塑性加工原理1
塑性加工原理复习题1
塑性加工原理复习题(一)概念理解,判断题1.弹簧的塑性变形量很小。
2.橡皮筋的变形量大,所以塑性好。
3.屈服强度以下屈服点的数值确定。
4.塑性材料才有屈服强度。
5.钢铁在1000℃的条件下进行轧制,属于热加工,因为轧制温度远高于室温。
6.锡的熔点为232℃,在室温20℃的条件下加工属于热加工。
7.锡的熔点为232℃,在-50℃的条件下加工属于冷加工。
8.只要物体受到外力一定会产生应力。
9.所受外力合力为0的条件下,物体不会产生应力。
10.静水压力作用下物体一定不会发生塑性变形。
11.静水压力作用下物体也会发生变形。
12.最大主应力的平面与最大切应力平面没有位置上的关系。
P16013.最大主应力的平面与最大切应力平面有位置上的关系。
P16014.最大主应力可能为0。
15.最大主应力不可能为0。
16.主应力方向一定和外力方向平行。
17.最大主应力方向一定和外力方向平行。
18.最大主应力方向一定和外力合力方向平行。
19.Σf外≠0时,最大主应力方向一定和外力合力方向平行。
20.最大主应力的方向只有一个。
21.最大主应力的方向可能有多个。
22.一点的应力空间有可能是圆球形。
23.塑性变形是最终归结于切应力作用。
24.延伸率Δl/l 真实反映了变形体的变形程度,属于“真应变”。
25.真应变是可以比较的应变。
26.L0长的物体,伸长到2L0,与缩短到0.5L0,两种变形程度,按照名义应变计算不等,按照真应变计算相等。
课件塑性加工原理塑性与变形总课件参考.ppt
1.镦粗时组合件的变形特点 2.基本应力的分布特点 3.第一类附加应力的分布特点
*
上课课件
3. 4. 2 平辊轧制时金属的应力及变形特点
1.基本应力特点 2.变形区内金属质点流动特点 3.平辊轧制时,第一类附加应力的分布特点
*
上课课件
3. 4. 3 棒材挤压时的应力及变形特点
1.棒材挤压时的基本应力状态 2 .棒材挤压时的金属流动规律 3 .棒材挤压时的附加应力
变形程度ε
应力σ
σsb
σsn
图3-25 拉伸时真应力与变形程度的关系 1)无缺口试样拉伸时的真应力的曲线 2)有缺口样拉伸的真应力曲线
*
上课课件
3. 3. 4 残余应力
1.残余应力的来源 2.变形条件对残余应力的影响 3.残余应力所引起的后果 4.减小或消除残余应力的措施 5.研究残余应力的主要方法
*
上课课件
2.最大摩擦条件 当接触表面没有相对滑动,完全处于粘合状 态时,单位摩擦力( )等于变形金属流动 时的临界切应力k,即: = k 3.摩擦力不变条件 认为接触面间的摩擦力,不随正压力大小而变。其单位摩擦力是常数,即常摩擦力定律,其表达式为: =m·k 式中,m为摩擦因子
第3章 金属塑性加工的宏观规律
§3. 1 塑性流动规律(最小阻力定律) §3. 2 影响金属塑性流动和变形的因素 §3. 3 不均匀变形、附加应力和残余应力 §3. 4 金属塑性加工诸方法的应力与变形特点 §3. 5 塑性加工过程的断裂与可加工性
*
上课课件
§3.1 塑性流动规律(最小阻力定律)
上课课件
3. 2. 2 变形区的几何因素的影响
变形区的几何因子(如H/D、H/L、H/B等)是影响变形和应力分布很重要的因素。
塑性加工原理
44
二 、 稳定轧制阶段
稳定轧制阶段:
从轧件前端离开轧辊中心连线开始,到轧件后端 进入变形区入口断面止,这一阶段称为稳定轧制阶段。
45
三 、抛 (甩)出阶段
抛 (甩)出阶段: 从轧件后端进入入口断面时起到轧件完全通过辊 缝(轧辊中心连线),称为抛 (甩)出阶段。
46
1.2.1 咬入条件
1.(自然)咬入条件 受力分析如图 1-1
将各道次的延伸系数相乘,得 F0 F1 Fn1 ln 1 2 n F1 F2 Fn L
F0 1 2 n Fn
故可得出结论:总延伸系数等于相应各部分延 伸系数的乘积。
41
(2)累积压下率与道次压下率之间关系
H hn = H 即 1 (1 1 )(1 2 )(1 3 ) L L (1 n ) H hn hn 1 hn H h1 h1 h2 因为:1 (1 )(1 ) L L (1 ) H H h1 hn hn h1 h2 hn L L H H h1 hn 1
轧件对轧辊的作用力 轧辊对轧件的作用力
