.1图形的旋转1、如右图,甲图案可以看作是乙图案通过怎样变换而得到?()A.先按逆时针旋转90°再平移;B.先按逆时针旋转90°再作轴对称图C.先平移再作轴对称;D.先平移再作逆时针旋转90°2.将字母“T”按顺时针方向旋转90°后的图形是()3、现象中属于旋转的有( )个①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.A.2B.3C.4D.54、如图,线段MO绕点O旋转900得到线段NO,在这个旋转过程中,旋转中心是,旋转角是,它等于度.5、如图,长方形ABCD是长方形EFGD绕旋转中心________•沿_______•旋转______度得到的,对角线AC与EG的关系是________,理由是_________.6、如图,在正方形ABCD中有一点P,把⊿ABP绕点B旋转到⊿CQB,连接PQ,则⊿PBQ的形状是()(A )等边三角形 (B )等腰三角形 (C )直角三角形 (D )等腰直角三角形7.如图,把菱形ABOC 绕点O 顺时针旋转得到菱形DFOE ,则下列角中不是旋转角的为( )A .∠BOFB .∠AODC .∠COED .∠ AOF8.如图,ABO ∆绕点O 旋转450后得到DCO ∆,则点B 的对应点是_____;线段OB 的对应线段是____;线段AB 的对应线段是____;∠A 的对应角是_____;∠B 的对应角是_____;旋转中心是_____;旋转的角度是______.△AOB 的边OB 的中点M 的对应点在 . DM9.图中的两个等腰三角形是全等的,且∠AOD=45°,O B=4㎝,OA=1㎝.怎样将右边的三角形变为左边的三角形?10.如图,△ABC 是等边三角形,D 是BC 上一点,△ABD 经过旋转后到达△ACE 的位置。
(1)旋转中心是哪一点? (2)旋转了多少度?(3)如果M 是AB 的中点,那么经过上述旋转后,点M 转到了什么位置?11.如图,四边形CDEF旋转后能与正方形ABCD重合,那么图形所在平面上可以作为旋转中心的点共有几个?参考答案1.B.2.B.3.C 旋转是指物体绕着某点的旋转运动,由旋转中心、旋转角、旋转方向三要素所决定。
北师大版数学八年级下册:3.2 图形的旋转 同步练习(附答案)
![北师大版数学八年级下册:3.2 图形的旋转 同步练习(附答案)](https://img.taocdn.com/s3/m/23b1ddec43323968001c9221.png)
2图形的旋转第1课时旋转的认识知识点1旋转的有关概念1.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.如图,点A,B,C,D,O都在方格纸的格点上,若△COD是由△AOB绕点O按顺时针方向旋转而得到的,则旋转的角度为.第2题图第3题图3.如图,△ABC是等边三角形,点D是BC边上的中点,△ABD经过旋转后到达△ACE 的位置,那么:(1)旋转中心是点;(2)点B,D的对应点分别是点;(3)线段AB,BD,DA的对应线段分别是;(4)∠B的对应角是;(5)旋转的角度为.知识点2旋转的性质4.如图,△ABC绕点A逆时针旋转30°至△ADE,AB=5 cm,BC=8 cm,∠BAC =130°,则AD==cm,DE==cm,∠EAC=∠=,∠DAC=.5.如图,△ABC以点C为旋转中心,旋转后得到△EDC.已知AB=1.5,BC=4,AC =5,则DE的长为()A.1.5 B.3 C.4 D.5第5题图第6题图6.(2019·湘潭)如图,将△OAB绕点O逆时针旋转70°到△OCD的位置.若∠AOB =40°,则∠AOD=()A.45°B.40°C.35°D.30°7.(2020·天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DEB.BC=EFC.∠AEF=∠DD.AB⊥DF知识点3确定旋转中心8.如图,在平面直角坐标系中,△ABC的顶点都在正方形网格线的格点上,将△ABC 绕点P按逆时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,0)B.(0,1)C.(-1,1)D.(1,1)9.(2020·赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是()A.等边三角形B.平行四边形C.正八边形D.圆及其一条弦10.(2020·齐齐哈尔)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图1所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图2所示,则旋转角∠BAD的度数为()A.15°B.30°C.45°D.60°11.(2019·内江)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为()A.1.6 B.1.8 C.2 D.2.6第11题图变式图【变式】如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C.连接AA′,若∠1=27°,则∠B的度数是()A.84°B.72°C.63°D.54°12.(2020·聊城)如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A.2(33+1)B.33+1C.3-1D.3+113.(2019·苏州)如图,在△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.14.(2019·河南)如图,在△OAB中,顶点O(0,0),A(-3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(-3,10)C.(10,-3)D.(3,-10)错误!第2课时旋转作图知识点旋转作图1.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定角度得到△M1N1P1,则其旋转中心是.第2题图第3题图3.如图,它可以看作“◇”通过连续平移3次得到,也可以看作“◇”绕中心旋转3次,每次旋转度得到.4.如图,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.5.(教材P78做一做变式)如图,△ABC 绕点O 旋转后,顶点A 的对应点为A′,试确定旋转后的三角形.易错点 旋转方向不确定导致漏解6.在平面直角坐标系xOy 中,已知点A (3,4),将OA 绕坐标原点O 旋转90°到OA′,则点A′的坐标是 .7.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图看到的是万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中的平行四边形AEFG 可以看成是将平行四边形ABCD 以A 为中心( )A .顺时针旋转60°得到B .顺时针旋转120°得到C .逆时针旋转60°得到D .逆时针旋转120°得到8.如图,已知Rt △ABC 和三角形外一点P ,按要求完成图形. (1)将△ABC 绕顶点C 顺时针方向旋转90°,得△A ′B ′C ′; (2ABC 绕点P 逆时针方向旋转60°,得△A ″B ″C ″.ABC·P9.(2020·江西改编)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.参考答案:第1课时旋转的认识知识点1旋转的有关概念1.下面生活中的实例,不是旋转的是(A)A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.如图,点A,B,C,D,O都在方格纸的格点上,若△COD是由△AOB绕点O按顺时针方向旋转而得到的,则旋转的角度为90°.第2题图第3题图3.如图,△ABC是等边三角形,点D是BC边上的中点,△ABD经过旋转后到达△ACE 的位置,那么:(1)旋转中心是点A;(2)点B,D的对应点分别是点C,E;(3)线段AB,BD,DA的对应线段分别是线段AC,CE,EA;(4)∠B的对应角是∠ACE;(5)旋转的角度为60°.知识点2旋转的性质4.如图,△ABC绕点A逆时针旋转30°至△ADE,AB=5 cm,BC=8 cm,∠BAC =130°,则AD=AB=5cm,DE=BC=8cm,∠EAC=∠BAD=30°,∠DAC=100°.5.如图,△ABC以点C为旋转中心,旋转后得到△EDC.已知AB=1.5,BC=4,AC =5,则DE的长为(A)A.1.5 B.3 C.4 D.5第5题图第6题图6.(2019·湘潭)如图,将△OAB绕点O逆时针旋转70°到△OCD的位置.若∠AOB =40°,则∠AOD=(D)A.45°B.40°C.35°D.30°7.(2020·天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是(D)A.AC=DEB.BC=EFC.∠AEF=∠DD.AB⊥DF知识点3确定旋转中心8.如图,在平面直角坐标系中,△ABC的顶点都在正方形网格线的格点上,将△ABC 绕点P按逆时针方向旋转90°,得到△A′B′C′,则点P的坐标为(C)A.(0,0)B.(0,1)C.(-1,1)D.(1,1)9.(2020·赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是(C)A.等边三角形B.平行四边形C.正八边形D.圆及其一条弦10.(2020·齐齐哈尔)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图1所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图2所示,则旋转角∠BAD的度数为(B)A.15°B.30°C.45°D.60°11.(2019·内江)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为(A)A.1.6 B.1.8 C.2 D.2.6第11题图变式图【变式】如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C.连接AA′,若∠1=27°,则∠B的度数是(B)A.84°B.72°C.63°D.54°12.(2020·聊城)如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于(D)A.2(33+1)B.33+1C.3-1D.3+113.(2019·苏州)如图,在△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC =65°,∠ACB =28°,求∠FGC 的度数.解:(1)证明:∵∠CAF =∠BAE , ∴∠BAC =∠EAF.∵线段AC 绕A 点旋转到AF 的位置,∴AC =AF.在△ABC 和△AEF 中,⎩⎨⎧AB =AE ,∠BAC =∠EAF ,AC =AF ,∴△ABC ≌△AEF (SAS ). ∴EF =BC.(2)∵AB =AE ,∠ABC =65°, ∴∠BAE =180°-65°×2=50°. ∴∠FAG =∠BAE =50°.∵△ABC ≌△AEF ,∴∠F =∠C =28°. ∴∠FGC =∠FAG +∠F =50°+28°=78°.14.(2019·河南)如图,在△OAB 中,顶点O (0,0),A (-3,4),B (3,4),将△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为(D )A .(10,3)B .(-3,10)C .(10,-3)D .(3,-10)错误!模型展示条件:OA绕原点O逆时针旋转90°至OA′.结论:△AOB≌△A′OB′.条件:AB绕点A顺时针旋转90°至AB′.结论:△ABD≌△B′AC.第2课时旋转作图知识点旋转作图1.