陕西省2011年中考数学模拟试题及答案
陕西中考数学模拟试卷及答案-解析版
2011年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分.)1、(2011•陕西)32-的倒数为( ) A . 23- B .23 C .32 D . 32- 考点:倒数。
专题:计算题。
分析:根据倒数的意义,两个数的积为1,则两个数互为倒数,因此求一个数的倒数即用1除以这个数. 解答:解:32-的倒数为,1÷23⎛⎫- ⎪⎝⎭=3-2, 故选:A .点评:此题考查的是倒数,关键是由倒数的意义,用1除以这个数即是.2、(2011•陕西)下面四个几何体中,同一个几何体的主视图和俯视图相同的共有( )A 、1个B 、2个C 、3个D 、4个考点:简单几何体的三视图。
分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.解答:解:圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同;圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同;球主视图、俯视图都是圆,主视图与俯视图相同;正方体主视图、俯视图都是正方形,主视图与俯视图相同.共2个同一个几何体的主视图与俯视图相同.故选B .点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3、(2011•陕西)我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学记数法表示为( )A 、1.37×109B 、1.37×107C 、1.37×108D 、1.37×1010考点:科学记数法与有效数字。
分析:较大的数保留有效数字需要用科学记数法来表示.用科学记数法保留有效数字,要在标准形式a×10n 中a 的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.解答:解:1370536875=1.370536875×109≈1.37×109,故选:A .点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的有效数字的确定方法.4、(2011•陕西)下列四个点,在正比例函数的图象上的点是( ) A 、(2,5) B 、(5,2) C 、(2,﹣5) D 、(5,﹣2考点:一次函数图象上点的坐标特征。
陕西2011中考数学(word版,含扫描答案)
例 2011年上海市长宁区中考模拟第25题如图1,在平面直角坐标系中,抛物线y=-2x2+4x+6与x轴交于A、B两点(A点在B 点左侧),与y轴交于C点,顶点为D.过点C、D的直线与x轴交于E点,以OE为直径画⊙O1,交直线CD于P、E两点.(1)求E点的坐标;(2)联结PO1、PA.求证:△BCD∽△PO1A;(3) ①以点O2 (0,m)为圆心画⊙O2,使得⊙O2与⊙O1相切,当⊙O2经过点C时,求实数m的值;②在①的情形下,试在坐标轴上找一点O3,以O3为圆心画⊙O3,使得⊙O3与⊙O1、⊙O2同时相切.直接写出满足条件的点O3的坐标(不需写出计算过程).图1动感体验请打开几何画板文件名“11长宁25”,拖动圆心O2在y轴上运动,可以改变⊙O1与⊙O2的位置关系.双击按钮“⊙O1与⊙O2外切”和“⊙O1与⊙O2内切”可以准确显示⊙O3与⊙O1、⊙O2同时相切时的位置.双击按钮“第(2)题”和“第(3)题”可以切换.请打开超级画板文件名“11长宁25”,思路点拨1.这是一道超级难题,放弃可惜,努力又不会有圆满的结果,先拿回第(1)题.2.第(2)题如果没有规范、准确的图形,很难判断∠BCD=∠PO1A.事实上,△CBE 与△O1PE是有公共底角的两个等腰三角形,顶角的邻补角相等,即∠BCD=∠PO1A.3.第(3)题有几个符合条件的⊙O3呢?画两个坐标系,准确画出C、E两点和⊙O1,一个画出⊙O1与⊙O2外切,另一个画出⊙O1与⊙O2内切,然后仔细端详、思考,能想出几个⊙O3就算出几个.好不容易想到了,如果因为计算错误,那是白劳!满分解答(1)由y=-2x2+4x+6=-2(x-1)2+8=-2(x+1) (x-3),得A(-1,0),B(3,0),C(0,6),D(1,8).