新人教版九年级上册数学全册教案
人教版初中九年级数学上册全册完整教案
人教版初中九年级数学上册全册教案第二十一章一元二次方程第1课时一元二次方程教学目标1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、复习引入学生活动:列方程.问题(1)古算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。
有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。
借问竿长多少数,谁人算出我佩服。
如果假设门的高为x•尺,•那么,•这个门的宽为_______•尺,长为_______•尺,•根据题意,•得________.整理、化简,得:__________.问题(2)如图,如果,那么点C叫做线段AB的黄金分割点.如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.整理得:_________.问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.老师点评并分析如何建立一元二次方程的数学模型,并整理.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?还是与多项式一样只有式子?因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:略三、巩固练习教材P32 练习1、2补充练习:判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x2=4 (3) 3x2- =0 (4) x2-4=(x+2) 2 (5)ax2+bx+c=0四、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程.•练习: 1.方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?2.当m为何值时,方程(m+1)x/4m/-4+27mx+5=0是关于的一元二次方程五、归纳小结本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业教材P34 习题22.1 1(2)(4)(6)、2.第2课时一元二次方程教学目标1.了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.2. 提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.重难点1.重点:判定一个数是否是方程的根;2.难点:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.教学过程一、复习引入学生活动:请同学独立完成下列问题.问题1.前面有关“执竿进屋”的问题中,我们列得方程x2-8x+20=0列表:x 1 2 3 4 5 6 7 8 9 10 11 …x2-8x+20 …问题2.前面有关长方形的面积的问题中,我们列得方程x2+7x-44=0即x2+7x=44x 1 2 3 4 5 6 …x2+7x …列表:老师点评(略)二、探索新知提问:(1)问题1中一元二次方程的解是多少?问题2•中一元二次方程的解是多少?(2)如果抛开实际问题,问题2中还有其它解吗?老师点评:(1)问题1中x=2与x=10是x2-8x+20=0的解,问题2中,x=4是x2+7x-44=0的解.(2)如果抛开实际问题,问题2中还有x=-11的解.一元二次方程的解也叫做一元二次方程的根.回过头来看:x2-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.例1.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.例2.若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值练习:关于x的一元二次方程(a-1) x2+x+a 2-1=0的一个根为0,则求a的值点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.例3.你能用以前所学的知识求出下列方程的根吗?(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义.解:略三、巩固练习教材P33 思考题练习1、2.四、应用拓展例3.要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,•这块铁片应该怎样剪?设长为xcm,则宽为(x-5)cm列方程x(x-5)=150,即x2-5x-150=0请根据列方程回答以下问题:(1)x可能小于5吗?可能等于10吗?说说你的理由.(2)完成下表:x 10 11 12 13 14 15 16 17 …x2-5x-150(3)你知道铁片的长x是多少吗?分析:x2-5x-150=0与上面两道例题明显不同,不能用平方根的意义和八年级上册的整式中的分解因式的方法去求根,•但是我们可以用一种新的方法──“夹逼”方法求出该方程的根.解:(1)x不可能小于5.理由:如果x<5,则宽(x-5)<0,不合题意.x不可能等于10.理由:如果x=10,则面积x2-5x-150=-100,也不可能.(2)x 10 11 12 13 14 15 16 17 ……x2-5x-150 -100 -84 -66 -46 -24 0 26 54 ……(3)铁片长x=15cm五、归纳小结本节课应掌握:(1)一元二次方程根的概念;(2)要会判断一个数是否是一元二次方程的根;(3)要会用一些方法求一元二次方程的根.六、布置作业1.P34 复习巩固3、4 综合运用5、6、7 拓广探索8、9.第3课时直接开平方法教学目标1.理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.2.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重难点1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.2.难点:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.教学过程一、复习引入学生活动:请同学们完成下列各题问题1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 .问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=--2例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x2-2x+4=-1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接开平方,得:x+3=±即x+3= ,x+3=-所以,方程的两根x1=-3+ ,x2=-3-例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.•一年后人均住房面积就应该是10+•10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2 因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.三、巩固练习教材P36 练习.补充题:如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s•的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,•P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?老师点评:问题2:设x秒后△PBQ的面积等于8cm2则PB=x,BQ=2x依题意,得:x•2x=8x2=8根据平方根的意义,得x=±2即x1=2 ,x2=-2可以验证,2 和-2 都是方程x•2x=8的两根,但是移动时间不能是负值.所以2 秒后△PBQ的面积等于8cm2.四、应用拓展例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,•那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.解:设该公司二、三月份营业额平均增长率为x.那么1+(1+x)+(1+x)2=3.31把(1+x)当成一个数,配方得:(1+x+ )2=2.56,即(x+ )2=2.56x+ =±1.6,即x+ =1.6,x+ =-1.6方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.五、归纳小结本节课应掌握:由应用直接开平方法解形如x2=p (p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.若p<0则方程无解六、布置作业P45 复习巩固1、2.第4课时配方法教学目标1.理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.2.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p (p≥0)的一元二次方程的解法,•引入不能直接化成上面两种形式的解题步骤.重难点1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.2.难点:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.教学过程一、复习引入(学生活动)请同学们解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9(4) 4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±或mx+n=±(p≥0).如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面三个方程的解法呢?问题2:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=•25 •降次→x+3=±5 即x+3=5或x+3=-5解一次方程→x1=2,x2= -8可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1.用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x- =0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略三、巩固练习教材P38 讨论改为课堂练习,并说明理由.教材P39 练习1 2.(1)、(2).四、应用拓展例3.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B•两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,•几秒后△PCQ•的面积为Rt△ACB面积的一半.分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.•根据已知列出等式.解:设x秒后△PCQ的面积为Rt△ACB面积的一半.根据题意,得:(8-x)(6-x)= ××8×6整理,得:x2-14x+24=0(x-7)2=25即x1=12,x2=2x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.所以2秒后△PCQ的面积为Rt△ACB面积的一半.五、归纳小结本节课应掌握:左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.六、布置作业1.教材P45 复习巩固2.3(1)(2)第5课时配方法教学目标1.了解配方法的概念,掌握运用配方法解一元二次方程的步骤.2.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重难点1.重点:讲清配方法的解题步骤.2.难点:把常数项移到方程右边后,•两边加上的常数是一次项系数一半的平方.教学过程一、复习引入(学生活动)解下列方程:(1)x2-4x+7=0 (2)2x2-8x+1=0老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式,•不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联?二、探索新知讨论:配方法届一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p ±√q;如果q<0,方程无实根.例1.解下列方程(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:略三、巩固练习教材P39 练习2.(3)、(4)、(5)、(6).四、应用拓展例2.用配方法解方程(6x+7)2(3x+4)(x+1)=6分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4= (6x+7)+ ,x+1= (6x+7)- ,因此,方程就转化为y•的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y则3x+4= y+ ,x+1= y-依题意,得:y2(y+ )(y- )=6去分母,得:y2(y+1)(y-1)=72y2(y2-1)=72,y4-y2=72(y2- )2=y2- =±y2=9或y2=-8(舍)∴y=±3当y=3时,6x+7=3 6x=-4 x=-当y=-3时,6x+7=-3 6x=-10 x=-所以,原方程的根为x1=- ,x2=- 例3求证:无论y取何值时,代数式-3 y2+8y-6恒小于0.五、归纳小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性(如例3)在今后学习二次函数,到高中学习二次曲线时,还将经常用到。
人教版数学九年级上册教案精选7篇
人教版数学九年级上册教案精选7篇人教版九年级上数学教案篇一一、教学思想:教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。
会用归纳演绎、类比进行简单的推理。
使学生懂得数学来源与实践又反过来作用于实践。
提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。
顽强的学习毅力和独立思考、探索的新思想。
培养学生应用数学知识解决问题的能力。
二、抓常规课堂管理入手,严格规范课前准备,立足提高课堂效率,重视课后反思,定位规律探究。
做到:1.备好课:争取每节课前,与同组同仁们讨论、研究确定教学的重点、难点、教学目标、教法、学法,甚至例题的选用,作业的布置等等,做到五备,让每一节课上出实效,让每位学生愉悦的获得新知。
认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。
2.上好课:在备好课的基础上,上好每一个45分钟,提高45分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。
抓住课堂45分钟,严格按照教学计划,备课组统一进度,统一练习,进行教学,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,及时反馈信息提高课堂效益。
3.注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。
精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。
4.批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。
2024年最新人教版九年级数学上册全册课件.
2024年最新人教版九年级数学上册全册课件.一、教学内容1. 第十三章:一元二次方程13.1 一元二次方程的概念13.2 解一元二次方程的公式法13.3 解一元二次方程的配方法13.4 解一元二次方程的因式分解法13.5 实际问题与一元二次方程2. 第十四章:不等式与不等式组14.1 一元一次不等式14.2 一元一次不等式组14.3 实际问题与一元一次不等式组二、教学目标1. 让学生掌握一元二次方程的概念,能够熟练运用公式法、配方法、因式分解法解一元二次方程。
2. 培养学生运用不等式与不等式组解决实际问题的能力。
3. 提高学生的逻辑思维能力和数学素养。
三、教学难点与重点1. 教学难点:一元二次方程的解法、不等式组的解法。
2. 教学重点:一元二次方程的概念、解法及其应用;不等式与不等式组的解法及其应用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:学生用书、练习本、铅笔。
五、教学过程1. 引言:通过实际情景引入,让学生了解一元二次方程和不等式在实际生活中的应用。
2. 新课导入:详细讲解一元二次方程的概念、解法,结合例题进行讲解。
3. 课堂互动:引导学生参与解题过程,进行随堂练习,巩固所学知识。
5. 课堂检测:布置课堂练习,及时了解学生学习情况,进行针对性指导。
六、板书设计1. 一元二次方程的概念及解法2. 不等式与不等式组的解法3. 典型例题及解题步骤七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0(2)解不等式组:2x 3 > 5,x + 1 < 42. 答案:(1)x1 = 3,x2 = 2(2)x ∈ (2, 3)八、课后反思及拓展延伸1. 反思:本节课学生掌握了一元二次方程和不等式组的解法,但部分学生在实际应用题上还存在一定难度。
2. 拓展延伸:针对学有余力的学生,布置一些拓展性题目,如:一元二次方程与二次函数的关系、不等式的性质等,提高学生的数学素养。
2024年新人教版九年级数学上册全册精彩课件.