图1-1 咬入时轧件受力分析
图1-2
P和T力的分解
47
轧辊对轧件的作用力P、T Py 、Ty :压缩轧件,使轧件产生塑性变形 Px 、Tx :决定轧件能否咬入 Px > Tx :不能咬入 Px = Tx :临界咬入 Px < Tx :咬入 咬入条件:Px ≤ Tx 而Px = Psinα Tx=P f cosα 即sinα≤f cosα tanα≤f =tanβ
4
3、塑性加工的主要方法
1)按变形温度分类:
热加工:是指再结晶温度以上所完成的压力加工过程。
冷加工:指在再结晶温度以下所完成的压力加工过程。
塑性加工原理
3D model of extrusions
Axis symmetrical finite element model of extrusion
拉拔:
将金属坯料拉过拉拔模模孔,而使金属拔长、其断面与模孔相 同的加工方法。主要用于生产各种细线材、薄壁管和一些特殊 截面形状的型材。
自由锻造:
将加热后的金属坯料置于上下砧铁间受冲击力或压力而变形的 加工方法。 模型锻造(模锻): 将加热后的金属坯料置于具有一定形状的锻模模膛内受冲击力 或压力而变形的加工方法。
根据金属流动方向与挤压凸模运动方向的关系,挤压可分为四种 方式:
(1)正挤压---金属流动方向与凸模运动方向相同. (2)反挤压---金属流动方向与凸模运动方向相反. (3)复合挤压---坯料一部分金属流动方向与凸模运动方向相同, 另一部分 则相反. (4)径向挤压---金属流动方向与凸模运动方向成90℃.
(3)温挤压---介于冷挤压和热挤压之间的挤压方法.温挤压时将金属 加热到适当温度(100~800℃)进行挤压.温挤压比冷挤压的变形抗 力小,较容易变形.
挤压成形的工艺特点:
(1)挤压时金属坯料处于三向压应力状态下变形,因此可提高金属坯 料的塑性,有利于扩大金属材料的塑性加工范围.
(2)可挤压出各种形状复杂,深孔,薄壁和异型截面的零件,且零件尺寸 精度高,表面质量好,尤其是冷挤压成形.
1、金属塑性成型特点 • 组织、性能好 • 材料利用率高 • 尺寸精度高 • 生产效率高
2、金属塑性成型的分类
1)块料成型 (1)一次加工
•轧制 •挤压 •拉拔 (2)二次加工 •自由锻 •模锻
2)板料成型
•冲裁 •弯曲 •拉延
3、课程目的和任务
1)阐明金属塑性变形的物理基础:从微观上研究塑性变形机理 及变形条件对金属塑性的影响,以便使工件在塑性成型时获得 最佳塑性状态、最高的变形效率和力学性能。
第十六章 第三篇 塑性成形力学
第三篇塑性成形力学塑性成形又称为塑性加工,是材料成形的基本方法之一,它是利用材料的塑性(即产生一定的永久变形又不破坏其完整性的能力)而获得所需形状与尺寸的工件的一种加工方法。
由于塑性加工一般是在外力作用下完成的,所以又称之为压力加工.通常所见的轧制、拉拔、锻造、挤压、冲压等成形方法都属于塑性加工的范畴。
一、塑性加工的特点一般说来,在现代制造业中,塑性加工的主体是金属的塑性加工.同材料成形的其他加工方法相比,金属塑性加工的主要优点有:(1) 金属材料经过相应的塑性变形后,其结构致密,组织改善,性能提高。
因此,凡是对强度和冲击韧度要求较高的零件大都采用塑性加工的方法来制造,例如连杆,曲轴等用于传动的零件主要是通过塑性加工生产出来。
(2) 金属塑性加工主要通过材料的塑性变形来实现体积的转移与重新分配,而不是部分切除金属的多余体积,因而工件的材料利用率较高,流线分布合理,从而也进一步提高了工件的强度。
(3) 用塑性加工生产的工件可以达到较高的精度,可以实现少、无切削的要求。
例如,精密冲裁和冷挤压生产的齿轮可不经切削加工而直接使用,精锻叶片的复杂曲面可达到只需切削的精度。
(4) 塑性加工具有很高的生产率,且容易实现机械化和自动化。
例如,在12000*10kN 的机械压力机上锻造汽车用的6拐曲轴仅需40s;在曲柄压力机上压制一个汽车履盖件仅需几秒时间。
(5) 几乎所有薄壁零件,尤其是大,中型板壳零件,例如汽车履盖件,只能采用塑性加工的方法来制造。
综上所述,由于塑性加工的工艺特点,使其在现代制造业中得到了广泛的应用。
特别是在汽车、航空、家电和日用品等工业部门中,塑性加工更是主要的加工方法,但是,塑性加工也有不足的地方。