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是(C)2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定角度得到△M1N1P1,则其旋转中心是点B.第2题图第3题图3.如图,它可以看作“◇”通过连续平移3次得到,也可以看作“◇”绕中心旋转3次,每次旋转90度得到.4.如图,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.解:如图所示.5.(教材P78做一做变式)如图,△ABC绕点O旋转后,顶点A的对应点为A′,试确定旋转后的三角形.解:如图所示.易错点旋转方向不确定导致漏解6.在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O旋转90°到OA′,则点A′的坐标是(-4,3)或(4,-3).02中档题7.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图看到的是万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中的平行四边形AEFG可以看成是将平行四边形ABCD以A为中心(D)A.顺时针旋转60°得到B.顺时针旋转120°得到C.逆时针旋转60°得到D.逆时针旋转120°得到8.如图,已知Rt△ABC和三角形外一点P,按要求完成图形.(1)将△ABC绕顶点C顺时针方向旋转90°,得△A′B′C′;(2)将△ABC绕点P逆时针方向旋转60°,得△A″B″C″.解:(1)△A′B′C′如图所示.(2)△A″B″C″如图所示.9.(2020·江西改编)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.解:(1)如图,△A′B′C′即为所求.(2)如图,△AB′C′即为所求.。
难点解析北师大版八年级数学下册第三章图形的平移与旋转综合练习试题(含详解)
![难点解析北师大版八年级数学下册第三章图形的平移与旋转综合练习试题(含详解)](https://img.taocdn.com/s3/m/1497ab3011661ed9ad51f01dc281e53a580251ee.png)
八年级数学下册第三章图形的平移与旋转综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图在平面直角坐标系中,点N与点F关于原点O对称,点F的坐标是(3,2),则点N的坐标是()A.(﹣3,﹣2)B.(﹣3,2)C.(﹣2,3)D.(2,3)2、下列说法正确的是()A.能够互相重合的两个图形成轴对称B.图形的平移运动由移动的方向决定C.如果一个旋转对称图形有一个旋转角为120°,那么它不是中心对称图形D.如果一个旋转对称图形有一个旋转角为180°,那么它是中心对称图形3、点P(-3,1)关于原点对称的点的坐标是()A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)4、下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5、如图所示,在平面直角坐标系中,点A(0,4),B(2,0),连接AB,点D为AB的中点,将点D 绕着点A旋转90°得到点D的坐标为()A.(﹣2,1)或(2,﹣1)B.(﹣2,5)或(2,3)C.(2,5)或(﹣2,3)D.(2,5)或(﹣2,5)6、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是()A.B.C.D.7、如图,E是正方形ABCD中CD边上的点,以点A为中心,把△ADE顺时针旋转,得到△ABF.下列角中,是旋转角的是()A.∠DAE B.∠EAB C.∠DAB D.∠DAF8、下列交通标志中既是中心对称图形,又是轴对称图形的是()A.B.C.D.9、下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.10、下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6,将△ABC绕点C顺时针旋转30°得到△A′B′C,A、B分别与A′、B′对应,CA′交AB于点M,则CM的长为 ___.2、如图,△ABC 中,∠ACB =90°,∠A =28°,若以点C 为旋转中心,将△ABC 逆时针旋转到△DEC 的位置,点B 在边DE 上,则旋转角的度数是_______.3、若点(),5A n 与点()1,B m -关于原点对称,则n m +的值为______.4、如图,已知三角形ABC 的面积为12,将三角形ABC 沿BC 平移到三角形A ′B ′C ′,使B ′和C 重合,连接AC ′交A ′C 于D ,D 是AC′的中点,则三角形C ′DC 的面积为______.5、如图,在平面直角坐标系中,等腰直角三角形OAB ,∠A =90°,点O 为坐标原点,点B 在x 轴上,点A 的坐标是(1,1).若将△OAB 绕点O 顺时针方向依次旋转45°后得到△OA 1B 1,△OA 2B 2,△OA 3B 3,…,可得A 10),A 2(1,﹣1),A 3(0),…则A 2021的坐标是______.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy 中,点P 为一定点,点P 和图形W 的“旋转中点”定义如下:点Q 是图形W 上任意一点,将点Q 绕原点顺时针旋转90°,得到点Q ',点M 为线段PQ '的中点,则称点M 为点P 关于图形W 的“旋转中点”.(1)如图1,已知点()0,4A ,()2,0B -,()0,2C ,①在点()0,3H ,()1,1G ,()2,2N 中,点 是点A 关于线段BC 的“旋转中点”; ②求点A 关于线段BC 的“旋转中点”的横坐标m 的取值范围;(2)已知()2,0E ,()0,2F ,()4,0G ,点(),0D t ,且⊙D 的半径为2.若OEF 的内部(不包括边界)存在点G 关于⊙D 的“旋转中点”,求出t 的取值范围.2、如图,在平面直角坐标系中,已知△ABC .(1)将△ABC 向下平移6个单位,得111A B C △,画出111A B C △;(2)画出△ABC 关于y 轴的对称图形222A B C △;(3)连接122,,A A C ,并直接写出△A 1A 2C 2的面积.3、如图,在平面直角坐标系中、ABC 的顶点坐标分别为A (4,6),B (5,2),C (2,1)(1)在图中画出ABC 关于点O 的中心对称图形A B C ''',并写出点A ',点B ',点C '的坐标;(2)求A B C '''的面积.4、如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为()3,5A -、()2,1B -、()1,3C -.(1)画出将ABC 关于点O 对称的图形111A B C △;(2)写出点1A 、1B 、1C 的坐标.5、如图,已知△ABC 三个顶点的坐标分A (﹣3,2),B (﹣1,3),C (﹣2,1).将△ABC 先向右平移4个单位,再向下平移3个单位后,得到△A ′B ′C ′,点A ,B ,C 的对应点分别为A ′、B ′、C ′.(1)根据要求在网格中画出相应图形;(2)写出△A ′B ′C ′三个顶点的坐标.-参考答案-一、单选题1、A【分析】根据点F点N关于原点对称,即可求解.【详解】解:∵F点与N点关于原点对称,点F的坐标是(3,2),∴N点坐标为(﹣3,﹣2).故选:A【点睛】本题主要考查了关于原点对称的点的坐标特征,熟练掌握若两点关于原点对称,横纵坐标均互为相反数是解题的关键.2、D【分析】根据图形变换的意义和性质作答.【详解】解:A、一个图形沿着某条直线翻折后能够与另一个图形重合,则两个图形关于某条直线成轴对称,错误;B、图形的平移运动由移动的方向和距离决定,错误;C、如果一个旋转对称图形,有一个旋转角为120度,那么它也有可能有一个旋转角为180度,所以它有可能是中心对称图形,错误;D、如果一个旋转对称图形有一个旋转角为180度,那么它一定是中心对称图形,正确;【点睛】本题考查图形变换的应用,熟练掌握轴对称、平移、中心对称的定义和性质是解答关键.3、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),然后直接作答即可.【详解】解:根据中心对称的性质,可知:点P(-3,1)关于原点O中心对称的点的坐标为(3,-1).故选:C.【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.4、D【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、C分顺时针和逆时针旋转90°两种情况讨论,构造全等三角形即可求解.【详解】解:设点D绕着点A逆时针旋转90°得到点D1,分别过点D,D1作y轴的垂线,分别交y轴于点C、E,如图:根据旋转的性质得∠DAD1=90°,AD1=AD,∴∠AED1=∠ACD=90°,∴∠D1+∠EAD1=90°,∠EAD1+∠DAC=90°,∴∠D1=∠DAC,∴△AD1E≌△DAC,∴CD=AE,ED1=AC,∵A(0,4),B(2,0),点D为AB的中点,∴点D的坐标为(1,2),∴CD=AE=1,ED1=AC=AO-OC=2,∴点D1的坐标为(2,5);设点D绕着点A顺时针旋转90°得到点D2,同理,点D2的坐标为(-2,3),综上,点D绕着点A旋转90°得到点D的坐标为(-2,3)或(2,5),故选:C.【点睛】本题考查了坐标与图形的变化-旋转,全等三角形的判定和性质,根据平面直角坐标系确定出点D1和D2的位置是解题的关键.6、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.7、C【分析】根据“旋转角是指以图形在作旋转运动时,一个点与中心的旋转连线,与这个点在旋转后的对应点与旋转中心的连线,这两条线的夹角”,由此问题可求解.【详解】解:由题意得:旋转角为∠DAB或∠EAF,【点睛】本题主要考查旋转角,熟练掌握求一个旋转图形的旋转角是解题的关键.8、C【分析】结合选项根据轴对称图形(把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称)与中心对称图形(指把一个图形绕着某一点旋转180 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称)的概念求解即可.【详解】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选:C.【点睛】题目主要考查轴对称和中心对称图形的识别,深刻理解轴对称与中心对称图形的概念是解题关键.9、D【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.不是轴对称图形,是中心对称图形,故本选项不符合题意;C.是轴对称图形,不是中心对称图形,故本选项符合题意;D.既是轴对称图形,又是中心对称图形,故本选项不符合题意.故选:D.本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A .不是中心对称图形,也不是轴对称图形,故此选项不合题意;B .是轴对称图形,也是中心对称图形,故此选项符合题意;C .是轴对称图形,不是中心对称图形,故此选项不合题意;D .不是轴对称图形,是中心对称图形,故此选项不合题意.故选:B .【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.二、填空题1、6【分析】根据旋转的性质可得,30ACA '∠=︒,所以60BCM ∠=︒,由题意可得:60B ∠=︒,BCM 为等边三角形,即可求解.【详解】解:∵90ACB ∠=︒,30BAC ∠=︒,∴60B ∠=︒,由旋转的性质可得,30ACA '∠=︒,∴60BCM ACB ACM ∠=∠-∠=︒,∴BCM 为等边三角形,∴6CM BC ==,故答案为:6【点睛】此题考查了直角三角形的性质,旋转的性质以及等边三角形的判定与性质,解题的关键是灵活掌握相关基本性质进行求解.2、56°【分析】直接利用旋转的性质得出EC =BC ,进而利用三角形内角和定理得出∠E =∠ABC =62°,即可得出∠ECB 的度数,得出答案即可.