直线CD的解析式为y=2x+6,点E的坐标为(-3,0).(2)已知B(3,0),C(0,6),D(1,8),由两点间的距离公式,可得35BC=、5CD=.如图2,⊙O1的直径OE=3,OA=1,所以PO1=32,O1A=12.因此1125BC CDPO O A==.因为B(3,0)、E(-3,0)关于y轴对称,所以∠B=∠E.所以∠BCD=2∠E.因为O1E=O1P,所以∠O1PE=∠E.所以∠PO1A=2∠E.于是证得∠BCD=∠PO1A.根据两边对应成比例且夹角相等,得到△BCD∽△PO1A.(3)①对于⊙O 1,r 1=32;对于⊙O 2,r 2=6-m ;圆心距O 1O 2=223()2m +. 如图3,当两圆外切时,r 1+r 2=O 1O 2.解方程22336()22m m +-=+,得185m =. 如图4,当两圆内切时,| r 1+r 2 |=O 1O 2.解方程2233(6)()22m m --=+,得2m =.图2 图3 图4②符合条件的点O 3有7个,坐标为180,5⎛⎫ ⎪⎝⎭ ,100,7⎛⎫- ⎪⎝⎭,3,02⎛⎫ ⎪⎝⎭,45,014⎛⎫- ⎪⎝⎭,140,15⎛⎫ ⎪⎝⎭,()0,2,21,02⎛⎫ ⎪⎝⎭. 考点伸展第(3)②题的⊙O 3的示意图如下:图5中,当⊙O 1与⊙O 2(阴影两圆)外切时,与两圆同时外切的⊙O 3有两个,同时内切的⊙O 3有两个.图5中,当⊙O 1与⊙O 2(无阴影两圆)内切时,与两圆同时内切的⊙O 3有四个(阴影四个圆),其中圆心O 3在x 轴、y 轴各有两个.图5与图6中,重合的圆有一个.图5 图6。
2011年陕西省中考数学模拟试卷(一)
2011年陕西省中考数学模拟试卷(一)2011年陕西省中考数学模拟试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.春暖花开,世园开幕,组委会以每日游览7万人为基准,将某日游览人数10万人记作+3万人,那么实际游览人数为5万人时应记作()A.+2万人B.﹣2万人C.﹣3万人D.+5万人2.(2009•山西)如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.5 B.6 C.7 D.83.(2009•武汉)函数y=中自变量x的取值范围是()A.x≥﹣B.x≥C.x≤﹣D.x≤4.某校足球队12名队员的身高情况统计如下表:则这12名队员身高的众数和中位数分别是()A.160cm,161cm B.160cm,164cm C.163cm,164cm D.163cm,163cm5.正比例函数y=﹣2x的图象过A(x1,y1),B(x2,y2)两点,若x1﹣x2=3,则y1﹣y2的值为()A.3 B.﹣3 C.6 D.﹣66.下列性质正方形具有而菱形不具有的是()A.四条边相等B.对角线互相垂直平分C.对角线相等D.对角线平分一组对角7.方程x2﹣2=0的根是()A.x=2 B.C.x 1=2,x2=﹣2 D.8.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是()A.点E B.点F C.点G D.点H9.(2008•孝感)Rt△ABC中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为()A.πB.πC.πD.π10.(2004•乌鲁木齐)如图,AD∥BC,∠D=90°,DC=7,AD=2,BC=4.若在边DC上有点P使△PAD和△PBC相似,则这样的点P存在的个数有()A.1 B.2 C.3 D.4二、填空题(共6小题,每小题3分,满分18分)11.计算:=_________.12.如图,∠COD=∠AOB=90°.若∠COA=40°,则∠DOB的大小为_________.13.(2009•陕西)在一次函数y=(1﹣m)x+1中,若y的值随x值的增大而减小,则m的取值范围_________.14.(2010•巴中)点A(x1,y1),点B(x2,y2)是双曲线上的两点,若x1<x2<0,则y1_________y2(填“=”、“>”、“<”).15.如图,在边长为1的菱形ABCD中,E是AD的中点,若tanA=2,则四边形ABCE的面积是_________.16.