2024年新人教版九年级数学上册全册精彩课件.一、教学内容1. 第一章:二次函数1.1 二次函数的概念与性质1.2 二次函数的图像与方程1.3 二次函数的应用2. 第二章:勾股定理与平方根2.1 勾股定理2.2 平方根2.3 勾股定理与平方根的应用3. 第三章:概率初步3.1 随机事件与概率3.2 概率的计算3.3 概率的应用二、教学目标1. 掌握二次函数、勾股定理、平方根和概率的基本概念与性质。
2. 学会运用二次函数、勾股定理、平方根和概率解决实际问题。
3. 培养学生的逻辑思维能力和数学应用能力。
三、教学难点与重点1. 教学难点:二次函数的性质、勾股定理的证明、概率的计算。
2. 教学重点:二次函数的应用、平方根的计算、概率的实际应用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:练习本、草稿纸、计算器。
五、教学过程1. 实践情景引入:通过生活中的实例,引出二次函数、勾股定理、平方根和概率的概念。
2. 例题讲解:详细讲解教材中的例题,引导学生理解和掌握知识点。
3. 随堂练习:针对每个知识点,设计相应的练习题,让学生及时巩固所学内容。
六、板书设计1. 用大号字体书写课题名称,如“二次函数的应用”。
2. 内容:列出本节课的主要知识点,用不同颜色粉笔标出重点和难点。
七、作业设计1. 作业题目:第一章:求给定二次函数的最大值、最小值,并画出图像。
第二章:证明给定三角形的勾股定理,并计算其面积。
第三章:计算给定概率问题,如掷骰子、抽签等。
答案:见附件。
八、课后反思及拓展延伸2. 拓展延伸:布置一些拓展性的练习题,如研究二次函数的性质、探索勾股定理的推广等,激发学生的兴趣和求知欲。
通过本课件的教学,希望学生能掌握九年级数学上册的核心知识点,提高数学素养和应用能力,为今后的学习打下坚实基础。
重点和难点解析1. 教学内容的详细性与针对性2. 教学目标的具体性与实用性3. 教学难点与重点的识别与处理4. 教学过程中的实践情景引入与随堂练习设计5. 板书设计的清晰性与结构性6. 作业设计的层次性与拓展性7. 课后反思与拓展延伸的实际操作一、教学内容的详细性与针对性教学内容的选择应紧密结合教材章节,确保覆盖所有核心知识点。
新人教版九年级数学上册全册教案(135页)
新人教版九年级数学上册全册教案设计第二十一章 一元二次方程21.1 一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1 复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式. (1)2x -1 (2)mx +n =0 (3)1x+1=0 (4)x 2=13.下列哪个实数是方程2x -1=3的解?并给出方程的解的概念.A .0B .1C .2D .3活动2 探究新知 根据题意列方程. 1.教材第2页 问题1. 提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.2.教材第2页问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?活动3归纳概念提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4例题与练习例1 在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2 教材第3页例题.例3 以-2为根的一元二次方程是( )A.x2+2x-1=0 B.x2-x-2=0C.x2+x+2=0 D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:1.a≠1;2.略;3.略;4.k=4.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题21.1第1~7题.21.2解一元二次方程21.2.1配方法(3课时)第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题. 提出问题,列出缺一次项的一元二次方程ax 2+c =0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex +f)2+c =0型的一元二次方程.重点运用开平方法解形如(x +m)2=n(n≥0)的方程,领会降次——转化的数学思想. 难点通过根据平方根的意义解形如x 2=n 的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n≥0)的方程.一、复习引入学生活动:请同学们完成下列各题. 问题1:填空(1)x 2-8x +________=(x -________)2;(2)9x 2+12x +________=(3x +________)2;(3)x 2+px +________=(x +________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p 2)2 p 2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x 2=9,根据平方根的意义,直接开平方得x =±3,如果x 换元为2t +1,即(2t +1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t +1变为上面的x ,那么2t +1=±3 即2t +1=3,2t +1=-3 方程的两根为t 1=1,t 2=-2例1 解方程:(1)x 2+4x +4=1 (2)x 2+6x +9=2分析:(1)x 2+4x +4是一个完全平方公式,那么原方程就转化为(x +2)2=1. (2)由已知,得:(x +3)2=2 直接开平方,得:x +3=± 2即x+3=2,x+3=- 2所以,方程的两根x1=-3+2,x2=-3- 2解:略.例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m .像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解. 例1 用配方法解下列关于x 的方程: (1)x 2-8x +1=0 (2)x 2-2x -12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略. 三、巩固练习教材第9页 练习1,2.(1)(2). 四、课堂小结 本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤. 难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x2-4x+7=0 (2)2x2-8x+1=0老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略.(2)与(1)有何关联?二、探索新知讨论:配方法解一元二次方程的一般步骤:(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.例1 解下列方程:(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2公式法理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x2=4 (2)(x-2)2=7提问1 这种解法的(理论)依据是什么?提问 2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程2x2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.二、探索新知 用配方法解方程:(1)ax 2-7x +3=0 (2)ax 2+bx +3=0如果这个一元二次方程是一般形式ax 2+bx +c =0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx +c =0(a≠0),试推导它的两个根x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac2a(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c 二次项系数化为1,得x 2+b a x =-c a配方,得:x 2+b a x +(b 2a )2=-c a +(b 2a )2即(x +b 2a )2=b 2-4ac4a2∵4a 2>0,当b 2-4ac≥0时,b 2-4ac4a2≥0 ∴(x +b 2a )2=(b 2-4ac 2a)2直接开平方,得:x +b 2a =±b 2-4ac2a即x =-b ±b 2-4ac2a∴x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a由上可知,一元二次方程ax 2+bx +c =0(a≠0)的根由方程的系数a ,b ,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac≥0时,将a ,b ,c 代入式子x =-b ±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.例1 用公式法解下列方程:(1)2x2-x-1=0 (2)x2+1.5=-3x(3)x2-2x+12=0 (4)4x2-3x+2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(x-2)(3x-5)=0三、巩固练习教材第12页练习1.(1)(3)(5)或(2)(4)(6).四、课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况.五、作业布置教材第17页习题4,5.21.2.3因式分解法掌握用因式分解法解一元二次方程.通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程.难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x 2+x =0(用配方法) (2)3x 2+6x =0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x 前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成: (1)x(2x +1)=0 (2)3x(x +2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x =0或2x +1=0,所以x 1=0,x 2=-12.(2)3x =0或x +2=0,所以x 1=0,x 2=-2.(以上解法是如何实现降次的?) 因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x -4.9x 2=0 (2)x(x -2)+x -2=0 (3)5x 2-2x -14=x 2-2x +34 (4)(x -1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么? 解:略 (方程一边为0,另一边可分解为两个一次因式乘积.) 练习:下面一元二次方程解法中,正确的是( )A .(x -3)(x -5)=10×2,∴x -3=10,x -5=2,∴x 1=13,x 2=7B .(2-5x)+(5x -2)2=0,∴(5x -2)(5x -3)=0,∴x 1=25,x 2=35C .(x +2)2+4x =0,∴x 1=2,x 2=-2D .x 2=x ,两边同除以x ,得x =1三、巩固练习教材第14页 练习1,2. 四、课堂小结 本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用. (2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页 习题6,8,10,11.21.2.4 一元二次方程的根与系数的关系1.掌握一元二次方程的根与系数的关系并会初步应用. 2.培养学生分析、观察、归纳的能力和推理论证的能力. 3.渗透由特殊到一般,再由一般到特殊的认识事物的规律. 4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导 难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.一、复习引入1.已知方程x 2-ax -3a =0的一个根是6,则求a 及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax 2+bx +c =0(a≠0)的两根为x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac 2a .