这主要表现在:(1) 同材料成形的其他加工方法相比,塑性加工的投资大,尤其是大,中型履盖件的成形模具制造过程的经费多和时间长,常常是制约新产品迅速投产的一个瓶颈。
(2) 对环境会产生一定程度的污染,但同材料成形的其他方法相比,它所造成的环境污染又是较少的。
第八章塑性加工
第八章塑性加工※8·1 锻造成形8·2 板料冲压成形8·3 挤压、轧制、拉拔成形8·4 特种塑性加工方法8·5 塑性加工零件的结构工艺性8·6 塑性加工技术新进展本章小结塑性加工的基本知识塑性变形的主要形式:滑移、孪晶。
滑移的实质是位错的运动。
金属经过塑性变形后将使其强度、硬度升高,塑性、韧性降低。
即产生形变强化。
此外,还将形成纤维组织。
塑性加工特点:1·塑性加工产品的力学性能好。
2·精密塑性加工的产品可以直接达到使用要求,不须进行机械加工就可以使用。
实现少、无切削加工。
3·塑性加工生产率高,易于实现机械化、自动化。
4·加工面广(几克~几百吨)。
常用的塑性加工方法:锻造、板料冲压、轧制、挤压、拉拔等。
8·1 锻造成形8·1·1 自由锻定义、手工自由锻、机器自由锻设备(锻锤和液压机)1·自由锻工序(基本工序、辅助工序、精整工序)基本工序:镦粗、拔长、弯曲、冲孔、切割、扭转、错移辅助工序:压钳口、压钢锭棱边、切肩各种典型锻件的锻造2·自由锻工艺规程的制订(举例)8·1·2 模锻定义、特点(生产率高、尺寸精度高、加工余量小、节约材料,减少切削、形状比自由锻的复杂、生产批量大但质量不能大)1·锤上模锻2·压力机上模锻8章塑性加工拔长29使坯料横截面减小而长度增加的锻造工序称为拔长。
拔长主要用于轴杆类锻件成形,其作用是改善锻件内部质量。
(1)拔长的种类。
有平砥铁拔长、芯轴拔长、芯轴扩孔等。
8章塑性加工30芯轴拔长8章塑性加工芯轴扩孔型砧拔长圆形断面坯料冲孔采用冲子将坯料冲出透孔或不透孔的锻造工序叫冲孔。
其方法有实心冲子双面冲孔、空心冲子冲孔、垫环冲孔等。
8章塑性加工各种典型锻件的锻造1、圆轴类锻件的自由锻2、盘套类锻件的自由锻3、叉杆类锻件的自由锻4、全纤维锻件的自由锻8章塑性加工典型锻件的自由锻工艺示例43锻件名称工艺类别锻造温度范围设备材料加热火次齿轮坯自由锻1200~800℃65kg空气锤45钢1锻件图坯料图序号工序名称工序简图使用工具操作要点1局部镦粗火钳镦粗漏盘控制镦粗后的高度为45mm序号工序名称工序简图使用工具操作要点2冲孔火钳镦粗漏盘冲子冲孔漏盘(1)注意冲子对中(2)采用双面冲孔3修整外圆火钳冲子边轻打边修整,消除外圆鼓形,并达到φ92±1 mm续表序号工序名称工序简图使用工具操作要点4修整平面火钳镦粗漏盘轻打使锻件厚度达到45±1 mm续表自由锻工艺规程的制订(1)绘制锻件图(敷料或余块、锻件余量、锻件公差)※锻件图上用双点画线画出零件主要轮廓形状,并在锻件尺寸线下面用括号标出零件尺寸。
选修-塑性加工原理(昆工版)
螺位错 将规则排列的晶面想像成一叠间距固定的纸片,若将 这叠纸片剪开(但不完全剪断),然后将剪开的部分其中 一侧上移半层,另一侧下移半层,形成一个类似于楼梯拐 角处的排列结构,则此时在“剪开线”终结处(这里已形 成一条垂直纸面的位错线)附近的原子面将发生畸变,这 种原子不规则排列结构称为一个螺位错。
屈服强度 屈服强度又称为屈服极限 ,常用符号ζs,是材料屈服的临界应力 值。当材料中的应力超过屈服点时,塑性被激活(也就是说,有 塑性应变发生)。 (1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈 服值); (2)对于屈服现象不明显的材料,与应力-应变的直线关系的极 限偏差达到规定值(通常为0.2%的原始标距)时的应力。通常用 作固体材料力学机械性质的评价指标,是材料的实际使用极限。
影响屈服强度的外在因素有:温度、应变速率、应力状态。
1. 随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体 心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化; 2. 应力状态不同,屈服强度值也不同。我们
塑性图
塑性图是指材料的塑性指标随温度变化的曲线,也与应力状态 有关,在制定材料塑性加工工艺时具有参考价值。
面心立方晶体孪生
刃位错
