相似三角形与圆综合题(最新整理)

合集下载

圆中的相似三角形

圆中的相似三角形

B D
巩固应用,深化认知
问题一:如图,△ABC内接于⊙O,⊙O的直径BD交AC
于E,AF⊥BD于F,延长AF交BC于G。
求证:AB2= BG·BC
A
通过角的转化寻找相等的角,从而 找到
C
H
数学思想:转化、构造
巩固应用,深化认知
练一练:如图,在⊙O中,弦AB,CE交于D,点C是弧 的中点。
(1)若CD·CE=16,则CB=___4____。
(2)若移动点E,使BE为⊙O的直径,CD=2,BC=4, 则BE= __4__5___。 (3)在(1)的条件下,过C作⊙O的直径CK交AB于H,
则CH·CK=___1_6___。
E K
拓展提升,开发思维
问题二: 如图,已知四边形ABCD内接于⊙O,对角线AC与BD 的交点为E点.若BD平分∠ABC,且BD=9,BE=5。
则AD =___6____。
A
D
E
B
O
C
拓展提升,开发思维
变式训练:如图,已知四边形ABCD内接于⊙O,对角线
AC与BD的交点为E点。若BD平分线段AC,且AC= 2 AB,
且BD= 2 3 ,⊙O的半径为2。
(1)求证:△ABE∽△ACB HH
(2)求△ABD的面积
数学思想:转化、构造、数形结合
小结交流,形成素养
圆内的相似三角形解题策略: 基本思路:寻找或构造有共角的两个相似三角形。
基本图形:
基本方法: 方法一证一组角相等,常利用圆的相关性质。 方法二在公共夹角的前提下,证两边对应成比例。
数学思想:转化、构造、数形结合
练习
练习1:已知如图,△ABC内接于圆O,AB为直径, ∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB 于点E,且交AC于点P,连结AD。 (1)求证:∠DAC=∠DBA。

圆、相似三角形、二次函数经典综合题

圆、相似三角形、二次函数经典综合题

中考数学《圆》综合复习【1】已知:如图,△ABC 内接于⊙O ,∠BAC 的平分线交BC 于D ,交⊙O 于E ,EF ∥BC 且交AC 延长线于F ,连结CE.求证:(1)∠BAE=∠CEF ;(2)CE 2=BD ·EF.【2】如图,△ABC 内接于圆,D 为BA 延长线上一点,AE 平分∠BAC 的外角,交BC 延长线于E ,交圆于F.若AB=8,AC=5,EF=14.求AE 、AF 的长.【3】如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上的任意一点(不与点A 、B 重合),连接 CO 并延长CO 交于⊙O 于点D ,连接AD . (1)弦长AB 等于 ▲ (结果保留根号); (2)当∠D =20°时,求∠BOD 的度数;(3)当AC 的长度为多少时,以A 、C 、D 为顶点的三角形与以B 、C 、O 为顶点的三角形相似?请写出解答过程.【4】如图,在ABC △中90ACB ∠=,D 是AB 的中点,以DC 为直径的O 交ABC △的三边,交点分别是G F E ,,点.GECD ,的交点为M ,且ME = :2:5MD CO =.(1)求证:GEF A ∠=∠. (2)求O 的直径CD 的长.B CF E A D O .A B D C EF 第9题图【5】如图右,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C 为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。

(1)求证:CD 为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB 的长度. 【6】【7】如图,已知⊙O 1与⊙O 2都过点A ,AO 1是⊙O 2的切线,⊙O 1交O 1O 2于点B ,连结AB 并延长交⊙O 2于点C ,连结O 2C. (1)求证:O 2C ⊥O 1O 2; (2)证明:AB ·BC=2O 2B ·BO 1;(3)如果AB ·BC=12,O 2C=4,求AO 1的长.O 1O 2A B【8】如图,在平面直角坐标系中,点A (10,0),以OA 为 直径在第一象限内作半圆C ,点B 是该半圆周上一动点,连 结OB 、AB ,并延长AB 至点D ,使DB=AB ,过点D 作x 轴垂线,分别交x 轴、直线OB 于点E 、F ,点E 为垂足,连结CF (1)当∠AOB =30°时,求弧AB 的长度; (2)当DE =8时,求线段EF 的长;(3)在点B 运动过程中,是否存在以点E 、C 、F 为顶点的三角形与△AOB 相似,若存在,请求出此 时点E 的坐标;若不存在,请说明理由.【9】 如图(18),在平面直角坐标系中,ABC △的边AB 在x 轴上,且OA OB >,以AB 为直径的圆过点C .若点C 的坐标为(02),,5AB =,A 、B 两点的横坐标A x ,B x 是关于x 的方程2(2)10x m x n -++-=的两根. (1)求m 、n 的值;(2)若ACB ∠平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数解析式; (3)过点D 任作一直线l '分别交射线CA 、CB (点C 除外)于点M 、N .则11CM CN+第24题图图(3)l '【10】如图l0.在平面直角坐标系xoy中,AB在x轴上,AB=10.以AB为直径的⊙O’与y轴正半轴交于点C.连接BC,AC。

圆与相似三角形相关的证明题

圆与相似三角形相关的证明题

圆与相似三角形相关的证明题1. 在图中,已知PC=PD,PD切圆O于D,PB交圆O于A,连结AC和BC。

要证明AC·PB=PC·BC。

证明:由于PD是圆O的切线,所以∠PDC=∠ACB。

又因为PC=PD,所以∠PCD=∠PDC。

因此,∠ACB=∠PCD。

又因为∠BCP=∠PBD,所以三角形PBD和PBC相似。

因此,PB·PC=PD2。

由于三角形ACD和BDC相似,所以AC·BD=CD2。

将BD替换为PD+PC,得到AC·(PD+PC)=CD2,即AC·PB=PC·BC。

因此,原命题成立。

2. 在图中,已知AB∥CD,DC延长线交EB延长线于F,EB与圆O相交于F,DF交圆O于G。

要证明AD·ED=BE·DF。

证明:由于AB∥CD,所以∠___∠EAD。

又因为EB是圆O的切线,所以∠___∠EDF。

因此,∠___∠EAD。

又因为AB是圆O的直径,所以∠EAB=90°。

因此,三角形EAB和EDF相似。

因此,AD·ED=BE·DF。

因此,原命题成立。

3. 在图中,___于P,PE⊥AB于E,AC⊥CD,BD⊥CD。

要证明①PE:AC=PB:PA,②PE2=AC·BD。

证明:①由于PE⊥AB,所以∠APE=90°。

又因为AC⊥CD,所以∠ACP=90°。

因此,∠APE=∠ACP。

又因为∠APB=90°,所以三角形APE和APB相似。

因此,PE:AC=PB:PA。

②由于PE⊥AB,所以∠APE=90°。

又因为BD⊥CD,所以∠___°。

因此,四边形AEPD和BEPC是直角四边形。

因此,PE2=AE2-AP2=AC·BD。

因此,原命题成立。

4. 在图中,ABC是内接于圆O的三角形,BD是圆O的直径,AF⊥BD于F,AF延长线与BC交于G。

矩形、相似三角形、圆的切线综合问题

矩形、相似三角形、圆的切线综合问题

矩形、相似三角形、圆的切线综合从你的图上可以看出:你已经是一个非常努力且分析努力很强的学生了。

如果你是八年级的学生,困难就在于没有学习“相似三角形”的内容。

而这道题是中考题用到了。

(建议你看一下这部分内容,我就直接用了)相似三角形的判定:有两个角对应相等的两个三角形相似。

三边对应成比例的两个三角形相似一个角相等,并且这个角的两边对应成比例的两个三角形相似 相似三角形的性质:相似三角形的对应边成比例,对应角相等。

解:(1)在矩形ABCD 中AB=3,BC=4由翻折知Y=DQ=DE CE=3-yAD ∥BP ,∠ADE=∠PCE=90度∴∠DAE=∠CPE∴△DAE ∽△CPEy 4312y 4DE AD CE CPy xx ==-=+即整理得:定义域是x>0△APQ 的面积是△AEQ 与△PEQ 的和11221()2112(2)(4)1224QE AD QE CP QE AD CP x x +=+=+=+ 所以△APQ 的面积是一个定值12.当以4为半径的⊙Q 与AP 相切时,切点与圆心所连的半径垂直于AP ,即时AP 上的高此时,AP=12×2÷4=6CP=2 DP=12224=+ 由勾股定理得AQ=22422025+==所以⊙A 的半径是254-第2题简单多了,给个提示吧(1)根据三线合一,及等腰直角三角形的性质,证明△ADE ≌△CDF(2)分别做点D 到AC 、BC 的垂线段证明△ADG ∽△DBH 和△DGE ∽△DFH 得到DE :DF=DG :DH=AD :DB=m(3)利用(2)的结果,得到y=2x (2<x 22)(3)第二问:设以CE 为直径的圆的圆心为O ,过点O 做OP ⊥AB 于P ,AO=2OP当圆O 与AB 相切时,OP=OC 得2666(21)21OC OC OC +===-+ 此时612(21)18122x =--=-。