观察两式右边,分母相同,分子是-b +b 2-4ac 与-b -b 2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:观察上面的表格,你能得到什么结论?(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q≥0)的两根x 1,x 2与系数p ,q 之间有什么关系?(2)关于x 的方程ax 2+bx +c =0(a≠0)的两根x 1,x 2与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:小结:根与系数关系:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q≥0)的两根x 1,x 2与系数p ,q 的关系是:x 1+x 2=-p ,x 1·x 2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如ax 2+bx +c =0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论. 即:对于方程 ax 2+bx +c =0(a≠0)∵a ≠0,∴x 2+b a x +c a =0∴x 1+x 2=-b a ,x 1·x 2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积: (1)x 2-3x -1=0 (2)2x 2+3x -5=0 (3)13x 2-2x =0 (4)2x 2+6x = 3 (5)x 2-1=0 (6)x 2-2x +1=0例2 不解方程,检验下列方程的解是否正确? (1)x 2-22x +1=0 (x 1=2+1,x 2=2-1) (2)2x 2-3x -8=0 (x 1=7+734,x 2=5-734)例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)例4 已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值. 变式一:已知方程x 2-2kx -9=0的两根互为相反数,求k ; 变式二:已知方程2x 2-5x +k =0的两根互为倒数,求k. 三、课堂小结 1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零. 四、作业布置1.不解方程,写出下列方程的两根和与两根积. (1)x 2-5x -3=0 (2)9x +2=x 2(3)6x 2-3x +2=0 (4)3x 2+x +1=02.已知方程x 2-3x +m =0的一个根为1,求另一根及m 的值.3.已知方程x 2+bx +6=0的一个根为-2,求另一根及b 的值.21.3 实际问题与一元二次方程(2课时) 第1课时 解决代数问题1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页习题21.3第2-7题.第2课时解决几何问题1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.难点在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.活动4课堂小结与作业布置课堂小结1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.作业布置教材第22页习题21.3第8,10题.第二十一章一元二次方程21.1一元二次方程1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题.2.掌握一元二次方程的一般形式ax2+bx+c=0(a≠0)及有关概念.。
2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案) 点和圆的位置关系教案
24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系一、教学目标【知识与技能】1.掌握点与圆的三种位置关系及数量间的关系.2.探求过点画圆的过程,掌握过不在同一直线上三点画圆的方法.3.了解运用“反证法”证明命题的思想方法.【过程与方法】通过生活中的实例探求点和圆的三种位置关系,并提炼出数量关系,从而渗透数形结合,分类讨论等数学思想.【情感态度与价值观】形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】(1)点与圆的三种位置关系.(2)过三点作圆.【教学难点】点与圆的三种位置关系及其数量关系反证法五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课我国射击运动员在奥运会上获金牌,为我国赢得荣誉.如图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?(出示课件2)解决这个问题要研究点和圆的位置关系.(板书课题)(二)探索新知探究一点和圆的位置关系教师问:观察下图中点和圆的位置关系有哪几种?(出示课件4)学生交流,回答问题.教师点评:点与圆的位置关系有三种:点在圆内,点在圆上,点在圆外.教师问:设点到圆心的距离为d,圆的半径为r,量一量在点和圆三种不同位置关系时,d与r有怎样的数量关系?(出示课件5)学生答:教师问:反过来,由d与r的数量关系,怎样判定点与圆的位置关系呢?学生观察思考交流后,师生共同得到结论:(出示课件6)点与圆的三种位置关系及其数量间的关系:边结论.读作“等价于”.⑵要明确“d”表示的意义,是点P到圆心O的距离.出示课件7,8:例如图,已知矩形ABCD的边AB=3,AD=4.(1)以A为圆心,4为半径作⊙A,则点B、C、D与⊙A的位置关系如何?(2)若以A点为圆心作⊙A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,求⊙A的半径r的取值范围?(直接写出答案)学生独立思考后,师生共同解答.解:⑴AD=4=r,故D点在⊙A上;AB=3<r,故B点在⊙A内;AC=5>r,故C点在⊙A外.⑵3≤r≤5.巩固练习:(出示课件9)1.⊙O的半径为10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在_______;点B在_______;点C在_______.2.圆心为O的两个同心圆,半径分别为1和2,若,则点P在()A.大圆内B.小圆内C.小圆外D.大圆内,小圆外学生独立思考后口答:1.圆内;圆上;圆外 2.D探究二过不共线三点作圆教师问:如何过一个点A作一个圆?过点A可以作多少个圆?(出示课件10)学生动手探究,作图,交流,得出结论,教师点评并总结.以不与A点重合的任意一点为圆心,以这个点到A点的距离为半径画圆即可;可作无数个圆.教师问:如何过两点A、B作一个圆?过两点可以作多少个圆?(出示课件11)学生动手探究,作图,交流,得出结论,教师点评并总结.作线段AB的垂直平分线,以其上任意一点为圆心,以这点和点A或B的距离为半径画圆即可;可作无数个圆.教师问:过不在同一直线上的三点能不能确定一个圆?(出示课件12)学生思考后师生共同解答:经过A,B两点的圆的圆心在线段AB的垂直平分线上.经过B,C两点的圆的圆心在线段BC的垂直平分线上.经过A,B,C三点的圆的圆心应该在这两条垂直平分线的交点O的位置.教师归纳:不在同一直线上的三点确定一个圆.(出示课件13)出示课件14:例已知:不在同一直线上的三点A、B、C.求作:⊙O,使它经过点A、B、C.学生动手探究,作图,交流后,师生共同解答.作法:1.连接AB,作线段AB的垂直平分线MN;2.连接AC,作线段AC的垂直平分线EF,交MN于点O;3.以O为圆心,OB为半径作圆.所以⊙O就是所求作的圆.教师问:现在你知道怎样将一个如图所示的破损的圆盘复原了吗?(出示课件15)学生动手探究,交流,在教师指导下作图.作法:1.在圆弧上任取三点A、B、C;2.作线段AB、BC的垂直平分线,其交点O即为圆心;3.以点O为圆心,OC长为半径作圆.⊙O即为所求.巩固练习:(出示课件16)如图,CD所在的直线垂直平分线段AB,怎样用这样的工具找到圆形工件的圆心.学生独立思考后口答:∵A、B两点在圆上,所以圆心必与A、B两点的距离相等,又∵和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,∴圆心在CD所在的直线上,因此可以做任意两条直径,它们的交点为圆心.探究三三角形的外接圆及外心已知△ABC,用直尺与圆规作出过A、B、C三点的圆.(出示课件17)学生复述作法.教师对照图形进行归纳:(出示课件18)1.外接圆:经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆.⊙O叫做△ABC的外接圆,△ABC叫做⊙O的内接三角形.2.三角形的外心定义:外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.作图:三角形三边中垂线的交点.性质:到三角形三个顶点的距离相等.练一练:判断下列说法是否正确.(出示课件19)(1)任意的一个三角形一定有一个外接圆.( )(2)任意一个圆有且只有一个内接三角形.( )(3)经过三点一定可以确定一个圆. ( )(4)三角形的外心到三角形各顶点的距离相等.( )学生口答:⑴√⑵×⑶×⑷√画一画:分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.(出示课件20)学生动手探究,作图,交流后,教师总结.锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边的中点,钝角三角形的外心位于三角形外.出示课件21,22:例1 如图,将△AOB置于平面直角坐标系中,O为原点,∠ABO=60°,若△AOB的外接圆与y轴交于点D(0,3).(1)求∠DAO的度数;(2)求点A的坐标和△AOB外接圆的面积.学生独立思考后师生共同解答.解:(1)∵∠ADO=∠ABO=60°,∠DOA=90°,∴∠DAO=30°;⑵∵点D的坐标是(0,3),∴OD=3.在Rt△AOD中,∵∠DOA=90°,∴AD为直径.又∵∠DAO=30°,∴AD=2OD=6,OA=因此圆的半径为3.点A的坐标(0),∴△AOB外接圆的面积是9π.教师强调:解题妙招:图形中求三角形外接圆的面积时,关键是确定外接圆的直径(或半径)长度.巩固练习:(出示课件23)如图,已知直角坐标系中,A(0,4),B(4,4),C(6,2).(1)写出经过A,B,C三点的圆弧所在圆的圆心M的坐标.(2)判断点D(5,-2)和圆M的位置关系.学生独立解答.解:(1)在方格纸中,线段AB和BC的垂直平分线相交于点(2,0),所以圆心M的坐标为(2,0).(2)圆的半径AM==线段DM所以点D在圆M内.出示课件24:例2 如图,在△ABC中,O是它的外心,BC=24cm,O到BC的距离是5cm,求△ABC的外接圆的半径.学生独立思考后师生共同解答.解:连接OB ,过点O 作OD ⊥BC.则OD =5cm ,112cm 2BD BC ==在Rt △OBD 中,13cm OB ==,即△ABC 的外接圆的半径为13cm.巩固练习:(出示课件25)在Rt △ABC 中,∠C=90°,AC=6 cm,BC=8cm,则它的外心与顶点C 的距离为( )A.5cmB.6cmC.7cmD.8cm学生思考后口答:A探究四 反证法教师问:经过同一条直线上的三个点能作出一个圆吗?(出示课件26)学生动手探究,作图,交流后,师生共同解答.如图,假设过同一条直线l 上三点A 、B 、C 可以作一个圆,设这个圆的圆心为P.那么点P 既在线段AB 的垂直平分线l 1上,又在线段BC 的垂直平分线l 2上,即点P 为l 1与l 2的交点.而l 1⊥l ,l 2⊥l 这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”相矛盾.所以过同一条直线上的三点不能作圆.教师归纳:(出示课件27)1.反证法的定义先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法.2.反证法的一般步骤⑴假设命题的结论不成立(提出与结论相反的假设);⑵从这个假设出发,经过推理,得出矛盾;⑶由矛盾判定假设不正确,从而肯定命题的结论正确.出示课件28:例求证:在一个三角形中,至少有一个内角小于或等于60°.师生共同解答.已知:△ABC.求证:△ABC中至少有一个内角小于或等于60°.证明:假设△ABC中没有一个内角小于或等于60°,则∠A>60°,∠B>60°,∠C>60°.因此∠A+∠B+∠C>180°.这与三角形的内角和为180度矛盾.假设不成立.因此△ABC中至少有一个内角小于或等于60°.