若一个晶面在晶体内部突然终止于某一条线处, 则称这种不规则排列为一个刃位错。刃位错附近的原 子面会发生朝位错线方向的扭曲。 刃位错可由两个量唯一地确定:第一个是位错线,即 多余半原子面终结的那一条直线;第二个是伯格斯矢 量(Burgers vector,简称伯氏矢量或柏氏矢量),它 描述了位错导致的原子面扭曲的大小和方向。对刃位 错而言,其伯氏矢量方向垂直于位错线的方向。
给定化学成分的金属与合金,其塑 性的好坏总是取决于以下三个主要 因素:
生活中塑性成型原理的应用
生活中塑性成型原理的应用1. 引言•塑性成型是一种常见的加工工艺,广泛应用于生活中的各个领域。
•塑性成型原理是通过施加力量使材料发生变形,从而得到所需形状的一种加工方法。
•本文将介绍生活中塑性成型原理的几个应用案例。
2. 塑料制品加工•塑料制品加工是塑性成型最常见的应用之一。
•塑料制品可以通过注塑、挤塑、吹塑等工艺进行成型。
•注塑是将熔融的塑料通过高压射向模具中,然后在冷却后取出成型。
•挤塑是将熔融的塑料通过模具挤出,形成所需形状。
•吹塑是将熔融的塑料注入到空气膨胀的模具中,通过气压使塑料膨胀成所需形状。
•这些塑料制品广泛应用于日常生活中,例如家电、玩具、日用品等。
3. 金属加工•塑性成型在金属加工中也有着重要的应用。
•金属材料可以通过锻造、压延等工艺进行塑性成型。
•锻造是将金属材料加热至一定温度后,施加力量使其发生塑性变形。
•锻造可以制备各种金属零件,例如汽车发动机曲轴、工业机械零件等。
•压延是将金属材料通过辊轧等方式使之发生塑性变形。
•压延广泛应用于金属板材的加工,例如汽车车身板、铝合金门窗等。
4. 玻璃加工•塑性成型在玻璃加工中也起到重要的作用。
•热玻璃成型是一种常见的玻璃加工方法。
•热玻璃成型是将玻璃加热至一定温度后进行塑性变形。
•通过在模具中施加压力,使玻璃变形成所需形状。
•热玻璃成型广泛应用于玻璃器皿、灯饰等制品的生产中。
5. 橡胶制品加工•橡胶制品是另一个常见的塑性成型应用领域。
•橡胶材料可以通过压缩成型、挤出成型等工艺进行加工。
•压缩成型是将橡胶材料放置在模具中,施加压力使其发生压缩变形。
•挤出成型是将熔融的橡胶材料挤出模具,形成所需形状。
•这些橡胶制品广泛应用于汽车、家具、医疗器械等领域。
6. 其他应用•塑性成型在生活中还有许多其他应用。
•例如,面团的搓揉、拉伸过程就是一种塑性变形,通过搓揉和拉伸,面团可以变得更加柔软和有弹性。
•塑料瓶的压缩也是一种塑性变形,通过施加力量可以将塑料瓶压缩成较小体积,方便储存和回收利用。
金属塑性加工方法——旋压(一)
金属塑性加工方法——旋压(一)
金属塑性加工是一种通过施加力和应变来改变金属形状和结构
的方法。
旋压是金属塑性加工的一种常见方法,它使用旋压机将金
属材料塑性变形成所需的形状。
旋压原理
旋压的原理是通过旋转金属材料来施加力和应变。
旋压机由一
个圆筒形的工件和一个将工件固定在轴上并施加旋转力的夹具组成。
在旋转的同时,夹具还会向工件施加一定的径向力。
这样,金属材
料就会在旋转和径向力的作用下发生塑性变形。
旋压过程
旋压过程可以分为以下几个步骤:
1. 原料准备:选择适合旋压的金属材料,并根据所需形状和尺
寸切割成合适的工件。
2. 夹具调整:将工件固定在旋压机的夹具上,并根据需要调整夹具的径向力。
3. 旋压加工:启动旋压机,使工件开始旋转。
同时,夹具会施加一定的径向力,使金属材料开始塑性变形。
4. 修整和检验:完成旋压加工后,对成品进行修整和检验,确保其达到质量要求。
旋压应用
旋压方法适用于许多金属材料,如铝、铜、不锈钢等。
它常用于制造圆形或柱状的工件,如轴承套、奖杯底座等。
旋压有许多优点,包括:
- 简单而高效的加工过程。
- 较低的材料浪费。
- 产生的工件表面质量高。
结论
旋压是一种常见的金属塑性加工方法,适用于制造圆形或柱状的工件。
它通过旋转金属材料和施加径向力来改变其形状和结构。
旋压具有简单高效、材料浪费少和工件表面质量高的优点。
在实际应用中,我们可以根据需要选择合适的金属材料和夹具参数来进行旋压加工。
金属塑性加工原理试题及答案试题一答案
中南大学考试试卷答案一、名词解释(本题10分,每小题2分)1.变形过程中的金属发热现象2.材料由于温度降低等内在因素和外在条件变化,塑性急剧下降的现象。