【详解】解:∵以点C 为旋转中心,将△ABC 旋转到△DEC 的位置,点B 在边DE 上,∴EC =BC ,∵∠ACB =90°,∠A =28°,∴∠E =∠ABC =62°,∴∠EBC =62°,∴∠ECB =180°-62°-62°=56°,∴则旋转角的度数是56°.故答案为:56°.【点睛】此题主要考查了旋转的性质以及三角形内角和定理,得出∠E =∠ABC 的度数是解题关键.3、-4【分析】根据关于原点对称的点的横坐标和纵坐标都互为相反数解答.【详解】解:由点(),5A n 与点()1,B m -关于原点对称,可得n =1,5m =-,∴=15=4n m +--故答案为:﹣4.【点睛】本题考查了关于原点对称的点的坐标的特征:横坐标和纵坐标都互为相反数.4、6【分析】由平移的性质可得BC CC '=,则==12ABC ACC S S '△△,同理可得1==62ACD CDC ACC S S S ''=△△△. 【详解】解:由平移的性质可得BC CC '=,∴==12ABC ACC S S '△△(等底同高),∵D 是AC '的中点,∴AD DC '=, ∴1==62ACD CDC ACC S S S ''=△△△,故答案为:6.【点睛】本题主要考查了平移的性质,三角形面积,解题的关键在于能够熟练掌握平移的性质.5、()【分析】根据题意得:A 10),A 2(1,﹣1),A 3(0),()()()(()456781,1,,1,1,,1,1A A A A A --- ,…,由此发现,旋转8次一个循环,再由202182525÷= ,即可求解.【详解】解:根据题意得:A 10),A 2(1,﹣1),A 3(0,()()()(()456781,1,,1,1,,1,1A A A A A --- ,…,由此发现,旋转8次一个循环, ∵202182525÷= ,∴A 2021的坐标是() .故答案为:()【点睛】本题主要考查了图形的旋转,明确题意,准确得到规律是解题的关键.三、解答题1、(1)①点(0,3)H 为点A 关于线段BC 的“旋转中点”②01m ≤≤;(2)t 的取值范围20t -<<或-4-2t <<.【分析】(1)①分别假设点H G N ,,为点A 关于线段BC 的“旋转中点”,求出点Q (旋转之前的点),查看点Q 是否在线段BC 即可;②设点A 关于线段BC 的“旋转中点”的坐标为(),m n ,按照题意,逆向思维找到点Q ,根据点Q 在线段BC 上,求解即可;(2)设旋转中点M 的坐标为(),m n ,则应满足()()2222222422244t n t m n t m -≤-≤+⎧⎪-≤-≤⎨⎪--+-=⎩,找到点Q ',线段Q F '的中点为M ,再将点Q '逆时针旋转90︒,得到点Q ,点Q 应该在使得点(),M m n 在OEF 的内部(不包括边界),求解即可.【详解】解:(1)①假设点()0,3H 为点A 关于线段BC 的“旋转中点”, (),Q x y ',则点()0,3H 为线段AQ '的中点, 即002432x y +⎧=⎪⎪⎨+⎪=⎪⎩, 解得02x y =⎧⎨=⎩,即()0,2Q ', 将Q '绕原点逆时针旋转90︒得到点Q ,可得点Q 的坐标为()2,0Q -,此时点Q 在线段BC 上,符合题意;假设点()1,1G 为点A 关于线段BC 的“旋转中点”, (),Q x y ',则点()1,1G 为线段AQ '的中点, 即012412x y +⎧=⎪⎪⎨+⎪=⎪⎩,解得22x y =⎧⎨=-⎩,即()2,2Q '-, 将Q '绕原点逆时针旋转90︒得到点Q ,可得点Q 的坐标为()2,2Q ,此时点Q 不在线段BC 上,不符合题意;假设点()2,2N 为点A 关于线段BC 的“旋转中点”, (),Q x y ',则点()2,2N 为线段AQ '的中点, 即022422x y +⎧=⎪⎪⎨+⎪=⎪⎩,解得40x y =⎧⎨=⎩,即()4,0Q ', 将Q '绕原点逆时针旋转90︒得到点Q ,可得点Q 的坐标为()0,4Q ,此时点Q 不在线段BC 上,不符合题意;综上所得,点()0,3H 为点A 关于线段BC 的“旋转中点”,②设点A 关于线段BC 的“旋转中点”M 的坐标为(),m n ,(),Q x y ',则点(),M m n 为线段AQ '的中点, 即0242x m y n +⎧=⎪⎪⎨+⎪=⎪⎩, 解得224x m y n =⎧⎨=-⎩即()2,24Q m n '-, 将Q '逆时针旋转90︒得到点Q ,可得点Q 的坐标为()24,2Q n m -+,由题意可知点Q 在线段BC 上,即2240022n m -≤-+≤⎧⎨≤≤⎩, 解得01m ≤≤;(2)设OEF 的内部(不包括边界)存在点G 关于⊙D 的“旋转中点”,为(),M m n ,(),Q x y ', 则点(),M m n 为线段GQ '的中点, 即4202x m y n +⎧=⎪⎪⎨+⎪=⎪⎩, 解得242x m y n=-⎧⎨=⎩即()24,2Q m n -', 将Q '逆时针旋转90︒得到点Q ,可得点Q 的坐标为()2,24Q n m --,由题意可知点Q 在⊙D 上,即()()2222222422244t n t m n t m -≤-≤+⎧⎪-≤-≤⎨⎪--+-=⎩,解得13m n ≤≤⎧⎪⎨⎪⎩∴0≤2n +t≤2或-2≤2n +t≤0,∴222t t n --≤≤或222t t n +--≤≤, 设EF 解析式为y kx b =+把坐标代入得,220b k b =⎧⎨+=⎩,解得21b k =⎧⎨=-⎩, ∴EF 解析式为2y x =-+,由题意可得:点(),M m n 在OEF 的内部(不包括边界), ∴200m n m n +⎧⎪⎨⎪⎩<>>, ∴0<n <2, 又∵2222t t n +--≤≤-, ∴02222t t ⎧->⎪⎪⎨-⎪-<⎪⎩, 解得20t -<<, ∵222t t n +--≤≤, ∴2+0222t t ⎧->⎪⎪⎨⎪-<⎪⎩, -4-2t <<,∴t 的取值范围20t -<<或-4-2t <<.【点睛】此题考查了坐标系点坐标的旋转变换,涉及了不等式组的求解,新概念的理解,解题的关键是理解点P 和图形W “旋转中点”的概念,并掌握点绕原点顺时针或逆时针旋转90︒后的坐标公式.绕原点旋转90︒的坐标公式:点(),x y 绕原点顺时针转90︒后坐标为(),y x -,逆时针转旋转90︒坐标为(),y x -.2、(1)见解析;(2)见解析;(3)见解析,7【分析】(1)依据平移的方向和距离,即可得到111A B C △;(2)依据轴对称的性质,即可得到222A B C △;(3)依据割补法进行计算,即可得到△A 1A 2C 2的面积.【详解】(1)如图所示,111A B C △即为所求;(2)如图所示,222A B C △即为所求;(3)如图所示,△A 1A 2C 2即为所求作的三角形,△A 1A 2C 2的面积=3×6-12×2×3-12×2×6-12×1×4=18-3-6-2=7.【点睛】本题考查作图−平移变换,轴对称变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.3、(1)点A'的坐标为(-4,-6),点B'的坐标为(-5,-2),点C'的坐标为(-2,-1),画图见解析;(2)13 2【分析】(1)先根据关于原点对称的点的坐标特征求出点A',点B',点C'的坐标,然后描出点A',点B',点C',最后顺次连接点A',点B',点C'即可;(2)根据A B C'''的面积等于其所在的长方形面积减去周围三个三个小三角形面积求解即可.【详解】解:(1)∵A B C'''是△ABC关于原点对称的中心对称图形, A(4,6),B(5,2),C(2,1),∴点A'的坐标为(-4,-6),点B'的坐标为(-5,-2),点C'的坐标为(-2,-1);∴如图所示,A B C'''即为所求;(2)由图可知11113352514132222A B C S '''=⨯-⨯⨯-⨯⨯-⨯⨯=△ . 【点睛】本题主要考查了画中心对称图形,关于原点对称的点的坐标特征,三角形面积,解题的关键在于能够熟练掌握关于原点对称的点的坐标特征.4、(1)见解析;(2)()13,5A -,()12,1B -,()11,3C -.【分析】(1)直接利用关于点O 对称的性质得出对应点位置,顺次连接各个对应点,即可;(2)根据对应点位置直接写出坐标,即可.【详解】解:(1)如图所示,(2)()13,5A -,()12,1B -,()11,3C -.【点睛】本题考查了利用中心对称变换在坐标系中作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.5、(1)见解析;(2)(1,1)A '-,(3,0)'B ,(2,2)C '-【分析】(1)利用平移变换的性质分别作出A ,B ,C 的对应点A ',B ′,C '即可.(2)根据平面直角坐标系写出A ',B ′,C '的坐标.【详解】解:(1)如图,△A B C '''即为所求,(2)根据平面直角坐标系可得:(1,1)A '-,(3,0)'B ,(2,2)C '-.【点睛】本题考查作图-平移变换等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.。
图形的旋转 专项练习 北师大版数学八年级下册
![图形的旋转 专项练习 北师大版数学八年级下册](https://img.taocdn.com/s3/m/394b7e2beef9aef8941ea76e58fafab069dc44f8.png)
2023年北师大版数学八年级下册《图形的旋转》专项练习一、选择题1.若点A的坐标为(6,3),O为坐标原点,将OA绕点O接顺时针方向旋转90°得到OA′,则点A′的坐标为( )A(3,6) B(-3,6) C(-3,-6) D(3,-6)2.如图,已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,则A1坐标是( )A.(﹣1,2)B.(2,﹣1)C.(1,﹣2)D.(﹣2,1)3.在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是( )A.(4,﹣4)B.(4,4)C.(﹣4,﹣4)D.(﹣4,4)4.如图,把长短确定的两根木棍AB、AC的一端固定在A处,和第三根木棍BM 摆出△ABC,木棍AB固定,木棍AC绕A转动,得到△ABD,这个实验说明( )A.△ABC与△ABD不全等B.有两边分别相等的两个三角形不一定全等C.两边和它们的夹角分别相等的两个三角形全等D.有两边和其中一边的对角分别相等的两个三角形不一定全等5.如果一个图形绕着某点O旋转角α后所得到的图形与原图形重合,那么称此图形是关于点O的旋转对称图形,显然正多边形都是旋转对称图形,下列多边形中,是旋转对称图形且旋转角为45º的是()A.正三角形B.正方形C.正八边形D.正十边形6.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A 的对应点A′恰好落在BC边的延长线上,下列结论错误的是( )A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′ACD.B′C平分∠BB′A′7.如图,△ABC绕着点O按顺时针方向旋转90°后到达了△CDE的位置,下列说法中不正确的是( )A.线段AB与线段CD互相垂直B.线段AC与线段CE互相垂直C.点A与点E是两个三角形的对应点D.线段BC与线段DE互相垂直8.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是( )A.(1,1)B.(1,2)C.(1,3)D.(1,4)9.如图所示,在等边△ABC中,点D是边AC上一点,连接BD,将△BCD绕着点B 逆时针旋转60º,得到△BAE,连接ED,则下列结论中:①AE∥BC;②∠DEB=60º;③∠ADE=∠BDC.其中正确结论的序号是()A.①②B.①③C.②③D.只有①10.