巩固练习:(出示课件29)利用反证法证明“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一锐角都大于45°学生口答:D(三)课堂练习(出示课件30-36)1.已知△ABC的三边a,b,c,满足a+b2+|c﹣,则△ABC的外接圆半径=______.2.如图,⊙O是△ABC的外接圆,∠A=45°,BC=4,则⊙O的直径为______.3.如图,请找出图中圆的圆心,并写出你找圆心的方法?4.正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A______;点C在⊙A______;点D在⊙A______.5.⊙O的半径r为5cm,O为原点,点P的坐标为(3,4),则点P与⊙O的位置关系为()A.在⊙O内B.在⊙O上C.在⊙O外D.在⊙O上或⊙O外6.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,则它的外接圆半径=______.7.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度数是________.8.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M9.画出由所有到已知点的距离大于或等于2cm并且小于或等于3cm的点组成的图形.10.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘要确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.参考答案:1.2582.3.解:如图所示.4.上;外;上5.B6.57.70°8.B9.解:如图所示.10.解:(1)在圆形瓷盘的边缘选A、B、C三点;(2)连接AB、BC;(3)分别作出AB、BC的垂直平分线;(4)两垂直平分线的交点就是瓷盘的圆心.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材95页练习2.2.配套练习册内容八、板书设计:九、教学反思:本节课通过学生操作,总结出了点与圆的三种位置关系,其中渗透着分类讨论的思想,经过探讨过一点、两点、三点作圆,得出了不在同一直线上三点确定一个圆,从而自然引出三角形外接圆、外心及圆内接三角形的定义,此外还学习了用反证法证明命题的方法和步骤.这些定理都是从学生实践中得出的,培养了学生动手的能力.。
2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案
25.1随机事件与概率25.1.1随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。
人教版九年级数学上册教案5篇
人教版九年级数学上册教案5篇人教版九年级数学上册教案1一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点:理解分式的基本性质.2.难点:灵活应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗?与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.人教版九年级数学上册教案2一、创设情境导入新课1、介绍七巧板师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?一千多年前,中国人发明了七巧板。
九年级数学教案人教版上册5篇
九年级数学教案人教版上册5篇九班级数学教案人教版上册篇1一、学生情况分析:对八班级的学习情况与期末测试成绩进行分析,可以看出学生已经初步掌握二次根式的运算,能利用一元二次方程来解一般的应用题,大多数学生能掌握平行四边形与特殊平行四边形的性质与判定,具备了一定的逻辑推理能力。
在数学的思维方面,学生正处于形象思维向逻辑抽象思维的过度提升期,教学中提倡数形结合,让学生适当思考部分有利于思维提高的练习,无疑是对学生终身有用的;在学习习惯方面,部分学生的不良习惯得到了纠正,良好的习惯要得到巩固,如独立思考,仔细进行总结,及时改正作业等,都应得到强化;在学习爱好方面,大部分学生对数学学习的乐观性较高,但仍有部分学生对数学信心不足,因此开学初要给学生树信心,刚开始起点宜低,讲解宜慢,使学生适应九班级的数学学习。
二、指导思想:通过十几年数学的教学,提供进一步学习所必需的数学基础知识与基本技能,进一步培育学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,教育学生掌握基础知识与基本技能,培育学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。
会用归纳演绎、类比进行简单的推理。
提高学习数学的爱好,逐步培育学生具有良好的学习习惯,实事求是的态度。
顽强的学习毅力和独立思考、探索的新思想。
培育学生应用数学知识解决问题的能力。
三、教材内容分析:第一章二次函数本章的主要内容有二次函数的概念、二次函数的图象、性质和应用,它们在日常生活和生产实际中有着广泛的应用。
本章的重点是二次函数的图象与性质的理解和掌握;二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换以及二次函数性质的灵活应用是本章教学的难点。
本章教学时要充分运用实例帮助学生正确理解二次函数的概念,体会函数思想。
第二章简单事件的概率本章的主要内容有事件的可能性、简单事件的概率、用频率估量概率、概率的简单应用。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)因式分解法教案
21.2 解一元二次方程21.2.3 因式分解法一、教学目标【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度与价值观】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.二、课型新授课三、课时1课时四、教学重难点【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.五、课前准备课件六、教学过程(一)导入新课1.解一元二次方程的方法有哪些?(出示课件2)学生答:直接开平方法:x2=a (a≥0),配方法:(x+m)2=n (n≥0),公式法:x=2ba-±(b2-4ac≥0).2. 什么叫因式分解?学生答:把一个多项式分解成几个整式乘积的形式叫做因式分解,也叫把这个多项式分解因式.3.分解因式的方法有那些?(出示课件3)学生答:(1)提取公因式法:am+bm+cm=m(a+b+c).(2)公式法:a²-b²=(a+b)(a-b), a²±2ab+b²=(a±b) ².(3)十字相乘法.教师问:下面的方程如何使解答简单呢?x2+25x=0.出示课件5:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)教师问:你能根据题意列出方程吗?学生答:设物体经过x s 落回地面,这时它离地面的高度为0m ,即10x -4.9x 2=0.教师问:你能想出解此方程的简捷方法吗?(二)探索新知探究 因式分解法的概念学生用配方法和公式法解方程10x -4.9x 2=0.(两生板演)配方法解方程10x -4.9x 2=0. 解:2100049x x -=,22210050500494949x x ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭2250504949x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭50504949x -=±50504949x =±+110049,=x 20.=x公式法解方程10x -4.9x 2=0.解:24.9100x x -=,a=4.9,b=-10,c=0.b 2-4ac= (-10)2-0=100,a acb b x 242-±-=()10102 4.9--±=⨯110049,=x20. =x教师引导学生尝试找出其简洁解法为:(出示课件7)x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.这种解法是不是很简单?教师问:以上解方程的方法是如何使二次方程降为一次方程的?x(10-4.9x)=0,①x=0或10-4.9x=0,②通过学生的讨论、交流可归纳为:(出示课件8)可以发现,上述解法中,由①到②的过程,不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法.教师提示:(出示课件9)1.用因式分解法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的方法;3.理论依据是“ab=0,则a=0或b=0 ”.师生共同归纳:(出示课件10)分解因式法解一元二次方程的步骤是:1.将方程右边化为等于0的形式;2.将方程左边因式分解为A×B;3.根据“ab=0,则a=0或b=0”,转化为两个一元一次方程;4.分别解这两个一元一次方程,它们的根就是原方程的根.例1 解下列方程:(出示课件11)(1)x(x-2)+x-2=0; (2)5x 2-2x-14=x 2-2x+34. 师生共同解答如下: 解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x 1=2,x 2=-1;(2)原方程整理为4x 2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12,x 2=12. 想一想 以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.学生思考后,教师总结如下:(出示课件12)一.因式分解法简记歌诀:右化零,左分解;两因式,各求解.二.选择解一元二次方程的技巧:1.开平方法、配方法适用于能化为完全平方形式的方程.2.因式分解法适用于能化为两个因式之和等于0的形式的方程.3.配方法、公式法适用于所有一元二次方程.出示课件13:解下列方程:2222221 +=0; (2) -=0; (3) 3-6=-3;(4) 4-121=0; (5) 3(2+1)=4+2; (6) (-4)=(5-2).()x x x x x x x x x x x 学生自主思考并解答.(六生板演)解:⑴因式分解,得x(x+1)=0.于是得x=0或x+1=0,x 1=0,x 2=-1.⑵因式分解,得x (x)=0于是得x=0或x-2=0x1=0,x2=2.⑶将方程化为x2-2x+1 = 0. 因式分解,得(x-1)(x-1)=0.于是得x-1=0或x-1=0,x1=x2=1.⑷因式分解,得(2x+11)(2x-11)=0.于是得2x+11=0或2x-11=0,x1=-5.5,x2=5.5.⑸将方程化为6x2-x-2=0. 因式分解,得(3x-2)(2x+1)=0. 于是得3x-2=0或2x+1 = 0,x1=23,x2=12.⑹将方程化为(x-4)2-(5-2x)2=0.因式分解,得(x-4-5+2x)(x-4+5-2x)=0.(3x-9)(1-x)=0.于是得3x-9=0或1-x=0,x1=3,x2=1.出示课件16:用适当方法解下列方程:−x)2;(2)x2-6x-19=0;(3)3x2=4x+1;(4)y2-15=2y;(5)5x(x-3)-(x-3)(x+1)=0;(6)4(3x+1)2=25(x-2)2.教师提示:根据方程的结构特征,灵活选择恰当的方法来求解.四种方法的选择顺序是:直接开平方法→因式分解法→公式法→配方法.师生共同解答如下.(出示课件17,18,19)解:(1)(1-x)2=3,∴(x-1)2=3,x-1∴x1=1x2=1.(2)移项,得x2-6x=19.配方,得x2-6x+(-3)2=19+(-3)2.∴(x-3)2=28.∴x-3=±.∴x1=3+,x2=3-.(3)移项,得3x2-4x-1=0.∵a=3,b=-4,c=-1,∴x=−(−4)±√(−4)2−4×3×(−1)2×3=2±73.∴x1=2+73,x2=2-73.(4)移项,得y2-2y-15=0.把方程左边因式分解,得(y-5)(y+3)=0. ∴y-5=0或y+3=0.∴y1=5,y2=-3.(5)将方程左边因式分解,得(x-3)[5x-(x+1)]=0. ∴(x-3)(4x-1)=0.∴x-3=0或4x-1=0.∴x1=3,x2=1 4 .6)移项,得4(3x+1)2-25(x-2)2=0.∴[2(3x+1)]2-[5(x-2)]2=0.∴[2(3x+1)+5(x-2)]·[2(3x+1)-5(x-2)]=0. ∴(11x-8)(x+12)=0.∴11x-8=0或x+12=0.∴x1=811,x2=-12.出示课件20,21:用适当的方法解下列方程:(1)x2-41=0;(2) 5(3x+2)2=3x(3x+2).