3.在热变形过程中,在应力状态下所发生的再结晶。
[金属在热变形过程中发生的再结晶]4.回复温度以下发生的变形。
在物体中,由于其各部分的不均匀变形受到物体整体性的限制而引起5.的相互平衡的应力。
二.填空题(本题10分,每小题2分)1.[偏应力],球应力[静水压力]2.变形温度、变形程度、晶粒大小3.真应力、断面收缩率4.适当粘度、良好活性5.稳定细晶(5μm以下)、一定的温度区间()、一定的变形速度()三、判断题(本题10分,每小题2分)1.(√)、(×)、(√)、(×)2.(√)、(×)3.(×)4.(√)5.(×)四、问答题(本题 40 分,每小题 10 分)1.答:对于低塑性材料的开坯采用挤压加工方法为佳,因为:挤压时静水压力大,塑性好。
缺陷变成线状。
2.答:3.答:相同:使材料产生各向异性(沿纤维方向上强度高)。
不同:冷变形:基本晶粒沿最大主变形方向拉长;热变形:夹杂物、第二相拉长。
(基体是再结晶等轴晶粒) 消除措施:冷变形:完全再结晶退火;热变形:净化,铸锭中尽量减少杂质;高温长时间退火,使夹杂物扩散,改变加工方向。
4.答:(1)种情况沿辊宽变形均匀。
(2)种情况中部易出现裂纹,因为中部附加拉应力。
五、证明题(本题 10 分)证:已知Mises塑条可表达为:六、推导题(本题 20 分)解:建立直角坐标系xoy如图,上下左右对称只研究第一象限。
金属塑性加工方法——滚压(一)
金属塑性加工方法——滚压(一)简介滚压是一种常用的金属塑性加工方法,通过在金属工件上施加压力,将其通过滚动运动的方式使其形状发生变化。
本文将介绍滚压的基本原理、工艺流程和应用领域。
滚压原理滚压是一种通过挤压金属工件来改变其形状的加工方法。
它利用滚轮施加在金属工件上的压力,将其挤压成所需的形状。
滚压通常使用辊和工件之间的滚动运动来实现,这样可以减少工件与滚轮之间的摩擦,并且更容易控制加工过程中的变形。
滚压可以适用于各种金属材料,包括钢铁、铝合金等,广泛应用于制造业中。
滚压工艺流程滚压的工艺流程通常包括以下几个步骤:1. 准备工作:选择适当的滚轮、加工设备和工件材料,并确保它们的表面光洁度和几何尺寸的精度。
2. 装夹工件:将工件固定在滚压机床上,确保工件与滚轮之间的接触面积足够,并调整滚轮的位置和角度。
3. 加工过程:通过滚压机床施加压力,使滚轮与工件产生相对滚动运动,逐渐将工件挤压成所需形状。
4. 检测和调整:在加工过程中,及时检测工件的形状和尺寸,根据需要进行调整和修正。
5. 完成加工:当工件达到要求的形状和尺寸后,完成滚压加工,并进行后续的处理,如退火等。
滚压的应用领域滚压作为一种重要的金属塑性加工方法,在各个制造领域都得到了广泛应用。
以下是一些常见的滚压应用领域:1. 轧钢厂:在钢铁工业中,滚压被用于生产各种形状和尺寸的钢材,如槽钢、工字钢等。
2. 汽车制造:滚压被广泛应用于汽车制造过程中,用于生产车身零部件、发动机零件等。
3. 金属管道加工:滚压在金属管道加工中是一种常用的方法,用于改变管道的形状和尺寸。
4. 航空航天工业:滚压在航空航天工业中的应用也很广泛,用于制造飞机零部件、零件等。
结论滚压是一种常用且重要的金属塑性加工方法,通过施加压力和滚动运动,可以有效地改变金属工件的形状。
滚压的工艺流程相对简单,广泛应用于各个制造领域。
在实际应用中,需要根据具体需求选择适当的滚压设备和工艺参数,保证加工效果和产品质量。
塑性成形重要知识点总结
塑性成形重要知识点总结塑性成形是一种通过应变作用将金属材料变形为所需形状的加工方法,也是金属加工领域中的一种重要工艺。
以下是塑性成形的重要知识点总结。
1.塑性成形的原理塑性成形是通过施加外力使金属材料发生塑性变形,使其形状和尺寸发生改变。
塑性成形的原理包括应力与应变关系、材料的流动规律和力学模型等。
2.塑性成形的分类塑性成形可以根据加工过程的不同进行分类,主要包括拉伸、压缩、挤压、弯曲、冲压等。
不同的成形方法适用于不同的材料和形状要求。
3.塑性成形的设备塑性成形通常需要使用专门的设备进行加工,包括拉伸机、压力机、挤压机、弯曲机、冲床等。
这些设备提供必要的力量和变形条件,使金属材料发生塑性变形。
4.金属材料的选择不同的金属材料具有不同的塑性特性,因此在塑性成形中需要根据不同的应用需求选择合适的材料。