如图(1),从正方体的3个不同方向圴匀地各切1刀,可得8个小正方体;如图(2),从正方体的3个不同方向均匀地各切2刀,可得27个小正方体;…那么,沿正方体的3个不同方向均匀地各切n刀,得到正方体的个数应该为_________.三、解答题(共9小题,计72分,解答应写出过程)17.(2009•黄冈)解不等式组18.如图,在平行四边形ABCD中,AB⊥AC,AB=1,BC=,对角线AC,BD相交于点O,将直线AC绕点O 顺时针旋转,分别交BC、AD于点E、F.(1)求证:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等.19.某地区教育部门从2011年参加中考的6000名初中毕业生中随机抽取200名学生进行了一次视力调查,以调查数据为样本,绘制出部分频数分布表和部分频数分布直方图(部分末完成)(每组数据含最小值,不含最大值,组距取0.3)(1)表中a和b所表示的数分别为a=_________,b=_________.(2)请将部分频数分布直方图补充完整;(3)若视力在4.9以上(含4.9)均属正常,那么估计该区6000名初中毕业生视力正常的学生有多少人?20.某实验中学甲、乙、丙三个数学兴趣小组制定了一个测量校园物体的方案.于同一时刻在阳光下对标杆及校园中的某些物体进行了测量,下面是他们通过测量得到一些信息:甲组:如图(1),测得一根直立于平地,长为0.8m的标杆的影长为0.6m.丙组:如图(3),测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗线忽略不计)的高度为2.6m,影长为2.1m,请根据以上信息解答下列问题.(1)请根据甲、乙两组得到的信息计算出学校水塔的高度.(2)如图(3),设太阳光NH与圆O相切于点M,请根据甲、丙两组得到的信息,求景灯灯罩的半径.21.(2009•陕西)某工程队承担了一项2100米的排水管道铺设任务.在施工过程中,前30天使按原计划进行施工的,后期提高了工效.铺设排水管道的长度y(米)与施工时间x(天)之间的关系如图所示.(1)求原计划多少天完成任务?(2)求提高功效后,y与x之间的函数表达式;(3)实际完成这项任务比原计划提前了多少天?22.(2010•锦州)小刚和小明玩“石头”、“剪子”、“布”的游戏,游戏的规则为:“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,若两人所出手势相同,则为平局.(1)玩一次小刚出“石头”的概率是多少?(2)玩一次小刚胜小明的概率是多少,用列表法或画树状图法加以说明.23.如图,线段AB经过圆心O,交⊙O于A、C两点,点D在⊙O上,∠A=∠B=30°.(1)求证:BD是⊙O的切线;(2)若点N在⊙O上,且DN⊥AB,垂足为M,NC=10,求AD的长.24.(2009•陕西)如图,一条抛物线经过原点,且顶点B的坐标(1,﹣1).(1)求这个抛物线的解析式;(2)设该抛物线与x轴正半轴的交点为A,求证:△OBA为等腰直角三角形;直角三角形,且∠EOF=90°.25.(2007•中山)如图,正方形ABCD的边长为3a,两动点E、F分别从顶点B、C同时开始以相同速度沿BC、CD运动,与△BCF相应的△EGH在运动过程中始终保持△EGH≌△BCF,对应边EG=BC,B、E、C、G在一直线上.(1)若BE=2a,求DH的长;(2)当E点在BC边上的什么位置时,△DHE的面积取得最小值?并求该三角形面积的最小值.2011年陕西省中考数学模拟试卷(一)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.春暖花开,世园开幕,组委会以每日游览7万人为基准,将某日游览人数10万人记作+3万人,那么实际游览人数为5万人时应记作()A.+2万人B.﹣2万人C.﹣3万人D.+5万人考点:正数和负数。
2011年陕西中考数学试题及答案(扫描版)
2011年金平区初中毕业生学业考试模拟考参考答案及评分标准物理说明:1.提供的答案除选择题外,不一定是唯一的答案,对于与此不同的答案,只要是合理的,同样给分。
2.计算题是按分部方法给分的,若考生并未写出这步骤,但在文字表达或以后的解题过程中反映了这一步骤,同样给分;没有写出任何式子或文字说明,只给出最后结果的,不能给分;不带单位计算或结果没有写单位或单位错误的,全题只扣1分。