已知坐标平面上的机器人接受指令“[a,A]”(a≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A后,再向面对方向沿直线行走a,若机器人的位置在原点,面对方向为y轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( )A.(-1,-3) B.(-1,3) C.(3,-1) D.(-3,-1) 11.如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B顺时针旋转60°得到△BCD,若点B的坐标为(2,0),则点C的坐标为( )A. B.(5,1) C. D.(6,1)12.等边△ABC如图放置,A(1,1),B(3,1),等边三角形的中心是点D,若将点D绕点A旋转90°后得到点D′,则D′的坐标( )A.(1+33,0) B.(1﹣33,0)或(1+33,2)C.(1+33,0)或(1﹣33,2) D.(2+33,0)或(2﹣33,0)二、填空题13.将一个正六边形绕着其中心旋转,至少旋转度可以和原来的图形重合.14.如图,在平面直角坐标系中,将点P(﹣4,2)绕原点顺时针旋转90°,则其对应点Q的坐标为________ .15.一个正n边形绕它的中心至少旋转18°才能与原来的图形完全重合,则n的值为.16.如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A′B′C′,连接AB′,并有AB′=3,则∠A′的度数为_______.17.如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF= .18.P是等边△ABC内部一点,∠APB、∠BPC、∠CPA的大小之比是5:6:7,将△ABP 逆时针旋转,使得AB与AC重合,则以PA、PB、PC的长为边的三角形的三个角∠PCQ:∠QPC:∠PQC= .三、作图题19.如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3).(1)画出△ABC关于点O的中心对称图形△A1B1C1;(2)画出△ABC绕原点O逆时针旋转90°的△A2B2C2,直接写出点C2的坐标为;(3)若△ABC内一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则Q的坐标为.(用含m,n的式子表示)20.如图,△DEF是△ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a、b值.四、解答题21.如图,在△ABC中,∠B=20°,∠ACB=30°,AB=2cm,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE的度数和AE的长.22.如图,△ABC中,AD是中线,将△ACD旋转后与△EBD重合.(1)旋转中心是点,旋转了度;(2)如果AB=7,AC=4,求中线AD长的取值范围.23.如图,已知在△ABC中,∠BAC=1200,以BC为边向形外作等边三角形△BCD,把△ABD绕着点D按顺时针方向旋转600后得到△ECD,若AB=3,AC=2,求∠BAD的度数与AD的长.24.如图①,△ABC是等边三角形,DE∥BC,分别交AB、AC于点D、E.(1)求证:△ADE是等边三角形;(2)如图②,将△ADE绕着点A逆时针旋转适当的角度,使点B在ED的延长线上,连接CE,判断∠BEC的度数及线段AE、BE、CE之间的数量关系,并说明理由.25.如图,在等边△ABC中,点D是AC边上一点,连接BD,过点A作AE⊥BD于E.(1)如图1,连接CE并延长CE交AB于点F,若∠CBD=15°,AB=4,求CE的长;(2)如图2,当点D在线段AC的延长线上时,将线段AE绕点A逆时针旋转60°得到线段AF,连接EF,交BC于G,连接CF,求证:BG=CG.答案1.D2.A3.A4.D5.C6.C7.C8.B9.A10.D11.A12.C13.答案为:60.14.答案为:(2,4)15.答案为:20.16.答案为:135°17.答案为:18.答案为:3:4:2.19.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点C2的坐标为(﹣3,1);(3)若△ABC内一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则Q的坐标为(﹣n,m).故答案为(﹣3,1),(﹣n,m).20.解:(1)点A(2,3),点D(-2,-3),点B(1,2),点E(-1,-2),点C(3,1),点F(-3,-1);对应点的坐标特征为:横坐标、纵坐标都互为相反数;(2)由(1)可知,a+3+2a=0,4-b+2b-3=0,解得a=-1,b=-1.21.解:(1)∠BAC=180°﹣∠B﹣∠ACB=180°﹣20°﹣30°=130°,即∠BAD=130°,∵△ABC逆时针旋转一定角度后与△ADE重合,∴旋转中心为点A,旋转的度数为130°;(2)∵△ABC逆时针旋转一定角度后与△ADE重合,∴∠EAD=∠CAB=130°,AE=AC,AD=AB=2cm,∴∠BAE=360°﹣130°﹣130°=100°,∵点C恰好成为AD的中点,∴AC=0.5AD=1cm,∴AE=1cm.22.解:(1)∵将△ACD旋转后能与△EBD重合,∴旋转中心是点D,旋转了180度;故答案为:D,180;(2)∵将△ACD旋转后能与△EBD重合,∴BE=AC=4,DE=AD,在△ABE中,由三角形的三边关系得,AB﹣BE<AE<AB+BE,∵AB=7,∴3<AE<11,即3<2AD<11,∴1.5<AD<5.5,即中线AD长的取值范围是1.5<AD<5.5.23.(1)证明:∵△BCD为等边三角形,∴∠3=∠4=60°,DC=DB,∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴∠5=∠1+∠4=∠1+60°,∴∠2+∠3+∠5=∠2+∠1+120°,∵∠BAC=120°,∴∠1+∠2=180°-∠BAC=60°,∴∠2+∠3+∠5=60°+120°=180°,∴点A、C、E在一条直线上;(2)∵点A、C、E在一条直线上,而△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴∠ADE=60°,DA=DE,∴△ADE为等边三角形,∴∠DAE=60°,∴∠BAD=∠BAC-∠DAE=120°-60°=60°;(3)∵点A、C、E在一条直线上,∴AE=AC+CE,∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴CE=AB,∴AE=AC+AB=2+3=5,∵△ADE为等边三角形,∴AD=AE=5.24.(1)证明:∵△ABC是等边三角形,∴∠A=∠B=∠C,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠A=∠ADE=∠AED,∴△ADE是等边三角形.∵△ABC是等边三角形;(2)解:AE+CE=BE;理由如下:∵AB=AC,AD=AE,∠BAD=60°﹣∠DAC=∠CAE,由旋转的性质得:△ABD≌△ACE,∴AD=AE,∵∠DAE=∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=60°,∴△ADE是等边三角形,∴AE=DE,∴AE+CE=DE+BD=BE.25.解:(1)∵△ABC为等边三角形∴AB=BC=AC=4,∠BAC=60°且∠DBC=15°∴∠ABE=45°且AE⊥BD∴∠BAE=∠ABE=45°∴AE=BE,且AC=BC∴CF垂直平分AB即AF=BF=2,CF⊥AB∵∠ABE=45°∴∠FEB=∠ABE=45°∴BF=EF=2,∵Rt△BCF中,(2)如图2:过点M作CM∥BD∵将线段AE绕点A逆时针旋转60°得到线段AF ∴AE=AF,∠EAF=60°,∴△AEF为等边三角形∴∠AFE=∠AEF=60°∴∠FAC+∠EAC=60°,且∠BAE+∠EAC=60°∴∠BAE=∠CAF,且AB=AC,AE=AF∴△ABE≌△ACF∴BE=CF,∠AEB=∠AFC=90°∴∠BEF=150°,∠MFC=30°∵MC∥BD∴∠BEF=∠GMC=150°,∴∠CMF=30°=∠CFM∴CM=CF且CF=BE∴BE=CM且∠BGE=∠CGM,∠BEG=∠CMG ∴△BGE≌△GMC∴BG=GC.。
初二数学图形的旋转练习题
![初二数学图形的旋转练习题](https://img.taocdn.com/s3/m/773ba2b6f80f76c66137ee06eff9aef8951e4862.png)
初二数学图形的旋转练习题旋转是数学中常见的图形变换方式之一,通过对图形进行旋转可以帮助我们理解几何形状的性质和关系。
在初二数学学习中,图形的旋转也是一个重要的练习题型。
本文将通过几个练习题来帮助同学们巩固和提高对初二数学图形旋转的理解。
1. 点的旋转练习题:题目1:已知点A(2,3),将该点绕原点逆时针旋转90度,求旋转后的坐标。
解析:将点A绕原点逆时针旋转90度相当于将A的x坐标和y坐标互换,并且将新的x坐标取负数。
根据这个规律,点A(2,3)绕原点逆时针旋转90度后的新坐标为(-3,2)。
题目2:已知点B(-4,5),将该点绕原点顺时针旋转180度,求旋转后的坐标。
解析:将点B绕原点顺时针旋转180度相当于将B的x坐标和y坐标都取负数。
根据这个规律,点B(-4,5)绕原点顺时针旋转180度后的新坐标为(4,-5)。
2. 图形的旋转练习题:题目3:已知矩形ABCD,其中A(2,2),B(6,2),C(6,4),D(2,4),将该矩形绕原点逆时针旋转90度,求旋转后各顶点的坐标。
解析:首先,按照旋转规则,点A(2,2)绕原点逆时针旋转90度后的新坐标为(-2,2)。
同样,点B(6,2)绕原点逆时针旋转90度后的新坐标为(-2,6),点C(6,4)旋转后的新坐标为(-4,6),点D(2,4)旋转后的新坐标为(-4,2)。
这样,旋转后矩形的各顶点坐标为A'(-2,2),B'(-2,6),C'(-4,6),D'(-4,2)。
3. 图形变换的综合练习题:题目4:已知图形ABCD是一个正方形,其中A(0,0),B(2,0),C(2,2),D(0,2),将该正方形绕原点逆时针旋转45度,然后平移x轴正方向2个单位,求旋转和平移后各顶点的坐标。
解析:首先,按照旋转规则,将正方形的各顶点旋转45度后的新坐标为A'、B'、C'和D'。
根据题目要求平移x轴正方向2个单位,新的坐标为A''、B''、C''和D''。
2020初中数学图形的旋转变换综合题(较易 附答案)
![2020初中数学图形的旋转变换综合题(较易 附答案)](https://img.taocdn.com/s3/m/736530825727a5e9856a61e3.png)