常用的金属材料包括钢、铝、铜、镁等。
5.塑性成形的加工方法塑性成形的加工方法非常多样,包括冲压、拉伸、挤压、压铸、锻造等。
不同的加工方法适用于不同的材料和形状要求,可以实现复杂的金属成形。
6.塑性成形的工艺参数塑性成形的工艺参数对成形质量和效率具有重要影响。
常见的工艺参数包括温度、应变速率、应力等。
合理的工艺参数可以提高成形质量和生产效率。
7.塑性成形的变形行为塑性成形过程中金属材料的变形行为是研究的重点之一、金属材料的变形行为包括弹性变形、塑性变形和弹变回复等,通常通过应力-应变曲线来描述。
8.塑性成形的缺陷与控制塑性成形过程中可能发生一些缺陷,如裂纹、皱纹、细化等。
为了控制这些缺陷,需要采取合适的工艺和工艺措施,如加热、模具设计优化等。
9.塑性成形的优点与局限塑性成形具有成本低、加工效率高、灵活性好等优点,可以制造出复杂的金属零件。
然而,塑性成形也存在一些局限性,如对材料性能有一定要求、成形限制等。
10.塑性成形的应用领域塑性成形广泛应用于各个领域,如汽车制造、航空航天、电子、家电等。
不仅可以生产大批量的零部件,还可以满足不同产品的形状和性能要求。
金属塑性成形原理知识点
弹性:材料的可恢复变形的能力。
塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。
塑性变形:材料在一定外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法。
塑性成形:金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法。
塑性成形的特点:组织性能好、材料利用率高、生产效率高、尺寸精度高、设备相对复杂。
冷态塑性变形的机理:晶内变形(滑移和孪生)和晶间变形(滑动和转动)滑移:晶体在力的作用下,晶体的一部分沿一定的晶面(滑移面)和晶向(滑移向)相对于晶体的另一部分发生相对移动或切变。
孪生:晶体在力的作用下,晶体的一部分沿一定的晶面(孪生面)和晶向(孪生向)发生均匀切边滑移面:滑移中,晶体沿着相对滑动的晶面。
滑移方向:滑移中,晶体沿着相对滑动的晶向。
塑性变形的特点:不同时性、不均匀性、相互协调性。
合金:合金是由两种或者两种以上的金属元素或者金属元素与非金属元素组成具有金属特性的物质。
合金分为固溶体(间隙固溶体、置换固溶体)和化合物(正常价、电子价、间隙化合物)固溶强化:以间隙或者置换的方式融入基体的金属所产生的强化。
弥散强化:若第二项是通过粉末冶金的方法加入而引起的强化。
时效强化:若第二项为力是通过对过饱和固溶体的时效处理而沉淀析出并产生强化。
冷态下的塑性变形对组织性能的影响:组织:晶粒形状发生变化,产生纤维组织晶粒内部产生亚晶结构晶粒位向改变:产生丝织构和板织构性能:产生加工硬化(随着塑性变形的程度的增加,金属的塑性韧性降低,强度硬度提高的现象)加工硬化的优点:变形均匀,减小局部变薄,增大成形极限缺点:塑性降低、变形抗力提高、变形困难。
热塑性变形的软化过程:动态回复、动态再结晶、静态回复、静态再结晶、亚动态再结晶金泰回复:从热力学角度,变形引起金属内能增加,而处于稳定的高自用能状态具有向变形前低自由能状态自发恢复的趋势静态再结晶:冷变形金属加热到更高温度后,在原来版型体中金属会重新形成无畸变的等轴晶直至完全取代金属的冷组织的过程。
塑性成形原理
塑性成形原理塑性成形是指通过外力作用下,金属材料经过塑性变形,改变其外形和尺寸的加工方法。
在工程制造中,塑性成形是一种常用的加工工艺,可以用于生产各种各样的零部件和产品。
塑性成形原理是塑性加工的基础,了解和掌握塑性成形原理对于工程技术人员来说至关重要。
首先,塑性成形原理的基础是金属材料的塑性变形特性。
金属材料在外力作用下会发生塑性变形,这是因为金属材料的内部结构存在晶粒和晶界,晶粒内部存在位错。
当外力作用到金属材料上时,位错会发生滑移和交错,从而引起晶粒的形变,最终导致金属材料整体的塑性变形。
因此,了解金属材料的晶体结构和塑性变形机制是理解塑性成形原理的关键。
其次,塑性成形原理涉及到金属材料的应力和应变关系。
在塑性成形过程中,金属材料会受到外力的作用,从而产生应力。
当应力超过金属材料的屈服强度时,金属材料就会发生塑性变形。