一、单选选择题(本大题7小题,每题4分,共28分)题号 1 2 3 4 5 6 7 答案 D A D B C A C二、填空题(本大题7小题,每空1分,共21分)8. 状态(或方向)相互重力的方向总是竖直向下9.(1)3×108m/s (2)1000c (3)3V10. 6 1.8 不变11. 大于折射虚12. 时间3000 36013. 运动状态惯性增大摩擦14.(1)做功(2)4×105 (3)升高三、作图题(共8分)15.(1)(2分)如答图1中的甲图或乙图(2)(2分)如答图2(3)(3分)如答图3说明:正确连接开关及电灯得2分;正确连接插座得1分四、实验题(本大题3小题,共23分)16.(7分)(1)39.6 15 2.64×103 (每空1分,共3分)(2)b 0.4 5 0.8 (每空1分,共4分)17.(9分)(1)48 固液共存状态(每空1分,共2分)(2)大于物质在t5时刻从水中吸收了更多的热量,内能增大(每空1分,共2分)(3)热传递使固体受热更加均匀3×105 28.6(第一、二、三空各1分,第四空2分,共5分)18.(7分)(1)竖直匀速向上(或匀速向上)(1分)(2)60.6% (1分)(3)66.7% 同一套滑轮组所提重物越重,机械效率越高。
(第一空1分,第二空2分,共3分)(4)变大(1分)(5)不变(1分)五、计算题(本大题2小题,共16分)19.(8分)解:(1)F浮=G排=m排g=67000×103kg×10N/kg=6.7×108N (2分)(2)p=ρg h =1.1×103kg/m3×10N/kg×10m=1.1×105 Pa(2分)(3)由W=Fs 和P=W/t 得,P=Fv (1分)∴该舰的动力F=P/v=147200×103 W/16m/s=9.2×106 N (2分)∵匀速前进∴该舰所受阻力f=F=9.2×106 N (1分)答(略)20.(8分)解:(1)R1=U/I1=6V/0.3A=20Ω(2分)(2)当滑片P在A端时,滑动变阻器的阻值R2=40Ω,R1和R2串联则电流表示数I2=U/(R1+R2)=6V/(20Ω+40Ω)=0.1A (2分)电压表示数U2=I2R1=0.1A×20Ω=2V (2分)此时滑动变阻器消耗的功率P=I22R2=(0.1A)2×40Ω=0.4W (2分)答(略)六、综合能力题(本大题3小题,共24分)21.(6分)(1)①超声②音调(每空1分,共2分)(2)次声波(1分)(3)5Hz (1分)(4)声可以传递信息声可以传递能量(每空1分,共2分)22.(10分)(1)(以下答案供参考,其他答案只要合理均给分)评分说明:每空1分,共4分汽车上的装置水箱里面用水做冷却剂前方的挡风玻璃是倾斜的前排乘客必须系戴安全带汽车的方向盘涉及的物理知识水的比热容大平面镜成像原理(光的反射)惯性轮轴(简单机械)(2)C (2分)(3)D (2分)(4)A (2分)23.(8分)(1)N 丙大于(每空1分,共3分)(2)增大(1分)(3)500 1.0 (每空2分,共4分)。
陕西中考数学试题及答案
2011年陕西省中考数学试题第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.32-的倒数为 【 】 A . 23- B .23 C .32 D . 32-2.下面四个几何体中,同一几何体的主视图和俯视图相同的共有 【 】A 、1个B 、2个C 、3个D 、4个3.我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学计数法表示为 【 】 A 、 91037.1⨯B 、71037.1⨯ C 、81037.1⨯ D 、 101037.1⨯4、下列四个点,在正比例函数X Y 52-=的图像上的点是 【 】 A 、( 2, 5 ) B 、( 5, 2) C 、(2,-5)D 、 ( 5 , -2 )5.在△ABC 中,若三边BC ,CA,AB 满足 BC :CA :AB=5:12:13,则cosB= 【 】A 、125B 、512 C 、135 D 、1312 6.某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,则这组数据的中位数和众数分别是 【 】 A 、181,181 B 、182,181 C 、180,182 D 、181,1827.