2020初中数学图形的旋转变换综合题(较易附答案)一.选择题(共2小题)1.如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P、EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:①当x=1时,点P是正方形ABCD的中心;②当x=时,EF+GH>AC;③当0<x<2时,六边形AEFCHG面积的最大值是;④当0<x<2时,六边形AEFCHG周长的值不变.其中正确的是(写出所有正确判断的序号)()A.①②B.②③C.③④D.①④2.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②当x=1时,四边形ABC1D1是菱形;③当x=2时,△BDD1为等边三角形;④s=(x﹣2)2(0<x<2);其中正确的是()A.①②③B.①③④C.①②④D.①②③④二.填空题(共4小题)3.将△ABC绕点A按逆时针方向旋转θ度,并将各边长变为原来的n倍得△AB′C′,即如图①,∠BAB′=θ,===n,我们将这种变换记为[θ,n].如图②,在△DEF中,∠DFE=90°,将△DEF绕点D旋转,做变换[60°,n]得△DE′F′,如果点E、F、F′恰好在同一直线上,那么n=.4.如图①,在矩形纸片ABCD中,AB=+1,AD=.(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的D′处,压平折痕交CD于点E,则折痕AE的长为.(2)如图③,再将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,B′C′交AE于点F,则四边形B′FED′的面积为.(3)如图④,将图②中的△AED′绕点E顺时针旋转α角,得△A′ED″,使得EA′恰好经过顶点B,求弧D′D″的长.(结果保留π)5.如图1,在平面直角坐标系中,O是坐标原点,矩形OABC在第二象限且A、B、C坐标分别为(﹣3,0)(﹣3,),(0,),将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴时,旋转角α=;(2)在四边形OABC旋转过程中,当0<α≤180°时,存在着这样的点P和点Q,使BP=BQ,请直接写出点P的坐标.6.如图,在平面直角坐标系中,点A的坐标为(﹣8,0),点C的坐标为(0,6),将矩形OABC绕O按顺时针方向旋转α度得到OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.当45°<α≤90°,且BP=BQ时,线段PQ的长是.三.解答题(共8小题)7.如图,△ABC和△ADE是等腰直角三角形,∠ADE=∠ACB=90°,连接BE,F为BE 的中点,连接CF、DF.(1)如图1,当AD与AC重合时,猜想线段CF、DF的关系,并证明你的猜想;(2)如图2,当DA⊥AB时,(1)中猜想的结论是否成立?请说明理由;(3)如图3,若△ABC不动,△ADE绕点A旋转任意一个角度,其他条件不变,(1)中的结论成立吗?请直接回答,不必说明理由.8.如图,在Rt△ACB中,∠ACB=90°,∠A=30°,点D是AB边的中点.(1)如图1,若CD=4,求△ACB的周长.(2)如图2,若E为AC的中点,将线段CE以C为旋转中心顺时针旋转60°,使点E 至点F处,连接BF交CD于点M,连接DF,取DF的中点N,连接MN,求证:MN=2CM.(3)如图3,以C为旋转中心将线段CD顺时针旋转90°,使点D至点E处,连接BE 交CD于M,连接DE,取DE的中点N,连接交MN,试猜想BD、MN、MC之间的关系,直接写出其关系式,不证明.9.如图,在平面直角坐标系中,点O为坐标原点,点A、B的坐标分别为(0,a)、(﹣a,0)(a>0),点C是点B关于y轴的对称点,连接AB、AC,△ABC的面积为18.①点C的坐标是;②动点D从动点B出发,沿x轴正方向运动,动点E从点A出发,沿y轴正方向运动,两点同时出发,运动速度均为1个单位长度/秒,连接DE,在DE右侧,以DE为斜边作等腰直角△DEF,设动点D的运动时间为t秒,请用含t的代数式表示点F的坐标;③在②的条件下,连接AD、OF,作线段AD的垂直平分线,与直线OF相交于点G,连接DG,直线DG与y轴相交于点K,当CA=CD时,求点K的坐标?10.在△ABC中,∠ABC=90°,D为AC中点,将线段DC绕点D旋转,得到线段DE,连接AE,CE;(1)如图①,判断△ACE的形状,并证明;(2)如图②,连接BE,当BE平分∠ABC时,求证:ED⊥AC;(3)在(2)的条牛下,H为△ACE内一点,且满足∠AHC=135°,过E作EM⊥CH,若EM=3,求CH的长度.11.如图(1),△ABO与△A′B′O′均为等边三角形,点A′、B′分别在线段OB、OA 上,△ABO固定不动,△A′B′O绕O点顺时针旋转∠α(0≤α≤180°),过A′、A 点分别作OA、OA′的平行线交于O′点.(1)如图(2),当0≤α≤60°时,若∠AO′A′=45°,则旋转角α=;(2)如图(3),当60°≤α≤180°时,若OO′=AA′,则旋转角α=;当△AB′O′旋转时,∠AO′A′与旋转角α的关系为(3)如图(4),在△A′B′O旋转过程中,连O′B、OB,试判定∠BO′B′随旋转角α的变化情况,并证明.12.如图1,在△ABC中,∠ACB=90°,点D、点E分别在AC、AB边上,连结DE、DB,使得∠DEA=90°,若点O是线段BD的中点,连结OC、OE,则易得OC=OE;操作:现将△ADE绕A点逆时针旋转得到△AFG(点D、点E分别与点F、点G对应),连结FB,若点O是线段FB的中点,连结OC、OG,探究线段OC、OG之间的数量关系;(1)如图2,当点G在线段CA的延长线上时,OC=OG是否成立;若成立,请证明;若不成立,请说明理由;(2)如图3,当点G在线段CA上时,线段OC=OG是否成立;若成立,请证明;若不成立,请说明理由;(3)如图4,在△ADE的旋转过程中,线段OC、OG之间的数量关系是否发生了变化?请直接写出结论,不用说明理由.13.已知DE=CE,AC=AB,∠CED=∠CAB=90°,N是BD中点.(1)如图1,求证:EN⊥AN,EN=AN;(2)将△DCE绕C旋转至如图2位置,其他条件不变,试探究EN与AN的关系并证明;(3)如图3,M是CD的中点,BE交AM于F,填空:=.14.已知,如图1,正方形ABCD边长为1,将正方形ABCD绕点A逆时针旋转α°,后得到正方形AB′C′D′(0°<α<90°),C′D′与直线CD相交于点E,C′B′与直线CD相交于点F.(1)试猜想∠EAF=°;△EC′F的周长为.(2)如图2,连接B′D′分别交AE、AF于P,Q两点,在旋转过程中,若D′P=a,QB′=b,试用a,b来表示PQ,并说明理由.(3)如图3,当旋转角等于45°时,求△APQ的面积.参考答案与试题解析一.选择题(共2小题)1.如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P、EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:①当x=1时,点P是正方形ABCD的中心;②当x=时,EF+GH>AC;③当0<x<2时,六边形AEFCHG面积的最大值是;④当0<x<2时,六边形AEFCHG周长的值不变.其中正确的是(写出所有正确判断的序号)()A.①②B.②③C.③④D.①④【解答】解:①正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,∴△BEF和△DGH是等腰直角三角形,∴当AE=1时,重合点P是BD的中点,∴点P是正方形ABCD的中心;故①结论正确;②正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,∴△BEF∽△BAC,∵x=,∴BE=2﹣=,∴,即,∴EF=AC,同理,GH=AC,∴EF+GH=AC,故②结论错误;③六边形AEFCHG面积=正方形ABCD的面积﹣△EBF的面积﹣△GDH的面积.∵AE=x,∴六边形AEFCHG面积=22﹣BE•BF﹣GD•HD=4﹣×(2﹣x)•(2﹣x)﹣x•x =﹣x2+2x+2=﹣(x﹣1)2+3,∴六边形AEFCHG面积的最大值是3,故③结论错误;④当0<x<2时,∵EF+GH=AC,六边形AEFCHG周长=AE+EF+FC+CH+HG+AG=(AE+CH)+(FC+AG)+(EF+GH)=2+2+2=4+2,故六边形AEFCHG周长的值不变,故④结论正确.故选:D.2.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②当x=1时,四边形ABC1D1是菱形;③当x=2时,△BDD1为等边三角形;④s=(x﹣2)2(0<x<2);其中正确的是()A.①②③B.①③④C.①②④D.①②③④【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,AA1=CC1,在△A1AD1与△CC1B中,,∴△A1AD≌△CC1B(SAS),故①正确;②∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故②正确;③如图1:,则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故③正确.④如图2,易得△AC1F∽△ACD,∴=()2,解得:S△AC1F=(x﹣2)2(0<x<2);故④正确.故选:D.二.填空题(共4小题)3.将△ABC绕点A按逆时针方向旋转θ度,并将各边长变为原来的n倍得△AB′C′,即如图①,∠BAB′=θ,===n,我们将这种变换记为[θ,n].如图②,在△DEF中,∠DFE=90°,将△DEF绕点D旋转,做变换[60°,n]得△DE′F′,如果点E、F、F′恰好在同一直线上,那么n=2.【解答】解:∵∠DFE=90°,将△DEF绕点D旋转,做变换[60°,n]得△DE′F′,∴∠DFF′=90°,θ=∠FDF′=60°,在Rt△FDF′中,∠DFF'=90°,∠FDF′=60°,∴∠DF′F=30°,∴n==2;故答案为:2.4.如图①,在矩形纸片ABCD中,AB=+1,AD=.(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的D′处,压平折痕交CD于点E,则折痕AE的长为.(2)如图③,再将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,B′C′交AE于点F,则四边形B′FED′的面积为﹣.(3)如图④,将图②中的△AED′绕点E顺时针旋转α角,得△A′ED″,使得EA′恰好经过顶点B,求弧D′D″的长.(结果保留π)【解答】解:(1)∵△ADE反折后与△AD′E重合,∴AD′=AD=D′E=DE=,∴AE===;(2)∵由(1)知AD′=,∴BD′=1,∵将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,∴B′D′=BD′=1,∵由(1)知AD′=AD=D′E=DE=,∴四边形ADED′是正方形,∴B′F=AB′=﹣1,∴S梯形B′FED′=(B′F+D′E)•B′D′=(﹣1+)×1=﹣;故答案为:(1);(2)﹣;(3)∵∠C=90°,BC=,EC=1,∴tan∠BEC==,∴∠BEC=60°,由翻折可知:∠DEA=45°,∴∠AEA′=75°=∠D′ED″,∴==.5.如图1,在平面直角坐标系中,O是坐标原点,矩形OABC在第二象限且A、B、C坐标分别为(﹣3,0)(﹣3,),(0,),将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴时,旋转角α=60°;(2)在四边形OABC旋转过程中,当0<α≤180°时,存在着这样的点P和点Q,使BP=BQ,请直接写出点P的坐标(,)或(﹣1,).【解答】解:(1)如图2,∵矩形OABC在第二象限且A、B、C坐标分别为(﹣3,0)(﹣3,),(0,),∴BC=AO=3,AB=∴A′B′=AB=,OA′=OA=3,∵B′A′⊥OA′,∴tan∠A′OB′==,∴∠A′OB′=30°,∴∠AOA′=90°﹣30°=60°,即α=60°.故答案是:60°.(2)存在这样的点P和点Q,使BP=BQ.理由如下:过点Q画QH⊥OA′于H,连接OQ,则QH=OC′=OC,∵S△POQ=PQ•OC,S△POQ=OP•QH,∴PQ=OP.设BP=x,∵BP=BQ,∴BQ=2x,如图3,当点P在点B左侧时,OP=PQ=BQ+BP=3x,在Rt△PCO中,(3+x)2+()2=(3x)2,解得x1=,x2=,(不符实际,舍去).∴PC=BC+BP=3+=,∴P1(,),如图4,当点P在点B右侧时,∴OP=PQ=BQ﹣BP=x,PC=3﹣x.在Rt△PCO中,(3﹣x)2+()2=x2,解得x=2,∴PC=BC﹣BP=3﹣2=1,∴P2(﹣1,),综上可知,存在点P1(,),P2(﹣1,)使BP=BQ.6.如图,在平面直角坐标系中,点A的坐标为(﹣8,0),点C的坐标为(0,6),将矩形OABC绕O按顺时针方向旋转α度得到OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.