2018北京中考数学一模——16题尺规作图专题

合集下载

尺规作图

尺规作图

中考真题—尺规作图1.(4.00分)(2018•青岛•15题)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.2.(3.00分)(2018•烟台•16题)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.3.(3.00分)(201 8•河北•6题)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ4.(5.00分)(2018•北京•17题)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ l∥.作法:如图:①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=_______,CB=_______,∴PQ l∥(____________)(填推理的依据).答案:1.如下图所示2. (﹣1,﹣2)3. D4. (1)尺规作图如下图所示:(2)PA,CQ,三角形中位线平行于三角形的第三边。

2018年中考数学专题复习训练:尺规作图

2018年中考数学专题复习训练:尺规作图

中考复习训练尺规作图一、选择题1.下列关于画图的语句正确的是()A. 画直线AB=8cmB. 画射线OA=8cmC. 已知A,B,C三点,过这三点画一条直线D. 过直线AB外一点画一直线与AB平行2.下列各条件中,不能作出唯一三角形的是()A. 已知两边和夹角B. 已知两边和其中一边的对角C. 已知两角和夹边D. 已知三边3.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A. 线段CD的中点B. OA与OB的中垂线的交点C. OA与CD的中垂线的交点D. CD与∠AOB的平分线的交点4.如图,在▱ABCD中,AB>2BC,观察图中尺规作图的痕迹,则下列结论错误的是()A. BG平分∠ABCB. BE=BFC. AD=CHD. CH=DH5.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 两直线平行,同位角相等D. 两直线平行,内错角相等6.用三角尺可以按照下面的方法画∠AOB的角平分线:在OA、OB上分别取点M、N,使OM=ON;再分别过点M、N画OA、OB的垂线,这两条垂线相交于点P,画射线OP(如图),则射线OP平分∠AOB,以上画角平分线时,用到的三角形全等的判定方法是()A. SSSB. SASC. HLD. ASA7. 用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A. 一组邻边相等的四边形是菱形B. 四边相等的四边形是菱形C. 对角线互相垂直的平行四边形是菱形D. 每条对角线平分一组对角的平行四边形是菱形8.如图,根据尺规作图的痕迹,判断下列说法不正确的是()A. AE、BF是△ABC的内角平分线B. CG也是△ABC的一条内角平分线C. 点O到△ABC三边的距离相等D. AO=BO=CO9.如图,已知△ABC中,AC=3,BC=5,AB=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A. 2条B. 3条C. 4条D. 5条10.小明同学画角平分,作法如下:①以O为圆心,适当长为半径作弧,交两边于D、E②分别以C、D为圆心,相同的长度为半径作弧,两弧交于E,③则射线OE就是∠AOB的平分线.小明这样做的依据是()A. SASB. ASAC. AASD. SSS11.如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M、N重合,过角尺顶点C的射线OC便是∠AOB的平分线OC,这一做法用到三角形全等的判定方法是()A. SSSB. SASC. ASAD. HL12.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题13.利用直尺和圆规作出一个角的角平分线的作法,其理论依据是全等三角形判定方法________ .14.下列语句是有关几何作图的叙述.①以O为圆心作弧;②延长射线AB到点C;③作∠AOB ,使∠AOB=∠1;④作直线AB ,使AB=a;⑤过三角形ABC的顶点C作它的对边AB的平行线.其中正确的有________15.已知一条线段作等边三角形,使其边长等于已知线段,则作图的依据是________.16.(2014•河南)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为________.17.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB= ________18.已知△ABC,小明利用下述方法作出了△ABC的一条角平分线.小明的作法:(i)过点B作与AC平行的射线BM;(边AC与射线BM位于边BC的异侧)(ii)在射线BM上取一点D,使得BD=BA;(iii)连结AD,交BC于点E.线段AE即为所求.小明的作法所蕴含的数学道理为________.19. 下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是________20.如图,点D是直线l外一点,在l上去两点A、B,连接AD,分别以点B、D为圆心,AD、AB的长尾半径画弧,两弧交于点C,连接CD、BC,则四边形ABCD是平行四边形,理由是________.21. 如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为________.三、解答题22.已知:在△ABC中,AB=AC.(1)尺规作图:作AD⊥BC于点D.(不要求写作法,保留作图痕迹)(2)延长AD至E点,使得DE=AD.求证:四边形ABEC是菱形.23.利用直尺或圆规画图(不写画法、保留作图痕迹,以答卷上的图为准)(1)利用图a中的网格,过P点画直线AB的平行线;(2)已知:如图b,线段a,b;请按下列步骤画图;①画线段BC,使得BC=a﹣b;②在直线BC外取一点A,使线段BA=a﹣b,画线段AB和射线AC.24. 如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(Ⅰ)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(Ⅱ)若菱形ABEF的周长为16,AE=4 ,求∠C的大小.参考答案一、选择题D B D D A C B D C D A C二、填空题13. SSS14.③⑤15.SSS16.105°17.125°18.等边对等角;两直线平行,内错角相等19.到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上)20.两组对边分别相等的四边形是平行四边形21.20°三、解答题22.解:(1)如图所示:(2)证明:如图所示:∵AB=AC,AD⊥BC,∴CD=BD,∵AD=DE,∴四边形ABEC是平行四边形,又∵AD⊥BC,∴四边形ABEC是菱形.23.解:(1)如图a所示.(2)请按下列步骤画图:①画线段BC,使得BC=a﹣b;②在直线BC外任取一点A,使线段BA=a﹣b,画直线AB和射线AC.24.解:(Ⅰ)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(Ⅱ)如图,连结BF,交AE于G.∵菱形ABEF的周长为16,AE=4 ,∴AB=BE=EF=AF=4,AG= AE=2 ,∠BAF=2∠BAE,AE⊥BF.在直角△ABG中,∵∠AGB=90°,∴cos∠BAG= = = ,∴∠BAG=30°,∴∠BAF=2∠BAE=60°.∵四边形ABCD是平行四边形,∴∠C=∠BAF=60°.。

北京市各区年中考数学一模汇编尺规作图

北京市各区年中考数学一模汇编尺规作图

北京市2016年各区中考一模汇编平面几何之尺规作图1【2016丰台一模,第09题】如图,△ABC 中,AC <BC ,如果用尺规作图的方法在BC 上 确定一点P ,使PA +PC =BC ,那么符合要求的作图痕迹是A B C D2.【2016东城一模,第16题】 阅读下面材料: 在数学课上,老师提出如下问题甲、乙、丙、丁四位同学的主要作法如下:请你判断哪位同学的作法正确 ;这位同学作图的依据是请你判断哪位同学的作法正确 ; 这位同学作图的依据是 .PA +PC =BC .为圆心,BA 长为半径画弧,交就是所求的点.是所求的点.A BC3.【2016平谷一模,第16题】 阅读下面材料:在数学课上,老师提出如下问题:请回答:小米的作图依据是_________________________.4.【2016朝阳一模,第16题】阅读下面材料:数学课上,老师提出如下问题:小艾的作法如下:尺规作图:经过已知直线上一点作这条直线的垂线. 已知:直线AB 和AB 上一点C .求作:AB 的垂线,使它经过点C .如图,(1)在直线AB 上取一点D ,使点D 与点C 不重合,以点C 为圆心,CD 长为半径作弧,交AB 于D ,E 两点;(2)分别以点D 和点E 为圆心,大于12DE 长为半径作弧,两弧相交于点F ;(3)作直线CF .所以直线CF 就是所求作的垂线.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是____________.5.【2016海淀一模,第16题】阅读下面材料在数学课上,老师提出如下问题:请回答:小云的作图依据是6.【2016西城一模,第14题】已知⊙O,如图所示.(1)求作⊙O的内接正方形(要求尺规作图,保留作图痕迹,不写作法);(2)若⊙O的半径为4,则它的内接正方形的边长为_______________.7.【2016通州一模,第15题】在学习“用直尺和圆规作射线OC,使它平分∠AOB”时,教科书介绍如下:*作法:(1)以O为圆心,任意长为半径作弧,交OA于D,交OB于E;(2)分别以D,E为圆心,以大于12DE的同样长为半径作弧,两弧交于点C;(3)作射线OC.则OC就是所求作的射线.小明同学想知道为什么这样做,所得到射线OC就是∠AOB的平分线.小华的思路是连接DC、EC,可证△ODC≌△OEC,就能得到∠AOC=∠BOC. 其中证明△ODC≌△OEC的理由是_______________________________________.详细解答1. C2.丁;垂直平分线上的点到线段两端的距离相等;等量代换3.全等三角形“SSS”判定定理;全等三角形对应角相等;两点确定一条直线.4.等腰三角形“三线合一”;两点确定一条直线.5.四条边都相等的四边形是菱形;菱形的对边平行(本题答案不唯一)6.7.8.SSS;。

中考数学专题复习导学案尺规作图》(含答案)

中考数学专题复习导学案尺规作图》(含答案)

中考数学专题练习《尺规作图》【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【基础检测】1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( )A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =12.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( )A .2.5cmB .3.0cmC .3.5cmD .4.0cm3.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)4.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .(1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.5.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A′B′C′D′.6.已知:线段a 及∠ACB .求作:⊙O ,使⊙O 在∠ACB 的内部,CO=a ,且⊙O 与∠ACB 的两边分别相切.7.如图,OA=2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C ,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B ,连接BC(1)线段BC 的长等于 ; (2)请在图中按下列要求逐一操作,并回答问题:A B C①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【达标检测】一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D 两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是。

中考数学专题训练-尺规作图 (1-3)(原卷版)

中考数学专题训练-尺规作图 (1-3)(原卷版)