【精编版】数学中考专题训练——相似三角形与圆的综合

【精编版】数学中考专题训练——相似三角形与圆的综合

中考专题训练——相似三角形与圆的综合1.如图,AB是⊙O的直径,C是⊙O上一点,D是的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F.(1)求证:AE是⊙O的切线;(2)若⊙O的半径10,,求线段DH的长.2.如图,AD是⊙O的弦,PO交⊙O于点B,∠ABP=∠ABD,且AB2=PB•BD,连接P A.(1)求证:P A是⊙O的切线;(2)若P A=2PB=4,求BD的长.3.如图,在⊙O中,直径AB与弦CD相交于点H,点B是弧CD的中点,过点A作AE∥CD,交射线DO于点E,DE与⊙O交于点F,BF与CD交于点G.(1)求证:AE是⊙O的切线.(2)已知AO=5,AE=,求BG的长.4.如图,AB是⊙O的直径,C、D是⊙O上两点,且,过点D的直线DE⊥AC交AC的延长线于点E,交AB的延长线于点F,连接AD、OE交于点G.(1)求证:DE是⊙O的切线;(2)若,⊙O的半径为2,求阴影部分的面积.5.某数学小组在研究三角形的内切圆时,遇到了如下问题:如图①,已知等腰△ABC的底边AB为12,底边上的高CD为8,如何在这个等腰三角形中画出其内切圆?小红同学经过计算,在高CD上截取DO=3,以点O为圆心,以3为半径作的圆即为所求.(1)小红的方法是否正确?如果正确,给出理由;如果不正确,请给出你的方法.(2)如图②,在图①的基础上,以AB为边作一个正方形ABEF,连接FC并延长与BE 交于点G,则BG:GE的值为.6.如图,AB是⊙O的直径,CD是一条弦.过点A作DC延长线的垂线,垂足为点E.连接AC,AD.(1)证明:△ABD∽△ACE.(2)若,BD=5,CD=9.①求EC的长.②延长CD,AB交于点F,点G是弦CD上一点,且∠CAG=∠F,求CG的长.7.如图,△ABC内接于⊙O,BC是直径,AD平分∠BAC交于点D,EF切⊙O于D,BF ⊥AB交EF于F.(1)求证:四边形BCEF为平行四边形.(2)若BF=,AB=4,求AE的长.8.如图,AB为⊙O的直径,四边形ABCD内接于⊙O.点D为的中点,对角线AC,BD 交于点E,⊙O的切线AF交BD的延长线于点F,切点为A.(1)求证:AE=AF;(2)若AB=4,BF=5,求sin∠BDC的值.9.如图,在矩形ABCD中,以AB的中点O为圆心,以OA为半径作半圆,连接OD交半圆于点E,在上取点F,使=,连接BF,DF.(1)求证:DF与半圆相切;(2)如果AB=10,BF=6,求矩形ABCD的面积.10.如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P在OE延长线上,且满足∠PCA=∠ABC,连接P A,PC,AF.(1)求证:PC是⊙O的切线;(2)证明:PE•OD=DE•OE.11.如图,在Rt△ABC中,∠ACB=90°,以AB为直径作⊙O,过点B的切线交AC延长线于点D,点E为上一点,且BC=EC,连接BE交AC于点F.(1)求证:BC平分∠DBE;(2)若AB=2,tan E=,求EF的长.12.如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠F AC=∠BDC.(1)求证:AF是⊙O的切线;(2)若BC=6,sin B=,求⊙O的半径及OD的长.13.如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.14.如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC的角平分线AF交BC于点D,交⊙O于点E,连接BE和BF,∠F=∠ABE.(1)求证:BF是⊙O的切线;(2)若AC=5,AB=13,求CD的长.15.如图,在△ABC中,AD平分∠BAC交BC于点D,以AD为直径作⊙O交AC于点F,点B恰好落在⊙O上,过D点作⊙O的切线DE交AC于点E,连接DF.(1)求证:∠FDE=∠CDE;(2)若AB=12,tan∠C=,求线段DE的长.16.如图,以△ABC的一边AB为直径作⊙O,交BC于点D,交AC于点E,点D为BE的中点.(1)试判断△ABC的形状,并说明理由;(2)若直线l切⨀O于点D,与AC及AB的延长线分别交于点F、点G.∠BAC=45°,求的值.17.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.求证:(1)BC是⊙O的切线;(2)CD2=CE•CA.18.如图,AB是⊙O的直径,点C,D在⊙O上,且弧CD=弧CB,过点C作CE∥BD,交AB的延长线于点E,连接AC交BD于F.(1)求证:CE是⊙O的切线;(2)过点C作CH⊥AE于H点,CH交BD于M,若CA=CE=6,求CH和BF的长.19.如图,⊙O上有A,B,C三点,AC是直径,点D是的中点,连接CD交AB于点E,点F在AB延长线上且FC=FE.(1)若∠A=40°,求∠DCB的度数;(2)求证:CF是⊙O的切线;(3)若,BE=6,求⊙O的半径长.20.已知:如图,AB、AC是⊙O的两条弦,AB=AC,点M、N分别在弦AB、AC上,且AM=CN,AM<AN,联结OM、ON.(1)求证:OM=ON;(2)当∠BAC为锐角时,如果AO2=AM•AC,求证:四边形AMON为等腰梯形.21.如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O的直径.22.如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.(1)求证:△CED∽△BAD;(2)当DC=2AD时,求CE的长.23.如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AE=12,,求⊙O的半径和EF的长.参考答案与试题解析1.如图,AB是⊙O的直径,C是⊙O上一点,D是的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F.(1)求证:AE是⊙O的切线;(2)若⊙O的半径10,,求线段DH的长.【分析】(1)由垂径定理得出OD⊥AC,进而得出∠F AO+∠AOF=90°,由圆周角定理结合已知条件得出∠AOF=∠CAE,得出∠F AO+∠CAE=90°,即∠OAE=90°,即可证明AE是⊙O的切线;(2)连接AD,利用解直角三角形得出tan B==,设AD=3x,则BD=4x,AB=5x,由⊙O的半径10,得出AB=5x=20,求出x=4,求出AD=12,BD=16,继而证明△ADH∽△BDA,利用相似三角形的性质即可求出DH的长.【解答】(1)证明:如图1,∵D是的中点,∴OD⊥AC,∴∠AFO=90°,∴∠F AO+∠AOF=90°,∵∠AOF=2∠C,∠CAE=2∠C,∴∠AOF=∠CAE,∴∠F AO+∠CAE=90°,即∠OAE=90°,∵OA是半径,∴AE是⊙O的切线;(2)解:如图2,连接AD,∵∠C=∠B,,tan B=,∵AB是直径,∴∠ADB=90°,∴tan B==,设AD=3x,则BD=4x,AB=5x,∵⊙O的半径10,∴AB=5x=20,∴x=4,∴AD=3×4=12,BD=4×4=16,∵D是的中点,∴AD=CD=12,∴∠DAC=∠C,∵∠B=∠C,∴∠DAC=∠B,∵∠ADH=∠BDA∴△ADH∽△BDA,∴,即,∴DH=9.2.如图,AD是⊙O的弦,PO交⊙O于点B,∠ABP=∠ABD,且AB2=PB•BD,连接P A.(1)求证:P A是⊙O的切线;(2)若P A=2PB=4,求BD的长.【分析】(1)延长BO交⊙O于点E,连接AE,先证明△PBA∽△ABD,得出∠P AB=∠ADB,由圆周角定理得出∠P AB=∠E,由等腰三角形的性质得出∠OAE=∠E,进而得出∠P AB=∠OAE,由圆周角定理得出∠BAE=∠BAO+∠OAE=90°,进而得出∠BAO+∠P AB=∠P AO=90°,即可证明P A是⊙O的切线;(2)延长BO交⊙O于点E,连接AE,DE,利用勾股定理列方程求出⊙O的半径为3,进而得出OA=3,OP=5,BE=6,再证明△P AO∽△EDB,利用相似三角形的性质即可求出BD的长度.【解答】(1)证明:如图1,延长BO交⊙O于点E,连接AE,∵AB2=PB•BD,∴,∵∠ABP=∠ABD,∴△PBA∽△ABD,∴∠P AB=∠ADB,∵∠ADB=∠E,∴∠P AB=∠E,∵OA=OE,∴∠OAE=∠E,∴∠P AB=∠OAE,∵BE为直径,∴∠BAE=∠BAO+∠OAE=90°,∴∠BAO+∠P AB=∠P AO=90°,∵OA是半径,∴P A是⊙O的切线;(2)解:如图2,延长BO交⊙O于点E,连接AE,DE,∵P A=2PB=4,∴PB=2,设OA=OB=x,则OP=x+2,∵∠P AO=90°,∴P A2+AO2=OP2,即42+x2=(x+2)2,解得:x=3,∴OA=3,OP=2+3=5,BE=3+3=6,∵△PBA∽△ABD,∴∠P=∠BAD,∵∠BAD=∠BED,∴∠P=∠BED,∵BE为直径,∴∠BDE=90°,∴∠P AO=∠EDB=90°,∴△P AO∽△EDB,∴,即,∴BD=.3.如图,在⊙O中,直径AB与弦CD相交于点H,点B是弧CD的中点,过点A作AE∥CD,交射线DO于点E,DE与⊙O交于点F,BF与CD交于点G.(1)求证:AE是⊙O的切线.(2)已知AO=5,AE=,求BG的长.【分析】(1)利用垂径定理的推论得到AB⊥CD,利用平行线的性质和圆的切线的判定定理解答即可;(2)过点F作FM⊥AB于点M,利用勾股定理和相似三角形的判定与性质求出线段OE,OM,MF的长,利用全等三角形的判定与性质求得线段BH的长,利用勾股定理和相似三角形的判定与性质得出比例式即可求得结论.【解答】(1)证明:∵点B是弧CD的中点,AB为⊙O的直径,∴AB⊥CD,∵AE∥CD,∴AE⊥OA.∵OA为⊙O的半径,∴AE是⊙O的切线;(2)解:过点F作FM⊥AB于点M,如图,∵AO=5,AE=,AE⊥OA,∴OE==.∵AE⊥AB,FM⊥AB,∴FM∥AE,∴△OMF∽△OAE,∴,∴,∴OM=3,MF=4.∴BM=OB+OM=5+3=8,∴BF==4.在△OFM和△ODH中,,∴△OFM≌△ODH(AAS),∴OM=OH=3,∴BH=OB﹣OH=2.∵FM⊥AB,AB⊥CD,∴CD∥FM,∴△BGH∽△BFM,∴,∴,∴BG=.4.如图,AB是⊙O的直径,C、D是⊙O上两点,且,过点D的直线DE⊥AC交AC的延长线于点E,交AB的延长线于点F,连接AD、OE交于点G.(1)求证:DE是⊙O的切线;(2)若,⊙O的半径为2,求阴影部分的面积.【分析】(1)连接OD,证明DE是⊙O的切线,关键是证明OD⊥DE;(2)连接BD,根据(1)中OD∥AE得△OGD∽△AEG,从而求出AE的长,再根据△AED∽△ADB求出AD的长,再利用三角函数求出DF的长,利用S阴影=S△DOF﹣S扇形DOB求出阴影部分的面积.【解答】(1)证明:如图所示,连接OD,∵,∴∠CAD=∠DAB,∵OA=OD,∴∠DAB=∠ODA,∴∠CAD=∠ODA,∴OD//AE,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图所示,连接BD,∵OD//AE,∴△OGD∽△EGA,∴,∵,⊙O的半径为2,∴,∴AE=3.∵AB是⊙O的直径,DE⊥AE,∴∠AED=∠ADB=90°,∵∠CAD=∠DAB,∴△AED∽△ADB,∴,即,∴,在Rt△ADB中,,∴∠DAB=30°,∴∠EAF=60°,∠DOB=60°,∴∠F=30°,∵OD=2,∴,∴.5.某数学小组在研究三角形的内切圆时,遇到了如下问题:如图①,已知等腰△ABC的底边AB为12,底边上的高CD为8,如何在这个等腰三角形中画出其内切圆?小红同学经过计算,在高CD上截取DO=3,以点O为圆心,以3为半径作的圆即为所求.(1)小红的方法是否正确?如果正确,给出理由;如果不正确,请给出你的方法.(2)如图②,在图①的基础上,以AB为边作一个正方形ABEF,连接FC并延长与BE 交于点G,则BG:GE的值为.【分析】(1)过点O作OH⊥AC于点H,由等腰三角形的性质得出AD=BD=6,OC=5,由勾股定理得出AC=10,证明△CHO∽△CDA,,由相似三角形的性质得出OH=3,继而得出AC是⊙O的切线,同理,BC是⊙O的切线,AB是⊙O的切线,即可得出⊙O是等腰△ABC的内切圆;(2)延长DC交FE于点M,由正方形的性质得出BE=AB=12,EF∥AB,由CA=CB,CD⊥AB,得出AD=BD=6,DM⊥EF,继而得出FM=ME=6,DM=BE=12,由三角形中位线的性质得出GE=8,进而得出BG=4,即可求出BG:GE的值.【解答】解:(1)小红的方法正确,理由如下:如图①,过点O作OH⊥AC于点H,∵等腰△ABC的底边AB为12,底边上的高CD为8,OD=3,∴AD=BD=6,OC=CD﹣OD=8﹣3=5,∴AC===10,∵∠CHO=∠CDA=90°,∠HCO=∠DCA,∴△CHO∽△CDA,∴,即,∴OH=3,∵OH⊥AC,∴AC是⊙O的切线,同理,BC是⊙O的切线,∵OD⊥AB,OD=3,∴AB是⊙O的切线,∴⊙O是等腰△ABC的内切圆;(2)如图②,延长DC交FE于点M,∵四边形ABEF是正方形,AB=12,∴BE=AB=12,EF∥AB,∵CA=CB,CD⊥AB,∴AD=BD=6,DM⊥EF,∴FM=ME=6,DM=BE=12,∴MC是△EFG的中位线,MC=DM﹣CD=12﹣8=4,∴GE=2CM=2×4=8,∴BG=BE﹣GE=12﹣8=4,∴,故答案为:.6.如图,AB是⊙O的直径,CD是一条弦.过点A作DC延长线的垂线,垂足为点E.连接AC,AD.(1)证明:△ABD∽△ACE.(2)若,BD=5,CD=9.①求EC的长.②延长CD,AB交于点F,点G是弦CD上一点,且∠CAG=∠F,求CG的长.【分析】(1)利用圆内接四边形的性质求得∠ACD+∠ABD=180°,推出∠ABD=∠ACE,即可证明;(2)①由△ABD∽△ACE,推出AE=3CE,在Rt△ADE中,利用勾股定理求解即可;②证明△EAG∽△EDA,利用三角形的性质求解即可.【解答】(1)证明:∵AB是⊙O的直径,AE⊥CE,∴∠AEC=∠ADB=90°,∵四边形ABDC是圆内接四边形,∴∠ACD+∠ABD=180°,又∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD∽△ACE;(2)解:①在Rt△BDA中,AB=5,BD=5,∴AD==15,∵△ABD∽△ACE,∴,即,∴AE=3CE,在Rt△ADE中,AD2=AE2+DE2,∴152=(3CE)2+(9+CE)2,解得:CE=﹣(舍去)或CE=3;∴EC的长为3;②∵△ABD∽△ACE,∴∠BAD=∠CAE,∵∠CAG=∠F,∠EAG=∠CAE+∠CAG,∠EDA=∠BAD+∠F,∴∠EAG=∠EDA,∴△EAG∽△EDA,∴,∴AE2=GE•ED,即AE2=(EC+CG)•ED,∵CE=3,∴AE=3CE=9,∴92=(3+CG)×12,∴CG=.7.如图,△ABC内接于⊙O,BC是直径,AD平分∠BAC交于点D,EF切⊙O于D,BF ⊥AB交EF于F.(1)求证:四边形BCEF为平行四边形.(2)若BF=,AB=4,求AE的长.【分析】(1)连接OD,证明BF∥AE,BC∥EF,可得结论;(2)根据平行四边形的性质可得CE=BF=,如图,连接OD,过点C作CG⊥EF于G,证明四边形CODG是正方形,△ABC∽△GCE,列比例式可得AE的长.【解答】(1)证明:连接OD,∵BF⊥AB,∴∠ABF=90°,∵BC是⊙O的直径,∴∠BAC=90°,∴∠BAC+∠ABF=180°,∴BF∥AE,∵AD平分∠BAC,∴∠BAD=∠CAD,∴=,∴BC⊥OD,∵EF切⊙O于D,∴EF⊥OD,∴BC∥EF,∴四边形BCEF为平行四边形;(2)解:由(1)知:四边形BCEF为平行四边形,∴CE=BF=,如图,连接OD,过点C作CG⊥EF于G,∴∠COD=∠ODG=∠CGD=90°,∵OC=OD,∴四边形CODG是正方形,∴CG=OC,∠BCG=90°,∴∠ACB+∠ECG=90°,∵∠ACB+∠ABC=90°,∴∠ECG=∠ABC,∵∠CGE=∠BAC=90°,∴△ABC∽△GCE,∴=,设⊙O的半径是r,则BC=2r,∴=,∴r=(负值舍),∴BC=2,∴AC===2,∴AE=AC+CE=2+=.8.如图,AB为⊙O的直径,四边形ABCD内接于⊙O.点D为的中点,对角线AC,BD 交于点E,⊙O的切线AF交BD的延长线于点F,切点为A.(1)求证:AE=AF;(2)若AB=4,BF=5,求sin∠BDC的值.【分析】(1)由点D为的中点,可得∠CBD=∠ABD,根据AB为⊙O的直径,有∠AEF=∠BEC=90°﹣∠CBD,又AF是⊙O的切线,AB为⊙O的直径,有∠F=90°﹣∠ABD,即得∠AEF=∠F,AE=AF;(2)证明△ADF≌△ADE,得AE=AF,DE=DF,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明△BEC∽△AED,得BC,进而求得sin∠BAC 便可.【解答】(1)证明:∵点D为的中点,∴=,∴∠CBD=∠ABD,∵AB为⊙O的直径,∴∠ACB=90°,∴∠AEF=∠BEC=90°﹣∠CBD,∵AF是⊙O的切线,AB为⊙O的直径,∴∠BAF=90°,∴∠F=90°﹣∠ABD,∴∠AEF=∠F,∴AE=AF;(2)∵AF是⊙O的切线,∴∠F AB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠F AD=90°,∴∠ABD=∠F AD,∵∠ABD=∠CAD,∴∠F AD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF=AE,DF=DE,在Rt△ADE中,AB=4,BF=5,∴AF==3,∴AE=AF=3,∵S△ABF=AB•AF=BF•AD,∴AD===,∴DE===,∴BE=BF﹣2DE=,∵∠AED=∠BEC,∠ADE=∠BCE=90°,∴△BEC∽△AED,∴=,∴BC==,∴sin∠BAC==,∵∠BDC=∠BAC,在Rt△ACB中,∠ACB=90°∴sin∠BDC=.9.如图,在矩形ABCD中,以AB的中点O为圆心,以OA为半径作半圆,连接OD交半圆于点E,在上取点F,使=,连接BF,DF.(1)求证:DF与半圆相切;(2)如果AB=10,BF=6,求矩形ABCD的面积.【分析】(1)连接OF,证明△DAO≌△DFO(SAS),可得∠DAO=90°=∠DFO,即可得DF与半圆O相切;(2)连接AF,证明△AOD∽△FBA,可得=,DO=,在Rt△AOD中,AD==,即可得矩形ABCD的面积是.【解答】(1)证明:连接OF,如图:∵=,∴∠DOA=∠FOD,∵OA=OF,OD=OD,∴△DAO≌△DFO(SAS),∴∠DAO=∠DFO,∵四边形ABCD是矩形,∴∠DAO=90°=∠DFO,∴OF⊥DF,又OF是半圆O的半径,∴DF与半圆O相切;(2)解:连接AF,如图:∵AO=FO,∠DOA=∠DOF,∴DO⊥AF,∵AB为半圆直径,∴∠AFB=90°,∴BF⊥AF,∴DO∥BF,∴∠AOD=∠ABF,∵∠OAD=∠AFB=90°,∴△AOD∽△FBA,∴=,即=,∴DO=,在Rt△AOD中,AD===,∴矩形ABCD的面积为AD•AB=×10=,答:矩形ABCD的面积是.10.