而金属材料的应变则是指金属材料在外力作用下的变形程度,通常用应变曲线来描述金属材料的应力和应变关系。
通过研究金属材料的应力和应变关系,可以确定金属材料的塑性变形特性,为塑性成形工艺的设计和优化提供依据。
另外,塑性成形原理还包括金属材料的流变行为。
金属材料在塑性成形过程中会发生流变,即金属材料的形状和尺寸会发生变化。
了解金属材料的流变行为可以帮助工程技术人员选择合适的成形工艺和工艺参数,从而实现对金属材料的精确成形。
总的来说,塑性成形原理是塑性加工的基础,它涉及金属材料的塑性变形特性、应力和应变关系以及流变行为。
掌握塑性成形原理可以帮助工程技术人员更好地理解金属材料的加工特性,指导和优化塑性成形工艺,提高产品的质量和生产效率。
因此,对于从事工程制造和金属加工的人员来说,深入学习和掌握塑性成形原理是非常重要的。
第1章-塑性加工金属学
1、回复和再结晶
从热力学角度来看,变形引起加工硬化,晶体缺陷增多,金属 畸变内能增加,原子处于不稳定的高自由能状态,具有向低自由 能状态转变的趋势。当加热升温时,原子具有相当的扩散能力, 变形后的金属自发地向低自由能状态转变。这一转变过程称为回 复和再结晶,这一过程伴随有晶粒长大。
多相合金(两相合金)中的第二相可以是纯金属、固溶 体或化合物,起强化作用的主要是硬而脆的化合物。
合金的塑性变形在很大程度上取决于第二相的数量、形 状、大小和分布的形态。但从变形的机理来说,仍然 是滑移和孪生
第二相以连续网状分布在基体晶粒的边界上 随着第二相数量的增加,合金的强度和塑性皆下
降。
第二相以弥散质点(颗粒)分布在基体晶粒内部 合金的强度显著提高而对塑性和韧性的影响较小。
图13-15 回复和再结晶对金属组织和性能的变化
表13-1 回复、再结晶和晶粒长大的特点及应用
回复
再结晶
晶粒长大
发生温度
较低温度
较高温度
更高温度
转变机制
原子活动能量小,空位 移动使晶格扭曲恢复。 位错短程移动,适当集 中形成规则排列
原严直无子重至晶扩畸畸格散变变类能组晶型力织粒转大中完变,形全新核消晶和失粒生,在长但,新晶粒生粒,晶吞晶粒并界中小位大晶移
四、本课程的任务
目的:
科学系统地阐明金属塑性成形的基础和规律, 为合理制订塑性成形工艺奠定理论基础。
任务:
• 掌握塑性成形时的金属学基础,以便使工件在成 形时获得最佳的塑性状态,最高的变形效率和优 质的性能;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
预备知识
一、轧制的不同分类方式 1)按轧制温度不同:热轧、冷轧 2)按轧件与轧辊的相对运动 :
纵轧、横轧、斜轧 3)按成型特点:一般、特殊
22
二、纵、横、斜三种轧法的区别
纵轧:二轧辊轴线平行,转向相反,轧件运动 方向与轧辊轴线垂直。
斜轧:轧辊轴线不平行,即在空间交成一个角 度,轧辊转向相同,轧件作螺旋运动。
25
最小阻力定律:物体在塑性变形过程中,其质点 总是向着阻力最小的方向流动。 简单轧制过程:轧制时上下辊径相同,转速相等, 轧辊无切槽,均为传动辊,无外加张力或推力,轧 辊为刚性的。
26
1.1变形区及主要参数
轧制时轧件在轧辊作用下发生变形的部分。
弹性变形区
弹性恢复区
塑性变形区
27
1.1变形区及主要参数
塑性成型(加工)原理
1
绪论
一、塑性加工的主要方法 二、当代轧制技术的发展趋势 三、轧制理论的作用及发展 四、本课程的研究对象及目的 五、学习方法
2
一、塑性成型(加工)的主要方法 1.塑性成型(加工)的概念
对材料施加一定的外力作用使其产生塑 性变形并获得一定形状、尺寸和性能的产品 的加工方法
3
2.金属塑性加工的特点 优点:1)无削加工,节省金属;
23
横轧:轧辊轴线平行,但转向相同,轧件仅 绕自身的轴线旋转,没有直线运动。
24
三、几个基本概念 轧制过程:靠旋转的轧辊与轧件之间的摩擦力将轧 件拖入辊缝之间,并使之受到压缩产生塑性变形, 获得一定形状、尺寸和性能产品的压力加工过程。
体积不变规律:在塑性加工变形过程中,如果忽 略金属密度的变化,可以认为变形前后金属体积 保持不变。
正是因为运力紧张,运输成本大大增加,以2005年11月份为例, 同样是一吨进口矿,从东南港口运到宝钢是350块钱,运到 武钢是527块钱,而运到包头就达到800多块钱。
17
三、轧制理论的作用及发展