学生自主思考并解答.解:(1)∵x2-14=0,∴x2=14,即x=±14.∴x1=12,x2=-12.⑵原方程可变形为5(3x+2)2-3x(3x+2)=0,∴(3x+2)(15x+10-3x)=0.∴3x+2=0或12x+10=0.∴x1=-23,x2=-56.(三)课堂练习(出示课件22-30)1.已知x=2是关于x的一元二次方程kx²+(k²﹣2)x+2k+4=0的一个根,则k的值为.2. 解方程:2(x﹣3)=3x(x﹣3).3.解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12.4.小华在解一元二次方程x2-x=0 时,只得出一个根x=1,则被漏掉的一个根是()A.x=4 B.x=3C.x=2 D.x=05.我们已经学习了一元二次方程的四种解法:直接开平方法、配方法、公式法和因式分解法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.我选择______________________.6.解方程:(x2+3)2-4(x2+3)=0.参考答案:1.-32.解:2(x﹣3)=3x(x﹣3),移项得2(x﹣3)﹣3x(x﹣3)=0,因式分解得(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3,x2=32.3.解:⑴x2+2x+2=0,(x+1)2=-1.此方程无解.⑵x2-4x-12=0,(x-2)2=16.x1=6,x2=-2.4.D5.解:答案不唯一.若选择①,①适合公式法,x2-3x+1=0,∵a=1,b=-3,c=1,∴b2-4ac=9-4=5>0.∴x=3±5 2.∴x1=3+52,x2=3-52.若选择②,②适合直接开平方法,∵(x-1)2=3,x-1=±3,∴x1=1+3,x2=1- 3. 若选择③,③适合因式分解法,x2-3x=0,因式分解,得x(x-3)=0.解得x1=0,x2=3.若选择④,④适合配方法,x2-2x=4,x2-2x+1=4+1=5,即(x-1)2=5.开方,得x-1=± 5.∴x1=1+5,x2=1- 5.5.提示:把(x2+3)看作一个整体来提公因式,再利用平方差公式,因式分解.解:设x2+3=y,则原方程化为y2-4y=0.分解因式,得y(y-4)=0,解得y=0,或y=4.①当y=0 时,x2+3=0,原方程无解;②当y=4 时,x2+3=4,即x2=1.解得x=±1.所以原方程的解为x1=1,x2=-1.(四)课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?⑴公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法).⑵方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法.(五)课前预习预习下节课(21.2.4)的相关内容。
人教版九年级上册数学全册教案(完整版)教学设计
人教版九年级上册数学全册教案(完整版)教学设计21.1 一元二次方程一、基本目标【知识与技能】1.理解一元二次方程及相关概念.2.掌握一元二次方程的一般形式.3.了解一元二次方程根的概念,会检验一个数是不是一元二次方程的解.【过程与方法】从实际问题中建立方程模型,体会一元二次方程的概念.【情感态度与价值观】通过从实际问题中抽象出方程模型来认识一元二次方程,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】1.一元二次方程的概念及其一般形式.2.判断一个数是不是一元二次方程的解.【教学难点】能准确判断一元二次方程的二次项、二次项系数、一次项、一次项系数及常数项.环节1 自学提纲,生成问题【5 min阅读】阅读教材P1~P4的内容,完成下面练习.【3 min反馈】1.解决下列问题:问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样大小的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?【解析】设切去的正方形的边长为x cm ,则盒底的长为__(100-2x )_cm__,宽为__(50-2x )_cm__.列方程,得__(100-2x )(50-2x )=3600__, 化简,整理,得__x 2-75x +350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【解析】全部比赛的场数为__4×7=28(场)__.设应邀请x 个队参赛,每个队要与其他__(x -1)__个队各赛一场.因为甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共__12x (x -1)__场.列方程,得__12x (x -1)=28__.化简、整理,得 __x 2-x -56=0__.②归纳总结:方程①②的共同特点是:方程的两边都是__整式__,只含有__一个__未知数,并且未知数的最高次数是__2__.2.一元二次方程的定义:等号两边都是__整式__,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.3.一元二次方程的一般形式是__ax 2+bx +c =0(a ≠0)__.其中__ax 2__是二次项,__a __是二次项系数,__bx __是一次项,__b __是一次项系数,__c __是常数项.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】判断下列方程,哪些是一元二次方程? (1)x 3-2x 2+5=0; (2)x 2=1;(3)5x 2-2x -14=x 2-2x +35;(4)2(x +1)2=3(x +1); (5)x 2-2x =x 2+1; (6)ax 2+bx +c =0.【互动探索】(引发学生思考)要判断一个方程是一元二次方程,那么它应该满足哪些条件?【解答】(2)(3)(4)是一元二次方程.【互动总结】(学生总结,老师点评)判断一个方程是不是一元二次方程,首先看方程等号两边是不是整式,然后移项,使方程的右边为0,再观察左边是否只有一个未知数,且未知数的最高次数是否为2.【例2】将方程2x ⎝ ⎛⎭⎪⎫12-x +2=5(x -1)化成一元二次方程的一般形式,并指出各项系数. 【互动探索】(引发学生思考)一元二次方程的一般形式是怎样的? 【解答】去括号,得x -2x 2+2=5x -5.移项,合并同类项,得一元二次方程的一般形式:2x 2+4x -7=0. 其中二次项系数是2,一次项系数是4,常数项是-7.【互动总结】(学生总结,老师点评)将一元二次方程化成一般形式时,通常要将二次项化负为正,化分为整.【例3】下面哪些数是方程2x 2+10x +12=0的解? -4,-3,-2,-1,0,1,2,3,4.【互动探索】(引发学生思考)你能类比判断一个数是一元一次方程的解的方法判断一元二次方程的解吗?【解答】将上面的这些数代入后,只有-2和-3满足等式,所以x =-2或x =-3是一元二次方程2x 2+10x +12=0的解.【互动总结】(学生总结,老师点评)要判断一个数是否是方程的解,只要把这个数代入等式,看等式两边是否相等即可.若相等,则这个数是方程的解,若不相等,则这个数不是方程的解.【活动2】 巩固练习(学生独学) 1.下列方程是一元二次方程的是( D ) A .ax 2+bx +c =0 B .3x 2-2x =3(x 2-2) C .x 3-2x -4=0D .(x -1)2+1=02.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( A ) A .2 B .0 C .0或2D .0或-2【教师点拨】将x =2代入x 2-2mx +4=0得,4-4m +4=0.再解关于m 的一元一次方程即可得出m 的值.3.把一元二次方程(x +1)(1-x )=2x 化成二次项系数大于0的一般式是__x 2+2x -1=0__,其中二次项系数是__1__,一次项系数是__2__,常数项是 __-1__.【活动3】 拓展延伸(学生对学)【例4】求证:关于x 的方程(m 2-8m +17)x 2+2mx +1=0,不论m 取何值,该方程都是一元二次方程.【互动探索】(引发学生思考)已知关于x 的方程,且含有字母系数,要证明该方程是一元二次方程,则该方程的二次项系数必须满足什么条件?【证明】m 2-8m +17=m 2-8m +42+1=(m -4)2+1. ∵(m -4)2≥0,∴(m -4)2+1>0,即(m -4)2+1≠0, ∴不论m 取何值,该方程都是一元二次方程.【互动总结】(学生总结,老师点评)要证明不论m 取何值,该方程都是一元二次方程,只需证明二次项系数恒不为0,即m 2-8m +17≠0.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.一元二次方程⎩⎨⎧必须满足的三要素⎩⎪⎨⎪⎧ 是整式方程只有一个未知数未知数的最高次数是2一般形式:ax 2+bx +c =0a ≠02.判断一个数是否是一元二次方程解的方法:将这个数分别代入方程的左右两边,如果“左边=右边”,则这个数是方程的解;如果“左边≠右边”,则这个数不是方程的解.请完成本课时对应练习!21.2 解一元二次方程 21.2.1 配方法(第1课时)一、基本目标 【知识与技能】1.理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题. 2.理解并掌握直接开方法、配方法解一元二次方程的方法. 【过程与方法】1.通过根据平方根的意义解形如x 2=n (n ≥0)的方程,迁移到根据平方根的意义解形如(x +m )2=n (n ≥0)的方程.2.通过把一元二次方程转化为形如(x -a )2=b 的过程解一元二次方程. 【情感态度与价值观】通过对一元二次方程解法的探索,体会“降次”的基本思想,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标 【教学重点】掌握直接开平方法和配方法解一元二次方程. 【教学难点】把一元二次方程转化为形如(x -a )2=b 的形式.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P5~P9的内容,完成下面练习. 【3 min 反馈】1.一般地,对于方程x 2=p :(1)当p >0时,根据平方根的意义,方程有两个不等的实数根,x 1=__p ,x 2=__-p __.(2)当p =0时,方程有两个相等的实数根x 1=x 2=__0__; (3)当p <0时,方程__无实数根__. 2.用直接开平方法解下列方程: (1)(3x +1)2=9; x 1=23,x 2=-43.(2)y 2+2y +1=25. y 1=4,y 2=-6. 3.(1)x 2+6x +__9__=(x +__3__)2; (2)x 2-x +__14__=(x -__12__)2;(3)4x 2+4x +__1__=(2x + __1__)2.4.一般地,如果一个一元二次方程通过配方转化成(x +n )2=p 的形式,那么就有: (1)当p >0时,根据平方根的意义,方程有两个不等的实数根,x 1=__-n -p __,x 2=__-n +p __;(2)当p =0时,方程有两个相等的实数根x 1=x 2=__-n __; (3)当p <0时,方程__无实数根__. 环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学) 【例1】用配方法解下列关于x 的方程: (1)2x 2-4x -8=0; (2)2x 2+3x -2=0.【互动探索】(引发学生思考)用配方法解一元二次方程的实质和关键点是什么? 【解答】(1)移项,得2x 2-4x =8. 二次项系数化为1,得x 2-2x =4.配方,得x 2-2x +12=4+12,即(x -1)2=5. 由此可得x -1=±5, ∴x 1=1+5,x 2=1- 5. (2)移项,得2x 2+3x =2. 二次项系数化为1,得x 2+32x =1.配方,得⎝ ⎛⎭⎪⎫x +342=2516.由此可得x +34=±54,∴x 1=12,x 2=-2.【互动总结】(学生总结,老师点评)用配方法解一元二次方程的实质就是对一元二次方程进行变形,转化为开平方所需要的形式,配方法的一般步骤可简记为:一移,二化,三配,四开.【活动2】 巩固练习(学生独学)1.若x 2-4x +p =(x +q )2,则p 、q 的值分别是( B ) A .p =4,q =2 B .p =4,q =-2 C .p =-4,q =2D .p =-4,q =-22.