中考数学专题训练-尺规作图(1)一:作已知角的平分线(1)以O为圆心,任意长为半径作弧,分别交OA,OB于点M,N;(2)分别以点M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;(3)作射线OP,OP即为所作的角平分线. 二:作已知线段的垂直平分线(1)分别以M、N为圆心,大于12MN的相同线段为半径画弧,两弧相交于P,Q;(2)连接PQ,交MN于O.则PQ就是所求作的MN的垂直平分线.1.如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD 的长为()A.22B.4 C.3 D.102.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交PQ于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD3.如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N;再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.则下列说法中不正确的是()A.BP是∠ABC的平分线B.AD=BDC.S△CBD∶S△ABD=1∶3 D.CD=12 BD4.如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若ADDB=2,求AEEC的值.5.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.6.在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF,使EF∥BC;(2)在图2中以BC为边作一个45°的圆周角.1.如图,已知矩形AOBC 的三个顶点的坐标分别为O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交OC,OB 于点D,E;②分别以点D,E 为圆心,大于12DE 的长为半径作弧,两弧在∠BOC 内交于点F;③作射线OF,交边BC于点G,则点G 的坐标为( )A. (4,43) B. (43,4) C. (53,4) D. (4,53)2.在数学课上,老师提出如下问题:尺规作图:确定图1中CD所在圆的圆心.已知:CD.求作:CD所在圆的圆心O.曈曈的作法如下:如图2,(1)在CD上任意取一点M,分别连接CM,DM;(2)分别作弦CM,DM的垂直平分线,两条垂直平分线交于点O.点O就是CD所在圆的圆心.老师说:“曈曈的作法正确.”请你回答:曈曈的作图依据是_____.3.如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于12CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE,则BE的值为()A. 77774.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A. ∠CAD =40°B. ∠ACD =70°C. 点D 为△ABC 的外心D. ∠ACB =90° 5.如图,直线443y x =-+与x 轴、y 轴的交点为A ,B ,按以下步骤作图:①以点A 为圆心,适当长度为半径作弧,分别交AB ,x 轴于点C ,D ;②分别以点C ,D 为圆心,大于12CD 的长为半径作弧,两弧在∠OAB 内交于点M ;③作射线AM ,交y 轴于点E ,则点E 的坐标为( )A. (0,2)B. (0,3)C. (0,32)D. (0,43) 6.如图,在△ABC 中,AB =AC .(1)用尺规作图法在AC 边上找一点D ,使得BD =BC (保留作图痕迹,不要求写作法):(2)若∠A =30°,求∠ABD 的大小.7.如图,在Rt ABC 中,C 90∠=,B 30∠=.()1用直尺和圆规作O ,使圆心O 在BC 边,且O 经过A ,B 两点上(不写作法,保留作图痕迹); ()2连接AO ,求证:AO 平分CAB ∠.8.如图,在Rt△ABC中,∠C=90°,∠A=28°.(1)作AC边上的垂直平分线DE,交AC于点D,交AB于点E(用直尺和圆规作图,不写作法,但要保留作图痕迹);(2)连接CE,求∠BCE的度数.9.如图,▱ABCD中,(1)作边AB的中点E,连接DE并延长,交CB的延长线于点F;(用尺规作图,保留作图痕迹,不要求写作法):(2)已知▱ABCD的面积为8,求四边形EBCD的面积.中考数学专题训练-尺规作图 (2)一.选择题1.如图,矩形ABCD 中60BAC ∠=︒,以点A 为圆心,以任意长为半径作弧分别交AB ,AC 于点M ,N两点,再分别以点M ,N 为圆心,以大于12MN 的长为半径作弧交于点P ,作射线AP 交BC 于点E ,若2BE cm =,则CE 的长为( )A .6cmB .63cmC .4cmD .43cm2.如图,60AOB ∠=︒,以点O 为圆心,以任意长为半径作弧交OA ,OB 于C ,D 两点;分别以C ,D为圆心,以大于12CD 的长为半径作弧,两弧相交于点P ;以O 为端点作射线OP ,在射线OP 上截取线段4OM =,则M 点到OB 的距离为( )A .4B .3C .2D .233.如图,Rt OAB ∆的直角边OA 在x 轴上,OB 在y 轴的正半轴上,且(3,0)A ,4sin 5OAB ∠=.按以下步骤作图:①以点A 为圆心,适当长度为半径作弧,分别交OA ,AB 于点C ,D ;②分别以C ,D 为圆心,大于12CD 的长为半径作弧,两弧在OAB ∠内交于点M ;③作射线AM ,交y 轴于点E .则点E 的坐标为( )A .4(0,)3B .3(0,)2C .(0,3)D .(0,2)4.如图所示,在Rt ABC ∆中,90C ∠=︒,按以下步骤作图:①以点A 为圆心,以小于AC 的长为半径作弧,分别交AC 、AB 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点O ; ③作射线OA ,交BC 于点E ,若6CE =,10BE =.则AB 的长为( )A .11B .12C .18D .205.如图,ABCD 中,4CD =,6BC =,按以下步骤作图:①以点C 为圆心,适当长度为半径作弧,分别交BC ,CD 于M ,N 两点:②分别以点M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在ABCD 的内部交于点P ;③连接CP 并延长交AD 于点E ,交BA 的延长线于点F ,则AF 的长为( )A .1B .2C .2.5D .36.在ABC ∆中,5BC =,12AC =,90C ∠=︒,以点B 为圆心,BC 为半径作圆弧,与AB 交于D ,再分别以A ,D 为圆心,大于12AD 的长为半径作圆弧交于点M ,N ,作直线MN ,交AC 于E ,则AE 的长度为( )A .42B .4C .133D .57.如图,在菱形ABCD 中,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 的同样的长为半径作弧,两弧交于M ,N 两点; ②作直线MN ,交CD 于点E ,连接BE .若直线MN 恰好经过点A ,则下列说法错误的是( )A .60ABC ∠=︒B .2ABE ADE S S ∆∆=C .若4AB =,则47BE =D .3tan 5CBE ∠= 8.如图,Rt ABC ∆中,90ACB ∠=︒.(1)以点C 为圆心,以CB 的长为半径画弧,交AB 于点G ,分别以点G ,B 为圆心,以大于12GB 的长为半径画弧,两弧交于点K ,作射线CK ;(2)以点B 为圆心,以适当的长为半径画弧,交BC 于点M ,交AB 的延长线于点N ,分别以点M ,N为圆心,以大于12MN 的长为半径画弧,两弧交于点P ,作直线BP 交AC 的延长线于点D ,交射线CK 于点E ;(3)过点D 作DF AB ⊥交AB 的延长线于点F ,连接CF .根据以上操作过程及所作图形,有如下结论:①CE CD =;②BC BE BF ==;③12CDFB S CF BD =⋅四边形; ④BCF BCE ∠=∠.所有正确结论的序号为( )A .①②③B .①③C .②④D .③④二.填空题9.如图,在ABC ∆中,按以下步骤作图: ①分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于点M 和N ; ②作直线MN ,分别交边AB ,BC 于点D 和E ,连接CD .若90BCA ∠=︒,8AB =,则CD 的长为 .10.如图,BD 是矩形ABCD 的对角线,在BA 和BD 上分别截取BE ,BF ,使BE BF =,分别以E ,F为圆心,以大于12EF 的长为半径作弧,两弧在ABD ∠内交于点G ,作射线BG 交AD 于点P ,若5AP =,则点P 到BD 的距离为 .11.如图,四边形ABCD 中,//AD BC ,90D ∠=︒,4AD =,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,射线BE 交AD 于点F ,交AC 于点O .若点O 恰好是AC 的中点,则CD 的长为 .12.如图,在ABC ∆中,90B ∠=︒,以点A 为圆心,适当长为半径画弧,分别交AB ,AC 于点D ,E ,再分别以D ,E 点为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若1BG =,4AC =,则ACG ∆的面积为 .13.如图,在Rt ABC ∆中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,12AB =,则ABD ∆的面积是 .14.如图,在菱形ABCD 中,按以下步骤作图:①分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点E 、F ;②作直线EF 交BC 于点G ,连接AG ;若AG BC ⊥,3CG =,则AD 的长为 .三.解答题15.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l 及直线l 外一点P .求作:直线PQ ,使得//PQ l .作法:如图,①任意取一点K ,使点K 和点P 在直线l 的两旁;②以P 为圆心,PK 长为半径画弧,交l 于点A ,B ,连接AP ;③分别以点P ,B 为圆心,以AB ,PA 长为半径画弧,两弧相交于点Q (点Q 和点A 在直线PB 的两旁);④作直线PQ .所以直线PQ 就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接BQ ,PQ = ,BQ = ,∴四边形PABQ 是平行四边形( )(填推理依据).//PQ l ∴.16.下面是小元设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:如图,直线l 和直线外一点P .求作:过点P 作直线l 的平行线.作法:如图,①在直线l 上任取点O ;②作直线PO ;③以点O 为圆心OP 长为半径画圆,交直线PO 于点A ,交直线l 于点B ;④连接AB,以点B为圆心,BA长为半径画弧,交O于点C(点A与点C不重合);⑤作直线CP;则直线CP即为所求.根据小元设计的尺规作图过程,完成以下任务.(1)补全图形;(2)完成下面的证明:证明:连接BP、BC,=,AB BC∴AB BC=,∴∠=∠,=,又OB OP∴∠=∠,∴∠=∠,CPB OBP∴)(填推理的依据).CP l//(17.下面是小明设计的“在已知三角形的一边上取一点,使得这点到这个三角形的另外两边的距离相等”的尺规作图过程:∆.已知:ABC求作:点D,使得点D在BC边上,且到AB,AC边的距离相等.作法:如图,∠的平分线,交BC于点D.作BAC则点D即为所求.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.⊥于点F,证明:作DE AB⊥于点E,作DF AC∠,AD平分BAC∴=()(括号里填推理的依据).18.如图,在O 中,点A 为弧CD 的中点过点B 作O 的切线BF ,交弦CD 的延长线于点F . (Ⅰ)如图①,连接AB ,若50F ∠=︒,求ABF ∠的大小;(Ⅱ)如图②,连接CB ,若35F ∠=︒,//AC BF ,求CBF ∠的度数.19.如图,已知MON ∠,A ,B 分别是射线OM ,ON 上的点.(1)尺规作图:在MON ∠的内部确定一点C ,使得//BC OA 且12BC OA =;(保留作图痕迹,不写作法) (2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得2OD CD =,并证明2OD CD =.20.【概念认识】若以三角形某边上任意一点为圆心,所作的半圆上的所有点都在该三角形的内部或边上,则将符合条件且半径最大的半圆称为该边关联的极限内半圆.如图①,点P 是锐角ABC ∆的边BC 上一点,以P 为圆心的半圆上的所有点都在ABC ∆的内部或边上.当半径最大时,半圆P 为边BC 关联的极限内半圆.【初步思考】若等边ABC ∆的边长为1,则边BC 关联的极限内半圆的半径长为 .如图②,在钝角ABC ∆中,用直尺和圆规作出边BC 关联的极限内半圆(保留作图痕迹,不写作法).【深入研究】如图③,30AOB ∠=︒,点C 在射线OB 上,6OC =,点Q 是射线OA 上一动点.在QOC ∆中,若边OC 关联的极限内半圆的半径为r ,当1≤r ≤2时,求OQ 的长的取值范围.21.如图,已知线段AB . (1)仅用没有刻度的直尺和圆规作一个以AB 为腰、底角等于30︒的等腰ABC ∆.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若2AB cm =,则等腰ABC ∆的外接圆的半径为 cm .22.人们在长期的数学实践中总结了许多解决数学问题的方法,形成了许多光辉的数学思想,其中转化思想是中学数学中最活跃,最实用,也是最重要的数学思想,例如将不规则图形转化为规则图形就是研究图形问题比较常用的一种方法.51013的三角形的面积.问题解决:在解答这个问题时,先建立一个正方形网格(每个小正方形的边长为1)5、1013的格点三角形ABC ∆(如图1).5AB =是直角边分别为1和2的直角三角形的斜边,10BC =1和3的直角三角形的斜边,13AC =2和3的直角三角形的斜边,用一个大长方形的面积减去三个直角三角形的面积,这样不需求ABC ∆的高,而借用网格就能计算出它的面积.(1)请直接写出图1中ABC ∆的面积为 .(2)类比迁移:求出边长分别为5、22、17的三角形的面积(请利用图2的正方形网格画出相应的ABC ∆,并求出它的面积).23.如图,已知ABC ∆,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作ABC ∆的外接圆;(2)若ABC ∆所在平面内有一点D ,满足CAB CDB ∠=∠,BC BD =,求作点D .中考数学专题训练-尺规作图(3)1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。