如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P在OE延长线上,且满足∠PCA=∠ABC,连接P A,PC,AF.(1)求证:PC是⊙O的切线;(2)证明:PE•OD=DE•OE.【分析】(1)连接OC,根据等腰三角形性质及圆周角定理可得∠PCO=90°,然后由切线的判定定理可得结论;(2)连接EC,FC,OC,证明Rt△ECD∽Rt△CFD,得出CD2=DE•DF,继而得出CD2=DE•OD+DE•OE,同理得出CD2=OD•DE+OD•PE,进而得出DE•OD+DE•OE=OD•DE+OD•PE,即可证明PE•OD=DE•OE.【解答】证明:(1)如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵∠PCA=∠ABC,∴∠PCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°,∴∠ACO+∠PCA=90°,即∠PCO=90°,∵OC是圆O的半径,∴PC是圆O的切线;(2)如图2,连接EC,FC,OC,∵EF是直径,∴∠ECF=90°,∴∠CEF+∠CFE=90°,∵D是AC的中点,EF是直径,∴AC⊥EF,∴∠CEF+∠ECD=90°,∠EDC=∠CDF=90°,∴∠ECD=∠CFD,∴Rt△ECD∽Rt△CFD,∴,∴CD2=DE•DF,∴CD2=DE(OD+OF)=DE(OD+OE)=DE•OD+DE•OE,同理Rt△PCD∽Rt△COD,∴,∴CD2=OD•PD=OD(PE+DE)=OD•DE+OD•PE,∴DE•OD+DE•OE=OD•DE+OD•PE,∴PE•OD=DE•OE.11.如图,在Rt△ABC中,∠ACB=90°,以AB为直径作⊙O,过点B的切线交AC延长线于点D,点E为上一点,且BC=EC,连接BE交AC于点F.(1)求证:BC平分∠DBE;(2)若AB=2,tan E=,求EF的长.【分析】(1)因为BD是⊙O的切线,所以∠∠CBD=∠A,因为BC=EC,所以∠E=∠EBC,由同弧所对的圆周角相等可得,∠A=∠E,所以∠EBC=∠CBD,即BC平分∠DBE.(2)由(1)可知,tan E=tan A=tan∠EBC=,因为AB为⊙O的直径,所以∠ACB=90°,所以tan A==,即AC=2BC,由AB=2结合勾股定理可得,BC2+AC2=AB2,即BC2+4BC2=AB2,解得BC=2,AC=4,又因为tan∠EBC==,所以CF=1,AF=3,BF=,易证△ABF∽△ECF,所以AF:EF=BF:CF,即3:EF=:1,解之即可.【解答】(1)证明:∵BD是⊙O的切线,∴∠∠CBD=∠A,∵BC=EC,∴∠E=∠EBC,∵∠A=∠E,∴∠EBC=∠CBD,即BC平分∠DBE.(2)解:由(1)知,∠A=∠E=∠EBC,∴tan E=tan A=tan∠EBC=,∵AB为⊙O的直径,∴∠ACB=90°,∴tan A==,即AC=2BC,∵AB=2,∴BC2+AC2=AB2,即BC2+4BC2=AB2,∴BC=2,AC=4,∵tan∠EBC==,∴CF=1,AF=3,BF=,∵∠A=∠E,∠ABF=∠ECF,∴△ABF∽△ECF,∴AF:EF=BF:CF,即3:EF=:1,解得EF=.12.如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠F AC=∠BDC.(1)求证:AF是⊙O的切线;(2)若BC=6,sin B=,求⊙O的半径及OD的长.【分析】(1)作OH⊥F A,垂足为H,连接OE,利用直角三角形斜边上中线的性质得AD =CD,再通过导角得出AC是∠F AB的平分线,再利用角平分线的性质可得OH=OE,从而证明结论;(2)根据BC=6,sin B=,可得AC=8,AB=10,设⊙O的半径为r,则OC=OE=r,利用Rt△AOE∽Rt△ABC,可得r的值,再利用勾股定理求出OD的长.【解答】(1)证明:如图,作OH⊥F A,垂足为H,连接OE,∵∠ACB=90°,D是AB的中点,∴CD=AD=,∴∠CAD=∠ACD,∵∠BDC=∠CAD+∠ACD=2∠CAD,又∵∠F AC=,∴∠F AC=∠CAB,即AC是∠F AB的平分线,∵点O在AC上,⊙O与AB相切于点E,∴OE⊥AB,且OE是⊙O的半径,∴OH=OE,OH是⊙O的半径,∴AF是⊙O的切线;(2)解:如图,在△ABC中,∠ACB=90°,BC=6,sin B=,∴可设AC=4x,AB=5x,∴(5x)2﹣(4x)2=62,∴x=2,则AC=8,AB=10,设⊙O的半径为r,则OC=OE=r,∵Rt△AOE∽Rt△ABC,∴,即,∴r=3,∴AE=4,又∵AD=5,∴DE=1,在Rt△ODE中,由勾股定理得:OD=.13.如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【分析】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.【解答】(1)证明:∵AD与⊙O相切于点A,∴∠DAO=90°,∴∠D+∠ABD=90°,∵AB是⊙O的直径,∴∠AEB=90°,∴∠BEC=180°﹣∠AEB=90°,∴∠ACB+∠EBC=90°,∵AB=AC,∴∠ACB=∠ABC,∴∠D=∠EBC;(2)解:∵CD=2BC,∴BD=3BC,∵∠DAB=∠CEB=90°,∠D=∠EBC,∴△DAB∽△BEC,∴==3,∴AB=3EC,∵AB=AC,AE=3,∴AE+EC=AB,∴3+EC=3EC,∴EC=1.5,∴AB=3EC=4.5,∴⊙O的半径为2.25.14.如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC的角平分线AF交BC于点D,交⊙O于点E,连接BE和BF,∠F=∠ABE.(1)求证:BF是⊙O的切线;(2)若AC=5,AB=13,求CD的长.【分析】(1)由圆周角定理得出∠ACB=∠AEB=90°,进而得出∠F+∠FBE=90°,由∠F=∠ABE,得出∠ABE+∠FBE=90°,即∠ABF=90°,即可证明BF是⊙O的切线;(2)连接OE交BC于点G,由∠ACB=∠AEB=90°,AC=5,AB=13,得出BC=12,,由圆周角定理得出,进而得出OE垂直平分BC,即可求出,OG是△ABC的中位线,得出,求出EG=4,由∠CAE=∠CBE,得出tan∠CAD=tan∠EBG,得出,即可求出.【解答】(1)证明:如图1,∵AB是直径,∴∠ACB=∠AEB=90°,∴∠F+∠FBE=90°,∵∠F=∠ABE,∴∠ABE+∠FBE=90°,即∠ABF=90°,∴AB⊥BF,∵AB是⊙O的直径,∴BF是⊙O的切线;(2)解:如图2,连接OE交BC于点G,∵∠ACB=∠AEB=90°,AC=5,AB=13,∴BC===12,,∵AF平分∠BAC,∴∠CAE=∠BAE,∴,∴OE垂直平分BC,∴,OG是△ABC的中位线,∴,∴EG=OE﹣OG=﹣=4,∵∠CAE=∠CBE,∴tan∠CAD=tan∠EBG,∴,即,∴.15.如图,在△ABC中,AD平分∠BAC交BC于点D,以AD为直径作⊙O交AC于点F,点B恰好落在⊙O上,过D点作⊙O的切线DE交AC于点E,连接DF.(1)求证:∠FDE=∠CDE;(2)若AB=12,tan∠C=,求线段DE的长.【分析】(1)由切线的性质及圆周角定理得出∠ADF+∠FDE=90°,∠ADB+∠CDE=90°,证明△F AD≌△BAD,得出∠ADF=∠ADB,即可证明∠FDE=∠CDE;(2)由解直角三角形得出BC=16,由勾股定理得出AC=20,由全等三角形的性质得出AF=AB=12,进而得出CF=8,由解直角三角形得出DF=6,进而得出BD=DF=6,由勾股定理得出AD=6,证明△EAD∽△DAB,由相似三角形的性质得出AE=15,再利用勾股定理即可求出DE=3.【解答】(1)证明:∵DE是⊙O的切线,AD为直径,∴AD⊥DE,∴∠ADF+∠FDE=90°,∠ADB+∠CDE=90°,∵AD是直径,∴∠AFD=∠ABD=90°∵AD平分∠BAC,∴∠F AD=∠BAD,在△F AD和△BAD中,,∴△F AD≌△BAD(AAS),∴∠ADF=∠ADB,∴∠FDE=∠CDE;(2)解:在Rt△ABC中,AB=12,tan∠C=,∴BC===16,∴AC===20,∵△F AD≌△BAD,∴AF=AB=12,∴CF=AC﹣AF=20﹣12=8,在Rt△CDF中,DF=CF•tan∠C=8×=6,∴BD=DF=6,∴AD===6,∵∠ABD=∠ADE=90°,∠EAD=∠DAB,∴△EAD∽△DAB,∴,即,∴AE=15,∴DE===3.16.如图,以△ABC的一边AB为直径作⊙O,交BC于点D,交AC于点E,点D为BE的中点.(1)试判断△ABC的形状,并说明理由;(2)若直线l切⨀O于点D,与AC及AB的延长线分别交于点F、点G.∠BAC=45°,求的值.【分析】(1)连接AD,由AB为⊙O的直径可得出AD⊥BC,由点D为弧BE的中点利用圆周角定理可得出∠BAD=∠DAC,利用等角的余角相等可得出∠ABD=∠ACD,进而可证出△ABC为等腰三角形;(2)连接OD,则OD⊥GF,由OA=OD可得出∠ODA=∠BAD=∠DAC,利用“内错角相等,两直线平行”可得出OD∥AC,根据平行线的性质可得出=、∠GOD =∠BAC=45°,根据等腰直角三角形的性质可得出GO=DO=BO,进而可得出===.【解答】解:(1)△ABC是等腰三角形,理由如下:连接AD,如图1所示.∵AB为⊙O的直径,∴AD⊥BC.∵点D为弧BE的中点,∴=,∴∠BAD=∠DAC,∴∠ABD=∠ACD,∴△ABC为等腰三角形.(2)连接OD,如图2所示.∵直线l是⊙O的切线,点D是切点,∴OD⊥GF.∵OA=OD,∴∠ODA=∠BAD=∠DAC,∴OD∥AC,∴=,∠GOD=∠BAC=45°,∴△GOD为等腰直角三角形,∴GO=DO=BO,∴===.∴=.17.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.求证:(1)BC是⊙O的切线;(2)CD2=CE•CA.【分析】(1)连接OD,证DO∥AB,得出∠ODB=90°即可得出结论;(2)连接DE,证△CDE∽△CAD,根据线段比例关系即可得出结论.【解答】证明:(1)连接OD,∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,∴∠DAO=∠ADO,∴DO∥AB,而∠B=90°,∴∠ODB=90°,∵OD是⊙O的半径,∴BC是⊙O的切线;(2)连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴,∴CD2=CE•CA.18.如图,AB是⊙O的直径,点C,D在⊙O上,且弧CD=弧CB,过点C作CE∥BD,交AB的延长线于点E,连接AC交BD于F.(1)求证:CE是⊙O的切线;(2)过点C作CH⊥AE于H点,CH交BD于M,若CA=CE=6,求CH和BF的长.【分析】(1)连接OC,由垂径定理的推论得出OC⊥BD,由CE∥BD,得出OC⊥CE,即可证明CE是⊙O的切线;(2)连接OC,BC,由等腰三角形的性质得出∠CAB=∠E,由圆周角定理得出∠BOC =2∠E,由OC⊥CE,得出∠BOC+∠E=90°,求出∠E=30°,进而求出CH=3,EH =3,由等腰三角形的性质得出∠CAB=30°,AE=6,由圆周角定理得出∠ACB =90°,由解直角三角形求出AB=4,由CE∥BD,得出,代入计算即可求出BF=4,得出答案.【解答】(1)证明:如图1,连接OC,∵弧CD=弧CB,OC是半径,∴OC⊥BD,∵CE∥BD,∴OC⊥CE,∵OC是半径,∴CE是⊙O的切线;(2)解:如图2,连接OC,BC,∵CA=CE=6,∴∠CAB=∠E,∵∠BOC=2∠BAC,∴∠BOC=2∠E,∵OC⊥CE,∴∠BOC+∠E=90°,∴2∠E+∠E=90°,∴∠E=30°,∵CH⊥AE,∴CH=CE=×6=3,EH===3,∵CA=CE=6,CH⊥AE,∴∠CAB=∠E=30°,AE=2EH=6,∵AB为直径,∴∠ACB=90°,∴cos∠CAB=,∴AB====4,∵CE∥BD,∴,即,∴BF=4,∴CH的长为3,BF的长为4.19.如图,⊙O上有A,B,C三点,AC是直径,点D是的中点,连接CD交AB于点E,点F在AB延长线上且FC=FE.(1)若∠A=40°,求∠DCB的度数;(2)求证:CF是⊙O的切线;(3)若,BE=6,求⊙O的半径长.【分析】(1)由圆周角定理得出∠ABC=90°,由∠A=40°,得出∠ACB=50°,由点D是的中点,即可求出∠DCB=∠ACB=25°;(2)由圆周角定理得出∠BCD+∠CEF=90°,由点D是的中点,得出∠DCB=∠DCA,由等腰三角形的性质得出∠FCE=∠FEC,进而得出∠ACF=90°,即可证明CF 是⊙O的切线;(3)由解直角三角形得出=,设BC=4x,则CF=5x,BF=5x﹣6,由勾股定理得出方程(4x)2+(5x﹣6)2=(5x)2,解方程求出x=3,得出BC=12,CF=15,BF=9,再证明△CFB∽△AFC,利用相似三角形的性质求出AC=20,即可求出⊙O的半径长为10.【解答】(1)解:∵AC是直径,∴∠ABC=90°,∵∠A=40°,∴∠ACB=90°﹣∠A=90°﹣40°=50°,∵点D是的中点,∴∠DCB=∠DCA=∠ACB=×50°=25°;(2)证明:∵AC是直径,∴∠ABC=90°,∴∠BCD+∠CEF=90°,∵点D是的中点,∴∠DCB=∠DCA,∵FC=FE,∴∠FCE=∠FEC,∴∠DCA+∠FCE=90°,即∠ACF=90°,∴AC⊥CF,∵AC是直径,∴CF是⊙O的切线;(3)解:在Rt△CBF中,sin∠F=,∵,BE=6,∴=,∴设BC=4x,则CF=5x,BF=5x﹣6,∵BC2+BF2=CF2,∴(4x)2+(5x﹣6)2=(5x)2,解得:x=3或(不符合题意,舍去),∴BC=12,CF=15,BF=9,∵∠CBF=∠ACF=90°,∠CFB=∠AFC,∴△CFB∽△AFC,∴,即,∴AC=20,∴OA=AC=×20=10,∴⊙O的半径长为10.20.已知:如图,AB、AC是⊙O的两条弦,AB=AC,点M、N分别在弦AB、AC上,且AM=CN,AM<AN,联结OM、ON.(1)求证:OM=ON;(2)当∠BAC为锐角时,如果AO2=AM•AC,求证:四边形AMON为等腰梯形.【分析】(1)过点O作OE⊥AB于点E,OF⊥AC于点F,利用圆心角,弦,弧,弦心距之间的关系定理可得OE=OF,AE=CF=AB,利用等式的性质可得EM=FN,再利用全等三角形的判定与性质解答即可;(2)连接OB,利用相似三角形的判定与性质得到∠AOM=∠B,利用同圆的半径线段,等腰三角形的性质和角平分线性质定理的逆定理得到∠AOM=∠OAC,则得OM∥ON,利用等腰梯形的定义即可得出结论.【解答】证明:(1)过点O作OE⊥AB于点E,OF⊥AC于点F,如图,∵AB=AC,OE⊥AB,OF⊥AC,∴OE=OF,AE=CF=AB.∵AM=CN,∴AE﹣AM=FC﹣CN,即:EM=FN.在△OEM和△OFN中,,∴△OEM≌△OFN(SAS).∴OM=ON;(2)连接OB,如图,∵AO2=AM•AC,AC=AB,∴AO2=AM•AB,∴.∵∠MAO=∠OAB,∴△OAM∽△BAO,∴∠AOM=∠B.∵OA=OB,∴∠OAB=∠B,∴∠OAB=∠AOM,∴OM=AM.∵OM=ON,∴AM=ON.∵OE=OF,OE⊥AB,OF⊥AC,∴∠OAB=∠OAC,∴∠AOM=∠OAC,∴OM∥AN.∵AM<AN,∴OM<AN,∴四边形AMON为梯形,∵AM=ON,∴四边形AMON为等腰梯形.21.如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O的直径.【分析】(1)连接OE,利用圆的切线的性质定理,平行线的判定与性质,同圆的半径相等和等腰三角形的判定定理解答即可;(2)连接BE,利用直径所对的圆周角为直角,直角三角形的边角关系定理和相似三角形的判定与性质解答即可.【解答】(1)证明:连接OE,如图,∵AC是⊙O的切线,∴OE⊥AC.∵AC⊥BC,∴OE∥BC,∴∠OED=∠F.∵OD=OE,∴∠ODE=∠OED,∴∠BDE=∠F,∴BD=BF;(2)解:连接BE,如图,∵∠BDE=∠F,∴tan∠BDE=tan∠F=2,∵CF=1,tan∠F=,∴CE=2.∵BD是⊙O直径,∴∠BED=90°,∴BE⊥EF.∵EC⊥BF,∴△ECF∽△BCE,∴,∴EC2=BC•CF.∴BC=4.∴BF=BC+CF=5.∴BD=BF=5,即⊙O的直径为5.22.如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.(1)求证:△CED∽△BAD;(2)当DC=2AD时,求CE的长.【分析】(1)由对顶角的性质,圆周角定理得出∠CDE=∠BDA,∠A=∠E,即可证明△CED∽△BAD;(2)过点D作DF⊥EC于点F,由等边三角形的性质得出∠A=60°,AC=AB=6,由DC=2AD,得出AD=2,DC=4,由相似三角形的性质得,得出EC=3DE,由含30°角的直角三角形的性质得出DE=2EF,设EF=x,则DE=2x,DF=x,EC=6x,进而得出FC=5x,利用勾股定理得出一元二次方程(x)2+(5x)2=42,解方程求出x的值,即可求出EC的长度.【解答】(1)证明:如图1,∵∠CDE=∠BDA,∠A=∠E,∴△CED∽△BAD;(2)解:如图2,过点D作DF⊥EC于点F,∵△ABC是边长为6等边三角形,∴∠A=60°,AC=AB=6,∵DC=2AD,∴AD=2,DC=4,∵△CED∽△BAD,∴,∴EC=3DE,∵∠E=∠A=60°,DF⊥EC,∴∠EDF=90°﹣60°=30°,∴DE=2EF,设EF=x,则DE=2x,DF=x,EC=6x,∴FC=5x,在Rt△DFC中,DF2+FC2=DC2,∴(x)2+(5x)2=42,解得:x=或﹣(不符合题意,舍去),∴EC=6x=.23.如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AE=12,,求⊙O的半径和EF的长.【分析】(1)连接OE,根据直径所对的圆周角是直角可得∠AEB=90°,从而可得∠AEO+∠OEB=90°,再利用角平分线和等腰三角形的性质可得∠CAE=∠AEO,从而可得∠BEF=∠AEO,然后可得∠BEF+∠OEB=90°,从而求出∠OEF=90°,即可解答;(2)利用(1)的结论可得∠BEF=∠EAO,从而可证△FEB∽△F AE,然后利用相似三角形的性质可求出BE的长,再在Rt△ABE中利用勾股定理求出AB的长,从而求出EF 的长,即可解答.【解答】(1)证明:连接OE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠AEO+∠OEB=90°,∵OA=OE,∴∠EAO=∠AEO,∵AE平分∠CAB,∴∠EAO=∠CAE,∴∠CAE=∠AEO,∵∠BEF=∠CAE,∴∠BEF=∠AEO,∴∠BEF+∠OEB=90°,∴∠OEF=90°,∵OE是⊙O的半径,∴EF是⊙O的切线;(2)解:∵∠BEF=∠AEO,∠EAO=∠AEO,∴∠BEF=∠EAO,∵∠F=∠F,∴△FEB∽△F AE,∴==,∴==,∴BE=6,∴AB===30,∴=,∴EF=20,∴⊙O的半径为15,EF的长为20.。