当45°<α≤90°,且BP=BQ时,线段PQ的长是.【解答】解:∵45°<α≤90°,∴点P在点B的右侧.如图,过点Q作QH⊥OA′于H,连接OQ,则QH=OC′=OC.∵S△POQ=PQ•OC,S△POQ=OP•QH,∴PQ=OP.设BP=x,∵BP=BQ,∴BQ=2x.则OP=PQ=BQ﹣BP=x,PC=8﹣x.在Rt△PCO中,根据勾股定理知,PC2+OC2=OP2,即(8﹣x)2+62=x2,解得x=.∴PQ=BP=.故答案是:.三.解答题(共8小题)7.如图,△ABC和△ADE是等腰直角三角形,∠ADE=∠ACB=90°,连接BE,F为BE 的中点,连接CF、DF.(1)如图1,当AD与AC重合时,猜想线段CF、DF的关系,并证明你的猜想;(2)如图2,当DA⊥AB时,(1)中猜想的结论是否成立?请说明理由;(3)如图3,若△ABC不动,△ADE绕点A旋转任意一个角度,其他条件不变,(1)中的结论成立吗?请直接回答,不必说明理由.【解答】证明:(1)DF=CF,DF⊥CF理由:如图1,∵∠ADE=∠ACB=90°,∴DE∥BC,∴∠DEF=∠GBF,∠EDF=∠BGF.∵F为BE中点,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.∵AD=DE,∴AD=GB,∵AC=BC,∴AC﹣AD=BC﹣GB,∴DC=GC.∵∠ACB=90°,∴△DCG是等腰直角三角形,∵DF=GF.∴DF=CF,DF⊥CF.(2)如图2,延长DF交BA于点H,∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.∴∠AED=∠DAE=∠ABC=45°,∵CAE=∠BAD=90°,∵AE∥BC,∴∠AEB=∠CBE,∴∠DEF=∠HBF.∵F是BE的中点,∴EF=BF,∴△DEF≌△HBF,∴DF=HF,ED=HB,∵AD=ED,∴AD=HB在△ADC和△BHC中,,∴△ADC≌△BHC,∴DC=HC,∴△DCH是等腰直角三角形,∵DF=HF,∴DF=CF,DF⊥CF;(3)DF=CF,DF⊥CF;理由:如图3,过点B作BH∥ED,与DF的延长线交于点H,连接CH,∴∠DEF=∠BHF,在△FDE和△FHB中,,∴△FDE≌△FHB,∴DF=FH,DE=HB,∴AD=ED=HB,作AN⊥EB于点N,由已知∠ADE=90°,∠ACB=90°,可证得∠DEN=∠DAN,∠NAC=∠CBF,∵BH∥ED,∴∠DEN=∠HBF,∴∠CBH=∠CBF+∠HBF=∠NAC+∠DEN=∠NAC+∠DAN=∠CAD,在△CBH和△CAD中,,∴△CBH≌△CAD,∴CH=CD,∠DCA=∠BCH,∴∠DCH=∠DCA+∠ACH=∠BCH+∠ACH=∠ACB=90°,∵DF=HF,∴DF=CF,DF⊥CF.8.如图,在Rt△ACB中,∠ACB=90°,∠A=30°,点D是AB边的中点.(1)如图1,若CD=4,求△ACB的周长.(2)如图2,若E为AC的中点,将线段CE以C为旋转中心顺时针旋转60°,使点E 至点F处,连接BF交CD于点M,连接DF,取DF的中点N,连接MN,求证:MN=2CM.(3)如图3,以C为旋转中心将线段CD顺时针旋转90°,使点D至点E处,连接BE 交CD于M,连接DE,取DE的中点N,连接交MN,试猜想BD、MN、MC之间的关系,直接写出其关系式,不证明.【解答】(1)解:如图1中,在Rt△ACB中,∵∠ACB=90°,∠A=30°,点D是AB边的中点.∴CD=BD=AD=4,BC=AB=4,∴AC===4,∴△ABC的周长为4+8+4=12+4.(2)证明:如图2中,作BQ⊥CD于Q,FP∥MN交DC的延长线于P.∵△BDC是等边三角形,边长为2,∴高BQ=2,∠DCB=60°,∠ACD=30°∵EA=EC=2,∴CE=CF=BQ,∵∠ECF=60°,∠ACD=30°,∴∠DCF=90°,∴∠BQM=∠MCF=90°,在△BQM和△FCM中,,∴△BQM≌△FCM,∴QM=MC.QC=2MC,∵DN=NF,MN∥FP,∴DM=MP,∴DQ=CP=QC,在△BQC和△FCP中,,∴△BQC≌△FCP,∴PF=BC=DC=2QC,∵MN=PF,∴MN=QC=2CM.(3)解:如图3中,结论:(BD)2+(BD﹣CM)2=MN2.理由如下:作BQ⊥CD于Q,连接QN,∵△BDC是等边三角形,∴∠DBQ=30°,∴DQ=QC=BD,∵DC=CE,DC⊥CE,∴∠CDE=∠CED=45°,∵DQ=QC,DN=NE,∴QN∥EC,∴∠QDN=∠NQM=∠DCE=90°,∴∠QDN=∠QND=45°,∴QD=QN=BD,∵QN2+QM2=MN2,∴(BD)2+(BD﹣CM)2=MN2.9.如图,在平面直角坐标系中,点O为坐标原点,点A、B的坐标分别为(0,a)、(﹣a,0)(a>0),点C是点B关于y轴的对称点,连接AB、AC,△ABC的面积为18.①点C的坐标是(3,0);②动点D从动点B出发,沿x轴正方向运动,动点E从点A出发,沿y轴正方向运动,两点同时出发,运动速度均为1个单位长度/秒,连接DE,在DE右侧,以DE为斜边作等腰直角△DEF,设动点D的运动时间为t秒,请用含t的代数式表示点F的坐标;③在②的条件下,连接AD、OF,作线段AD的垂直平分线,与直线OF相交于点G,连接DG,直线DG与y轴相交于点K,当CA=CD时,求点K的坐标?【解答】解:①∵点C是点B关于y轴的对称点,B(﹣a,0),∴点C坐标(a,0),∵•2a•a=18,a>0,∴a=3,∴点C坐标(3,0).故答案为(3,0)②如图1中,作FM⊥BC于M,FN⊥OA于N.∵∠EFD=∠NFM=90°,∴∠NFE=∠DFM,在△FNE和△FMD中,,∴△FNE≌△FMD,∴FN=FM,EN=DM,四边形FMON是正方形,设正方形边长为m,则3+m﹣t=3+t﹣m,∴m=t,∴点F坐标为(t,t).③如图2中,当点D在线段BC上时,由②可知直线OF解析式为y=x,∵CA=CD=6,∴点D坐标(3﹣6,0),设直线AD解析式为y=kx+b,则,解得,∴直线AD的解析式为y=(+1)x+3,线段AD中垂线的解析式为y=(1﹣)x+6﹣3,由解得,,∴点G坐标(3﹣3,3﹣3).设直线DG为y=mx+n,则,解得,∴直线DG解析式为y=(﹣1)x+9﹣9,∴点K坐标为(0,9﹣9).如图3中,当点D在BC的延长线上时,由题意可得直线AD解析式为y=(1﹣)x+3,线段AD的垂直平分线为y=(+1)x﹣3﹣6,由,解得,∴点G坐标(3+3,3+3),∴可得直线DG解析式为y=(﹣1﹣)x+12+9,∴点K坐标为(0,12+9).10.在△ABC中,∠ABC=90°,D为AC中点,将线段DC绕点D旋转,得到线段DE,连接AE,CE;(1)如图①,判断△ACE的形状,并证明;(2)如图②,连接BE,当BE平分∠ABC时,求证:ED⊥AC;(3)在(2)的条牛下,H为△ACE内一点,且满足∠AHC=135°,过E作EM⊥CH,若EM=3,求CH的长度.【解答】解:(1)∵将线段DC绕点D旋转,得到线段DE,∴DC=DE,∵D为AC中点,∴DA=DC,∴DE=AC,∴△ACE是直角三角形,(2)如图1,以AC为直径作圆,由(1)有,△ACE是直角三角形,∴∠AEC=90°,∵∠ABC=90°,∴∠ABC+∠AEC=180°,∴点A,B,C,E四点共圆,∵点D是AC中点,∴点D是圆心,∵BE平分∠ABC,∴∠ABE=∠CBE=45°,∴,∴∠ADE=∠CDE=90°,∴ED⊥AC,(3)如图2,延长AH交圆与N,连接CN,由(2)∠ADE=90°,∴∠CAE=45°,∴∠CAN+∠EAN=45°,∵∠AHC=135°,∴∠CHN=45°,∵AC为⊙D的直径,∴∠ANC=90°,∴∠NCM=45°,∴∠MCE+∠NCE=45°,∵∠EAN=∠ECN,∴∠CAN=∠ECM,∵∠ANC=∠CME,∴△ACN∽△CEM,∴,∵△CDE是等腰直角三角形,∴CE=CD,∵AC=2CD,EM=3,∴,∴CN=3,∵△CNH为等腰直角三角形,∴CH=CN=6.11.如图(1),△ABO与△A′B′O′均为等边三角形,点A′、B′分别在线段OB、OA 上,△ABO固定不动,△A′B′O绕O点顺时针旋转∠α(0≤α≤180°),过A′、A 点分别作OA、OA′的平行线交于O′点.(1)如图(2),当0≤α≤60°时,若∠AO′A′=45°,则旋转角α=15°;(2)如图(3),当60°≤α≤180°时,若OO′=AA′,则旋转角α=150°;当△AB′O′旋转时,∠AO′A′与旋转角α的关系为α﹣60°(3)如图(4),在△A′B′O旋转过程中,连O′B、OB,试判定∠BO′B′随旋转角α的变化情况,并证明.【解答】解:(1)∵过A′、A点分别作OA、OA′的平行线交于O′点.∴四边形AOA'O'是平行四边形,∴∠A'OA=∠AO'A'=45°,∵△AOB是等边三角形,∴∠AOB=60°,∴α=∠A'OB=∠AOB﹣∠AOA'=60°﹣45°=15°,故答案为15°;(2)由(1)知,四边形AOA'O'是平行四边形,∵OO′=AA′,∴四边形AOA'O'是矩形,∴∠AOA'=90°,∴α=∠AOB+∠AOA'=60°+90°=150°,∵四边形AOA'O'是平行四边形,∴∠AOA'=∠AO'AO,∵∠BOA'=∠AOB+∠AOA'∴∠AO'A'=∠BOA'﹣∠AOB=α﹣60°,故答案为150°,α﹣60°;(3)无论旋转角α为多少,∠BO'B'是定值60°即:∠BO'B'不变.当60°<α<180°时,∵四边形AOA'O'是平行四边形,∴∠OAO'=∠OA'O',AO'=A'O∵∠BOA=∠OA'B'=60°,∴∠BAO'=∠O'A'B'由旋转得,AB=O'A'∴△ABO'≌△A'O'B',∴∠ABO'=∠A'O'B',∠AO'B=A'B'O',∵∠ABO'+∠A'O'A=180°﹣∠BAO'=180°﹣(360°﹣∠OAB﹣∠A'AO')=180°﹣[360°﹣60°﹣(180°﹣∠AOA')]=180°﹣[360°﹣60°﹣(180°﹣∠AOA')]=60°﹣∠AOA'∴∠AO'B+∠A'O'B'=60°﹣∠AOA'∴∠BO′B=∠AO'B+∠AO'A'+∠A'O'B'=60°﹣∠AOA'+∠AO'A'=60°,当0<α<60°时,同上的方法得出∠BO′B=60°,即:∠BO'B'不随α的变化而变化,是个定值.12.如图1,在△ABC中,∠ACB=90°,点D、点E分别在AC、AB边上,连结DE、DB,使得∠DEA=90°,若点O是线段BD的中点,连结OC、OE,则易得OC=OE;操作:现将△ADE绕A点逆时针旋转得到△AFG(点D、点E分别与点F、点G对应),连结FB,若点O是线段FB的中点,连结OC、OG,探究线段OC、OG之间的数量关系;(1)如图2,当点G在线段CA的延长线上时,OC=OG是否成立;若成立,请证明;若不成立,请说明理由;(2)如图3,当点G在线段CA上时,线段OC=OG是否成立;若成立,请证明;若不成立,请说明理由;(3)如图4,在△ADE的旋转过程中,线段OC、OG之间的数量关系是否发生了变化?请直接写出结论,不用说明理由.【解答】解:(1)当点G在线段CA的延长线上时,OC=OG成立理由:如图2,延长GF,CO相较于点D,∵∠ACB=∠FGA=90°,∴GD∥BC,∴∠BCO=∠D,∵点O是线段BD的中点,∴OB=OF,在△BOC和△FOD中,,∴△BOC≌△FOD,∴OC=OD,在Rt△CDG中,OG=CD=OC,(2)当点G在线段CA上时,线段OC=OG是成立,理由:如图3,延长GF,CO相较于点D,∵∠ACB=∠FGA=90°,∴GD∥BC,∴∠BCO=∠D,∵点O是线段BD的中点,∴OB=OF,在△BOC和△FOD中,,∴△BOC≌△FOD,∴OC=OD,在Rt△CDG中,OG=CD=OC,(3)在△ADE的旋转过程中,线段OC、OG之间的数量关系不发生了变化,理由:如图4,连接CG,延长GF交BC于M,过点F作FD∥BC,连接DG,∴∠BCO=∠FDO,∵点O是线段BD的中点,∴OB=OF,在△BOC和△FOD中,,∴△BOC≌△FOD,∴OC=OD,BC=DF由题意知,△AFG∽△ABC,∴,∴,∵∠ACB=∠AGF=90°,∴点A,C,M,G四点共圆,∴∠CAG=∠BMG,∵FD∥BC,∴∠GFD=∠BMG,∴∠CAG=∠GFD,∵,∴△GAC∽△GFD,∴∠AGC=∠FGD,∴∠CGD=∠ACF=90°,∵OC=OD,∴OG=CD=OC.13.