2018北京中考数学一模——16题尺规作图专题

2018北京中考数学一模——16题尺规作图专题

2018北京中考数学一模——16题尺规作图专题【2018东城一模】 16.已知正方形ABCD .求作:正方形ABCD 的外接圆. 作法:如图,(1)分别连接AC ,BD ,交于点O ;(2)以点O 为圆心,OA 长为半径作O .O 即为所求作的圆.请回答:该作图的依据是__________________________________.【2018西城一模】 16.阅读下面材料:在复习课上,围绕一道作图题,老师让同学们尝试应用学过的知识设计多种不同的作图方法,并交流其中蕴含的数学原理. 已知:直线和直线外的一点P .求作:过点P 且与直线垂直的直线PQ ,垂足为点Q . 某同学的作图步骤如下: 步骤 作法推断第一步 以点P 为圆心,适当长度为半径作弧,交直线于A ,B 两点.PA PB =第二步连接PA ,PB ,作APB ∠的平分线,交直线于点Q .APQ ∠=∠__________直线PQ 即为所求作.PQ l ⊥请你根据该同学的作图方法完成以下推理: ∵PA PB =,APQ ∠=∠__________,∴PQ l ⊥.(依据:__________________________________________________).【2018海淀一模】1.用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是A B C DC BAA ABC ACAABCCBABCABCCB BC A B C【2018朝阳一模】16.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.已知:直线a和直线外一点P.求作:直线a的垂线,使它经过P.作法:如图,(1)在直线a上取一点A, 连接PA;(2)分别以点A和点P为圆心,大于AP的长为半径作弧,两弧相交于B,C两点,连接BC交PA于点D;(3)以点D为圆心,DP为半径作圆,交直线a于点E,作直线PE.所以直线PE就是所求作的垂线.请回答:该尺规作图的依据是.【2018石景山一模】16.小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的做法是这样的:如图,(1)利用刻度尺在AOB=;∠的两边OA,OB上分别取OM ON(2)利用两个三角板,分别过点M,N画OM,ON的垂线,交点为P;(3)画射线OP.则射线OP为AOB∠的平分线.请写出小林的画法的依据.【2018门头沟一模】16. 下图是“已知一条直角边和斜边做直角三角形”的尺规作图过程.已知:线段a 、b ,求作:Rt ABC ∆.使得斜边AB b =,AC a = 作法:如图.(1)作射线AP ,截取线段AB b =; (2)以AB 为直径,作⊙O ;(3)以点A 为圆心,a 的长为半径作弧交⊙O 于点C ; (4)连接AC 、CB .ABC ∆即为所求作的直角三角形.请回答:该尺规作图的依据是______________________________________.【2018大兴一模】16.下面是“求作∠AOB 的角平分线”的尺规作图过程.已知:如图,钝角∠AOB. 求作:∠AOB 的角平分线. 作法:①在OA 和OB 上,分别截取OD 、OE ,使OD =OE ; ②分别以D 、E 为圆心,大于12DE 的长为半径作 弧, 在∠AOB 内,两弧交于点C ; ③作射线OC.所以射线OC 就是所求作的∠AOB 的角平分线.请回答:该尺规作图的依据是 . abPCOAB【2018顺义一模】16.在数学课上,老师提出一个问题“用直尺和圆规作一个矩形”.小华的做法如下: 老师说:“小华的作法正确” .请回答:小华的作图依据是 .【2018平谷一模】16.下面是“作已知角的角平分线”的尺规作图过程.已知:如图1,∠MON .求作:射线OP ,使它平分∠MON . 作法:如图2,(1)以点O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ; (2)连结AB ;(3)分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于点P ;ONM图1图2PB ONMA(1)如图1,任取一点O ,过点O 作直线l 1,l 2;(2)如图2,以O 为圆心,任意长为半径作圆,与直线l 1,l 2分别相交于点A 、C ,B 、D ;(3)如图3,连接AB 、BC 、CD 、DA .四边形ABCD 即为所求作的矩形.图3图2图1OOOABCDl 1l 2l 1l 2l 2l 1DCBA(4)作射线OP .所以,射线OP 即为所求作的射线.请回答:该尺规作图的依据是 . 【2018怀柔一模】 16.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:小明的作法如下:请回答:该尺规作图的依据是____________________________.【2018延庆一模】1. 利用尺规作图,作△ABC 边上的高AD ,正确的是【2018延庆一模】20.已知:∠AOB 及边OB 上一点C .求作:∠OCD ,使得∠OCD=∠AOB .要求:1.尺规作图,保留作图痕迹,不写做法;(说明:作出一个..即可) 2.请你写出作图的依据.ABCDABC DABC DABCDA .B . 已知:△ABC.求作:△ABC 的内切圆.BAC如图,(1)作∠ABC ,∠ACB 的平分线BE 和CF ,两线相交于点O;(2)过点O 作OD ⊥BC ,垂足为点D; (3)点O 为圆心,OD 长为半径作⊙O. 所以,⊙O 即为所求作的圆.DOCA BEF【2018燕山一模】16.在数学课上,老师提出如下问题:曈曈的作法如下:老师说:“曈曈的作法正确.”请你回答:曈曈的作图依据是________________________.。

中考数学专题训练:尺规作图技巧+典型题全汇总

中考数学专题训练:尺规作图技巧+典型题全汇总

初中数学尺规作图专题讲解
尺规作图是起源于古希腊的数学课题,是指用没有刻度的直尺和圆规作图。

其中直尺必须没有刻度,只能用来作直线、线段、射线或延长线段;圆规可以开至无限宽,但上面也不能有刻度,只能用来作圆和圆弧.因此,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不可以度量的.
1、尺规作图规范用语
2、尺规作图基本步骤
3、五种基础的尺规作图题型(掌握基础才能挑战复杂题型)
基本作图一:作一条线段等于已知线段。

基本作图二:作一个角等于已知角。

基本作图三:作已知线段的垂直平分线。

基本作图四:作已知角的角平分线
基本作图五:过一点作已知直线的垂线。

4、典型例题分析
5、题目练习。

2018年中考数学复习试题汇编----尺规作图(含答案)

2018年中考数学复习试题汇编----尺规作图(含答案)

2018年中考数学复习试题汇编----尺规作图1.阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆;第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为________.151(作图正确1分.答案正确1分)2.下面是“作已知圆的内接正方形”的尺规作图过程.请回答:该尺规作图的依据是______________________________________________.到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分;(圆内接正多边形定义)3.下面是“作顶角为120°的等腰三角形的外接圆”的尺规作图过程.请回答:该尺规作图的依据是_____________________________________________.4.石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A 出发,将△ABC 分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).请回答,C AC C AC ABC S S S2211成立的理由是:①;②.16.①两条直线被一组平行线所截,所得的对应线段成比例;②等底同高的三角形面积相等16.在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB 是△ABC 的一个内角.求作:∠APB= ∠ACB.小路的作法如下:如图,P①作线段AB 的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;On③以点O 为圆心,OA 为半径作△ABC 的外接圆;AB④在弧ACB 上取一点P,连结AP,BP.m所以∠APB= ∠ACB.老师说:“小路的作法正确.”)的依据是;请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC(2)∠APB=∠ACB的依据是.16.(1)线段垂直平分线上的点与这条线段两个端点的距离相等;(2)同弧所对的圆周角相等.6.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:小明的作法如下:请回答:这样做的依据是.16.圆的定义,直径的定义,直径所对的圆周角为90°,到线段两端点距离相等的点在线段的垂直平分线上,经过半径的外端并且垂直于这条半径的直线是圆的切线.7.下面是“过圆外一点作圆的切线”的尺规作图过程.请回答以下问题:(1)连接OA,OB,可证∠OAP =∠OBP = 90°,理由是;(2)直线PA,PB是⊙O的切线,依据是.16.直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线.8.下面是“作出所在的圆”的尺规作图过程.。