完整版)九年级数学相似三角形综合练习题及答案

完整版)九年级数学相似三角形综合练习题及答案

完整版)九年级数学相似三角形综合练习题及答案1.填空题:1) 若$a=8$cm,$b=6$cm,$c=4$cm,则$a$、$b$、$c$的第四比例项$d=\underline{12}$;$a$、$c$的比例中项$x=\underline{5}$。

2) $(2-x):x=x:(1-x)$。

则$x=\underline{1}$。

3) 在比例尺为1:的地图上,距离为3cm的两地实际距离为\underline{30}公里。

4) 圆的周长与其直径的比为\underline{$\pi$}。

5) $\frac{a^5-ab}{b^3}=\frac{a^4}{b^2}$,则$\frac{a}{b}=\underline{a^2}$。

6) 若$a:b:c=1:2:3$,且$a-b+c=6$,则$a=\underline{2}$,$b=\underline{1}$,$c=\underline{3}$。

7) 如图1,则$\frac{AB}{AC}=\frac{BC}{CE}=\underline{\frac{3}{2}}$;若$BD=10$cm,则$AD=\underline{6}$cm;若$\triangle ADE$的周长为16cm,则$\triangle ABC$的周长为\underline{24}cm。

8) 若点$c$是线段$AB$的黄金分割点,且$AC>CB$,则$\frac{AC}{AB}=\underline{\frac{1+\sqrt{5}}{2}}$,$\frac{CB}{AB}=\underline{\frac{\sqrt{5}-1}{2}}$。

2.选择题:1) 根据$ab=cd$,共可写出以$a$为第四比例项的比例式的个数是()A.$1$,B.$2$,C.$3$,D.$4$。

答案:B。

2) 若线段$a$、$b$、$c$、$d$成比例,则下列各式中一定能成立的是()A.$abcd=1$,B.$a+b=c+d$,C.$\frac{a}{b}=\frac{c}{d}$,D.$a^2+b^2=c^2+d^2$。

相似三角形与圆综合题

相似三角形与圆综合题

相似三角形与圆综合题(总25页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1、已知:如图,AB是⊙O的直径,E是AB延长线上一点,过E作⊙O的切线ED,切点为C,AD⊥ED交ED于点D,交⊙O 于点F,CG⊥AB交AB于点G.求证:BG•AG=DF•DA.2、已知:如图,AB为⊙O的直径,AB⊥AC,BC交⊙O于D,E是AC的中点,ED与AB的延长线相交于点F.(1)求证:DE为⊙O的切线.(2)求证:AB:AC=BF:DF.3、(南通)已知:如图,AB是⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC,E为垂足.(1)求证:∠ADE=∠B;(2)过点O作OF∥AD,与ED的延长线相交于点F,求证:FD•DA=FO•DE.4、如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O于点E,且∠BAF=2∠CBF,CG⊥BF于点G,连接AE.(1)直接写出AE与BC的位置关系;(2)求证:△BCG∽△ACE;(3)若∠F=60°,GF=1,求⊙O的半径长.5、如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.6、如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O 于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.7、如是⊙O的直径,CB、CD分别切⊙O于B、D两点,点E在CD的延长线上,且CE=AE+BC;(1)求证:AE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BE交DF于点M,求证:DM=MF.8、已知:如图,AB是⊙O的直径,D是⊙O上一点,连结BD并延长,使CD=BD,连结AC。

圆与三角形相似结合的中考题

圆与三角形相似结合的中考题

已知△ABC内接于△O,若△A = 50°,则△BOC等于( )A. 50°B. 65°C. 100°D. 130°(正确答案)在△O中,弦AB与弦CD相交于点P,若△APB = 60°,△CPD = 45°,则△AOC的大小为( )A. 75°B. 105°(正确答案)C. 120°D. 135°已知△ABC的三边a、b、c满足关系式a² + c² - b² = ac,则( )A. △ABC是直角三角形B. △ABC是等腰三角形C. △ABC是等边三角形D. △ABC可以外接一个圆(正确答案)圆内接四边形ABCD中,若△A△△B△△C = 2△3△4,则△D的度数是( )A. 60°B. 90°(正确答案)C. 120°D. 30°已知△ABC外接圆的半径为R,且满足2R(sin²A - sin²C) = (√3a - b)sin B,则△C的大小为( )A. 30°B. 45°C. 60°(正确答案)D. 75°在△ABC中,D、E分别是AB、AC上的点,且AD = AE,若△AED = 60°,则△ADE的外接圆与△ABC 的外接圆的位置关系是( )A. 内切B. 外切(正确答案)C. 相交D. 相离已知圆内接四边形ABCD的边长依次为a、b、c、d,且满足a² + b² + c² + d² = 2ac + 2bd,则四边形ABCD是( )A. 矩形B. 菱形(正确答案)C. 正方形△ABC内接于△O,AD是△O的直径,若△CAD = 30°,则△B的大小为( )A. 30°B. 60°(正确答案)C. 90°D. 120°在△O中,弦AB把圆周分成两条弧,其中一条弧所对的圆心角为120°,则弦AB所对的圆周角为( )A. 120°B. 60°(正确答案)C. 30°D. 60°或120°。

九年级圆与相似三角形专题复习

九年级圆与相似三角形专题复习

九年级圆中三角形相似复习专题1、 黄金分割点:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBCAB AC =,即AC 2=AB×BC,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。

其中AB AC 215-=≈AB 。

2、 黄金分割的几何作图:已知:线段AB.求作:点C 使C 是线段AB 的黄金分割点.作法: (1)过点B 作BD⊥AB,使BD=; (2)连结AD ,在DA 上截取DE=DB ;(3)在AB 上截取AC=AE ,则点C 就是所求作的线段AB 的黄金分割点。

(4)矩形中,如果宽与长的比是黄金比,这个矩形叫做黄金矩形 3、相似三角形1)定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。

几种特殊三角形的相似关系:两个全等三角形一定相似。

两个等腰直角三角形一定相似。

两个等边三角形一定相似。

两个直角三角形和两个等腰三角形不一定相似。

补充:对于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等); 4、 性质:两个相似三角形中,对应角相等、对应边成比例。

5、 相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。

如△ABC 与△DEF 相似,记作△ABC ∽△DEF 。

相似比为k 。

6、判定:①定义法:对应角相等,对应边成比例的两个三角形相似。

②三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。

三角形相似的判定定理:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似。

(此定理用的最多)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似。

圆与相似三角形、三角函数专题(含答案)

圆与相似三角形、三角函数专题(含答案)

圆与相似三角形、解直角三角形及二次函数的综合类型一:圆与相似三角形的综合1.如图,BC是⊙A的直径,△DBE的各个顶点均在⊙A上,BF⊥DE于点F.求证:BD·BE =BC·BF.2.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D 作⊙O的切线,交BC于点E.(1)求证:点E是边BC的中点;(2)求证:BC2=BD·BA;(3)当以点O,D,E,C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.解:(1)连结OD,∵DE为切线,∴∠EDC+∠ODC=90°.∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,∴∠EDC=∠ECD,∴ED=EC.∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=EB,∴EB=EC,即点E为边BC的中点(2)∵AC为直径,∴∠ADC=∠ACB=90°.又∵∠B=∠B,∴△ABC∽△CBD,∴ABBC =BCBD,∴BC2=BD•BA(3)当四边形ODEC为正方形时,∠OCD=45°.∵AC为直径,∴∠ADC=90°,∴∠CAD =90°-∠OCD=90°-45°=45°,∴Rt△ABC为等腰直角三角形类型二:圆与解直角三角形的综合3.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC的中点,DE⊥AB,垂足为点E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)已知CF=5,cosA=25,求BE的长.解:(1)连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD.∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线(2)∵OD∥AB,∴∠COD=∠A,∴cos∠COD=cosA=25.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD=ODOF=25.设⊙O的半径为r,则rr+5=25,解得r=103,∴AB=2OD=AC=203.在Rt△AEF中,∵∠AEF=90°,∴cosA=AEAF=AE5+203=25,∴AE=143,∴BE=AB-AE=203-143=24.(2015·资阳)如图,在△ABC中,BC是以AB为直径的⊙O的切线,且⊙O与AC相交于点D,E为BC的中点,连结DE.(1)求证:DE是⊙O的切线;(2)连结AE,若∠C=45°,求sin∠CAE的值.解:(1)连结OD,BD,∵OD=OB,∴∠ODB=∠OBD.∵AB是直径,∴∠ADB=90°,∴∠CDB=90°.∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE=90°,∴DE是⊙O的切线(2)过点E作EF⊥CD于点F,设EF=x,∵∠C=45°,∴△CEF,△ABC都是等腰直角三角形,∴CF=EF=x,∴BE=CE=2x,∴AB=BC=22x.在Rt△ABE中,AE=AB2+BE2=10x,∴sin∠CAE=EFAE=10105.如图,△ABC内接于⊙O,直径BD交AC于点E,过点O作FG⊥AB,交AC于点F,交AB于点H,交⊙O于点G.(1)求证:OF·DE=OE·2OH;(2)若⊙O的半径为12,且OE∶OF∶OD=2∶3∶6,求阴影部分的面积.(结果保留根号)解:(1)∵BD是直径,∴∠DAB=90°.∵FG⊥AB,∴DA∥FO,∴△FOE∽△ADE,∴FOAD=OEDE,即OF•DE=OE•AD.∵O是BD的中点,DA∥OH,∴AD=2OH,∴OF•DE=OE•2OH(2)∵⊙O的半径为12,且OE∶OF∶OD=2∶3∶6,∴OE=4,ED=8,OF=6,∴OH=6.在Rt△OBH中,OB=2OH,∴∠OBH=30°,∴∠BOH=60°,∴BH=BO•sin60°=12×32=63,∴S阴影=S扇形GOB-S △OHB=60×π×122360-12×6×63=24π-183类型三:圆与二次函数的综合6.如图,在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D.(1)求过A,B,C三点的抛物线的解析式;(2)求点D的坐标;(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由.解:(1)y=-12x2-32x+2(2)以AB为直径的圆的圆心坐标为O′(-32,0),∴O′C=52,O′O=32.∵CD为圆O′的切线,∴O′C⊥CD,∴∠O′CO+∠DCO=90°.又∵∠CO′O+∠O′CO=90°,∴∠CO′O=∠DCO,∴△O′CO∽△CDO,∴O′OOC=OCOD,∴322=2OD,∴OD=83,∴点D的坐标为(83,0)(3)存在.抛物线的对称轴为直线x=-32,设满足条件的圆的半径为|r|,则点E的坐标为(-32+r,r)或F(-32-r,r),而点E在抛物线y =-12x2-32x+2上,∴r=-12(-32+|r|)2-32(-32+|r|)+2,∴r1=-1+292,r2=-1-292(舍去).故存在以线段EF为直径的圆,恰好与x轴相切,该圆的半径为-1+2927.如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于点C,经过A,B,C 三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为.设⊙M与y轴交于点D,抛物线的顶点为E.(1)求m的值及抛物线的解析式;(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;(3)探究坐标轴上是否存在点P,使得以P,A,C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.解:(1)由题意,可知C(0,-3),-b2a=1,∴抛物线的解析式为y=ax2-2ax-3(a>0).过点M作MN⊥y轴于点N,连结CM,则MN=1,CM=5,∴CN=2,于是m=-1.同理,可求得B(3,0),∴a×32-2a×3-3=0,解得a=1.∴抛物线的解析式为y=x2-2x-3(2)由(1)得,A(-1,0),E(1,-4),D(0,1),∴△BCE为直角三角形,BC=32,CE=2,∴OBOD=31=3,BCCE=322=3,∴OBOD=BCCE,即OBBC=ODCE,∴Rt△BOD∽Rt△BCE,得∠CBE=∠OBD=β,因此sin(α-β)=sin(∠DBC-∠OBD)=sin∠OBC=COBC=22(3)显然Rt△COA∽Rt△BCE,此时点O(0,0).过点A作AP2⊥AC交y轴的正半轴于点P2,由Rt△CAP2∽Rt△BCE,得P2(0,13).过点C作CP3⊥AC交x轴的正半轴于点P3,由Rt△P3CA∽Rt△BCE,得P3(9,0).故在坐标轴上存在三个点P1(0,0),P2(0,13),P3(9,0),使得以P,A,C为顶点的三角形与△BCE相似。