已知DE=CE,AC=AB,∠CED=∠CAB=90°,N是BD中点.(1)如图1,求证:EN⊥AN,EN=AN;(2)将△DCE绕C旋转至如图2位置,其他条件不变,试探究EN与AN的关系并证明;(3)如图3,M是CD的中点,BE交AM于F,填空:=.【解答】(1)证明:如图1中,延长EN交AB于F.∵∠CED=∠CAB=90°,∴DE⊥AC,AB⊥AC,∴DE∥AB,∴∠EDN=∠FBN,在△EDN和△FBN中,,∴△EDN≌△FBN,∴DE=FB=EC,EN=NF,∵AC=AB,∴AE=AF,∵EN=NF,∴AN=EN=FN,AN⊥EF,∴AN⊥EN,AN=EN.(2)结论:EN=AN,EN⊥AN.理由:如图2中,延长EN到F,使得EN=NF,延长CA、BF交于点G,在△EDN和△FBN中,,∴△EDN≌△FBN,∴DE=BF=CE,∠EDN=∠FBN,∴DE∥BF,∴∠CED=∠CHG=90°,∴∠1+∠G=90°,∠2+∠G=90°,∴∠1=∠2,在△ACE和△ABF中,,∴△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∴∠EAF=∠CAB=90°,∵EN=NF,∴AN⊥EF,AN=EN=NF,∴EN=AN,EN⊥AN.(3)如图3中,结论:=.理由:作AN⊥BE,使得AN=BE,AN交BE于J,连接CN,NM,延长NM到H,使得MH=MN,连接HD、HE、AH、AE,延长NC交DE于G,延长AE交NG于O,延长DE到P.∵∠CAN+∠BAN=90°,∠BAN+∠ABE=90°,∴∠CAN=∠ABE,∵AC=AB,AN=EB,∴△CAN≌△ABE,∴AE=CN,∠AEB=∠CNA,∵∠AEB+∠EAJ=90°,∴∠ANO+∠EAJ=90°,∴∠NOA=90°,∵∠EGO+∠OEC=90°,∠OEC+∠OCE=90°,∴∠OCE=∠GEO=∠AEP,∵DM=MC,∠DMH=∠NMC,NM=MH,∴△DMH≌△CMN,∴DH=CN,∠DHM=∠MNC,∴DH∥NG,∴∠HDE=∠DGC,∵∠DGC=∠DEC+∠OCE=90°+∠OCE,∴∠HDE=90°+∠OCE=90°+∠AEP=∠AEC,∵DH=AE,DE=EC,∴△DHE≌△EAC,∴HE=AC=AB,∠HED=∠ECA,∵∠ECA+∠EKC=90°,∠APK+∠AKP=90°,∠AKP=∠EKC,∴∠ECK=∠APK=∠HED,∴HE∥AB,∴四边形HEBA是平行四边形,∴AH=BE=AN,∵AH=AN,AE=CN,HE=AC,∴△ACN≌△HEA,∴∠HAE=∠CNA,∵∠ANC+∠NAO=90°,∴∠HAE+∠NAO=90°,∴∠HAN=90°,∴△HAN是等腰直角三角形,∵MH=MN,∴AM=MN=MH,∴△AHM,△AMN都是等腰直角三角形,∴AN=AM,∴BE=AM.∴=.故答案为.14.已知,如图1,正方形ABCD边长为1,将正方形ABCD绕点A逆时针旋转α°,后得到正方形AB′C′D′(0°<α<90°),C′D′与直线CD相交于点E,C′B′与直线CD相交于点F.(1)试猜想∠EAF=45°°;△EC′F的周长为2.(2)如图2,连接B′D′分别交AE、AF于P,Q两点,在旋转过程中,若D′P=a,QB′=b,试用a,b来表示PQ,并说明理由.(3)如图3,当旋转角等于45°时,求△APQ的面积.【解答】解:(1)∵正方形ABCD绕点A逆时针旋转α°,后得到正方形AB′C′D′,∴∠D'AB'=∠D'=∠ADE=90°,AD'=AD=C'D'=B'C'=1在Rt△AD'E和Rt△ADE中,,∴Rt△AD'E≌Rt△ADE,∴D'E=DE,∠D'AE=∠DAE,同理:B'F=DF,∠B'AF=∠DAF,∴∠EAF=∠DAE+∠DAF=∠B'AD'=45°,△EC′F的周长为C'E+EF+C'F=C'E+DE+DF+C'F=C'E+D'E+B'F+C'F=C'D+B'C'=2,故答案为:45°,2;(2)∵B'D'是正方形AB'C'D'的对角线,∴B'D'=,∵D′P=a,QB′=b∴PQ=B'D'﹣D'P﹣B'Q=﹣a﹣b;(3)如图3,当旋转角等于45°时,AH=D'H=B'H=B'D'=,由(1)知,∠D'AP=∠DAP,∠B'AQ=∠DAQ,当旋转角等于45°时,则有∠B'AD=∠D'AD=45°,∴∠D'AP=∠DAP=∠B'AQ=∠DAQ=22.5°,∴PD'=QB',PH=PQ,根据角平分线定理:==,∴PD'=PH,∴D'H=PD'+PH=PH+PH=,∴PH=,∴PQ=2PH=2﹣,∴S△APQ=×PQ×AH=×(2﹣)×=.。
八年级数学下册 3.2 图形的旋转同步练习(含解析)北师大版(2021学年)
![八年级数学下册 3.2 图形的旋转同步练习(含解析)北师大版(2021学年)](https://img.taocdn.com/s3/m/212f3155c77da26924c5b0d6.png)
八年级数学下册3.2 图形的旋转同步练习(含解析)(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册3.2 图形的旋转同步练习(含解析)(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册 3.2图形的旋转同步练习(含解析)(新版)北师大版的全部内容。
3。
2图形的旋转一、单选题(共8题)1、如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是( )A、70°B、65°C、60°ﻫD、55°2、如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A、35°B、40°ﻫC、50°ﻫD、65°3、若点A的坐标为(6,3),O为坐标原点,将OA绕点O按顺时针方向旋转90°得到OA′,则点A′的坐标是( )A、(3,﹣6)B、(﹣3,6)C、(﹣3,﹣6)D、(3,6)4、如图,∠A=70°,O是AB上一点,直线OD与AB所夹的∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转( )A、8°ﻫB、10°ﻫC、12°ﻫD、18°5、如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为( )A、60°ﻫB、75°ﻫC、85°ﻫD、90°6、从5点15分到5点20分,分针旋转的度数为( )A、20°ﻫB、26°ﻫC、30°ﻫD、36°7、如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若DE=2,∠B=60°,则CD的长为()A、0.5ﻫB、1。
初中数学:《图形的旋转》测试题及答案
![初中数学:《图形的旋转》测试题及答案](https://img.taocdn.com/s3/m/f5645b70a2161479171128b9.png)
初中数学:《图形的旋转》测试题及答案一、选择题1.在图形旋转中,下列说法错误的是()A.图形上的每一点到旋转中心的距离相等B.图形上的每一点转动的角度相同C.图形上可能存在不动点D.图形上任意两点的连线与其对应两点的连线相等2.下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()A.B. C.D.3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是()A.60°B.90°C.72°D.120°4.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)()A.左上角的梅花只需沿对角线平移即可B.右上角的梅花需先沿对角线平移后,再顺时针旋转45°C.右下角的梅花需先沿对角线平移后,再顺时针旋转180D.左下角的梅花需先沿对角线平移后,再顺时针旋转90°5.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于()A.50°B.210°C.50°或210°D.130°二、填空题6.在图形的平移、旋转、轴对称变换中,其相同的性质是______.7.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是______,它们之间的关系是______,其中BD=______.8.如图,将△OAB绕点O按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=1cm,则A′B长是______cm.9.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是______.10.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF 的关系是______.11.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①,②,③,④…,则三角形⑩的直角顶点的坐标为______.三、综合提高题12.观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?13.如图:若∠AOD=∠BOC=60°,A、O、C三点在同一条线上,△AOB与△COD是能够重合的图形.求:(1)旋转中心;(2)旋转角度数;(3)图中经过旋转后能重合的三角形共有几对?若A、O、C三点不共线,结论还成立吗?为什么?(4)求当△BOC为等腰直角三角形时的旋转角度;(5)若∠A=15°,则求当A、C、B在同一条线上时的旋转角度.14.作图:(1)如图甲,以点O为中心,把点P顺时针旋转45°.(2)如图乙,以点O为中心,把线段AB逆时针旋转90°.(3)如图丙,以点O为中心,把△ABC顺时针旋转120°.(4)如图丁,以点B为中心,把△ABC旋转180°.15.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M,D在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.16.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值.17.如图在Rt△OAB中,∠OAB=90°,OA=AB=6.(1)请你画出将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1;(2)线段OA1的长度是______,∠AOB1的度数是______;(3)连接AA1,求证:四边形OAA1B1是平行四边形.《图形的旋转》参考答案与试题解析一、选择题1.在图形旋转中,下列说法错误的是()A.图形上的每一点到旋转中心的距离相等B.图形上的每一点转动的角度相同C.图形上可能存在不动点D.图形上任意两点的连线与其对应两点的连线相等【解答】解:A、在图形旋转中,根据旋转的性质,图形上对应点到旋转中心的距离相等,故本选项错误;B、图形上的每一点转动的角度都等于旋转角,正确;C、以图形上一点为旋转中心,则这个点不动,正确;D、旋转前后两个图形全等,则图形上任意两点的连线与其对应两点的连线相等,正确.故选A.2.下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()A.B. C.D.【解答】解:A、只包含图形的旋转,不符合题意;B、只是轴对称图形,不符合题意;C、只是轴对称图形,不符合题意;D、既包含图形的旋转,又包含图形的轴对称,符合题意.故选:D.3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是()A.60°B.90°C.72°D.120°【解答】解:该图形被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.