1.理论的发展 由第一代变形理论(变形区)——第二代动态理
论(如液压AGC等,把工具与工件联系起来)——第三 代系统分析理论——第四代人工智能理论。
9
(4) 锻造:锻锤锤击工件产生压缩变形 A.自由锻:指金属在锻造过程的流动受工具限制不严格。我国行研制的万吨级水压机10
B.模锻:指金属在锻造过程的流动受工具限制严格。 举例:飞机大梁,火箭捆挷环等
万吨级水压机模锻的飞机大梁、火箭捆挷环
11
(5) 冲压:金属坯料在冲模之间受压产生分离或变形的加 工方法。
14
3)工艺最佳连续化: 如高精度轧制、短流程及连铸连轧、无
头轧制。 4)技管结合一贯化:提高产品质量,减少物流
时间,缩短生产周期,加速资金周转。
15
2.带来的问题
1)集约化的结果使各工序的匹配衔接问题变的尖 锐起来。
2)钢材生产工艺流程中的一些特性便显得重要起 来。
3)关注物流。
物流是指物质实体从供应者向需求者的物理移动, 它由一系列创造时间价值和空间价值的经济活动组成, 包括运输、保管、配送、包装、装卸、流通加工及物流 信息处理等多项基本活动,是这些活动的统一。
2)改善组织和性能; 3)产量高,能量消耗少,成本低,适于大 批量生产。
不足:1)对于形状复杂,尺寸精确,表面十分光 洁的产品尚不及切削加工; 2)在成本及形状复杂方面不及铸造; 3)只能用于生产具有塑性的金属。
4
3、塑性加工的主要方法 1)按变形温度分类:
热加工:是指再结晶温度以上所完成的压力加工过程。 冷加工:指在再结晶温度以下所完成的压力加工过程。 温加工:介于冷、热加工之间的压力加工过程。
1 变形区概念: 轧件承受轧辊作用,产生塑性变 形的区域。
变形区分: 几何变形区:轧件直接承受轧辊作
用,产生塑性变形的区域。 物理变形区:轧件间接承受轧辊作
用,产生塑性变形的区域。 注意:无特殊说明,今后变形区指的就是几何变形区
28
2. 主要参数
咬入角α:轧件最先与轧辊接触的点与轧辊中心点 的连线和轧辊中心线的夹角。 接触弧s(咬入弧):轧制时,轧件与轧辊相接触 的圆弧(弧AB)。 变形区(接触弧)长度l:接触弧的水平投影长度。
12
二、当代轧制技术的发展趋势 1.发展趋势
钢材生产的集约化和现代化 1)过程综合柔化性:(适应 小批量、多品种、短交 货期的市场要求) 例如:板带:自由程序轧制;
型钢:无孔型平辊轧制。
13
2)机电一体智能化:自动控制和智能控制 自动化是现代化轧钢厂提高产品质量
的最为有效的手段,与人工智能结合控制 是轧制技术发展的新的重要方向。
2.理论的作用 理论来源于实践,反过来指导实践
如孔型系统的形成,连轧理论、斜轧变形特征等。
18
四、本课程的研究对象及目的
1)熟悉轧制过程中各种变化现象的变化规律 2)掌握力能参数工程计算法应用 3)为后续课程的学习打下基础
轧制工艺、轧制过程自动控制、轧制设备、 板型理论与厚控、孔型设计、车间设计、毕业设计
29
3.各主要参数间相互关系
1)咬入角α: cosα=1- △h /D △h = D(l-cosα)
16
2006年我们进口了3.26亿吨矿,实际上只消费了2.8718亿吨,还 有3882万吨矿买进来积压在港口,没有用上。
2009年1-7月份,中国的铁矿石进口量已经达到3.553亿吨,截 至8月7日,港口的铁矿石库存是7329万
吨。 2013年中国的铁矿石进口量已经达到8.19亿吨,港口的铁矿
石库存是8000万吨以上。
5
2)按变形方式
(1) 轧制:金属通过旋转的轧辊受到压缩,横断面积 减小,长度增加的过程。
举例:型、板、管、线 等
6
(2) 挤压:金属在挤压筒中受推力作用从模孔中流 出而制取所需断面的加工方法。
正挤
反挤
7
举例:管、棒、型 其它:异型截面。
8
(3)拉拔:是指金属通过固定的具有一定形状的模 孔中拉拔出来,而使金属断面缩小、长度增加的 一种加工方法。
19
五、学习方法
1)结合实习、加强理解;在理解的基础上, 掌握。
2)课后及时复习,做到融会贯通。 参考书目: 王廷溥,齐克敏.金属塑性加工学——轧制理论
与工艺.冶金工业出版社
20
1 轧制过程基本概念
目的及要求: 1.掌握变形区主要参数及相互关系; 2.掌握咬入条件及改善咬入的途径; 3.熟悉轧制过程变形、运动学、力学条件; 4.熟悉金属在变形区里的流动规律。