(完整版)相似三角形与圆综合题

(完整版)相似三角形与圆综合题

相似三角形与圆综合第一部分:例题分析例1、已知:如图,BC 为半圆O 的直径,AD ⊥BC ,垂足为D ,过点B 作弦BF 交AD 于点E ,交半圆O 于点F ,弦AC与BF 交于点H ,且AE=BE. 求证:(1)︵AB =︵AF ;(2)AH ·BC=2AB ·BE.例2、如图,PA 为圆的切线,A 为切点,PBC 为割线,∠APC 的平分线交AB 于点D ,交AC 于点E ,求证:(1)AD=AE ;(2)AB ·AE=AC ·DB .例3、AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =60°,P 是OB 上一点,过P 作AB 的垂线与AC 的延长线交于点Q ,连结OC ,过点C 作CD ⊥OC 交PQ 于点D .(1)求证:△CDQ 是等腰三角形; (2)如果△CDQ ≌△COB ,求BP ∶PO 的值.例4、△ABC 内接于圆O ,∠BAC 的平分线交⊙O 于D 点,交⊙O 的切线BE 于F ,连结BD ,CD . 求证:(1)BD 平分∠CBE ;(2)AB ·BF =AF ·DC .例3、 ⊙O 内两弦AB ,CD 的延长线相交于圆外一点E ,由E 引AD 的平行线与直线BC 交于F ,作切线FG ,G 为切点,求证:EF =FG .第二部分:当堂练习1.如图,AB 是⊙O 直径,ED ⊥AB 于D ,交⊙O 于G ,EA 交⊙O 于C ,CB 交ED 于F ,求证:DG 2=DE •DF2.如图,弦EF ⊥直径MN 于H ,弦MC 延长线交EF 的反向延长线于A ,求证:MA •MC =MB •MDDCBAOMN EH3.如图,AB 、AC 分别是⊙O 的直径和弦,点D 为劣弧AC 上一点,弦ED 分别交⊙O 于点E ,交AB 于点H ,交AC 于点F ,过点C 的切线交ED 的延长线于点P . (1)若PC =PF ,求证:AB ⊥ED ;(2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE ·DF ,为什么?4.如图(1),AD 是△ABC 的高,AE 是△ABC 的外接圆直径,则有结论:AB · AC =AE · AD 成立,请证明.如果把图(1)中的∠ABC 变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立?5.如图,AD 是△ABC 的角平分线,延长AD 交△ABC 的外接圆O 于点E ,过点C 、D 、E 三点的⊙O 1与AC 的延长线交于点F ,连结EF 、DF .(1)求证:△AEF ∽△FED ; (2)若AD =8,DE =4,求EF 的长. 6.如图,PC 与⊙O 交于B ,点A 在⊙O 上,且∠PCA =∠BAP . (1)求证:P A 是⊙O 的切线. (2)△ABP 和△CAP 相似吗?为什么? (3)若PB :BC =2:3,且PC =20,求P A 的长.DCBAOE F7.已知:如图, AD 是⊙O 的弦,OB ⊥AD 于点E ,交⊙O 于点C ,OE =1,BE =8,AE :AB =1:3. (1)求证:AB 是⊙O 的切线;(2)点F 是ACD 上的一点,当∠AOF =2∠B 时,求AF 的长.8.如图,⊿ABC 内接于⊙O ,且BC 是⊙O 的直径,AD ⊥BC 于D ,F 是弧BC 中点,且AF 交BC 于E ,AB =6,AC =8,求CD ,DE ,及EF 的长.ACPED H FO9. 已知:如图,在Rt ABC △中,90ACB ∠=,4AC =,43BC =,以AC 为直径的O 交AB 于点D ,点E 是BC 的中点,连结OD ,OB 、DE 交于点F .(1)求证:DE 是O 的切线; (2)求EF :FD 的值.ABCD E FO10.如图,A 是以BC 为直径的O 上一点,AD BC ⊥于点D ,过点B 作O 的切线,与CA 的延长线相交于点E G ,是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P .(1)求证:BF EF =; (2)求证:PA 是O 的切线;(3)若FG BF =,且O 的半径长为32,求BD 和FG 的长度.第三部分 课后作业1.已知⊙O 的半径为35厘米,⊙O '的半径为5厘米.⊙O 与⊙O '相交于点D 、E .若两圆的公共弦DE 的长是6厘米(圆心O 、O '在公共弦DE 的两侧),则两圆的圆心距O O '的长为( ) (A )2厘米 (B )10厘米 (C )2厘米或10厘米 (D )4厘米 2.如图,两个等圆⊙O 和⊙O '的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) (A )30 (B )45 (C )60 (D )903.如图,在△ABC 中,∠BAC =90,AB =AC =2,以AB 为直径的圆交BC 于D ,则图中阴影部分的面积为 ( ) (A )1 (B )2 (C )1+4π (D )2-4π4.已知圆的内接正六边形的周长为18,那么圆的面积为 ( ) (A )18π (B )9π (C )6π (D )3π5、如图△ABC 是等边三角形,被一平行于BC 的矩形所截 AB 被截成三等分则图中阴影部分的面积是△ABC 的面OD GCAFB积的 ( )6.已知,如图,以△ABC 的边AB 作直径的⊙O ,分别并AC 、BC 于点D 、E ,弦FG ∥AB ,S △CDE ︰S △ABC =1︰4,DE =5cm ,FG =8cm ,求梯形AFGB 的面积.7.如图,在两个半圆中,大圆的弦MN 与小圆相切,D 为切点,且MN ∥AB ,MN =a ,ON 、CD 分别为两圆的半径,求阴影部分的面积.8.如图,在Rt ABC △中,斜边1230BC C =∠=,°,D 为BC 的中点,ABD △的外接圆O ⊙与AC 交于F 点,过A 作O ⊙的切线AE 交DF 的延长线于E 点.(1)求证:AE DE ⊥; (2)计算:AC AF ·的值.9.如图,在直角梯形ABCD 中,AB CD ∥,90B ∠=,AB =AD ,∠BAD 的平分线交BC 于E ,连接DE . (1)说明点D 在△ABE 的外接圆上;(2)若∠AED =∠CED ,试判断直线CD 与△ABE 外接圆的位置关系,并说明理由.10、 如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =. (1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.AB CDERPH QAE FODB。

数学《圆与相似三角形、三角函数综合题》专题训练(含答案)

数学《圆与相似三角形、三角函数综合题》专题训练(含答案)

2020-2021学年中考数学培优训练讲义(七)《圆与相似三角形、三角函数综合题》专题训练班级姓名座号成绩1.如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接PF.若tan∠FBC=,DF=,则PF的长为.2.如图AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且=,CE的延长线交DB的延长线于F,AF交⊙O于点H,当OB=2时,则BH的长为.(第1题图)(第2题图)(第3题图)3.如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC、PB,若cos∠PAB=,BC=1,则PO的长.4.已知:在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,交BC于点E.(1)如下左图,过点D作弦DF⊥AB垂足为H,连接EF交AB于G,求证:EF∥AC;(2)如下右图,在(1)的条件下,过点G作GN⊥BC垂足为N,若OG=3,EN=4,求线段DH的长.5.如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.(1)求证:EF是⊙O的切线;(2)连接DG,若AC∥EF时.①求证:KG2=KD•KE;②若cos C=,AK=,求BF的长.作业思考:1. 如图,四边形ABCD内接于⊙O,且对角线AC⊥BD,垂足为点E,过点C作CF⊥AB于点F,交BD于点G.(1)如图①,连接EF,若EF平分∠AFG,求证:AE=GE;(2)如图②,连接CO并延长交AB于点H,若CH为∠ACF的平分线,AD=3,且tan∠FBG=,求线段AH长.参考答案:1.如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接EF.(1)求证:PF平分∠BFD.(2)若tan∠FBC=,DF=,求EF的长.【分析】(1)根据切线的性质得到OE⊥AD,由四边形ABCD的正方形,得到CD⊥AD,推出OE∥CD,根据平行线的性质得到∠EFD=∠OEF,由等腰三角形的性质得到∠OEF=∠OFE,根据角平分线的定义即可得到结论;(2)连接PF,由BF是⊙O的直径,得到∠BPF=90°,推出四边形BCFP是矩形,根据tan∠FBC =,设CF=3x,BC=4x,于是得到3x+=4x,x=,求得AD=BC=4,推出DF∥OE ∥AB于是得到DE:AE=OF:OB=1:1即可得到结论.【解答】解:(1)连接OE,BF,PF,∵∠C=90°,∴BF是⊙O的直径,∵⊙O与AD相切于点E,∴OE⊥AD,∵四边形ABCD的正方形,∴CD⊥AD,∴OE∥CD,∴∠EFD=∠OEF,∵OE=OF,∴∠OEF=∠OFE,∴∠OFE=∠EFD,∴EF平分∠BFD;(2)连接PF,∵BF是⊙O的直径,∴∠BPF=90°,∴四边形BCFP是矩形,∴PF=BC,∵tan∠FBC=,设CF=3x,BC=4x,∴3x+=4x,x=,∴AD=BC=4,∵点E是切点,∴OE⊥AD∴DF∥OE∥AB∴DE:AE=OF:OB=1:1∴DE=AD=2,∴EF==10.【点评】本题考查了切线的性质,正方形的性质,圆周角定理,等腰三角形的性质,平行线的性质,切割线定理,正确的作出辅助线是解题的关键.2.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【解答】证明:(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;解:(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点评】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.3.如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△PAB的内心;(3)若cos∠PAB=,BC=1,求PO的长.【分析】(1)连接OB,根据圆周角定理得到∠ABC=90°,证明△AOP≌△BOP,得到∠OBP=∠OAP,根据切线的判定定理证明;(2)连接AE,根据切线的性质定理得到∠PAE+∠OAE=90°,证明EA平分∠PAD,根据三角形的内心的概念证明即可;(3)根据余弦的定义求出OA,证明△PAO∽△ABC,根据相似三角形的性质列出比例式,计算即可.【解答】(1)证明:连接OB,∵AC为⊙O的直径,∴∠ABC=90°,∵AB⊥PO,∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC,OB=OC,∴∠OBC=∠C,∴∠AOP=∠POB,在△AOP和△BOP中,,∴△AOP≌△BOP(SAS),∴∠OBP=∠OAP,∵PA为⊙O的切线,∴∠OAP=90°,∴∠OBP=90°,∴PB是⊙O的切线;(2)证明:连接AE,∵PA为⊙O的切线,∴∠PAE+∠OAE=90°,∵AD⊥ED,∴∠EAD+∠AED=90°,∵OE=OA,∴∠OAE=∠AED,∴∠PAE=∠DAE,即EA平分∠PAD,∵PA、PB为⊙O的切线,∴PD平分∠APB∴E为△PAB的内心;(3)解:∵∠PAB+∠BAC=90°,∠C+∠BAC=90°,∴∠PAB=∠C,∴cos∠C=cos∠PAB=,在Rt△ABC中,cos∠C===,∴AC=,AO=,∵△PAO∽△ABC,∴,∴PO===5.【点评】本题考查的是三角形的内切圆和内心、相似三角形的判定和性质、切线的判定,掌握切线的判定定理、相似三角形的判定定理和性质定理是解题的关键.4.已知:在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,交BC于点E.(1)如图1,求证:AD=CD;(2)如图2,过点D作弦DF⊥AB垂足为H,连接EF交AB于G,求证:EF∥AC;(3)如图3,在(2)的条件下,过点G作GN⊥BC垂足为N,若OG=3,EN=4,求线段DH的长.【分析】(1)如图1中,连接BD,利用等腰三角形的三线合一的性质证明即可.(2)如图2中,连接BD,想办法证明∠ADF=∠DFE即可.(3)连接AE.设OA=OB=r,则AB=BC=2r,BG=3+r,利用平行线分线段成比例定理,构建方程求出r,即可解决问题.【解答】(1)证明:如图1中,连接BD.∵AB是直径,∴∠ADB=90°,∴BD⊥AC,∵BA=BC,∴AD=CD.(2)证明:如图2中,连接BD.∵AB⊥DF,∴=,∴∠ADF=∠ABD,∵∠DFE=∠ABD,∴∠ADF=∠DFE,∴EF∥AC.(3)解:如图3中,连接AE.设OA=OB=r,则AB=BC=2r,BG=3+r,∵EG∥AC,∴=,∵BC=BA,∴BE=BG=3+r,∴BN=3+r﹣4=r﹣1,∵AB是直径,GN⊥BC∴∠AEB=∠GNB=90°,∴GN∥AE,∴=,∴=,解得r=9或﹣1(舍弃),∴BG=12,BN=8,∴NG===4,∴EG===2,∵GN∥AE,∴=,∴=,∴AE=6,∵∠C=∠DAH,∠AEC=∠AHD=90°,∴△AEC∽△DHA,∴==2,∴DH=3.【点评】本题属于圆综合题,考查了垂径定理,解直角三角形,平行线分线段成比例定理,等腰三角形的判定和性质等知识,教育的关键是学会添加常用辅助线,属于中考压轴题.5.如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.(1)求证:EF是⊙O的切线;(2)连接DG,若AC∥EF时.①求证:△KGD∽△KEG;②若cos C=,AK=,求BF的长.【分析】(1)连接OG,由EG=EK知∠KGE=∠GKE=∠AKH,结合OA=OG知∠OGA=∠OAG,根据CD⊥AB得∠AKH+∠OAG=90°,从而得出∠KGE+∠OGA=90°,据此即可得证;(2)①由AC∥EF知∠E=∠C=∠AGD,结合∠DKG=∠CKE即可证得△KGD∽△KGE;②连接OG,由设CH=4k,AC=5k,可得AH=3k,CK=AC=5k,HK=CK﹣CH=k.利用AH2+HK2=AK2得k=1,即可知CH=4,AC=5,AH=3,再设⊙O半径为R,由OH2+CH2=OC2可求得,根据知,从而得出答案.【解答】解:(1)如图,连接OG.∵EG=EK,∴∠KGE=∠GKE=∠AKH,又OA=OG,∴∠OGA=∠OAG,∵CD⊥AB,∴∠AKH+∠OAG=90°,∴∠KGE+∠OGA=90°,∴EF是⊙O的切线.(2)①∵AC∥EF,∴∠E=∠C,又∠C=∠AGD,∴∠E=∠AGD,又∠DKG=∠GKE,∴△KGD∽△KEG;②连接OG,∵,AK=,设,∴CH=4k,AC=5k,则AH=3k∵KE=GE,AC∥EF,∴CK=AC=5k,∴HK=CK﹣CH=k.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即,解得k=1,∴CH=4,AC=5,则AH=3,设⊙O半径为R,在Rt△OCH中,OC=R,OH=R﹣3k,CH=4k,由勾股定理得:OH2+CH2=OC2,即(R﹣3)2+42=R2,∴,在Rt△OGF中,,∴,∴.【点评】本题是圆的综合问题,解题的关键是掌握等腰三角形的性质、平行线的性质,圆周角定理、相似三角形的判定与性质及切线的判定等知识点.作业思考:1.如图,四边形ABCD内接于⊙O,且对角线AC⊥BD,垂足为点E,过点C作CF⊥AB于点F,交BD于点G.(1)如图①,连接EF,若EF平分∠AFG,求证:AE=GE;(2)如图②,连接CO并延长交AB于点H,若CH为∠ACF的平分线,AD=3,且tan∠FBG=,求线段AH长.【分析】(1)由垂直的定义,角平分线的定义,角的和差证明EF=EI,同角的余角相等得∠AEF=∠GEI,四边形的内角和,邻补角的性质得∠FAE=∠IGE,最后根据角角边证明△AEF≌△GEI,其性质得AE=GE;(2)由圆周角定理,等角的三角函数值相等求出⊙O的半径为,根据平行线的性质,勾股定理,角平分线的性质定理,三角形相似的判定与性质,一元二次方程求出t的值为,最后求线段AH的长为.【解答】证明:(1)过点E作EI⊥EF交CF于点I,如图①所示:∵CF⊥AB,∴∠AFG=90°,又∵EF平分∠AFG,∴∠EFA=∠EFI=45°,又∵EF⊥EI,∴∠FEI=90°,又∵∠EFI+∠EIF=90°,∴∠EIF=45°,∴EF=EI,又∵∠EAF+∠AFG+∠FGE+∠GEA=360°,∠AFG=∠AEG=90°,∴∠EGF+∠FAE=180°,又∵∠EGF+∠EGI=180°,∴∠EGI=∠FAE,又∵∠AEB=∠AEF+∠FEG,∠FEI=∠GEI+∠FEG,∴∠AEF=∠GEI,在△AEF和△GEI中,,∴△AEF≌△GEI(AAS),∴AE=GE;(2)连接DO并延长,交⊙O于点P,连接AP,如图②甲所示:∵∠ABD与∠P是⊙O上弧AD所对的圆周角,∴∠ABD=∠P,又∵DP为⊙O的直径,∴∠PAD=90°,又∵tan∠FBG=,∴tan∠P==,又∵AD=3,∴AP=4,PD=5,∴OD=,过点H作HJ⊥AC于点J,过点O作OK⊥AC于点K,设AJ=3t,CF=x,如图②乙所示,∵HJ⊥AC,BD⊥AC,∴HJ∥BD,∴∠ABD=∠AHJ,又∵tan∠ABD=∴tan∠AHJ=,又∵AJ=3t,∴HJ=4t,在Rt△AHJ中,由勾股定理得:AH===5t,又∵CH是∠ACF的平分线,且HF⊥CF,HJ⊥AC,∴HF=HJ=4t,∴AF=AH+HF=9t,又∵CF=x,∴CJ=x,又∵∠BFG=∠GEC,∠FGB=∠EGC,∴△FBG∽△ECG,∴∠FBG=∠ECG,∴tan∠FCJ===,解得:x=12t,∴CF=CJ=12t,∴AC=15t,∴CK=t,又∵OK∥HJ,∴=,∴OK===t,∴在Rt△OCK中,由勾股定理得:OK2+KC2=OC2,即(t)2+(t)2=()2,解得:t=,或t=﹣(舍去),∴AH=5t=.【点评】本题综合考查了垂线的定义,平行线的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,解直角三角形,一元二次方程等相关知识,重点掌握相似三角形的判定与性质,难点是辅助线构建全等三角形,圆周角和相似三角形.。