同一平面内的两个圆,他们的半径分别为2和3 ,圆心距为d,当51ππd 时,两圆的位置关系是 【 】A 、外离B 、相交C 、内切或外切D 、内含 8.如图,过y 轴上任意一点p ,作x 轴的平行线,分别与反比例函数xy x y 24=-=和的图像交于A 点和B 点,若C 为x 轴上任意一点,连接AC,BC 则△ABC 的面积为 【 】A 、2B 、3C 、4D 、5正方体 圆锥 球 圆柱 (第二题图)9、 如图,在ABCD Y中EF 分别是AD 、 CD 边上的点,连接BE 、AF,他们相交于G ,延长BE 交CD 的延长线于点H,则图中的全等三角形有 【 】 A 、2对 B 、3对 C 、4对 D 、5对10、若二次函数c x x y +-=62的图像过)321,23(),,2(),,1(Y C Y B Y A +-,则321,,y y y 的大小关系是 【 】A 、321y y y φφB 、321y y y φφC 、312y y y φφD 、213y y y φφ第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分) 11.计算:23-= .(结果保留根号)12.如图,AC ∥BD,AE 平分∠BAC 交BD 于点 E ,若0641=∠ 则=∠1 .13、分解因式:=+-a ab ab 442.14、一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为 元15、若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 . 16、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,若AD=3,BC=7,则梯形ABCD 面积的最大值三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分) 解分式方程:xx x -=--2312418.(本题满分6分)在正方形ABCD 中,点G 是BC 上任意一点,连接AG ,过B,D 两点分别作BE ⊥AG ,DF ⊥AG,垂足分别为E,F 两点,求证:△ADF ≌△BAE19.(本题满分7分)某校有三个年级,各年级的人数分别为七年级600人,八年级540人,九年级565人,学校为了解学生生活习惯是否符合低碳观念,在全校进行了一次问卷调查,若学生生活习惯符合低碳观念,则称其为“低碳族”;否则称其为“非低碳族”,经过统计,将全校的低碳族人数按照年级绘制成如下两幅统计图:(1)根据图①、图②,计算八年级“低碳族”人数,并补全下面两个统计图;(2)小丽依据图①、图②提供的信息通过计算认为,与其他两个年级相比,九年级的“低碳族”人数在本年级全体学生中所占的比例较大,你认为小丽的判断正确吗?说明理由。
2011陕西中考数学试题及答案
2011陕西中考数学试题及答案一、选择题1. 计算:$3 \times (4 + 5) - 2^2 =$ (2011陕西中考)解答:首先计算括号内的加法,得到$3 \times 9 - 2^2 =$,然后计算乘法,得到$27 - 4 =$,最后计算减法,得到$23$。
因此,答案为$23$。
2. 下列各数:$\sqrt{9}$,$\frac{12}{4}$,$(-3) \times 2^2 + 5^0$和$-1.1$中,其中不是整数的是:(2011陕西中考)A. $\sqrt{9}$B. $\frac{12}{4}$C. $(-3) \times 2^2 + 5^0$D. $-1.1$解答:$\sqrt{9}=3$,$\frac{12}{4}=3$,$(-3) \times 2^2 + 5^0=-3\times 4 + 1=-11$,$-1.1$不是整数。
因此,答案是D。
3. 用$\frac{4}{9}$表示0.4,则$\frac{41}{90}$的另一种表示是:(2011陕西中考)解答:首先计算$\frac{4}{9} \times 10$,得到$\frac{40}{9}$。
然后在$\frac{40}{9}$的基础上加上$\frac{1}{9}$,得到$\frac{41}{9}$。
最后将$\frac{41}{9}$转化为分数形式,得到$\frac{41}{9}$。
因此,答案是$\frac{41}{9}$。
4. 小花去商场选购衣服,她看中了一件原价为320元的衣服,商场正在举行打折活动,全场商品打7折。