用直接开平方法或配方法解下列方程: (1)3(x -1)2-6=0 ; (2)x 2-4x +4=5; (3)9x 2+6x +1=4; (4)36x 2-1=0; (5)4x 2=81; (6)x 2+2x +1=4. (1)x 1=1+2,x 2=1- 2. (2)x 1=2+5,x 2=2- 5. (3)x 1=-1,x 2=13.(4)x 1=16,x 2=-16.(5)x 1=92,x 2=-92.(6)x 1=1,x 2=-3.【活动3】 拓展延伸(学生对学)【例2】如果x 2-4x +y 2+6y +z +2+13=0,求(xy )z的值.【互动探索】(引发学生思考)一个数的平方是正数还是负数?一个数的算术平方根是正数还是负数?几个非负数相加的和是正数还是负数?【解答】由已知方程,得x2-4x+4+y2+6y+9+z+2=0,即(x-2)2+(y+3)2+z+2=0,∴x=2,y=-3,z=-2.∴(xy)z=[2×(-3)]-2=1 36 .【互动总结】(学生总结,老师点评)若几个非负数相加等于0,则这几个数都等于0.环节3 课堂小结,当堂达标(学生总结,老师点评)用配方法解一元二次方程的一般步骤:一移项→二化简→三配方→四开方请完成本课时对应练习!21.2.2 公式法(第2课时)一、基本目标【知识与技能】1.理解一元二次方程求根公式的推导过程,了解公式法的概念.2.会熟练运用公式法解一元二次方程.【过程与方法】复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.【情感态度与价值观】在一元二次方程求根公式的推导过程中,激发学生兴趣,了解解决问题多样性.二、重难点目标【教学重点】求根公式的推导及用公式法解一元二次方程.【教学难点】一元二次方程求根公式的推导.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P9~P12的内容,完成下面练习. 【3 min 反馈】1.用配方法解下列方程: (1)x 2-5x =0; x 1=0,x 2=5. (2)2x 2-4x -1=0. x 1=1+62,x 2=1-62. 2.如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它的两根? x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a.【教师点拨】因为前面解具体数字的一元二次方程已做得很多,我们现在不妨把a 、b 、c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.3.一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a 、b 、c 而定.(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0.当b 2-4ac ≥0时,将a 、b 、c 代入式子x =-b ±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的__求根公式__. (3)利用求根公式解一元二次方程的方法叫__公式法__.(4)由求根公式可知,一元二次方程最多有__2__个实数根,也可能__没有__实数根. (5)一般地,式子b 2-4ac 叫做方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=__b 2-4ac __.当Δ__>__0时,方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根;当Δ__=__0时,方程ax 2+bx +c =0(a ≠0)有两个相等的实数根;当Δ__<__0时,方程ax 2+bx +c =0(a ≠0)没有实数根.4.不解方程,判断方程根的情况. (1)16x 2+8x =-3; (2)9x 2+6x +1=0; (3)2x 2-9x +8=0; (4)x 2-7x -18=0. 解:(1)没有实数根. (2)有两个相等的实数根. (3)有两个不相等的实数根. (4)有两个不相等的实数根.【教师点拨】将方程化为一般形式,再用判别式进行判断. 环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】用公式法解下列方程: (1)2x 2+1=3x ; (2)2x (x -1)-7x =2.【互动探索】(引发学生思考)用公式法解一元二次方程的步骤是怎样的? 【解答】(1)原方程整理,得2x 2-3x +1=0. 其中a =2,b =-3,c =1,则Δ=b 2-4ac =(-3)2-4×2×1=1>0. ∴x =-b ±b 2-4ac 2a =--3±12×2,即x 1=12,x 2=1.(2)原方程整理,得2x 2-9x -2=0. 其中a =2,b =-9,c =-2,则Δ=b 2-4ac =(-9)2-4×2×(-2)=97>0. ∴x =-b ±b 2-4ac 2a=--9±972×2,即x 1=9+974,x 2=9-974.【互动总结】(学生总结,老师点评)用公式法解一元二次方程的一般步骤:(1)把方程化为一般形式,确定a 、b 、c 的值;(2)求出Δ=b 2-4ac 的值;(3)当Δ>0时,方程有两个不相等的实数根,即x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a ;当Δ=0时,方程有两个相等的实数根,即x 1=x 2=-b2a;当Δ<0时,方程没有实数根. 【活动2】 巩固练习(学生独学)1.方程x 2-4x +4=0的根的情况是( B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个实数根 D .没有实数根2.如果方程5x 2-4x =m 没有实数根,那么m 的取值范围是__m <-45__.3.用公式法解下列方程:(1)2x 2-6x -1=0; (2)2x 2-2x +1=0; (3)5x +2=3x 2.解:(1)x 1=3+112,x 2=3-112.(2)方程没有实数根. (3)x 1=2,x 2=-13.【活动3】 拓展延伸(学生对学)【例2】已知a 、b 、c 分别是三角形的三边,试判断方程(a +b )x 2+2cx +(a +b )=0的根的情况.【互动探索】(引发学生思考)三角形的三边满足什么关系?是怎样根据一元二次方程的系数判断根的情况?【解答】∵a 、b 、c 分别是三角形的三边,∴a +b >0,c +a +b >0,c -a -b <0,∴Δ=(2c )2-4(a +b )·(a +b )=4(c +a +b )(c -a -b )<0,故原方程没有实数根.【互动总结】(学生总结,老师点评)解答本题的关键是掌握三角形三边的关系,即两边之和大于第三边,以及运用根的判别式Δ=b 2-4ac 判断方程的根的情况.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.一元二次方程根的情况⎩⎪⎨⎪⎧Δ>0⇔方程有两个不相等的实数根Δ=0⇔方程有两个相等的实数根Δ<0⇔方程没有实数根2.当Δ≥0时,方程ax 2+bx +c =0(a ≠0)的实数根为x =-b ±b 2-4ac2a.请完成本课时对应练习!21.2.3 因式分解法(第3课时)一、基本目标 【知识与技能】1.掌握用因式分解法解一元二次方程.2.能根据具体一元二次方程的特征,灵活选择方程的解法. 【过程与方法】通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.【情感态度与价值观】了解因式分解法是一元二次方程解法中应用较为广泛的简便方法,它避免了复杂的计算,提高了解题速度和准确程度,培养学生的应用意识和创新能力.二、重难点目标 【教学重点】运用因式分解法解一元二次方程. 【教学难点】选择适当的方法解一元二次方程.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P12~P14的内容,完成下面练习. 【3 min 反馈】1.将下列各题因式分解:am +bm +cm =__m (a +b +c )__; a 2-b 2=__(a +b )(a -b )__; a 2+2ab +b 2=__(a +b )2__; x 2+5x +6=__(x +2)(x +3)__;3x 2-14x +8=__(x -4)(3x -2)__. 2.按要求解下列方程: (1)2x 2+x =0(用配方法); (2)3x 2+6x -24=0(用公式法).解:(1)x 1=0,x 2=-12. (2)x 1=2,x 2=-4.3.对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做__因式分解法__.4.如果ab =0,那么a =0或b =0,这是因式分解法的根据.即:如果(x +1)(x -1)=0,那么x +1=0或 __x -1=0__,即x =-1或__x =1__.环节2 合作探究,解决问题 【活动1】 小组讨论(师生对学) 【例1】用因式分解法解下列方程: (1)x 2-3x -10=0; (2)5x 2-2x -14=x 2-2x +34;(3)3x (2x +1)=4x +2; (4)(x -4)2=(5-2x )2.【互动探索】(引发学生思考)用因式分解法解一元二次方程的一般步骤是什么? 【解答】(1)因式分解,得(x +2)(x -5)=0. ∴x +2=0或x -5=0, ∴x 1=-2,x 2=5.(2)移项、合并同类项,得4x 2-1=0. 因式分解,得(2x +1)(2x -1)=0. ∴2x +1=0或2x -1=0, ∴x 1=-12,x 2=12.(3)原方程可变形为3x (2x +1)-2(2x +1)=0. 因式分解,得(2x +1)(3x -2)=0. ∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.(4)移项,得(x -4)2-(5-2x )2=0. 因式分解,得(1-x )(3x -9)=0, ∴1-x =0或3x -9=0, ∴x 1=1,x 2=3.【互动总结】(学生总结,老师点评)用因式分解法解一元二次方程的步骤:(1)将一元二次方程化成一般形式,即方程右边为0;(2)将方程左边进行因式分解,将一元二次方程转化成两个一元一次方程;(3)对两个一元一次方程分别求解.【活动2】 巩固练习(学生独学) 1.解方程: (1)x 2-3x -10=0; (2)3x (x +2)=5(x +2); (3)(3x +1)2-5=0; (4)x 2-6x +9=(2-3x )2. 解:(1)x 1=5,x 2=-2. (2)x 1=-2,x 2=53.(3)x 1=-1+53,x 2=5-13.(4)x 1=-12,x 2=54.2.三角形两边的长是3和4,第三边的长是方程x 2-12x +35=0的根,求该三角形的周长.解:解x 2-12x +35=0,得x 1=5,x 2=7.∵3+4=7,∴x =5,故该三角形的周长=3+4+5=12. 【活动3】 拓展延伸(学生对学)【例2】已知9a 2-4b 2=0,求代数式a b -b a -a 2+b 2ab的值.【互动探索】(引发学生思考)a 、b 的值能求出来吗?a 、b 之间有怎样的关系?怎样将a 、b 的值与已知代数式联系起来.【解答】原式=a 2-b 2-a 2-b 2ab =-2ba.∵9a 2-4b 2=0,∴(3a +2b )(3a -2b )=0, 即3a +2b =0或3a -2b =0, ∴a =-23b 或a =23b .当a =-23b 时,原式=-2b-23b =3;当a =23b 时,原式=-3.【互动总结】(学生总结,老师点评)要求a b -b a -a 2+b 2ab的值,首先要对它进行化简,然后从已知条件入手,求出a 与b 的关系后代入,但也可以直接代入,因计算量比较大,容易发生错误.本题注意不要漏解.环节3 课堂小结,当堂达标 (学生总结,老师点评)用因式分解法解一元二次方程的一般步骤:先将方程一边化为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.请完成本课时对应练习!*21.2.4 一元二次方程的根与系数的关系(第4课时)一、基本目标【知识与技能】掌握一元二次方程的根与系数的关系.【过程与方法】利用求根公式得到一元二次方程的根,推导出根与系数的关系,体现了数学推理的严密性与严谨性.【情感态度与价值观】通过公式的引入,培养学生寻求简便方法的探索精神及创新意识,培养学生观察思考、归纳概括的能力.二、重难点目标【教学重点】理解一元二次方程的根与系数的关系.【教学难点】利用一元二次方程根与系数的关系解决问题.环节1 自学提纲,生成问题【5 min阅读】阅读教材P15~P16的内容,完成下面练习.【3 min反馈】1.解下列方程,并填写表格:方程x1x2x1+x2x1·x2x2-2x=00220x2+3x-4=0-41-3-4x2-5x+6=0235 6(1)用语言描述你发现的规律:__一元二次方程的两根之和为一次项系数的相反数;两根之积为常数项__.