中考数学—圆与相似的综合压轴题专题复习含答案

中考数学—圆与相似的综合压轴题专题复习含答案

中考数学—圆与相似的综合压轴题专题复习含答案一、相似1.如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.(1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,求PD的值,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为________,最大值为________.【答案】(1)解:相等理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;(2)解:作出旋转后的图形,若点C在AD上,如图2所示:∵∠EAC=90°,∴CE= ,∵∠PDA=∠AEC,∠PCD=∠ACE,∴△PCD∽△ACE,∴,∴PD= ;若点B在AE上,如图2所示:∵∠BAD=90°,∴Rt△ABD中,BD= ,BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴,即,解得PB= ,∴PD=BD+PB= + = ,(3)1;7【解析】【解答】解:(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.如图3所示,分两种情况讨论:在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.①当小三角形旋转到图中△ACB的位置时,在Rt△ACE中,CE= =4,在Rt△DAE中,DE= ,∵四边形ACPB是正方形,∴PC=AB=3,∴PE=3+4=7,在Rt△PDE中,PD= ,即旋转过程中线段PD的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,此时,DP'=4+3=7,即旋转过程中线段PD的最大值为7.故答案为:1,7.【分析】(1)BD,CE的关系是相等,理由如下:根据同角的余角相等得出∠BAD=∠CAE,根据等腰直角三角形的性质得出BA=CA,DA=EA,从而利用SAS判断出△ABD≌△ACE,根据全等三角形对应边相等得出BD=CE;(2)作出旋转后的图形,若点C在AD上,如图2所示:首先根据勾股定理算出CE的长,然后判断出△PCD∽△ACE,根据相似三角形对应边成比例得出,根据比例式列出方程,求解得出PD的长;若点B在AE上,如图2所示:根据勾股定理算出BD的长,然后判断出△BAD∽△BPE,根据相似三角形对应边成比例得出,根据比例式列出方程,求解得出PB的长,根据线段的和差即可得出PD的长;(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD 的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.如图3所示,分两种情况讨论:在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.①当小三角形旋转到图中△ACB的位置时,根据勾股定理算出CE,DE的长,根据正方形的性质得出PC=AB=3,进而得出PE的长,根据勾股定理算出PD 的长,即旋转过程中线段PD的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,此时,DP'=4+3=7,即旋转过程中线段PD的最大值为7.2.如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆与AC相切于点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G.(1)求证:D是弧EC的中点;(2)如图2,延长CB交⊙O于点H,连接HD交OE于点K,连接CF,求证:CF=OK+DO;(3)如图3,在(2)的条件下,延长DB交⊙O于点Q,连接QH,若DO=,KG=2,求QH的长【答案】(1)证明:如图1中,连接OC.∵AC是⊙O的切线,∴OC⊥AC,∴∠ACO=90°,∴∠A+∠AOC=90°,∵CA=CB,∴∠A=∠B,∵EF⊥BC,∴∠OGB=90°,∴∠B+∠BOG=90°,∴∠BOG=∠AOC,∵∠BOG=∠DOE,∴∠DOC=∠DOE,∴点D是的中点(2)证明:如图2中,连接OC.∵EF⊥HC,∴CG=GH,∴EF垂直平分HC,∴FC=FH,∵∠CFK= ∠COE,∵∠COD=∠DOE,∴∠CFK=∠COD,∵∠CHK= ∠COD,∴∠CHK= ∠CFK,∴点K在以F为圆心FC为半径的圆上,∴FC=FK=FH,∵DO=OF,∴DO+OK=OF+OK=FK=CF,即CF=OK+DO;(3)解:如图3中,连接OC、作HM⊥AQ于M.设OK=x,则CF= +x,OG=2﹣x,GF= ﹣(2﹣x),∵CG2=CF2﹣FG2=CO2﹣OG2,∴( +x)2﹣[ -(2﹣x)]2=()2﹣(2﹣x)2,解得x= ,∴CF=5,FG=4,CG=3,OG= ,∵∠CFE=∠BOG,∴CF∥OB,∴ = = ,可得OB= ,BG= ,BH= ,由△BHM∽△BOG,可得 = = ,∴BM= ,HM= ,MQ=OQ﹣OB﹣BM=在Rt△HMQ中,QH= = =【解析】【分析】(1)如图1中,连接OC.根据切线的性质得出OC⊥AC,根据垂直的定义得出∠ACO=90°,根据直角三角形两锐角互余得出∠A+∠AOC=90°,根据等边对等角得出∠A=∠B,根据垂直的定义得出∠OGB=90°,根据直角三角形两锐角互余得出∠B+∠BOG=90°,根据等角的余角相等得出∠BOG=∠AOC,根据对顶角相等及等量代换得出∠DOC=∠DOE,根据相等的圆心角所对的弧相等得出结论;(2)如图2中,连接OC.根据垂径定理得出CG=GH,进而得出EF垂直平分HC,根据线段垂直平分线上上的点到线段两个端点的距离相等得出FC=FH,根据圆周角定理及等量代换得出∠CFK=∠COD,∠CHK=∠CFK,从而得出点K在以F为圆心FC为半径的圆上,根据同圆的半径相等得出FC=FK=FH,DO=OF,根据线段的和差及等量代换得出CF=OK+DO;(3)如图3中,连接OC、作HM⊥AQ于M.设OK=x,则CF= +x,OG=2﹣x,GF=﹣(2﹣x),根据勾股定理由CG2=CF2﹣FG2=CO2﹣OG2,列出关于x的方程,求解得出x的值,从而得出CF=5,FG=4,CG=3,OG= 根据平行线的判定定理得出,内错角相等,两直线平行得出CF∥OB,根据平行线分线段成比例定理得出C F ∶O B = C G∶ G B = F G ∶G O ,进而可得OB,BG,BH的长,由△BHM∽△BOG,可得 B H ∶O B = B M ∶B G = H M ∶O G,再得出BM,HM,MQ的长,在Rt△HMQ中,根据勾股定理得出QH的长。