(完整版)中考数学尺规作图专题复习(含答案)

(完整版)中考数学尺规作图专题复习(含答案)

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。

1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。

5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。

中考数学《尺规作图》专题复习试卷含试卷分析

中考数学《尺规作图》专题复习试卷含试卷分析

初三数学专题复习尺规作图一、单选题1.用尺规作图,不能作出唯一直角三角形的是()A. 已知两条直角边B. 已知两个锐角C. 已知一直角边和直角边所对的一锐角D. 已知斜边和一直角边2.根据已知条件作符合条件的三角形,在作图过程中,主要依据是()A. 用尺规作一条线段等于已知线段B. 用尺规作一个角等于已知角C. 用尺规作一条线段等于已知线段和作一个角等于已知角D. 不能确定3.用尺规作图,下列条件中可能作出两个不同的三角形的是()A. 已知三边B. 已知两角及夹边C. 已知两边及夹角D. 已知两边及其中一边的对角4.尺规作图是指()A. 用直尺规范作图B. 用刻度尺和圆规作图C. 用没有刻度的直尺和圆规作图D. 直尺和圆规是作图工具5.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧6. 如图,用尺规作出∠OBF=∠AOB,作图痕迹是()A. 以点B为圆心,OD为半径的圆B. 以点B为圆心,DC为半径的圆C. 以点E为圆心,OD为半径的圆D. 以点E为圆心,DC为半径的圆7.如图,下面是利用尺规作∠AOB的角平分线OC的作法:①以点O为圆心,任意长为半径作弧,交OA、OB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内部交于点C;③作射线OC,则射线OC就是∠AOB的平分线.以上用尺规作角平分线时,用到的三角形全等的判定方法是()A. SSSB. SASC. ASAD. AAS8.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法可得△OCP≌△ODP,判定这两个三角形全等的根据是()A. SASB. ASAC. AASD. SSS9.下列作图语句中,不准确的是()A. 过点A、B作直线ABB. 以O为圆心作弧C. 在射线AM上截取AB=aD. 延长线段AB到D ,使DB=AB10.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是()A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧11.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.点P关于x轴的对称点P′的坐标为(a,b),则a与b的数量关系为()A. a+b=0B. a+b>0C. a﹣b=0D. a﹣b>012.如图所示的作图痕迹作的是()A. 线段的垂直平分线B. 过一点作已知直线的垂线C. 一个角的平分线D. 作一个角等于已知角13.下列作图语句正确的是()A. 作射线AB,使AB=aB. 作∠AOB=∠aC. 延长直线AB到点C,使AC=BCD. 以点O为圆心作弧14.某探究性学习小组仅利用一副三角板不能完成的操作是()A. 作已知直线的平行线B. 作已知角的平分线C. 测量钢球的直径D. 作已知三角形的中位线15.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(m,n﹣3),则m与n的数量关系为()A. m﹣n=﹣3B. m+n=﹣3C. m﹣n=3D. m+n=316.小明用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;④取一点K,使K和B在AC的两侧;所以,BH就是所求作的高.其中顺序正确的作图步骤是()A. ①②③④B. ④③②①C. ②④③①D. ④③①②17.已知∠AOB ,求作射线OC ,使OC平分∠AOB作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD ,OE ,使OD=OE;③分别以D ,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C .A. ①②③B. ②①③C. ②③①D. ③②①二、填空题18.画线段AB;延长线段AB到点C,使BC=2AB;反向延长AB到点D,使AD=AC,则线段CD=________AB.19.已知,∠AOB .求作:∠A′O′B′,使∠A′O′B′=∠AOB .作法:①以________为圆心,________为半径画弧.分别交OA ,OB于点C ,D .②画一条射线O′A′,以________为圆心,________长为半径画弧,交O′A′于点C′,③以点________为圆心________长为半径画弧,与第2步中所画的弧交于点D′.④过点________画射线O′B′,则∠A′O′B′=∠AOB .20.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=120°,则∠MAB 的度数为________ .21.已知△ABC,小明利用下述方法作出了△ABC的一条角平分线.小明的作法:(i)过点B作与AC平行的射线BM;(边AC与射线BM位于边BC的异侧)(ii)在射线BM上取一点D,使得BD=BA;(iii)连结AD,交BC于点E.线段AE即为所求.小明的作法所蕴含的数学道理为________.22.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是________ ;由此可证明直线PA,PB都是⊙O 的切线,其依据是________三、解答题23.如图所示,作△ABC关于直线l的对称.24.在△ABC中,F是BC上一点,FG⊥AB,垂足为G.(1)过C点画CD⊥AB,垂足为D;(2)过D点画DE//BC,交AC于E;(3)说明∠EDC=∠GFB的理由.25.如图,△ABC,用尺规作图作角平分线CD.(保留作图痕迹,不要求写作法)四、综合题26.看图、回答问题(1)已知线段m和n,请用直尺和圆规作出等腰△ABC,使得AB=AC,BC=m,∠A的平分线等于n.(只保留作图痕迹,不写作法)(2)若①中m=12,n=8;请求出腰AB边上的高.27.如图,平面内有A、B、C、D四点,按照下列要求画图:(1)顺次连接A、B、C、D四点,画出四边形ABCD;(2)连接AC、BD相交于点O;(3)分别延长线段AD、BC相交于点P;(4)以点C为一个端点的线段有________条;(5)在线段BC上截取线段BM=AD+CD,保留作图痕迹.28.已知不在同一条直线上的三点P,M,N(1)画射线NP;再画直线MP;(2)连接MN并延长MN至点R,使NR=MN;(保留作图痕迹,不写作图过程)(3)若∠PNR比∠PNM大100°,求∠PNR的度数.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】D4.【答案】C5.【答案】D6.【答案】D7.【答案】A8.【答案】D9.【答案】B10.【答案】D11.【答案】C12.【答案】B13.【答案】B14.【答案】C15.【答案】D16.【答案】D17.【答案】C二、填空题18.【答案】619.【答案】O;任意长;O′;OC;C ;CD;D′20.【答案】30°21.【答案】等边对等角;两直线平行,内错角相等22.【答案】直径所对的圆周角是90°;经过半径外端,且与半径垂直的直线是圆的切线三、解答题23.【答案】解答:解:如图所示:24.【答案】(1)(2)(3)解:因为DE//BC,所以∠EDC=∠BCD,因为FG⊥AB,CD⊥AB,所以CD//FG,所以∠BCD=∠GFB,所以∠EDC=∠GFB。

基本作图及计算与证明问题(真题10道+模拟30道)-中考数学重难题型押题培优导练案【原卷版】

基本作图及计算与证明问题(真题10道+模拟30道)-中考数学重难题型押题培优导练案【原卷版】

基本作图及计算与证明问题(北京真题10道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢考点考查年份考查频率基本作图2013.2014.2015.2016.20172018.2019.2020.2021.2020十年10考初中阶段常见的基本作图有:1.作一条线段的和、差2.作一个角等于已知角、尺规作角的和与差3.作角平分线4.作垂线、线段的垂直平分线5.作全等三角形、等腰三角形6.过员外一点作圆的切线7.作正多边形8.格点作图9.旋转、平移、对称作图10.相似与位似作图【典例剖析】典例精讲,方法提炼,精准提分【例1】(2022•北京)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角的和等于180°.已知:如图,△ABC,求证:∠A+∠B+∠C=180°.方法一证明:如图,过点A作DE∥BC.方法二证明:如图,过点C作CD∥AB.【例2】(2021•北京)《淮南子・天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点A处立一根杆,在地面上沿着杆的影子的方向取一点B,使B,A两点间的距离为10步(步是古代的一种长度单位),在点B处立一根杆;日落时,在地面上沿着点B处的杆的影子的方向取一点C,使C,B两点间的距离为10步,在点C处立一根杆.取CA的中点D,那么直线DB表示的方向为东西方向.(1)上述方法中,杆在地面上的影子所在直线及点A,B,C的位置如图所示.使用直尺和圆规,在图中作CA的中点D(保留作图痕迹);(2)在如图中,确定了直线DB表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线CA表示的方向为南北方向,完成如下证明.证明:在△ABC中,BA=,D是CA的中点,∴CA⊥DB()(填推理的依据).∵直线DB表示的方向为东西方向,∴直线CA表示的方向为南北方向.【真题再现】必刷真题,关注素养,把握核心1.(2017•北京)下面是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.2.(2016•北京)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.3.(2015•北京)阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是.4.(2020•北京)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB.求作:线段BP,使得点P在直线CD上,且∠ABP=∠BAC.作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP=.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=∠BAC()(填推理的依据).∴∠ABP=∠BAC.5.(2019•北京)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.6.(2018•北京)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线P A,以点A为圆心,AP长为半径画弧,交P A的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).7.(2014•北京)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠P AB=20°,求∠ADF的度数;(3)如图2,若45°<∠P AB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.8.(2013•北京)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.【模拟精练】押题必刷,巅峰冲刺,提分培优1.(2022·北京丰台·二模)已知:如图,射线AM.求作:△ABC,使得∠ABC=90∘,∠BAC=30∘.作法:①在射线AM上任取一点O(不与点A重合);①以点O为圆心,OA长为半径画弧,交射线AM于A,C两点;①以点C为圆心,CO长为半径画弧,交AC⌢于点B;①连接AB,BC.△ABC就是所求作的三角形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接OB.在①O中,OB=OC在①C中,OC==BC①OB=OC=BC①①OCB是等边三角形①∠ACB=60∘①AC是①O的直径,①①ABC=_________°(_________)(填推理的依据).①∠ACB+∠BAC=90∘①∠BAC=30∘.2.(2022·北京朝阳·二模)已知:线段AB.求作:①ABC,使得∠A=90∘,∠C=30∘.作法:①分别以点A,B为圆心,AB长为半径画弧,在直线AB的一侧相交于点D;①连接BD并延长,在BD的延长线上取一点C,使得CD=BD;①连接AC.①ABC就是所求作的三角形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接AD.①AB=BD=AD,①①ABD是等边三角形(①)(填推理的依据).①∠B=∠ADB=60∘.①CD=BD,①CD=AD.①∠DAC=∠ACB.①∠ADB=∠DAC+∠ACB(①)(填推理的依据)=2∠ACB.①∠ACB=30∘.①∠BAC=90∘.3.(2022·北京东城·二模)如图,在△ABC中,AB=AC,∠CAB=2α,在△ABC的外侧作直线AP(90°−a<∠PAC<180°−2a),作点C关于直线AP的对称点D,连接AD,BD,BD交直线AP于点E.(1)依题意补全图形;(2)连接CE,求证:∠ACE=∠ABE;(3)过点A作AF⊥CE于点F,用等式表示线段BE,2EF,DE之间的数量关系,并证明.4.(2022·北京东城·二模)如图,在△ABC中,AB=AC.求作:直线AD,使得AD//BC.小明的作法如下:①以点A为圆心、适当长为半径画弧,交BA的延长线于点E,交线段AC于点F;EF的长为半径画弧,两弧在∠EAC的内部相交于点D;①分别以点E,F为圆心、大于12①画直线AD.直线AD即为所求,(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明。