故选C.4.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)()A.左上角的梅花只需沿对角线平移即可B.右上角的梅花需先沿对角线平移后,再顺时针旋转45°C.右下角的梅花需先沿对角线平移后,再顺时针旋转180D.左下角的梅花需先沿对角线平移后,再顺时针旋转90°【解答】解:由平移和旋转可得,D选项中左下角的梅花需先沿对角线平移后,再逆时针旋转90°,所以D选项错误.故选:B.5.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于()A.50°B.210°C.50°或210°D.130°【解答】解:∵∠BAC′=130°,∠BAC=80°,∴如图1,∠CAC′=∠BAC′﹣∠BAC=50°,如图2,∠CAC′=∠BAC′+∠BAC=210°.∴旋转角等于50°或210°.故选C.二、填空题6.在图形的平移、旋转、轴对称变换中,其相同的性质是图形的形状、大小不变,只改变图形的位置.【解答】解:在图形的平移、旋转、轴对称变换中,其相同的性质是图形的形状、大小不变,只改变图形的位置.7.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是△ACE ,它们之间的关系是全等,其中BD= CE .【解答】解:△ABD绕点A逆时针旋转42°得到△ACE,它们之间的关系是全等,其中BD=CE.8.如图,将△OAB绕点O按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=1cm,则A′B长是 3 cm.【解答】解:根据旋转的性质,得:A′B′=AB=4cm.∴A′B=A′B′﹣BB′=4﹣1=3(cm).9.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是(4,﹣1).【解答】解:由图知A点的坐标为(1,4),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(4,﹣1).故答案为:(4,﹣1).10.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF 的关系是BE+DF=EF .【解答】解:如图,延长CD到M,使DM=BE,连接AM、EF;∵四边形ABCD为正方形,∴∠B=∠ADC=90°,AB=AD;在△ABE与△ADM中,,∴△ABE≌△ADM(SAS),∴∠BAE=∠DAM,AE=AM;∴∠BAE+DAF=∠DAM+∠DAF=∠MAF;∵∠EAF=45°,∴∠BAE+DAF=90°﹣45°=45°,∴∠EAF=∠MAF=45°;在△EAF与△MAF中,,∴△EAF≌△MAF(SAS),∴MF=EF,而MF=MD+DF=BE+DF,∴BE+DF=EF,故答案为BE+DF=EF.11.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①,②,③,④…,则三角形⑩的直角顶点的坐标为(36,0).【解答】解:由原图到图③,相当于向右平移了12个单位长度,象这样平移三次直角顶点是(36,0),再旋转一次到三角形⑩,直角顶点仍然是(36,0),则三角形⑩的直角顶点的坐标为(36,0).故答案为:(36,0).三、综合提高题12.观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?【解答】解:图形(1)是通过一条线段绕点O旋转360°而得到的;图形(2)可以看作是“一个Rt△ABC”绕线段AC旋转360°而得到的;图形(3)将矩形ABCD绕AD旋转一周而得到的.13.如图:若∠AOD=∠BOC=60°,A、O、C三点在同一条线上,△AOB与△COD是能够重合的图形.求:(1)旋转中心;(2)旋转角度数;(3)图中经过旋转后能重合的三角形共有几对?若A、O、C三点不共线,结论还成立吗?为什么?(4)求当△BOC为等腰直角三角形时的旋转角度;(5)若∠A=15°,则求当A、C、B在同一条线上时的旋转角度.【解答】解:(1)∵△AOB与△COD是能够重合的图形,∴旋转中心是点O;(2)根据题意得:旋转角是∠AOD或∠BOC,∴旋转角度数是60°,(3)经过旋转后能重合的三角形有△AOB与△DOC,△AOE与△DOF,△BOE与△COF 共三对,若A、O、C三点不共线,△AOE与△DOF,△BOE与△COF不一定重合,结论不一定成立,∵若A、O、C三点不共线,∠DOB≠60°,∴∠AOD=∠BOC=60°≠∠DOB,∴△BOE与△COF不一定重合,结论不一定成立;(4)∵△BOC为等腰直角三角形,∴∠BOC=∠AOD=90°,∴旋转角度为:90°,(5)∵180°﹣∠BOC=180°﹣60°=120°,∴旋转角度为120°.14.作图:(1)如图甲,以点O为中心,把点P顺时针旋转45°.(2)如图乙,以点O为中心,把线段AB逆时针旋转90°.(3)如图丙,以点O为中心,把△ABC顺时针旋转120°.(4)如图丁,以点B为中心,把△ABC旋转180°.【解答】解:(1)如图甲,点P′为所求;(2)如图乙,线段A′B′为所求;(3)如图丙,△A′B′C′为所求;(4)如图丁,△A′BC′为所求.15.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M,D在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.【解答】解:BK与DM的关系是互相垂直且相等.∵四边形ABCD和四边形AKLM都是正方形,∴AB=AD,AK=AM,∠BAK=90°﹣∠DAK,∠DAM=90°﹣∠DAK,∴∠BAK=∠DAM,∴△ABK≌△ADM(SAS).把△ABK绕A逆时针旋转90°后与△ADM重合,∴BK=DM且BK⊥DM.16.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值.【解答】解:(1)在△ABC中,∵AC=1,AB=x,BC=3﹣x.∴,解得1<x<2.(4分)(2)①若AC为斜边,则1=x2+(3﹣x)2,即x2﹣3x+4=0,无解.②若AB为斜边,则x2=(3﹣x)2+1,解得,满足1<x<2.③若BC为斜边,则(3﹣x)2=1+x2,解得,满足1<x<2.∴或.17.如图在Rt△OAB中,∠OAB=90°,OA=AB=6.(1)请你画出将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1;(2)线段OA1的长度是 6 ,∠AOB1的度数是135°;(3)连接AA1,求证:四边形OAA1B1是平行四边形.【解答】(1)解:△OA1B1如图所示.(2)解:根据旋转的性质知,OA1=OA=6.∵将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1 ,∴∠BOB1=90°.∵在Rt△OAB中,∠OAB=90°,OA=AB=6, ∴∠BOA=∠OBA=45°,∴∠AOB1=∠BOB1+∠BOA=90°+45°=135°,即∠AOB1的度数是135°.故答案是:6,135°;(3)证明:根据旋转的性质知,△OA1B1≌△OAB,则∠OA1B1=∠OAB=90°,A1B1=AB,∵将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1 ,∴∠A1OA=90°,∴∠OA1B1=∠A1OA,∴A1B1∥OA.又∵OA=AB,∴A1B1=OA,∴四边形OAA1B1是平行四边形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的旋转
1、如图,将△ABC绕点A旋转50°后成为△AB′C′,那么点B的对应点是_____,点C的对应点是_________,线段AB的对应线段是线段________,线段BC的对应线段是线段_________;∠B的对应角是_________,∠C的对应角是__________,旋转中心是点_______,旋转的角度是_____________;
2、如图,△ABC是等腰三角形,∠BAC=36°,D是BC上一点,
△ABD经过旋转后到达△ACE的位置,
⑴旋转中心是哪一点?
⑵旋转了多少度?
⑶如果M是AB的中点,那么经过上述旋转后,点M转到了
什么位置?
4、如图,四边形ABCD是正方形,△DAE旋转后能与△DCF重合。
⑴旋转中心是哪一点?
⑵旋转了多少度?
⑶如果连接EF,那么△DEF是怎样的三角形?
5:钟表的分针匀速旋转一周需要60分.
(1)指出它的旋转中心;
(2)经过20分,分针旋转了多少度?
6:本图案可以看做是一个菱形通过几次旋转得到的?每次旋转了多少度?
A
E M
A B
C D
E
F
旋转的特征
A
C′
B′
B
C
3:(1)将一个平面图形F上的每一点,绕这个平面一_____ 点旋转,得到图形F’,图形的这种变换就叫做旋转。
(2)对应点到对应中心的距离____________.(3)对应点与旋转中心所成的角彼此_______,且等于_________角(4)旋转不改变图形的________和_______.
4、如图,△ABC按逆时针方向转动一个角后到△AB′C′,则线段AB=_______,AC=_______,BC=________;∠BAC=_________,∠B=_________,∠C=___________;
6:运用已学的知识,请画出线段AB 绕点B 逆时针旋转60°后的线段A ’B 。
并指出旋转角。
7:已知:把△ABC 顺时针旋转60°后能与△A ’BC ’重合, 求:(1)找出旋转中心,
(2)指出对应顶点和对应边, (3)指出旋转角
(4)连接A A ’, △ABA ’是什 么三角形?为什么?连
接CC ’,△CBC ’呢?
8:如图,四边形ABCD 是长方形,四边形AEFG 也是长方形,E 在AD 上,如果长方形ABCD 旋转后能与长方形AEFG 重合,那么
(1)旋转中心是哪一点?
(2)旋转角是几度?
9:如图,如果四边形CDEF 旋转后能与正方形ABCD 重合,那么图形所在的平面上,可以作旋转中心的点共有几个?
10:如图:若∠AOD=∠BOC=60°,A 、O 、C 三点在同一条线上,△AOB 与△COD 是能够重合的图形。
求:(1)旋转中心,(2)旋转角度数, (3)图中经过旋转后能重合的三 角形共有几对?若A 、O 、C
三点不共线,结论还成立
吗?为什么?
(4)求当△BOC 为等腰直角三角形 时的旋转角度
(5)若∠A=15°,则求当A 、C 、B 在同一条线上时的旋 转角度
A
B
A
12、画出△ABC 绕点A 逆时针90°后的图形。
13、画出所绘图形绕点D 顺时针旋转90°后的图形,
再经几次90°旋转可以与原图重合?
14、如图,△ACD 、△ECB 都是等边三角形,画出△ACE 以点C 为旋转中心顺时针方向旋转 60°后的三角形。
15:试一试:某个学生为学校设计了一个直角三角形的绿化带,有一块是正方形草坪和两块直角三角形的花坛组成,现在只知道两个直角三角形的两条斜边长分别为3米和6米,你能求出花坛的面积是多少吗?
A
B
A
B C D
A B C D
E
旋转对称图形
1、请画出两个日常生活中旋转对称图形的实例。
5、如图所示的图形,绕哪一点旋转多少度方能与自身重合?
⑴⑵
8、在纸上任意画一个△ABC,再任意画一个点P,然后画出△ABC绕点P逆时针方向旋转45°后的三角形。
10、正六边形ABCDEF中,点O是对角线的交点,正六边形ABCDE以点O为旋转中心旋转多少度后
才能与原来的图形重合?
11、请你设计一个60°后能与自身重合的图形。
14:、综合难题。
根据下面的图形镶嵌图,试说明图形2、3、4、5、6分别可以看成由图形1经过图形的什么运动而得到。
若是轴对称,请指出对称轴;若是平移,请指出平移的方向与平移的距离;若是旋转,请指出旋转的中心与旋转的角度;若是几个运动的结合,请分别加以说明。
A B
C D
E
F
O。