专题07 圆的综合问题真题压轴汇编(解析版)--2023 年中考数学压轴真题汇编

专题07 圆的综合问题真题压轴汇编(解析版)--2023 年中考数学压轴真题汇编

挑战2023年中考数学解答题压轴真题汇编专题07圆的综合问题真题压轴汇编一.圆与锐角三角函数综合1.(2022•南充)如图,AB为⊙O的直径,点C是⊙O上一点,点D是⊙O外一点,∠BCD=∠BAC,连接OD交BC于点E.(1)求证:CD是⊙O的切线.(2)若CE=OA,sin∠BAC=,求tan∠CEO的值.【解答】(1)证明:连接OC,∵AB是直径,∴∠ACB=90°,∴∠A+∠B=90°,∵OC=OB,∴∠OCB=∠OBC,∵∠BCD=∠BAC,∴∠OCB+∠DCB=90°,∴OC⊥CD,∵OC为⊙O的半径,∴CD是⊙O的切线;(2)解:过点O作OH⊥BC于点H.∵sin∠BAC==,∴可以假设BC=4k,AB=5k,则AO=OC=CE=2.5k,∵OH⊥BC,OC=OB∴CH=BH=2k,∵OA=OB,AC2=AB2﹣BC2,∴OH=AC=k,∴EH=CE﹣CH=2.5k﹣2k=0.5k,∴tan∠CEO===3.2.(2022•菏泽)如图,在△ABC中,以AB为直径作⊙O交AC、BC于点D、E,且D是AC的中点,过点D作DG⊥BC于点G,交BA的延长线于点H.(1)求证:直线HG是⊙O的切线;(2)若HA=3,cos B=,求CG的长.【解答】(1)证明:连接OD,∵AD=DC,AO=OB,∴OD是△ABC的中位线,∴OD∥BC,OD=BC,∵DG⊥BC,∴OD⊥HG,∵OD是⊙O的半径,∴直线HG是⊙O的切线;(2)解:设⊙O的半径为x,则OH=x+3,BC=2x,∵OD∥BC,∴∠HOD=∠B,∴cos∠HOD=,即==,解得:x=2,∴BC=4,BH=7,∵cos B=,∴=,即=,解得:BG=,∴CG=BC﹣BG=4﹣=.3.(2022•德州)如图1,在等腰三角形ABC中,AB=AC,O为底边BC的中点,过点O作OD⊥AB,垂足为D,以点O为圆心,OD为半径作圆,交BC于点M,N.(1)AB与⊙O的位置关系为相切;(2)求证:AC是⊙O的切线;(3)如图2,连接DM,DM=4,∠A=96°,求⊙O的直径.(结果保留小数点后一位.参考数据:sin24°≈0.41,cos24°≈0.91,tan24°≈0.45)【解答】(1)解:∵OD⊥AB,点O为圆心,OD为半径,∴直线AB到圆心O的距离等于圆的半径,∴AB为⊙O的切线,∴AB与⊙O的位置关系为相切,故答案为:相切;(2)证明:过点O作OE⊥AC于点E,连接OA,如图,∵AB=AC,O为底边BC的中点,∴AO为∠BAC的平分线,∵OD⊥AB,OE⊥AC,∴OD=OE,∵OD为⊙O的半径,∴OE为⊙O的半径,这样,直线AC到圆心O的距离等于圆的半径,∴AC是⊙O的切线;(3)解:过点O作OF⊥DM于点F,如图,∵AB=AC,∠A=96°,∴∠B=∠C==42°,∵OD⊥AB,∴∠BOD=90°﹣∠B=48°.∵OF⊥DM,∴DF=MF=DM=2,∵OD=OM,OF⊥DM,∴OF为∠DOM的平分线,∴∠DOF=∠BOD=24°.在Rt△ODF中,∵sin∠DOF=,∴sin24°=,∴OD=≈≈4.9,∴⊙O的直径=2OD=2×4.9=9.8.4.(2022•河南)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.【解答】(1)证明:方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.∵CD与⊙O相切于点C,∴∠OCD=90°.∵AD⊥CD,∴∠ADC=90°.∵EF∥CD,∴∠OFB=∠AEB=90°,∴∠BOC+∠OBF=90°,∠ABE+∠BAD=90°,∵AB为⊙O的切线,∴∠OBA=90°.∴∠OBF+∠ABE=90°,∴∠OBF=∠BAD,∴∠BOC+∠BAD=90°;方法2:如图2,延长OB交CD于点M.∵CD与⊙O相切于点C,∴∠OCM=90°,∴∠BOC+∠BMC=90°,∵AD⊥CD,∴∠ADC=90°.∵AB为⊙O的切线,∴∠OBA=90°,∴∠ABM=90°.∴在四边形ABMD中,∠BAD+∠BMD=180°.∵∠BMC+∠BMD=180°,∴∠BMC=∠BAD.∴∠BOC+∠BAD=90°;方法3:如图3,过点B作BN∥AD,∴∠NBA=∠BAD.∵CD与⊙O相切于点C,∴∠OCD=90°,∵AD⊥CD,∴∠ADC=90°.∴AD∥OC,∴BN∥OC,∴∠NBO=∠BOC.∵AB为OO的切线,∴∠OBA=90°,∴∠NBO+∠NBA=90°,∴∠BOC+∠BAD=90°.(2)解:如图1,在Rt△ABE中,∵AB=75,cos∠BAD=,∴AE=45.由(1)知,∠OBF=∠BAD,∴cos∠OBF=,在Rt△OBF中,∵OB=25,∴BF=15,∴OF=20.∵OC=25,∴CF=5.∵∠OCD=∠ADC=∠CFE=90°,∴四边形CDEF为矩形,∴DE=CF=5,∴AD=AE+ED=50cm.二.圆+相似三角形+勾股定理综合5.(2022•温州)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知BC=5,BE=3,点P,Q分别在线段AB,BE上(不与端点重合),且满足=.设BQ=x,CP=y.(1)求半圆O的半径.(2)求y关于x的函数表达式.(3)如图2,过点P作PR⊥CE于点R,连结PQ,RQ.①当△PQR为直角三角形时,求x的值.②作点F关于QR的对称点F′,当点F′落在BC上时,求的值.【解答】解:(1)如图1,连接OD,设半径为r,∵CD切半圆于点D,∴OD⊥CD,∵BE⊥CD,∴OD∥BE,∴△COD∽△CBE,∴,∴,解得r=,∴半圆O的半径为;(2)由(1)得,CA=CB﹣AB=5﹣2×=,∵=,BQ=x,∴AP=,∴CP=AP+AC,∴y=;(3)①显然∠PRQ<90°,所以分两种情形,当∠RPQ=90°时,则四边形RPQE是矩形,∴PR=QE,∵PR=PC×sin C=,∴,∴x=,当∠PQR=90°时,过点P作PH⊥BE于点H,如图,则四边形PHER是矩形,∴PH=RE,EH=PR,∵CR=CP•cos C=,∴PH=RE=3﹣x=EQ,∴∠EQR=∠ERQ=45°,∴∠PQH=45°=∠QPH,∴HQ=HP=3﹣x,由EH=PR得:(3﹣x)+(3﹣x)=,∴x=,综上,x的值为或;②如图,连接AF,QF',由对称可知QF=QF',∵CP=,∴CR=x+1,∴ER=3﹣x,∵BQ=x,∴EQ=3﹣x,∴ER=EQ,∴∠F'QR=∠EQR=45°,∴∠BQF'=90°,∴QF=QF'=BQ•tan B=,∵AB是半圆O的直径,∴∠AFB=90°,∴BF=AB•cos B=,∴,∴x=,∴.6.(2022•泸州)如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O 于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.(1)求证:FD∥AB;(2)若AC=2,BC=,求FD的长.【解答】(1)证明:连接OD.∵DF是⊙O的切线,∴OD⊥DF,∵CD平分∠ACB,∴=,∴OD⊥AB,∴AB∥DF;(2)解:过点C作CH⊥AB于点H.∵AB是直径,∴∠ACB=90°,∵BC=,AC=2,∴AB===5,=•AC•BC=•AB•CH,∵S△ABC∴CH==2,∴BH==1,∴OH=OB﹣BH=﹣1=,∵DF∥AB,∴∠COH=∠F,∵∠CHO=∠ODF=90°,∴△CHO∽△ODF,∴=,∴=,∴DF=.7.(2022•遂宁)如图⊙O是△ABC的外接圆,点O在BC上,∠BAC的角平分线交⊙O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)若AB=6,AC=8,求点O到AD的距离.【解答】(1)证明:如图1,连接OD.∵AD平分∠BAC,∴∠BAD=∠CAD,∴=,∴∠BOD=∠COD=90°,∵BC∥PD,∴∠ODP=∠BOD=90°,∴OD⊥PD,∵OD是半径,∴PD是⊙O的切线.(2)证明:∵BC∥PD,∴∠PDC=∠BCD.∵∠BCD=∠BAD,∴∠BAD=∠PDC,∵∠ABD+∠ACD=180°,∠ACD+∠PCD=180°,∴∠ABD=∠PCD,∴△ABD∽△DCP;(3)解法一:如图,过点O作OE⊥AD于E,连接OD,∵BC是⊙O的直径,∴∠BAC=∠BDC=90°,∵AB=6,AC=8,∴BC==10,∵BD=CD,∴BD=CD=5,由(2)知:△ABD∽△DCP,∴=,即=,∴CP=,∴AP=AC+CP=8+=,∵∠ADB=∠ACB=∠P,∠BAD=∠DAP,∴△BAD∽△DAP,∴=,即=,∴AD2=6×=98,∴AD=7,∵OE⊥AD,∴DE=AD=,∴OE===,即点O到AD的距离是.解法二:如图,过点D作DM⊥AB于M,DN⊥AC于N,过点O作OE⊥AD 于E,连接OD,则∠M=∠CND=90°,∵AD平分∠BAC,∠BAC=90°,∴DM=DN,∠DAM=∠CAD=45°,∵A,B,D,C四点共圆,∴∠DBM=∠DCN,∴△DCN≌△DBM(AAS),∴CN=BM,同理得:AM=AN,∵AB=6,AC=8,∴AM=DM=7,∴AD=7,由解法一可得:OE=.即点O到AD的距离是.8.(2022•锦州)如图,在⊙O中,AB为⊙O的直径,点E在⊙O上,D为的中点,连接AE,BD并延长交于点C.连接OD,在OD的延长线上取一点F,连接BF,使∠CBF=∠BAC.(1)求证:BF为⊙O的切线;(2)若AE=4,OF=,求⊙O的半径.【解答】(1)证明:如图,连接AD,AB是圆的直径,则∠ADB=90°,D为的中点,则∠BAD=∠CAD=∠BAC,∵,∴∠CBF=∠BAD,∵∠BAD+∠ABD=90°,∴∠ABF=∠ABD+∠CBF=90°,∴AB⊥BF,∵OB是⊙O的半径,∴BF是⊙O的切线;(2)解:如图,连接BE,AB是圆的直径,则∠AEB=90°,∵∠BOD=2∠BAD,∠BAC=2∠BAD,∴∠BOD=∠BAC,又∵∠ABF=∠AEB=90°,∴△OBF∽△AEB,∴OB:AE=OF:AB,∴OB:4=:2OB,OB2=9,OB>0,则OB=3,∴⊙O的半径为3.三.圆+相似三角形+锐角三角函数9.(2022•安顺)如图,AB是⊙O的直径,点E是劣弧BD上一点,∠PAD=∠AED,且DE=,AE平分∠BAD,AE与BD交于点F.(1)求证:P A是⊙O的切线;(2)若tan∠DAE=,求EF的长;(3)延长DE,AB交于点C,若OB=BC,求⊙O的半径.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∵∠P AD=∠AED,∠AED=∠ABD,∴∠P AD=∠ABD,∴∠DAB+∠PAD=90°,即∠PAB=90°,∴AB⊥PA,∵AB是⊙O的直径,∴P A是⊙O的切线;(2)解:连接BE,如图:∵AB是⊙O的直径,∴∠AEB=90°,∵AE平分∠BAD,∴∠DAE=∠BAE,∴=,∠DAE=∠BAE=∠DBE,∴BE=DE=,tan∠DAE=tan∠BAE=tan∠DBE==,∴=,∴EF=1;(3)解:连接OE,如图:∵OE=OA,∴∠AEO=∠OAE,∵∠OAE=∠DAE,∴∠AEO=∠DAE,∴OE∥AD,∴=,∵OA=OB=BC,∴=2,∴=2,∵DE=,∴CE=2,CD=CE+DE=3设BC=OB=OA=R,∵∠BDC=∠BAE,∠C=∠C,∴△CBD∽△CEA,∴=,即=,∴R=2,∴⊙O的半径是2.10.(2022•黄石)如图CD是⊙O直径,A是⊙O上异于C,D的一点,点B是DC延长线上一点,连AB、AC、AD,且∠BAC=∠ADB.(1)求证:直线AB是⊙O的切线;(2)若BC=2OC,求tan∠ADB的值;(3)在(2)的条件下,作∠CAD的平分线AP交⊙O于P,交CD于E,连PC、PD,若AB=2,求AE•AP的值.【解答】(1)证明:连接OA,∵CD是⊙O的直径,∴∠CAD=90°,∴∠OAC+∠OAD=90°,又∵OA=OD,∴∠OAD=∠ODA,又∵∠BAC=∠ADB,∴∠BAC+∠OAC=90°,即∠BAO=90°,∴AB⊥OA,又∵OA为半径,∴直线AB是⊙O的切线;(2)解:∵∠BAC=∠ADB,∠B=∠B,∴△BCA∽△BAD,∴,设半径OC=OA=r,∵BC=2OC,∴BC=2r,OB=3r,在Rt△BAO中,AB=,在Rt△CAD中,tan∠ADC=;(3)解:在(2)的条件下,AB=2r=2,∴r=,∴CD=2,在Rt△CAD中,,AC2+AD2=CD2,解得AC=2,AD=2,∵AP平分∠CAD,∴∠CAP=∠EAD,又∵∠APC=∠ADE,∴△CAP∽△EAD,∴AE•AP=AC•AD=2×2=4.四.切线+阴影面积11.(2022•淮安)如图,△ABC是⊙O的内接三角形,∠ACB=60°,AD经过圆心O交⊙O于点E,连接BD,∠ADB=30°.(1)判断直线BD与⊙O的位置关系,并说明理由;(2)若AB=4,求图中阴影部分的面积.【解答】解:(1)直线BD与⊙O相切,理由:连接BE,∵∠ACB=60°,∴∠AEB=∠C=60°,连接OB,∵OB=OE,∴△OBE是等边三角形,∴∠BOD=60°,∵∠ADB=30°,∴∠OBD=180°﹣60°﹣30°=90°,∴OB⊥BD,∵OB是⊙O的半径,∴直线BD与⊙O相切;(2)∵AE是⊙O的直径,∴∠ABE=90°,∵AB=4,∴sin∠AEB=sin60°===,∴OB=4,∴BD=OB=4,﹣S扇形BOE=4×﹣=8△OBD﹣.12.(2022•徐州)如图,点A、B、C在圆O上,∠ABC=60°,直线AD∥BC,AB=AD,点O在BD上.(1)判断直线AD与圆O的位置关系,并说明理由;(2)若圆的半径为6,求图中阴影部分的面积.【解答】解:(1)直线AD与圆O相切,连接OA,∵AD∥BC,∴∠D=∠DBC,∵AD=AB,∴∠D=∠ABD,∴∠DBC=∠ABD=30°,∠BAD=120°,∵OA=OB,∴∠BAO=∠ABD=30°,∴∠OAD=90°,∴OA⊥AD,∵OA是圆的半径,∴直线AD与圆O相切,(2)连接OC,作OH⊥BC于H,∵OB=OC,∴∠OCB=∠OBC=30°,∴∠BOC=120°,∴OH=OB=3,BH=OH=3,∴BC=2BH=6,∴扇形OBC的面积为:==12π,=BC•OH=×6×3=9,∵S△OBC∴阴影部分的面积为:12π﹣9.13.(2022•攀枝花)如图,⊙O的直径AB垂直于弦DC于点F,点P在AB的延长线上,CP与⊙O相切于点C.(1)求证:∠PCB=∠PAD;(2)若⊙O的直径为4,弦DC平分半径OB,求:图中阴影部分的面积.【解答】(1)证明:连接OC,∵CP与⊙O相切,∴OC⊥PC,∴∠PCB+∠OCB=90°,∵AB⊥DC,∴∠P AD+∠ADF=90°,∵OB=OC,∴∠OBC=∠OCB,由圆周角定理得:∠ADF=∠OBC,∴∠PCB=∠PAD;(2)解:连接OD,在Rt△ODF中,OF=OD,则∠ODF=30°,∴∠DOF=60°,∵AB⊥DC,∴DF=FC,∵BF=OF,AB⊥DC,∴S△CFB=S△DFO,∴S阴影部分=S扇形BOD==π.14.(2022•东营)如图,AB为⊙O的直径,点C为⊙O上一点,BD⊥CE于点D,BC平分∠ABD.(1)求证:直线CE是⊙O的切线;(2)若∠ABC=30°,⊙O的半径为2,求图中阴影部分的面积.【解答】(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∵BC平分∠ABD,∴∠OBC=∠DBC,∴∠DBC=∠OCB,∴OC∥BD,∵BD⊥CE,∴OC⊥CE,∵OC为⊙O的半径,∴CE是⊙O的切线;(2)解:过点O作OH⊥BC于H,则BH=HC,在Rt△OHB中,∠OBH=30°,OB=2,∴BH=OB•cos∠OBH=2×=,OH=OB=1,∴BC=2,∵OB=OC,∴∠OCB=∠OBC=30°,∴∠BOC=120°,∴S阴影部分=S扇形BOC﹣S△BOC=﹣×2×1=﹣.五.勾股定理+特殊角综合15.(2022•宁夏)如图,以线段AB为直径作⊙O,交射线AC于点C,AD平分∠CAB交⊙O于点D,过点D作直线DE⊥AC于点E,交AB的延长线于点F.连接BD并延长交AC于点M.(1)求证:直线DE是⊙O的切线;(2)求证:AB=AM;(3)若ME=1,∠F=30°,求BF的长.【解答】(1)证明:连接OD,则OD=OA,∴∠ODA=∠OAD,∵AD平分∠CAB,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AC,∵DE⊥AC,∴∠ODF=∠AED=90°,∵OD是⊙O的半径,且DE⊥OD,∴直线DE是⊙O的切线.(2)证明:∵线段AB是⊙O的直径,∴∠ADB=90°,∴∠ADM=180°﹣∠ADB=90°,∴∠M+∠DAM=90°,∠ABM+∠DAB=90°,∵∠DAM=∠DAB,∴∠M=∠ABM,∴AB=AM.(3)解:∵∠AEF=90°,∠F=30°,∴∠BAM=60°,∴△ABM是等边三角形,∴∠M=60°,∵∠DEM=90°,ME=1,∴∠EDM=30°,∴MD=2ME=2,∴BD=MD=2,∵∠BDF=∠EDM=30°,∴∠BDF=∠F,∴BF=BD=2.16.(2022•陕西)如图,在△OAB中,∠OAB=90°,OA=2,AB=4.延长OA至点C,使AC=8,连接BC,以O为圆心,OB长为半径作⊙O,延长BA,与⊙O交于点E,作弦BF=BE,连接EF,与BO的延长线交于点D.(1)求证:BC是⊙O的切线;(2)求EF的长.【解答】(1)证明:∵OA=2,AB=4,AC=8,∴,∵∠OAB=∠BAC=90°,∴△OAB∽△BAC,∴∠BOA=∠ABC,∵∠OBA+∠BOA=90°,∴∠OBA+∠ABC=90°,即∠OBC=90°,∵OB为⊙O的半径,∴BC是⊙O的切线;(2)解:如图,过点O作OG⊥BF于点G,∵OG⊥BF,OA⊥BE,弦BF=BE,∴BG=AB,∵OB=OB,∴Rt△BOG≌Rt△BOA(HL),∴∠FBD=∠EBD,即BD平分∠FBE,∵BF=BE,即△BEF为等腰三角形,∴BD⊥EF,DF=DE,∵OA=2,AB=4,∴,在Rt△ABO中,sin∠OBA==,在Rt△BDE中,sin∠DBE=,∴DE=∴EF=.17.(2022•巴中)四边形ABCD内接于⊙O,直径AC与弦BD交于点E,直线PB与⊙O相切于点B.(1)如图1,若∠PBA=30°,且EO=EA,求证:BA平分∠PBD;(2)如图2,连接OB,若∠DBA=2∠PBA,求证:△OAB∽△CDE.【解答】(1)证明:连接OB,∵直线PB与⊙O相切于点B,∴∠PBO=90°.∴∠PBA+∠ABO=90°.∵∠PBA=30°,∴∠ABO=60°.又∵OA=OB,∴△AOB为等边三角形.又∵OE=AE,∴BE平分∠ABO.∴,∴BA平分∠PBD;(2)证明:∵直线PB与⊙O相切于点B,∴∠PBO=90°.∴∠PBA+∠ABO=90°.∵AC为直径,∴∠ABC=90°.∴∠OBC+∠ABO=90°.∴∠OBC=∠PBA.∵OB=OC,∴∠PBA=∠OBC=∠OCB.∴∠AOB=2∠OCB=2∠PBA.∵∠ACD=∠ABD=2∠PBA,∴∠AOB=∠ACD,又∵∠BAO=∠BDC,∴△OAB∽△CDE.六.圆+相似三角形综合18.(2022•内蒙古)如图,⊙O是△ABC的外接圆,EF与⊙O相切于点D,EF ∥BC分别交AB,AC的延长线于点E和F,连接AD交BC于点N,∠ABC的平分线BM交AD于点M.(1)求证:AD平分∠BAC;(2)若AB:BE=5:2,AD=,求线段DM的长.【解答】(1)证明:连接OD,如图,∵EF与⊙O相切于点D,∴OD⊥EF,∵BC∥EF,∴OD⊥BC,∴,∴∠BAD=∠CAD,∴AD平分∠BAC;(2)解:∵AB:BE=5:2,,EF∥BC,∴=,∴DN=,∵∠BAD=∠CAD=∠CBD,又∵∠BDN=∠ADB,∴△BDN∽△ADB,∴,即:,∴BD=2(负值舍去),∵∠ABC的平分线BM交AD于点M,∴∠ABM=∠CBM,∴∠ABM+∠BAD=∠CBM+∠CBD,即:∠BMD=∠DBM,∴DM=BD=2.19.(2022•朝阳)如图,AC是⊙O的直径,弦BD交AC于点E,点F为BD延长线上一点,∠DAF=∠B.(1)求证:AF是⊙O的切线;(2)若⊙O的半径为5,AD是△AEF的中线,且AD=6,求AE的长.【解答】(1)证明:∵AC是直径,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵∠ACD=∠B,∠B=∠DAF,∴∠DAF+∠DAC=90°,∴OA⊥AF,∵OA是半径,∴AF是⊙O的切线;(2)解:作DH⊥AC于点H,∵⊙O的半径为5,∴AC=10,∵∠AHD=∠ADC,∠DAH=∠CAD,∴△ADH∽△ACD,∴,∴AD2=AH•AC,∴AH=,∵AD是△AEF的中线,∠EAF=90°,∴AD=ED,∴AE=2AH=.20.(2022•绵阳)如图,AB为⊙O的直径,C为圆上的一点,D为劣弧的中点,过点D作⊙O的切线与AC的延长线交于点P,与AB的延长线交于点F,AD与BC交于点E.(1)求证:BC∥PF;(2)若⊙O的半径为,DE=1,求AE的长度;(3)在(2)的条件下,求△DCP的面积.【解答】(1)证明:连接OD,如图,∵D为劣弧的中点,∴,∴OD⊥BC.∵PF是⊙O的切线,∴OD⊥PF,∴BC∥PF;(2)连接OD,BD,如图,设AE=x,则AD=1+x.∵D为劣弧的中点,∴,∴CD=BD,∠DCB=∠CAD.∵∠CDE=∠ADC,∴△CDE∽△ADC,∴,∴CD2=DE•AD=1×(1+x)=1+x.∴BD2=1+x.∵AB为⊙O的直径,∴∠ADB=90°,∴AD2+BD2=AB2.∵⊙O的半径为,∴AB=2.∴,解得:x=3或x=﹣6(不合题意,舍去),∴AE=3.(3)连接OD,BD,设OD与BC交于点H,如图,由(2)知:AE=3,AD=AE+DE=4,DB==2,∵∠ADB=90°,∴cos∠DAB==.∵OA=OD,∴∠DAB=∠ADO,∴cos∠ADO=cos∠DAB=.∵OH⊥BC,∴BH=CH,cos∠ADO=,∴DH=DE×=.∴OH=OD﹣DH=﹣=.∴BH==,∴CH=BH=.∵AB为⊙O的直径,∴∠ACB=90°,由(1)知:OD⊥PD,OH⊥BC,∴四边形CHDP为矩形,∴∠P=90°,CP=DH=,DP=CH=,∴△DCP的面积=CP•DP=.21.(2022•西宁)如图,在Rt△ABC中,∠C=90°,点D在AB上,以BD为直径的⊙O与AC相切于点E,交BC于点F,连接DF,OE交于点M.(1)求证:四边形EMFC是矩形;(2)若AE=,⊙O的半径为2,求FM的长.【解答】(1)证明:∵BD是⊙O的直径,∴∠BFD=90°,∴∠CFD=90°.∵⊙O与AC相切于点E,∴OE⊥AC,∴∠OEC=∠OEA=90°.又∵∠C=90°,∴∠C=∠CFD=∠OEC=90°,∴∠EMF=90°,∴四边形EMFC是矩形.(2)解:在Rt△AEO中,∠AEO=90°,AE=,OE=2,∴OA===3,∴AB=OA+OB=3+2=5.∵∠AEO=∠C=90°,∴OE∥BC,∴△AEO∽△ACB,∴=,即=,∴AC=,∴CE=AC﹣AE=﹣=.又∵四边形EMFC是矩形,∴FM=CE=.22.(2022•青海)如图,AB是⊙O的直径,AC是⊙O的弦,AD平分∠CAB交⊙O于点D,过点D作⊙O的切线EF,交AB的延长线于点E,交AC的延长线于点F.(1)求证:AF⊥EF;(2)若CF=1,AC=2,AB=4,求BE的长.【解答】(1)证明:连接OD,如图:∵AD平分∠CAB,∴∠F AD=∠OAD,∵OA=OD,∴∠OAD=∠ODA,∴∠F AD=∠ODA,∴OD∥AF,∵EF是⊙O的切线,OD是⊙O的半径,∴OD⊥EF,∴AF⊥EF;(2)解:连接CO并延长交⊙O于K,连接DK,DC,如图:∵CK是⊙O的直径,∴∠CDK=90°,∴∠K+∠DCK=90°,∵OD⊥EF,∴∠ODF=90°,即∠ODC+∠CDF=90°,∵OC=OD,∴∠DCK=∠ODC,∴∠K=∠CDF,∵=,∴∠F AD=∠K,∴∠F AD=∠CDF,∵∠F=∠F,∴△F AD∽△FDC,∴=,∵CF=1,AC=2,∴F A=CF+AC=3,∴=,解得FD=,在Rt△AFD中,tan∠F AD==,∴∠F AD=30°,∵AD平分∠CAB,∴∠F AE=2∠F AD=60°,∴AE===6,∵AB=4,∴BE=AE﹣AB=6﹣4=2,答:BE的长为2.23.(2022•广西)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若=,AF=10,求⊙O的半径.【解答】(1)证明:如图1,连接OD,则OD=OC,∴∠ODC=∠OCD,∵AB=AC,∴∠B=∠OCD,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∵OD为⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,连接AD,∵=,∴设AE=2m,DE=3m,∵DE⊥AB,∴∠AED=∠BED=90°,在Rt△ADE中,根据勾股定理得,AD==m,∵AC为直径,∴∠ADB=∠ADC=90°=∠AED,∴∠A=∠A,∴△ABD∽△ADE,∴=,∴,∴AB =m,BD =m,∵AB=AC,∠ADC=90°,∴DC =m,BC=2BD=3m,连接CF,则∠ADB=∠F,∵∠B=∠B,∴△ADB∽△CFB,∴,∵AF=10,∴BF=AB+AF =m+10,∴,∴m=4,∴AD=4,CD=6,在Rt△ADC中,根据勾股定理得,AC ==26,∴⊙O的半径为AC=13.4142。