2018年 中考数学专题之尺规作图分类总结

2018年 中考数学专题之尺规作图分类总结

专题二尺规作图类型一角平分线尺规作图题型一:如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.变式一:如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求△ABE与△CDE的面积之比.变式二:如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.类型二垂直平分线(即中垂线)尺规作图题型一:如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.变式一:如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF.变式二:如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.类型三角平分线与中垂线尺规作图题型一:某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)变式一:如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)变式二:如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作∠DAC的平分线AM;(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE,CF.猜想并证明:判断四边形AECF的形状并加以证明.类型四垂线尺规作图题型一:如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.变式一:根据要求画图,并回答问题.已知:直线AB、CD相交于点O,且OE⊥AB(1)过点O画直线MN⊥CD;(2)若点F是(1)所画直线MN上任意一点(O点除外),且∠AOC=34°,求∠EOF的度数.变式二:如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.类型五作角相等尺规作图题型一:已知:∠AOB求作:∠A′O′B′使∠A′O′B′=∠AOB(不写作法,保留作图痕迹)变式一:如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)变式二:已知∠BAD,C是AD边上一点,按要求画图,并保留作图痕迹(1)用尺规作图法在AD的右侧以C为顶点作∠DCP=∠DAB;(2)在射线CP上取一点E,使CE=AB,连接BE,AE;(3)画出△ABE的边BE上的高AF和AB边上的高EG.中考真题(2017广东)20.(7分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.(2016广东)19.(6分)如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.(2015广东)19.(6分)如图,已知锐角△ABC.(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=,求DC的长.。

北京中考数学一轮复习 提分专练05 尺规作图

北京中考数学一轮复习 提分专练05 尺规作图

提分专练(五)尺规作图1.通过如下尺规作图,能确定点D是BC边中点的是()图T5-12.如图T5-2,分别以线段AB的两端点A,B为圆心,大于AB长为半径画弧,在线段AB的两侧分别交于点E,F,作直线EF交AB于点O.在直线EF上任取一点P(不与点O重合),连接P A,PB,则下列结论不一定成立的是()图T5-2A.P A=PBB.OA=OBC.OP=OFD.PO⊥AB3.已知∠AOB=60°,以O为圆心,以任意长为半径作弧,分别交OA,OB于点M,N,分别以M,N为圆心,以大于MN 的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC的度数为()A.15°B.45°C.15°或30°D.15°或45°4.如图T5-3,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N;再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.则下列说法中不正确的是()图T5-3A.BP是∠ABC的平分线B.AD=BDC.S△CBD∶S△ABD=1∶3D.CD=BD5.[2018·朝阳一模]下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.已知:如图T5-4,直线a和直线外一点P.图T5-4求作:直线a的垂线,使它经过点P.作法:如图T5-5,(1)在直线a上取一点A,连接P A;(2)分别以点A和点P为圆心,大于AP的长为半径作弧,两弧相交于B,C两点,连接BC交P A于点D;图T5-5(3)以点D为圆心,DP长为半径作圆,交直线a于点E,作直线PE.所以直线PE就是所求作的垂线.请回答:该尺规作图的依据是6.[2018·丰台一模]下面是“作一个角等于已知角”的尺规作图过程.已知:如图T5-6,∠A.求作:一个角,使它等于∠A.图T5-6作法:如图T5-7,图T5-7(1)以点A为圆心,任意长为半径作☉A,交已知角的两边于B,C两点;(2)以点C为圆心,BC长为半径作弧,与☉A交于点D,作射线AD.所以∠CAD就是所求作的角.请回答:该尺规作图的依据是7.[2018·大兴一模]下面是“求作∠AOB的平分线”的尺规作图过程.图T5-8已知:如图T5-8,钝角∠AOB.求作:∠AOB的平分线.作法:(1)如图T5-9,在OA和OB上分别截取OD,OE,使OD=OE;(2)分别以D,E为圆心,大于DE的长为半径作弧,图T5-9在∠AOB内两弧交于点C;(3)作射线OC.所以射线OC就是所求作的∠AOB的平分线.请回答:该尺规作图的依据是.8.[2018·北京]下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图T5-10,直线l及直线l外一点P.图T5-10求作:直线PQ,使得PQ∥l.作法:如图T5-11,图T5-11(1)在直线l上取一点A,作射线P A,以点A为圆心,AP长为半径画弧,交P A的延长线于点B;(2)在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;(3)作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).9.在数学课上,同学们已经探究过“经过已知直线外一点作这条直线的垂线”的尺规作图过程: 已知:如图T5-12①,直线l和l外一点P.图T5-12求作:直线l的垂线,使它经过点P.作法:如图②,(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径画弧,两弧相交于点Q;(3)作直线PQ.参考以上作图的方法,解决以下问题:(1)作图的依据是:.(2)已知:如图T5-13,直线l和l外一点P.求作:☉P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹)图T5-1310.[2019·石景山二模]下面是小华设计的“作一个角等于已知角的2倍”的尺规作图过程.已知:∠AOB.求作:∠APC,使得∠APC=2∠AOB.图T5-14作法:如图T5-14,①在射线OB上任取一点C;②作线段OC的垂直平分线,交OA于点P,交OB于点D;③连接PC.所以∠APC即为所求作的角.根据小华设计的尺规作图过程:(1)使用直尺和圆规补全图形(保留作图痕迹);(2)完成下面的证明(说明:括号里填写推理的依据).证明:∵DP是线段OC的垂直平分线,∴OP=().∴∠O=∠PCO.∵∠APC=∠O+∠PCO().∴∠APC=2∠AOB.11.[2019·东城二模]下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.已知:四边形ABCD是平行四边形.图T5-15求作:菱形ABEF(点E在BC上,点F在AD上).作法:①以A为圆心,AB长为半径作弧,交AD于点F;②以B为圆心,AB长为半径作弧,交BC于点E;③连接EF.所以四边形ABEF为所求作的菱形.根据小明设计的尺规作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AF=AB,BE=AB,∴=.在▱ABCD中,AD∥BC,即AF∥BE,∴四边形ABEF为平行四边形.∵AF=AB,∴四边形ABEF为菱形()(填推理的依据).12.[2019·房山二模]阅读下面材料:小明遇到一个问题:如图T5-16,∠MON,点A在射线OM上,点B在∠MON内部,用直尺和圆规作点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):a.点P到A,B两点的距离相等;b.点P到∠MON的两边的距离相等.图T5-16小明的作法是:①连接AB,作线段AB的垂直平分线交AB于E,交ON于F;②作∠MON的平分线交EF于点P.所以点P即为所求.根据小明的尺规作图过程:(1)使用直尺和圆规,补全图形;(2)证明.∵EF垂直平分线段AB,点P在直线EF上,∴P A=.∵OP平分∠MON,∴点P到∠MON的两边的距离相等()(填推理的依据). ∴点P即为所求.13.[2019·怀柔一模]下面是“已知斜边作一个直角三角形”的尺规作图过程.已知:线段AB.图T5-17求作:一个直角三角形ABC,使线段AB为斜边.作法:如图T5-18,图T5-18①过点A任意作一条射线l;②在射线l上任取两点D,E;③分别以点D,E为圆心,DB,EB长为半径作弧,两弧相交于点P;④作射线BP交射线l于点C.所以△ABC就是所求作的直角三角形.思考:(1)按上述方法,以线段AB为斜边还可以作个直角三角形;(2)这些直角三角形的直角顶点C所形成的图形是,理由是.14.[2019·顺义二模]下面是小明设计的“作三角形的高线”的尺规作图过程.已知:△ABC.求作:BC边上的高线.图T5-19作法:如图T5-20,图T5-20①分别以A,B为圆心,大于AB长为半径画弧,两弧交于点D,E;②作直线DE,与AB交于点F,以点F为圆心,F A长为半径画圆,交CB的延长线于点G;③连接AG.所以线段AG就是所求作的BC边上的高线.根据小明设计的尺规作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面证明.证明:连接DA,DB,EA,EB,∵DA=DB,∴点D在线段AB的垂直平分线上()(填推理的依据). ∵=,∴点E在线段AB的垂直平分线上.∴DE是线段AB的垂直平分线.∴F A=FB.∴AB是☉F的直径.∴∠AGB=90°()(填推理的依据).∴AG⊥BC,即AG就是BC边上的高线.15.[2019·朝阳期中]阅读下面的材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的作法如下(如图T5-21②):图T5-21①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在上取一点P,连接AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.16.求证:相似三角形对应边上的中线之比等于相似比.要求:(1)根据给出的△ABC及线段A'B',∠A'(∠A'=∠A),以线段A'B'为一边,在给出的图形上用尺规作出△A'B'C',使得△A'B'C'∽△ABC,不写作法,保留作图痕迹;(2)在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.图T5-22【参考答案】1.A2.C3.D[解析]由作图过程可以得出OP为∠AOB的平分线,所以∠AOP=∠BOP=∠AOB=30°,因为∠POC=15°,考虑到点C有可能在∠AOP内也有可能在∠BOP内,所以当点C在∠AOP内时,∠BOC=∠BOP+∠POC=45°,当点C在∠BOP内时,∠BOC=∠BOP-∠POC=15°.4.C[解析]由画法可知BP是∠ABC的平分线,∴选项A正确.∵∠C=90°,∠A=30°,∴∠ABC=60°.∵BP是∠ABC的平分线,∴∠ABP=∠DBC=∠A=30°,∴AD=BD.选项B正确.∵∠DBC=30°,∴CD=BD.选项D正确.∵CD=BD,BD=AD,∴CD∶AD=1∶2.∵△BCD与△ABD有相同的高BC,∴S△CBD∶S△ABD=CD∶AD=1∶2.选项C不正确.故选C.5.线段垂直平分线上的点到线段两端点距离相等;直径所对的圆周角是直角;两点确定一条直线6.在同圆或等圆中,等弧所对的圆心角相等7.SSS定理;全等三角形的对应角相等;两点确定一条直线8.解:(1)如图所示.(2)P A;CQ;依据:①三角形的中位线平行于第三边;②两点确定一条直线9.解:(1)到线段两端点距离相等的点,在线段的垂直平分线上;两点确定一条直线(2)如图,☉P即为所求.10.解:(1)补全的图形如图所示:(2)PC;线段垂直平分线上的点到线段两个端点的距离相等;三角形的一个外角等于与它不相邻的两个内角的和11.解:(1)如图.(2)AF;BE;一组邻边相等的平行四边形是菱形.12.解:(1)如图.(2)PB;角平分线上的点到角两边的距离相等13.解:(1)无数.(2)以AB为直径的圆(除A,B两点外);直径所对的圆周角是直角.14.解:(1)如图.(2)到线段两端距离相等的点在这条线段的垂直平分线上;EA;EB;直径所对的圆周角是直角15.解:(1)①线段垂直平分线上的点到这条线段两端点的距离相等;②三角形外接圆圆心是三角形任意两边垂直平分线的交点(2)同弧或等弧所对的圆周角相等16.解:(1)如图所示,△A'B'C'就是所求作的三角形.(2)已知:如图,△A'B'C'∽△ABC,=k,A'D'=D'B',AD=DB,求证:=k.证明:∵A'D'=D'B',AD=DB,∴A'D'=A'B',AD=AB,∴=k.∵△A'B'C'∽△ABC,∴∠A=∠A',=k, 在△A'D'C'和△ADC中,=k,∠A=∠A', ∴△A'D'C'∽△ADC,∴=k.。