(2)关于x的方程x2+px+q=0的两根为x1、x2,请用式子表示x1、x2与p、q的关系:__x1+x2=-p,x1x2=q__.2.解下列方程,并填写表格:方程x1x2x1+x2x1·x2(1)用语言描述你发现的规律:__两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比__.(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,请用式子表示x 1、x 2与a 、b 、c 的关系:__x 1+x 2=-b a ,x 1x 2=ca__.3.求下列方程的两根之和与两根之积. (1)x 2-6x -15=0; (2)5x -1=4x 2; (3)x 2=4; (4)2x 2=3x .解:(1)x 1+x 2=6,x 1x 2=-15. (2)x 1+x 2=54,x 1x 2=14.(3)x 1+x 2=0,x 1x 2=-4. (4)x 1+x 2=32,x 1x 2=0.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】x 1、x 2是方程2x 2-3x -5=0的两个根,不解方程,求下列代数式的值: (1)x 1+x 2 ; (2)1x 1+1x 2;(3)x 21+x 22; (4)x 21+3x 22-3x 2.【互动探索】(引发学生思考)根据一元二次方程的根与系数的关系可考虑将所求代数式转化为两根之和与两根之积的关系.【解答】(1)x 1+x 2=32,(2)∵x 1x 2=-52,∴1x 1+1x 2=x 1+x 2x 1x 2=-35.(3)x 21+x 22=(x 1+x 2)2-2x 1x 2=294.(4)x 21+3x 22-3x 2=(x 21 +x 22 ) +(2x 22 -3x 2 )=1214.【互动总结】(学生总结,老师点评)解答这类问题一般先将求值式进行变形,使其含有两根的和与两根的积,再求出方程的两根的和与两根的积,整体代入即可求解.【活动2】 巩固练习(学生独学)1.不解方程,求下列方程的两根和与两根积. (1)x 2-5x -3=0; (2)9x +2=x 2; (3)6x 2-3x +2=0; (4)3x 2+x +1=0. 解:(1)x 1+x 2=5,x 1x 2=-3. (2)x 1+x 2=9,x 1x 2=-2. (3)方程无解. (4)方程无解.2.已知方程x 2-3x +m =0的一个根为1,求另一根及m 的值. 解:另一根为2,m =2.【教师点拨】本题有两种解法:一种是根据根的定义,将x =1代入方程先求m ,再求另一个根;另一种是利用根与系数的关系解答.3.若一元二次方程x 2+ax +2=0的两根满足:x 21 +x 22 =12,求a 的值. 解:a =±4.【教师点拨】由x 21 + x 22 =(x 1+x 2)2-2x 1x 2=12,再整体代入方程的两根之和与两根之积得到答案.【活动3】 拓展延伸(学生对学)【例2】已知关于x 的方程x 2-(k +1)x +14k 2+1=0,且方程两实根的积为5,求k 的值.【互动探索】(引发学生思考)一元二次方程有根的条件是什么?一元二次方程两实根的积与什么有关?【解答】∵方程两实根的积为5,∴ ⎩⎪⎨⎪⎧Δ=[-k +1]2-4⎝ ⎛⎭⎪⎫14k 2+1≥0,x 1x 2=14k 2+1=5,∴k ≥32,k =±4.故当k =4时,方程两实根的积为5.【互动总结】(学生总结,老师点评)根据一元二次方程两实根满足的条件,求待定字母的值,务必要注意方程有两实根的条件,即所求的值应满足Δ≥0.环节3 课堂小结,当堂达标 (学生总结,老师点评)一元二次方程ax 2+bx +c =0(a ≠0)的两根x 1、x 2和系数的关系如下:x 1+x 2=-b a ,x 1x 2=ca.请完成本课时对应练习!21.3 实际问题与一元二次方程一、基本目标 【知识与技能】1.会根据具体问题中的数量关系列一元二次方程并求解. 2.能根据问题的实际意义,检验所得结果是否合理. 【过程与方法】经历分析和解决实际问题的过程,体会一元二次方程的数学建模作用. 【情感态度与价值观】体会数学来源于实践,反过来又作用于实践,增强数学的应用意识. 二、重难点目标 【教学重点】列一元二次方程解决实际问题的一般步骤. 【教学难点】利用一元二次方程解决实际问题.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P19~P21的内容,完成下面练习. 【3 min 反馈】1. 有一人患了感毛,经过两轮传染后共有121人患了感冒,每轮传染中平均一个人传染了几个人?设每轮传染中平均一个人传染了x个人,则第一轮后共有__1+x__人患了感冒,第二轮后共有__1+x+x(x+1)__人患了感冒.可列方程 __1+x+x(x+1)=121__.解方程,得x1=__-12(不合题意,舍去)__,_x2=__10__.所以平均一个人传染了__10__个人.2.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.依题意,得__5000(1-x)2=3000__.解得__x1≈0.23,x2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__23%__.②设乙种药品成本的年平均下降率为y.依题意,得__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(不合题意,舍去)__.所以两种药品成本的年平均下降率 __相同__.提示:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.环节2 合作探究,解决问题【活动1】小组讨论(师生互学)【例1】某林场计划修一条长750 m,断面为等腰梯形的渠道,断面面积为1.6 m2,上口宽比渠深多2 m,渠底比渠深多0.4 m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48 m3,需要多少天才能把这条渠道挖完?【互动探索】(引发学生思考)(1)怎样用渠深表示上口宽和渠底,怎样计算梯形面积?(2)渠道的体积怎样计算?【解答】(1)设渠深为x m,则渠底为(x+0.4)m,上口宽为(x+2)m.依题意,得12(x +2+x +0.4)x =1.6,整理,得5x 2+6x -8=0, 解得x 1=45=0.8,x 2=-2(舍去),∴上口宽为2.8 m ,渠底为1.2 m.(2)如果计划每天挖土48 m 3,需要1.6×75048=25(天)才能挖完渠道.【互动总结】(学生总结,老师点评)解答本题的关键是掌握梯形面积的计算方法,正确用未知数表示出相关数量.【活动2】 巩固练习(学生独学)1.两个正数的差是2,它们的平方和是52,则这两个数是( C ) A .2和4 B .6和8 C .4和6D .8和102.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x 个小分支, 则1+x +x ·x =91.解得x 1=9或x 2=-10(舍去).故每个支干长出9个小分支.3.如图,要设计一幅长30 cm 、宽20 cm 的图案,其中有两横两竖的彩条(图中阴影部分),横、竖彩条的宽度比为3∶2,如果要使彩条所占面积是图案面积的14,应如何设计彩条的宽度?(精确到0.1 cm)解:横彩条宽为1.8 cm ,竖彩条宽为1.2 cm.【教师点拨】设横彩条的宽度为3x cm ,则竖彩条的宽度为2x cm.根据题意,得(30-4x )(20-6x )=⎝ ⎛⎭⎪⎫1-14×20×30.解得x 1≈0.61或x 2≈10.2(舍去). 4.用一根长40 cm 的铁丝围成一个长方形,要求长方形的面积为75 cm 2.(1)此长方形的宽是多少?(2)能围成一个面积为101 cm 2的长方形吗?若能,说明围法;若不能,说明理由; 解:(1)5 cm.(2)不能.设宽为x cm ,则长为(20-x ) cm ,由x (20-x )=101,即x 2-20x +101=0,由Δ=202-4×101=-4<0,∴方程无解,故不能围成一个面积为101 cm 2的长方形.【活动3】拓展延伸(学生对学)【例3】如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.【互动探索】(引发学生思考)AB与BC之间的数量关系是怎样的?BC还应满足什么条件?【解答】设AB=x m,则BC=(50-2x)m.根据题意,得x(50-2x)=300.解得x1=10,x2=15,当x=10时,BC=50-10-10=30>25,则x1=10不合题意,舍去.故可以围成AB长为15 m,BC长为20 m的矩形花园.【互动总结】(学生总结,老师点评)利用一元二次方程解决实际问题时,要注意检验方程的根是否符合实际问题.环节3 课堂小结,当堂达标(学生总结,老师点评)列一元二次方程解应用题的一般步骤:(1)“设”,即设未知数,设未知数的方法有直接设和间接设未知数两种;(2)“列”,即根据题中的等量关系列方程;(3)“解”,即求出所列方程的根;(4)“检验”,即验证是否符合题意;(5)“答”,即回答题目中要解决的问题.请完成本课时对应练习!22.1 二次函数的图象和性质22.1.1 二次函数(第1课时)一、基本目标 【知识与技能】1.理解并掌握二次函数的概念,能判断一个给定的函数是否为二次函数. 2.根据实际问题中的条件确定二次函数的解析式,体会函数的模型思想. 【过程与方法】经历与一次函数类比学习的过程,学会与人合作,并获得代数学习的一些常用方法:类比法、合情推理、抽象概括等.【情感态度与价值观】通过对几个特殊的二次函数的讲解,体验数学中的探索精神,初步体会二次函数的数学模型.二、重难点目标 【教学重点】 二次函数的概念. 【教学难点】能根据已知条件写出二次函数的解析式.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P28~P29的内容,完成下面练习. 【3 min 反馈】1.正比例的函数的表达式为y =kx (k 为常数,且k ≠0);一次函数的表达式为__y =ax +b __(a 、b 为常数,且a ≠0).2.二次函数的概念:一般地,形如__y =ax 2+bx +c __(a 、b 、c 是常数,且a ≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为__a 、b 、c __.3.下列函数中,是二次函数的有__①②③__.①y =(x -3)2-1;②y =1-2x 2;③y =13(x +2)(x -2);④y =(x -1)2-x 2.4.二次函数y =-x 2+2x 中,二次项系数是__-1__,一次项系数是___2____,常数项是___0____.5.半径为R 的圆,半径增加x ,圆的面积增加y ,则y 与x 之间的函数关系式为__y =πx 2+2πRx (x ≥0)__.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】已知关于x 的函数y =(m +1)xm 2-m 是二次函数, 求m 的值.。
2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质第1课时教案