圆与相似三角形综合问题

圆与相似三角形综合问题

NMEDCBAEDCBAE DCBA学生:科目:数学教师:谭前富知识框架相似三角形的性质是几何证明的重要工具,是证明线段和差问题、相等问题、比例问题、角相等问题的重要方法,尤其在圆中,相似三角形有着极其重要的作用.1、相似三角形的性质相似三角形的对应边成比例,对应角相等,对应边上的中线,角平分线,高线,周长之比等于相似比,面积之比等于相似比的平方.2、相似三角形的判定方法(1)三边对应成比例的两个三角形相似(2)两边对应成比例,夹角相等的两个三角形相似(3)两组角对应相等的两个三角形相似.3、相似三角形中几个的基本图形4、由相似三角形得到的几个常用定理定理1 平行于三角形一边的直线截得的三角形与原三角形形似.如图,若DE∥BC,则AD AE DEAB AC BC,或AD BDAE CE.定理2 平行切割定理如图,,D E分别是ABC的边,AB AC上的点,过点A的直线交,DE BC于,M N,若DE∥MN,则DM BNME NC定理3 (平行线分线段成比例定理)两条直线被一组平行线截得的对应线段成比例.EDCBAl 3l 2l 1C /B /A /CBA l 3l 2l 1C /B /A /CB A如图,若1l ∥2l ∥3l ,则 AB BC ACA B B C A C,定理4(角平分线性质定理) 如图,,AD AE 分别是ABC 的内角平分线与外角平分线,则DB EB AB DC EC AC.定理5 射影定理直角三角形斜边上的高分原三角形成两个直角三角形,这两个三角形与原三角形相似.定理6 相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。

即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅定理7 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅定理8 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

圆与相似三角形、三角函数专题(含答案)

圆与相似三角形、三角函数专题(含答案)

圆与相似三角形、解直角三角形及二次函数的综合类型一:圆与相似三角形的综合1.如图,BC是⊙A的直径,△DBE的各个顶点均在⊙A上,BF⊥DE于点F.求证:BD·BE=BC·BF.2.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:点E是边BC的中点;(2)求证:BC2=BD·BA;(3)当以点O,D,E,C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.解:(1)连结OD,∵DE为切线,∴∠EDC+∠ODC=90°.∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,∴∠EDC=∠ECD,∴ED=EC.∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=EB,∴EB=EC,即点E为边BC的中点(2)∵AC为直径,∴∠ADC=∠ACB=90°.又∵∠B=∠B,∴△ABC∽△CBD,∴ABBC=BCBD,∴BC2=BD•BA(3)当四边形ODEC为正方形时,∠OCD=45°.∵AC为直径,∴∠ADC=90°,∴∠CAD=90°-∠OCD=90°-45°=45°,∴Rt△ABC为等腰直角三角形类型二:圆与解直角三角形的综合3.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC的中点,DE⊥AB,垂足为点E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)已知CF=5,cosA=25,求BE的长.解:(1)连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD.∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线(2)∵OD∥AB,∴∠COD=∠A,∴cos∠COD=cosA=25.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD=ODOF=25.设⊙O的半径为r,则rr+5=25,解得r=103,∴AB=2OD=AC =203.在Rt△AEF中,∵∠AEF=90°,∴cosA=AEAF=AE5+203=25,∴AE=143,∴BE =AB-AE=203-143=24.(2015·资阳)如图,在△ABC中,BC是以AB为直径的⊙O的切线,且⊙O与AC相交于点D,E为BC的中点,连结DE.(1)求证:DE是⊙O的切线;(2)连结AE,若∠C=45°,求sin∠CAE的值.解:(1)连结OD,BD,∵OD=OB,∴∠ODB=∠OBD.∵AB是直径,∴∠ADB=90°,∴∠CDB =90°.∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE =90°,∴DE是⊙O的切线(2)过点E作EF⊥CD于点F,设EF=x,∵∠C=45°,∴△CEF,△ABC都是等腰直角三角形,∴CF=EF=x,∴BE=CE=2x,∴AB=BC=22x.在Rt△ABE中,AE=AB2+BE2=10x,∴sin∠CAE=EFAE=10105.如图,△ABC内接于⊙O,直径BD交AC于点E,过点O作FG⊥AB,交AC于点F,交AB于点H,交⊙O于点G.(1)求证:OF·DE=OE·2OH;(2)若⊙O的半径为12,且OE∶OF∶OD=2∶3∶6,求阴影部分的面积.(结果保留根号)解:(1)∵BD是直径,∴∠DAB=90°.∵FG⊥AB,∴DA∥FO,∴△FOE∽△ADE,∴FOAD=OEDE,即OF•DE=OE•AD.∵O是BD的中点,DA∥OH,∴AD=2OH,∴OF•DE=OE•2OH (2)∵⊙O的半径为12,且OE∶OF∶OD=2∶3∶6,∴OE=4,ED=8,OF=6,∴OH=6.在Rt△OBH中,OB=2OH,∴∠OBH=30°,∴∠BOH=60°,∴BH=BO•sin60°=12×32=63,∴S阴影=S扇形GOB-S△OHB=60×π×122360-12×6×63=24π-183类型三:圆与二次函数的综合6.如图,在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D.(1)求过A,B,C三点的抛物线的解析式;(2)求点D的坐标;(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由.解:(1)y=-12x2-32x+2(2)以AB为直径的圆的圆心坐标为O′(-32,0),∴O′C=52,O′O=32.∵CD为圆O′的切线,∴O′C⊥CD,∴∠O′CO+∠DCO=90°.又∵∠CO′O+∠O′CO=90°,∴∠CO′O=∠DCO,∴△O′CO∽△CDO,∴O′OOC=OCOD,∴322=2OD,∴OD=83,∴点D的坐标为(83,0) (3)存在.抛物线的对称轴为直线x=-32,设满足条件的圆的半径为|r|,则点E的坐标为(-32+r,r)或F(-32-r,r),而点E在抛物线y=-12x2-32x+2上,∴r=-12(-32+|r|)2-32(-32+|r|)+2,∴r1=-1+292,r2=-1-292(舍去).故存在以线段EF为直径的圆,恰好与x轴相切,该圆的半径为-1+2927.如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于点C,经过A,B,C 三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为.设⊙M与y轴交于点D,抛物线的顶点为E.(1)求m的值及抛物线的解析式;(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;(3)探究坐标轴上是否存在点P,使得以P,A,C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.解:(1)由题意,可知C(0,-3),-b2a=1,∴抛物线的解析式为y=ax2-2ax-3(a>0).过点M作MN⊥y轴于点N,连结CM,则MN=1,CM=5,∴CN=2,于是m=-1.同理,可求得B(3,0),∴a×32-2a×3-3=0,解得a=1.∴抛物线的解析式为y=x2-2x-3 (2)由(1)得,A(-1,0),E(1,-4),D(0,1),∴△BCE为直角三角形,BC=32,CE=2,∴OBOD=31=3,BCCE=322=3,∴OBOD=BCCE,即OBBC=ODCE,∴Rt△BOD∽Rt △BCE,得∠CBE=∠OBD=β,因此sin(α-β)=sin(∠DBC-∠OBD)=sin∠OBC=COBC=22(3)显然Rt△COA∽Rt△BCE,此时点O(0,0).过点A作AP2⊥AC交y轴的正半轴于点P2,由Rt△CAP2∽Rt△BCE,得P2(0,13).过点C作CP3⊥AC交x轴的正半轴于点P3,由Rt△P3CA∽Rt△BCE,得P3(9,0).故在坐标轴上存在三个点P1(0,0),P2(0,13),P3(9,0),使得以P,A,C为顶点的三角形与△BCE相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形与圆综合
第一部分:例题分析
例1、已知:如图,BC 为半圆O 的直径,AD ⊥BC ,垂足为D ,过点B 作弦BF 交AD 于点E ,交半圆O 于点F ,弦AC
与BF 交于点H ,且AE=BE. 求证:(1)=;(2)AH·BC=2AB·BE.
︵ AB ︵
AF
例2、如图,PA 为圆的切线,A 为切点,PBC 为割线,∠APC 的平分线交AB 于点D ,交AC 于点E ,求证:(1)AD=AE ;(2)AB·AE=AC·DB .
例3、AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =60°,P 是OB 上一点,过P 作AB 的垂线与AC 的延长线交于点Q ,连结OC ,过点C 作CD ⊥OC 交PQ 于点D .
(1)求证:△CDQ 是等腰三角形; (2)如果△CDQ ≌△COB ,求BP ∶PO 的值.
例4、△ABC 内接于圆O ,∠BAC 的平分线交⊙O 于D 点,交⊙O 的切线BE 于F ,连结BD ,CD . 求证:(1)BD 平分∠CBE ;(2)AB ·BF =AF ·DC .
例3、 ⊙O 内两弦AB ,CD 的延长线相交于圆外一点E ,由E 引AD 的平行线与直线BC 交于F ,作切线FG ,G 为切点,求证:EF =FG .
第二部分:当堂练习
1.如图,AB 是⊙O 直径,ED ⊥AB 于D ,交⊙O 于G ,EA 交⊙O 于C ,CB 交ED 于F ,求证:DG 2=DE •DF
上一点,弦ED分别交⊙O于点E,交AB于点H,交
C
.已知:如图,AD是⊙O AE:AB=1:3.
(1)求证:AB是⊙O的切线;
(2)点F是ACD上的一点,当∠
如图,⊿ABC内接于⊙O,且
CD,DE,及EF的长.
.如图,在△ABC 中,∠BAC =,AB =AC =2,以AB 为直径的圆交BC 于D ,则图中阴影部分的面积为(A )1 (B )2 (C )1+
4
π
D )2-
4
π
.已知圆的内接正六边形的周长为18,那么圆的面积为 )(A )18π (B )9π (C )6π 被一平行于BC 的矩形所截
B
7.如图,在两个半圆中,大圆的弦MN 与小圆相切,D 为切点,且阴影部分的面积.
8.如图,在Rt ABC △中,斜边1230BC C =∠=,°,过A 作O ⊙的切线AE 交DF 的延长线于E 点.
(1)求证:AE DE ⊥; (2)计算:AC AF ·9.如图,在直角梯形ABCD (1)说明点D 在△ABE (2)若∠AED =∠CED ,试判断直线B 10、 如图,在Rt ABC △中,发沿DE 方向运动,过点P 止运动.设BQ x =,QR =。

相关文档
最新文档