北京中考数学试题(含答案及解析版)

北京中考数学试题(含答案及解析版)

2018年北京市高级中等学校招生考试数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个。

1. 下列几何体中,是圆柱的为2. 实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是(A )>4a (B )>0b c - (C )>0ac (D )>0c a +3. 方程式⎩⎨⎧=-=-14833y x y x 的解为(A )⎩⎨⎧=-=21y x (B )⎩⎨⎧-==21y x (C )⎩⎨⎧=-=12y x (D )⎩⎨⎧-==12y x4. 被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积。

已知每个标准足球场的面积为7140m 2,则FAST 的反射面总面积约为 (A )231014.7m ⨯ (B )241014.7m ⨯ (C )25105.2m ⨯ (D )26105.2m ⨯ 5. 若正多边形的一个外角是o 60,则该正多边形的内角和为(A )o 360 (B )o 540 (C )o 720 (D )o 9006. 如果32=-b a ,那么代数式b a ab a b a -⋅⎪⎪⎭⎫ ⎝⎛-+222的值为(A )3 (B )32 (C )33 (D )34 7. 跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()02≠=+=a c bx ax y 。

下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为(A )10m (B )15m (C )20m (D )22.5m8. 上图是老北京城一些地点的分布示意图。

在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()3,6--时,表示左安门的点的坐标为()6,5-;②当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()6,12--时,表示左安门的点的坐标为()12,10-;③当表示天安门的点的坐标为()1,1,表示广安门的点的坐标为()5,11--时,表示左安门的点的坐标为()11,11-;④当表示天安门的点的坐标为()5.1,5.1,表示广安门的点的坐标为()5.7,5.16--时,表示左安门的点的坐标为(),5.16,5.16-。