22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)²+k的图象和性质(第1课时)一、教学目标【知识与技能】1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.【过程与方法】通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.【情感态度与价值观】在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课这个函数的图象是如何画出来呢?(出示课件2)(二)探索新知探究一二次函数y=ax2+k图象的画法在同一直角坐标系中,画出二次函数y=x2,y=x2+1,y=x2-1的图象.(出示课件4)学生自主操作,画图,教师加以巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.1.列表:x…-3-2-10123…y=x2…9410149…y=x2+1…105212510…y=x2-1…830-1038…2.描点,连线:(出示课件5)教师问:抛物线y=x2、y=x2+1、y=x2-1的开口方向、对称轴、顶点各是什么?(出示课件6)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=x2向上x=0(0,0)y=x2+1向上x=0(0,1)y=x2-1向上x=0(0,-1)出示课件7:例在同一直角坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.学生自主操作,画图,教师加以巡视.解:先列表:x…-2-1.5-1-0.500.51 1.52…y=2x2+1…9 5.53 1.51 1.53 5.59…y=2x2-1…7 3.51-0.5-1-0.51 3.57…然后描点画图:(出示课件8)教师问:抛物线y=2x2+1,y=2x2-1的开口方向、对称轴和顶点各是什么?(出示课件9)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=2x2+1向上x=0(0,1)y=2x2-1向上x=0(0,-1)探究二二次函数y=ax2+k的性质教师归纳:(出示课件10)二次函数y=ax2+k(a>0)的性质:开口方向:向上.对称轴:x=0.顶点坐标:(0,k).最值:当x=0时,有最小值,y=k.增减性:当x<0时,y 随x 的增大而减小;当x>0时,y 随x 的增大而增大.出示课件11:在同一坐标系中,画出二次函数212y x =-,2122y x =-+,2122y x =--的图像,并分别指出它们的开口方向,对称轴和顶点坐标.学生自主操作,画图,并整理.解:如图所示.抛物线开口方向对称轴顶点坐标y =12-x 2向下x =0(0,0)y =12-x 2+2向下x =0(0,2)y =12-x 2-2向下x =0(0,-2)出示课件12:在同一坐标系内画出下列二次函数的图象:231x y -=;23121--=x y ;23122+-=x y .学生自主操作,画图,教师巡视加以指导.出示课件13,14:根据图象回答下列问题:(1)图象的形状都是;(2)三条抛物线的开口方向_______;(3)对称轴都是__________;(4)从上而下顶点坐标分别是_____________________;(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________;(6)函数的增减性都相同:____________________________.学生独立思考并口答.⑴抛物线;⑵向下;⑶直线x=0;⑷(0,2),(0,0),(0,-2);⑸高;大;y=2,y=0,y=-2;⑹对称轴左侧y随x增大而增大,对称轴右侧y随x增大而减小师生共同归纳:二次函数y=ax2+k(a≠0)的性质(出示课件15)y=ax2+k a>0a<0开口方向向上向下对称轴y轴(x=0)y轴(x=0)顶点坐标(0,k)(0,k)出示课件16:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.学生独立思考后,师生共同解答.解:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2=0.把x=0代入二次函数表达式求出纵坐标为c.教师归纳:方法总结:二次函数y=ax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两点的对应横坐标互为相反数.出示课件17:抛物线y=−2x2+3的顶点坐标是________,对称轴是________,在________侧,y随着x的增大而增大;在________侧,y随着x的增大而减小.学生口答:(0,3);y轴;对称轴左;对称轴右探究三二次函数y=ax2+k的图象及平移出示课件18:从数的角度探究:出示课件19:从形的角度探究:观察图象可以发现,把抛物线y=2x2向_____平移1个单位长度,就得到抛物线_____;把抛物线y=2x2向_____平移1个单位长度,就得到抛物线y=2x2-1.学生观察图象并解答:上;y=2x2+1;下师生共同归纳:二次函数y=ax2与y=ax2+k(a≠0)的图象的关系(出示课件20)二次函数y=ax2+k的图象可以由y=ax2的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移k个单位长度得到.教师强调:上下平移规律:平方项不变,常数项上加下减.出示课件21:二次函数y=-3x2+1的图象是将()A.抛物线y=-3x2向左平移3个单位得到B.抛物线y=-3x2向左平移1个单位得到C.抛物线y=3x2向上平移1个单位得到D.抛物线y=-3x2向上平移1个单位得到学生独立思考并口答:D出示课件22:想一想:教师问1.二次函数y=ax2+k图象的画法分几步?学生答:第一种方法:平移法,分两步,即第一步画y=ax2的图象;第二步把y=ax2的图象向上(或向下)平移︱k︱单位.第二种方法:描点法,分三步即列表、描点和连线.教师问2.抛物线y=ax2+k中的a决定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?学生答:a决定开口方向和大小;k决定顶点的纵坐标.(三)课堂练习(出示课件23-27)1.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.2.抛物线y=2x2向下平移4个单位,就得到抛物线.3.填表:函数开口方向顶点对称轴有最高(低)点y=3x2y=3x2+1y=-4x2-54.已知点(m,n)在y=ax2+a(a不为0)的图象上,点(-m,n)___(填“在”或“不在”)y=ax2+a(a不为0)的图象上.5.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,则k____;若顶点位于x轴下方,则k____.6.不画函数y=-x2和y=-x2+1的图象回答下面的问题:⑴抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.(2)函数y=-x2+1,当x_____时,y随x的增大而减小;当x_____时,函数y有最大值,最大值y是_____,其图象与y轴的交点坐标是_____,与x轴的交点坐标是_____.(3)试说出抛物线y=x2-3的开口方向、对称轴和顶点坐标.7.对于二次函数y=(m+1)x m2-m+3,当x>0时y随x的增大而增大,则m=____.8.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2),则a=____.9.抛物线y=ax2+c与x轴交于A(-2,0)﹑B两点,与y轴交于点C(0,-4),则三角形ABC的面积是_______.参考答案:1.y=x2+22.y=2x2-43.函数开口方向顶点对称轴有最高(低)点y=3x2向上(0,0)y轴有最低点y=3x2+1向上(0,1)y轴有最低点y=-4x2-5向下(0,-5)y轴有最高点4.在5.=2;>2;<26.⑴向下平移1个单位.⑵>0;=0;1;(0,1);(-1,0),(1,0)⑶开口方向向上,对称轴是y轴,顶点坐标(0,-3).7.28.-29.8(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.。
人教版九年级数学上册教学设计人教版九年级数学上册教案设计(5篇)
人教版九年级数学上册教学设计人教版九年级数学上册教案设计(5篇)人教版九年级数学上册教学设计人教版九年级数学上册教案设计篇一学问与技能目标:理解生活中的百分率,把握求百分率的方法,能正确求出百分率。
过程与方法目标:通过自主探究、合作沟通,理解常用百分率的含义及计算方法。
情感、态度与价值观目标:体会求百分率的用处和必要性,感受百分率源于生活,渗透数学来源于生活并效劳于生活的数学思想。
教学重难点教学重点:理解生活中常见的百分率的含义。
教学难点:正确计算常见的百分率。
教学过程一、创设情境,探究导入1、课件出示看图,答复下面的问题。
(1)图中阴影局部占整个图形的几分之几?用百分数怎样表示?(2)图中空白局部占阴影局部的几分之几?用百分数怎样表示?2、百分数的意义我们班有36%的学生参与了美术兴趣小组。
世界总人口中大约有50%的人口年龄低于25岁。
一瓶农夫果园饮料中果汁含量大约是10%。
我们班学生的近视率是45%。
3、小刚做了10道题,错了2道做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?做对的题数占总题数的百分之几?做错的题数占总题数的百分之几?求a是b的百分之几和求a是b的几分之几方法是一样的,都是:a ÷b4、六年级有学生160人,已到达《国家体育熬炼标准》(儿童组)的有120人,占六年级学生人数的几分之几? 六年级有学生160人,已到达《国家体育熬炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?学生独立思索、同桌沟通:尝试计算,得出结论。
5、谈话,导入新课在我们的日常生活中像这样的百分率还有许多,如发芽率、及格率、出米率等,它可以帮忙我们解决生活中的一些实际问题。
下面,让我们共同走进百分率,探究它的计算方法(板书:百分率的计算)。
二、学习新知1、教学例1——在详细情境中熟悉百分率,探究计算方法(1)出例如1:六年级有学生160人,已到达《国家体育熬炼标准》(儿童组)的有120人。
人教版数学九年级上册教案(优秀10篇)
人教版数学九年级上册教案(优秀10篇)好的数学教学教案很有意义的。
教案的作用有很多,作为新的老师教案的重要性是不容小觑的,随着教案的完成,对于教材和知识点的把握更有力度,更有利于将来的讲课。
以下内容是牛牛范文为您带来的10篇人教版数学九年级上册教案,亲的肯定与分享是对我们最大的鼓励。
人教版数学九年级上册教案篇一一、指导思想:以《初中数学新课程标准》为依据,全面推进素质教育。
数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。
有效的数学学习活动不能单纯地依赖模仿与记忆动手实践、自主探索与合作交流是学生学习数学的重要方式。
由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
二、教材目标及要求:1、分式的重点是分式的四则运算,难点是分式四则混算、解分式方程以及列分式方程解应用题。
2、反比例函数掌握反比例函数的概念,性质,并利用其性质解决一些实际问题。
进一步理解变量与常量的辩证关系,进一步认识数形结合的思维方法。
3、勾股定理:会用勾股定理和逆定理解决实际问题。
4、四边形的重点是平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称。
5、数据描述。
三、教学措施:1、认真备课,做好教学规划。
一堂课,40分钟,要讲好并不容易,既要保证讲透所有的知识点,又要兼顾学生的接受能力,因此课前备课尤为重要,针对每一节内容,选择不同的讲课方式,特别是运用通俗易懂的实际用例,可以使学生更容易接受知识点,所以课前充分做好准备,每一步都要考虑周到。
2024年新人教版九年级数学上册全册课件.
2024年新人教版九年级数学上册全册课件.一、教学内容二、教学目标1. 理解并掌握一元二次方程的解法,能够解决实际问题。
2. 掌握不等式与不等式组的解法,并能应用于实际问题。
3. 理解图形的相似性质,能够运用相似知识解决几何问题。
4. 掌握圆的性质和方程,能够解决与圆相关的实际问题。
5. 了解概率与统计的基本概念,能够进行简单的数据分析。
三、教学难点与重点重点:一元二次方程的解法、不等式的解法、图形相似的应用、圆的性质和方程、概率与统计的基本概念。
难点:一元二次方程的求解、不等式组的求解、相似变换的应用、圆的方程推导、概率的计算。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:课本、练习册、草稿纸、直尺、圆规。
五、教学过程1. 导入:通过实际问题引入,激发学生的学习兴趣。
2. 讲解:详细讲解各章节的重点知识点,结合例题进行讲解。
3. 课堂互动:针对讲解的内容,进行随堂练习,检验学生掌握程度。
4. 练习:布置课后作业,巩固所学知识。
六、板书设计1. 2024年新人教版九年级数学上册全册2. 知识点:各章节重点知识点、例题、练习题3. 板书布局:左侧为知识点,右侧为例题和练习题,中间为解题步骤和注意事项。
七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0(2)解不等式组:2x 3 > 1,3x + 4 < 2(3)计算圆的面积:已知圆的半径r = 5cm(4)根据概率公式,计算掷骰子得到偶数的概率。
2. 答案:见附录。
八、课后反思及拓展延伸2. 拓展延伸:针对学有余力的学生,布置一些拓展题目,提高学生的思维能力。
重点和难点解析一、教学内容的详细讲解重点和难点解析:在教学内容中,对于每个章节的重点和难点知识点的讲解需要特别关注。
教师应深入剖析这些知识点,通过生动的实例和直观的图形展示,帮助学生更好地理解和掌握。
1. 一元二次方程的求解:详细讲解求根公式及其推导过程,强调判别式Δ的符号对根的性质的影响。