2018年北京市中考数学试卷包含答案

2018年北京市中考数学试卷包含答案

北京市2018年中考数学试卷第1-8题均有四个选项,符合题意的选项只有一个. 1.下列几何体中,是圆柱的为A .B .C .D .【答案】A【解析】A 选项为圆柱,B 选项为圆锥,C 选项为四棱柱,D 选项为四棱锥. 【考点】立体图形的认识2.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是c b a 1032 14234A .||4a >B .0c b ->C .0ac >D .0a c +>【答案】B【解析】∵43a -<<-,∴34a <<,故A 选项错误;数轴上表示b 的点在表示c 的点的左侧,故B 选项正确; ∵0a <,0c >,∴0ac <,故C选项错误;∵0a <,0c >,a c >,∴0a c +<,故D 选项错误.【考点】实数与数轴3.方程组33814x y x y -=⎧⎨-=⎩的解为A .12x y =-⎧⎨=⎩B .12x y =⎧⎨=-⎩C .21x y =-⎧⎨=⎩D .21x y =⎧⎨=-⎩【答案】D【解析】将4组解分别代入原方程组,只有D 选项同时满足两个方程,故选D . 【考点】二元一次方程组的解4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m ,则FAST 的反射面积总面积约为 A .327.1410m ⨯ B .427.1410m ⨯ C .522.510m ⨯D .622.510m ⨯【答案】C【解析】5714035249900 2.510⨯=≈⨯(2m ),故选C . 【考点】科学记数法5.若正多边形的一个外角是60︒,则该正多边形的内角和为A .360︒B .540︒C .720︒D .900︒【答案】C【解析】由题意,正多边形的边数为360660n ︒==︒,其内角和为()2180720n -⋅︒=︒. 【考点】正多边形,多边形的内外角和.6.如果a b -=,那么代数式22()2a b ab a a b+-⋅-的值为A B . C . D .【答案】A【解析】原式()2222222a b a b ab aa ab a a b a a b -+--=⋅=⋅=--,∵a b -=,∴原式=. 【考点】分式化简求值,整体代入.7.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(0a ≠).下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A .10mB .15mC .20mD .22.5m【答案】B【解析】设对称轴为x h =,由(0,54.0)和(40,46.2)可知,040202h +<=, 由(0,54.0)和(20,57.9)可知,020102h +>=, ∴1020h <<,故选B .【考点】抛物线的对称轴.8.右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:-,3-)时,表示左安门的点的坐标为(5,6-);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-)时,表示左安门-,6的点的坐标为(10,12-);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-)时,表示左安门-,5的点的坐标为(11,11-);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-,7.5-)时,表示左安门的点的坐标为(16.5,16.5-).上述结论中,所有正确结论的序号是A.①②③B.②③④C.①④D.①②③④【答案】D【解析】显然①②正确;③是在②的基础上,将所有点向右平移个单位,再向上平移个单位得到,故③正确;④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(18-,9-)时,表示左安门的点的坐标为(15,18-)”的基础上,将所有点向右平移1.5个单位,再向上平移1.5个单位得到,故④正确.【考点】平面直角坐标系,点坐标的确定,点的平移ED CBA二、填空题(本题共16分,每小题2分)9.右图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”) 【答案】>【解析】如下图所示,AFG △是等腰直角三角形,∴45FAG BAC ∠=∠=︒,∴BAC DAE ∠>∠. 另:此题也可直接测量得到结果.【考点】等腰直角三角形10x 的取值范围是_______.【答案】0x ≥【解析】被开方数为非负数,故0x ≥. 【考点】二次根式有意义的条件.11.用一组a ,b ,c 的值说明命题“若a b <,则ac bc <”是错误的,这组值可以是a =_____,b =______,c =_______.【答案】答案不唯一,满足a b <,0c ≤即可,例如:,2,1- 【解析】不等式两边乘(或除以)同一个负数,不等号的方向改变. 【考点】不等式的基本性质12.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB ∠=________.【答案】70【解析】∵CB CD =,∴30CAB CAD ∠=∠=︒,∴60BAD ∠=︒,∵50ABD ACD ∠=∠=︒,∴18070ADB BAD ABD ∠=︒-∠-∠=︒.【考点】圆周角定理,三角形内角和定理13.如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若4AB =,3AD =,则CF 的长为________.【答案】103【解析】∵四边形ABCD 是矩形,∴4AB CD ==,AB CD ∥,90ADC ∠=︒,在Rt ADC △中,90ADC ∠=︒,∴5AC ==, ∵E 是AB 中点,∴1122AE AB CD ==, ∵AB CD ∥,∴12AF AE CF CD ==,∴21033CF AC ==. 【考点】矩形的性质,勾股定理,相似三角形的性质及判定14.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:45分钟”的可能性最大. 【答案】C【解析】样本容量相同,C 线路上的公交车用时超过45分钟的频数最小,所以其频率也最小,故选C .【考点】用频率估计概率15.某公园划船项目收费标准如下:________元. 【答案】380【解析】租用四人船、六人船、八人船各1艘,租船的总费用为100130150380++=(元) 【考点】统筹规划16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.【答案】【解析】从左图可知,创新综合排名全球第22,对应创新产出排名全球第11;从右图可知,创新产出排名全球第11,对应创新效率排名全球第3.【考点】函数图象获取信息三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ l∥.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=_______,CB=_______,∴PQ l ∥(____________)(填推理的依据).【解析】(1)尺规作图如下图所示:(2)PA ,CQ ,三角形中位线平行于三角形的第三边.【考点】尺规作图,三角形中位线定理18.计算:04sin 45(π2)|1|︒+--.【解析】解:原式4112=+-=. 【考点】实数的运算19.解不等式组:3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩.【解析】解:由①得,2x >-,由②得,3x <,∴不等式的解集为23x -<<.【考点】一元一次不等式组的解法20.关于x 的一元二次方程210ax bx ++=.(1)当2b a =+时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根. 【解析】(1)解:由题意:0a ≠.∵()22242440b a a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b a -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.【考点】一元二次方程21.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形; (2)若AB =,2BD =,求OE 的长.【解析】(1)证明:∵AB CD∥∴CAB ACD∠=∠∵AC平分BAD∠∴CAB CAD∠=∠∴CAD ACD∠=∠∴AD CD=又∵AD AB=∴AB CD=又∵AB CD∥∴四边形ABCD是平行四边形又∵AB AD=∴ABCDY是菱形(2)解:∵四边形ABCD是菱形,对角线AC、BD交于点O.∴AC BD⊥.12OA OC AC==,12OB OD BD==,∴112OB BD==.在Rt AOB△中,90AOB∠=︒.∴2OA==.∵CE AB⊥,∴90AEC∠=︒.在Rt AEC△中,90AEC∠=︒.O为AC中点.∴122OE AC OA===.【考点】菱形的性质和判定,勾股定理,直角三角形斜边中线22.如图,AB是O的直径,过O外一点P作O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP CD⊥;(2)连接AD,BC,若50DAB∠=︒,70CBA∠=︒,2OA=,求OP的长.【解析】(1)证明:∵PC、PD与O⊙相切于C、D.∴PC PD=,OP平分CPD∠.在等腰PCD△中,PC PD=,PQ平分CPD∠.∴PQ CD⊥于Q,即OP CD⊥.(2)解:连接OC、OD.∵OA OD=∴50OAD ODA∠=∠=︒∴18080AOD OAD ODA∠=︒-∠-∠=︒同理:40BOC∠=︒∴18060COD AOD BOC∠=︒-∠-∠=︒.在等腰COD△中,OC OD=.OQ CD⊥∴1302DOQ COD∠=∠=︒.∵PD与O⊙相切于D.∴OD DP⊥.∴90ODP∠=︒.在Rt ODP△中,90ODP∠=︒,30POD∠=︒∴cos cos30OD OAOPPOD====∠︒.【考点】切线的性质,切线长定理,锐角三角函数23.在平面直角坐标系xOy中,函数kyx=(0x>)的图象G经过点A(4,1),直线14l y x b=+∶与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当1b=-时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【解析】(1)解:∵点A(4,1)在kyx=(0x>)的图象上.∴14k=,∴4k=.QPDCOBA(2)① 3个.(1,0),(2,0),(3,0).② a .当直线过(4,0)时:1404b ⨯+=,解得1b =-b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -<-≤或71144b <≤.【考点】一次函数与反比例函数综合,区域内整点个数问题24.如图,Q 是AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ 并延长交AB 于点C ,连接AC .已知6cm AB =,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为1cm y ,A ,C 两点间的距离为2cm y .小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究. 下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值;(21y ),(x ,2y ),并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:当APC △为等腰三角形时,AP 的长度约为____cm . 【解析】(1)3.00(2)如下图所示:(3)3.00或4.83或5.88.如下图所示,个函数图象的交点的横坐标即为所求.【考点】动点产生的函数图象问题,函数探究25.某年级共有300名学生.为了解该年级学生A ,B 两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a .A 课程成绩的频数分布直方图如下(数据分成6组:4050x <≤,5060x <≤,6070x <≤,7080x <≤,8090x <≤,90100x ≤≤);b .A 课程成绩在7080x <≤这一组是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5 c .A ,B 两门课程成绩的平均数、中位数、众数如下:(1)写出表中m 的值;(2)在此次测试中,某学生的A 课程成绩为76分,B 课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;(3)假设该年级学生都参加此次测试,估计A 课程成绩超过75.8分的人数. 【解析】(1)78.75(2)B .该学生A 课程分数低于中位数,排名在中间位置之后,而B 课程分数高于中位数,排名在中间位置之前.(3)解:抽取的60名学生中.A 课程成绩超过75.8的人数为36人.∴3630018060⨯=(人) 答:该年级学生都参加测试.估计A 课程分数超过75.8的人数为180人.【考点】频数分布直方图,中位数,用样本估计总体26.在平面直角坐标系xOy 中,直线44y x =+与x 轴、y 轴分别交于点A ,B ,抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C . (1)求点C 的坐标; (2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围. 【解析】(1)解:∵直线44y x =+与x 轴、y 轴交于A 、B .∴A (1-,0),B (0,4) ∴C (5,4)(2)解:抛物线23y ax bx a =+-过A (1-,0)∴30a b a --=. 2b a =-∴223y ax ax a =-- ∴对称轴为212ax a-=-=.(3)解:①当抛物线过点C时.251034a a a--=,解得13a=.②当抛物线过点B时.34a-=,解得43a=-.③当抛物线顶点在BC上时.此时顶点为(1,4)∴234a a a--=,解得1a=-.∴综上所述43a<-或13a≥或1a=-.【考点】一次函数与坐标轴的交点,点的平移,抛物线对称轴,抛物线与线段交点问题27.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH DE⊥交DG的延长线于点H,连接BH.(1)求证:GF GC=;(2)用等式表示线段BH 与AE 的数量关系,并证明.【解析】(1)证明:连接DF .∵A ,F 关于DE 对称. ∴AD FD =.AE FE =. 在ADE △和FDE △中. AD FDAE FE DE DE =⎧⎪=⎨⎪=⎩∴ADE FDE △≌△ ∴DAE DFE ∠=∠. ∵四边形ABCD 是正方形 ∴90A C ∠=∠=︒.AD CD = ∴90DFE A ∠=∠=︒∴18090DFG DFE ∠=︒-∠=︒ ∴DFG C ∠=∠ ∵AD DF =.AD CD = ∴DF CD =在Rt DCG △和Rt DFG △. DC DFDG DG =⎧⎨=⎩∴Rt DCG △≌Rt DFG △ ∴CG FG =. (2)BH =.证明:在AD 上取点M 使得AM AE =,连接ME . ∵四这形ABCD 是正方形.∴AD AB =.90A ADC ∠=∠=︒. ∵DAE △≌DFE △ ∴ADE FDE ∠=∠同理:CDG FDG ∠=∠ ∴EDG EDF GDF ∠=∠+∠ 1122ADF CDF =∠+∠ 1452ADC =∠=︒ ∵DE EH ⊥ABCDEFHG∴90DEH ∠=︒∴18045EHD DEH EDH ∠=︒-∠-∠=︒ ∴EHD EDH ∠=∠ ∴DE EH =. ∵90A ∠=︒∴90ADE AED ∠+∠=︒ ∵90DEH ∠=︒∴90AED BEH ∠+∠=︒ ∴ADE BEH ∠=∠∵AD AB =.AM AE = ∴DM EB =在DME △和EBH △中 DM EB MDE BEH DE EH =⎧⎪∠=∠⎨⎪=∠⎩∴DME △≌EBH △ ∴ME BH =在Rt AME △中,90A ∠=︒,AE AM =.∴ME ==∴BH =.【考点】正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定28.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ).已知点A (2-,6),B (2-,2-),C (6,2-). (1)求d (点O ,ABC △);(2)记函数y kx =(11x -≤≤,0k ≠)的图象为图形G ,若d (G ,ABC △)1=,直接写出k 的取值范围;(3)T 的圆心为T (,0),半径为1.若d (T ,ABC △)1=,直接写出的取值范围. 【解析】(1)如下图所示:∵B (2-,2-),C (6,2-) ∴D (0,2-)∴d (O ,ABC △)2OD == (2)10k -<≤或01k <≤(3)4t =-或04t -≤≤或4t =+.【考点】点到直线的距离,圆的切线。

中考数学专题复习之尺规作图精选训练题

中考数学专题复习之尺规作图精选训练题

中考数学专题复习之尺规作图精选训练题一.选择题(共10小题)1.利用直角三角板,作△ABC 的高,下列作法正确的是( )A .B .C .D .2.已知线段AB ,按如下步骤作图: ①取线段AB 中点C ; ②过点C 作直线l ,使l ⊥AB ;③以点C 为圆心,AB 长为半径作弧,交l 于点D ;④作∠DAC 的平分线,交l 于点E .则tan ∠DAE 的值为( )A .12B .2√55C .√5+12D .√5−123.阅读以下作图步骤:①在OA 和OB 上分别截取OC ,OD ,使OC =OD ;②分别以C ,D 为圆心,以大于12CD 的长为半径作弧,两弧在∠AOB 内交于点M ;③作射线OM ,连接CM ,DM ,如图所示. 根据以上作图,一定可以推得的结论是( )A.∠1=∠2且CM=DM B.∠1=∠3且CM=DMC.∠1=∠2且OD=DM D.∠2=∠3且OD=DM4.用直尺和圆规作一个角等于已知角,如图,能得出∠A'O'B'=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS5.如图,在△ABC中,∠B=42°,∠C=48°,DI是AB的垂直平分线,连接AD.以A为圆心,任意长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,以大于1EF长为半径画弧,两圆弧交于G点,作射线AG交BC于点H,则∠DAH的度数为()2A.36°B.25°C.24°D.21°6.如图,用直尺和圆规作∠MAN的角平分线,根据作图痕迹,下列结论不一定正确的是()A.AD=AE B.AD=DF C.DF=EF D.AF⊥DE7.如图,在Rt △ABC 中,以点A 为圆心,适当长为半径作弧,交AB 于点F ,交AC 于点E ,分别以点E ,F 为圆心,大于12EF 长为半径作弧,两弧在∠BAC 的内部交于点G ,作射线AG 交BC 于点D .若AC =3,BC =4,则CD 的长为( )A .78B .1C .32D .28.如图,在▱ABCD 中,分别以B ,D 为圆心,大于12BD 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线交BD 于点O ,交AD ,BC 于点E ,F ,下列结论不正确的是( )A .AE =CFB .DE =BFC .OE =OFD .DE =DC9.如图,Rt △ABC 中,∠C =90°,∠B =30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是( )A .B .C .D .10.如图所示,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .若∠ACD =110°,则∠AMC 的度数为( )A .70°B .35°C .30°D .45°二.填空题(共10小题)11.如图,在△ABC 中,∠B =30°,∠C =50°,通过观察尺规作图的痕迹,∠DEA 的度数是 .12.如图,在△ABC 中,∠A =45°,∠B =30°,尺规作图作出BC 的垂直平分线与AB 交于点D ,则∠ACD 的度数为 .13.如图.△ABC 中,∠B =32°,∠BCA =78°,请依据尺规作图的作图痕迹,计算∠α= .14.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是 .15.如图,在平行四边形ABCD (AB <AD )中,按如下步骤作图:①以点A 为圆心,以适当长为半径画弧,分别交AB ,AD 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在∠BAD 内交于点P ;③作射线AP 交BC 于点E .若∠B =120°,则∠EAD 为 °.16.如图,在△ABC 中,∠A =90°,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;作直线MN 交AB 于点E .若线段AE =5,AC =12,则BE 长为 .17.如图,在Rt △ABC 中,∠B =90°,以点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点D ,E ,再分别以点D ,E 为圆心,大于12DE 长为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若BG =1,AC =4,则△ACG 的面积为 .18.如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD .若∠B =24°,则∠CDA 的度数为 .19.如图,在矩形ABCD 中,连接AC ,以点A 为圆心,小于AD 的长为半径画弧,分别交AD ,AC 于点E ,F ,分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧在∠DAC内交于点G ,作射线AG ,交DC 于点H .若AD =6,AB =8,则△AHC 的面积为 .20.如图,已知∠AOB ,以点O 为圆心,以任意长为半径画弧,与OA 、OB 分别于点C 、D ,再分别以点C 、D 为圆心,以大于12CD 为半径画弧,两弧相交于点E ,过OE 上一点M作MN ∥OA ,与OB 相交于点N ,∠MNB =50°,则∠AOM = .三.解答题(共5小题)21.如图,AB =AE ,BC =ED ,∠B =∠E . (1)求证:AC =AD .(2)用直尺和圆规作图:过点A 作AF ⊥CD ,垂足为F .(不写作法,保留作图痕迹)22.如图,AC 是菱形ABCD 的对角线.(1)作边AB 的垂直平分线,分别与AB ,AC 交于点E ,F (尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接FB ,若∠D =140°,求∠CBF 的度数.23.如图,点A 、B 、C 在⊙O 上且AB =AC ,AB ⊥AC ,请你利用直尺和圆规,用三种不同的方法,找到圆心O .(保留作图痕迹)24.如图,已知△ABC,P为边AB上一点,请用尺规作图的方法在边AC上求作一点E,使AE+EP=AC.(保留作图痕迹,不写作法)25.如图,网格中每个小正方形的边长均为1,点A、B在小正方形的顶点上.(1)画出以AB为底的等腰直角△ABC(点C在小正方形的顶点上);(2)画出以AB为一边且面积为20的平行四边形ABDE,(点D、E都在小正方形的顶点上),连接CE,请直接写出线段CE的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018北京中考数学一模——16题尺规作图专题
【2018东城一模】 16.已知正方形ABCD .
求作:正方形ABCD 的外接圆. 作法:如图,
(1)分别连接AC ,BD ,交于点O ;
(2)以点O 为圆心,OA 长为半径作O e .
O e 即为所求作的圆.
请回答:该作图的依据是__________________________________.
【2018西城一模】 16.阅读下面材料:
在复习课上,围绕一道作图题,老师让同学们尝试应用学过的知识设计多种不同的作图方法,并交流其中蕴含的数学原理. 已知:直线和直线外的一点P .
求作:过点P 且与直线垂直的直线PQ ,垂足为点Q . 某同学的作图步骤如下: 步骤 作法
推断
第一步 以点P 为圆心,适当长度为半径作弧,交直线
于A ,B 两点.
PA PB =
第二步
连接PA ,PB ,作APB ∠的平分线,交直线于点
Q .
APQ ∠=∠__________
直线PQ 即为所求作.
PQ l ⊥
请你根据该同学的作图方法完成以下推理: ∵PA PB =,APQ ∠=∠__________,
∴PQ l ⊥.(依据:__________________________________________________).
【2018海淀一模】
1.用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是
A B C D
C B
A
A A
B
C A
C
A
A
B
C
C
B
A
B
C
A
B
C
C
B B
C A B C
【2018海淀一模】
16.下面是“过圆上一点作圆的切线”的尺规作图过程.
请回答:该尺规作图的依据是.
【2018丰台一模】
16.下面是“作一个角等于已知角”的尺规作图过程.
请回答:该尺规作图的依据是.
【2018朝阳一模】
16.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.
已知:直线a和直线外一点P.
求作:直线a的垂线,使它经过P.
作法:如图,
(1)在直线a上取一点A, 连接PA;
(2)分别以点A和点P为圆心,大于AP的长为半径作弧,
两弧相交于B,C两点,连接BC交PA于点D;
(3)以点D为圆心,DP为半径作圆,交直线a于点E,
作直线PE.
所以直线PE就是所求作的垂线.
请回答:该尺规作图的依据是.
【2018石景山一模】
16.小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的做法是这样的:如图,
(1)利用刻度尺在AOB
=;
∠的两边OA,OB上分别取OM ON
(2)利用两个三角板,分别过点M,N画OM,ON的垂线,交点为P;
(3)画射线OP.则射线OP为AOB
∠的平分线.
请写出小林的画法的依据.
【2018门头沟一模】
16. 下图是“已知一条直角边和斜边做直角三角形”的尺规作图过程.
已知:线段a 、b ,
求作:Rt ABC ∆.使得斜边AB b =,AC a = 作法:如图.
(1)作射线AP ,截取线段AB b =; (2)以AB 为直径,作⊙O ;
(3)以点A 为圆心,a 的长为半径作弧交⊙O 于点C ; (4)连接AC 、CB .
ABC ∆即为所求作的直角三角形.
请回答:该尺规作图的依据是______________________________________.
【2018大兴一模】
16.下面是“求作∠AOB 的角平分线”的尺规作图过程.
已知:如图,钝角∠AOB. 求作:∠AOB 的角平分线. 作法:
①在OA 和OB 上,分别截取OD 、OE ,使OD =OE ; ②分别以D 、E 为圆心,大于
1
2
DE 的长为半径作 弧, 在∠AOB 内,两弧交于点C ; ③作射线OC.
所以射线OC 就是所求作的∠AOB 的角平分线.
请回答:该尺规作图的依据是 . a
b
P
C
O
A
B
【2018顺义一模】
16.在数学课上,老师提出一个问题“用直尺和圆规作一个矩形”.
小华的做法如下: 老师说:“小华的作法正确” .
请回答:小华的作图依据是 .
【2018平谷一模】
16.下面是“作已知角的角平分线”的尺规作图过程.
已知:如图1,∠MON .
求作:射线OP ,使它平分∠MON . 作法:如图2,
(1)以点O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ; (2)连结AB ;
(3)分别以点A ,B 为圆心,大于1
2
AB 的长为半径作弧,两弧相交于点P ;
O
N
M
图1
图2
P
B O
N
M
A
(1)如图1,任取一点O ,过点O 作直线l 1,l 2;
(2)如图2,以O 为圆心,任意长为半径作圆,与直线l 1,l 2分别相交于点A 、
C ,B 、
D ;
(3)如图3,连接AB 、BC 、CD 、DA .
四边形ABCD 即为所求作的矩形.
图3
图2
图1O
O
O
A
B
C
D
l 1
l 2
l 1
l 2
l 2
l 1
D
C
B
A
(4)作射线OP .
所以,射线OP 即为所求作的射线.
请回答:该尺规作图的依据是 . 【2018怀柔一模】 16.阅读下面材料:
在数学课上,老师提出利用尺规作图完成下面问题:
小明的作法如下:
请回答:该尺规作图的依据是____________________________.
【2018延庆一模】
1. 利用尺规作图,作△ABC 边上的高AD ,正确的是
【2018延庆一模】
20.已知:∠AOB 及边OB 上一点C .求作:∠OCD ,使得∠OCD=∠AOB .
要求:1.尺规作图,保留作图痕迹,不写做法;(说明:作出一个..即可) 2.请你写出作图的依据.
A
B
C
D
A
B
C D
A
B
C D
A
B
C
D
A .
B . 已知:△ABC.
求作:△ABC 的内切圆.
B
A
C
如图,
(1)作∠ABC ,∠ACB 的平分线BE 和CF ,两线相交于点O;
(2)过点O 作OD ⊥BC ,垂足为点D; (3)点O 为圆心,OD 长为半径作⊙O. 所以,⊙O 即为所求作的圆.
D
O
C
A B
E
F
【2018燕山一模】
16.在数学课上,老师提出如下问题:
曈曈的作法如下:
老师说:“曈曈的作法正确.”
请你回答:曈曈的作图依据是________________________.。

相关文档
最新文档