小花还是犹豫不决,她妈妈说:“你有一张价格为20元的优惠券,使用后再打折。
”小花计算了一下,最终衣服的价格是多少元?(2011陕西中考)解答:首先计算打折后衣服的价格,$320 \times 0.7=224$。
然后将优惠券价格减去衣服价格,$20-224=-204$。
因此,最终衣服的价格是负数204元。
真题:2011年陕西中考数学试题及答案
真题:2011年陕西中考数学试题及答案
初三数学试题:图形的旋转考试题(含答案)
等可能情形下的概率计算同步练习
专题推荐:
北京精锐教育初中一对一辅导专题
初三数学试题:图形的旋转考试题(含答案)
等可能情形下的概率计算同步练习
专题推荐:
北京精锐教育初中一对一辅导专题
初三数学试题:图形的旋转考试题(含答案)
等可能情形下的概率计算同步练习
专题推荐:
北京精锐教育初中一对一辅导专题
初三数学试题:图形的旋转考试题(含答案)
等可能情形下的概率计算同步练习
专题推荐:
北京精锐教育初中一对一辅导专题
初三数学试题:图形的旋转考试题(含答案) 等可能情形下的概率计算同步练习
专题推荐:
北京精锐教育初中一对一辅导专题
初三数学试题:图形的旋转考试题(含答案) 等可能情形下的概率计算同步练习
专题推荐:
北京精锐教育初中一对一辅导专题
初三数学试题:图形的旋转考试题(含答案) 等可能情形下的概率计算同步练习
专题推荐:
北京精锐教育初中一对一辅导专题
初三数学试题:图形的旋转考试题(含答案) 等可能情形下的概率计算同步练习
专题推荐:
北京精锐教育初中一对一辅导专题。
陕西2011中考数学(word版,含扫描答案)
例 2011年上海市闵行区中考模拟第24题如图1,已知:抛物线y=x2+bx-3与x轴相交于A、B两点,与y轴相交于点C,并且OA = OC.(1)求这条抛物线的解析式;(2)过点C作CE// x轴,交抛物线于点E,设抛物线的顶点为点D,试判断△CDE 的形状,并说明理由;(3)设点M在抛物线的对称轴l上,且△MCD的面积等于△CDE的面积,请写出点M的坐标(无需写出解题步骤).图1动感体验请打开几何画板文件名“11闵行24”,拖动点A在x轴的负半轴上运动,可以体验到,△DCE的形状保持DC=DE,当OA=OC时,△DCE是等腰直角三角形.拖动点M在抛物线的对称轴上运动,可以体验到,△MCD与△ECD是同底的三角形,当M落在与CD平行的两条直线上时,两个三角形的面积相等,这两个点M关于点D中心对称.请打开超级画板文件名“11闵行24”,思路点拨1.求抛物线的解析式,关键是求点A的坐标,根据已知条件,数形结合.2.判断△CDE的形状是等腰直角三角形,可以方便第(3)求解点M的坐标.满分解答(1)因为抛物线y=x2+bx-3与y轴交于点C(0,-3),OA=OC,所以点A的坐标为(-3,0).将A (-3,0)代入y=x2+bx-3,解得b=2.因此抛物线的解析式为y=x2+2x-3.(2)由y=x2+2x-3=(x+1) 2-4,得顶点D的坐标为(-1,-4) .因为CE // x轴,所以点C与点E关于抛物线的对称轴对称.因此CE=2,DE=DC.由两点间的距离公式,求得DC=2.于是可得DE2+DC2=CE2.所以△CDE是等腰直角三角形.(3)M1(-1,-2),M2(-1,-6).考点伸展第(3)题的解题思路是这样的:如图2,如图3,因为△MCD与△CDE是同底的两个三角形,如果面积相等,那么过点E作CD的平行线,与抛物线的对称轴的交点就是要探求的点M.再根据对称性,另一个符合条件的点M在点D的下方,这两个点M关于点D对称.还有更简单的几何说理方法:因为△CDE是等腰直角三角形,对于点D上方的点M,四边形CDEM是正方形,容易得到点M的坐标为(-1,-2).再根据对称性,得到另一个点M的坐标为(-1,-6).图2 图3。
2011年中考模拟试卷数学试卷及答案(2)
一. 仔细选一选 (本题有 10 个小题, 每小题 3 分, 共 30 分)
下面每小题给出的四个选项中, 只有一个是正确的, 请在答题卷中把正确选项的字母涂黑.
注意可以用多种不同的方法来选取正确答案.
1.我国在 2009 到 2011 三年中,各级政府投入医疗卫生领域资金达 8500 亿元人民币.将“8500
14.
15.
16.
三.全面答一答 (本题有 8 个小题, 共 66 分.)
17. (本题 6 分) 解:原式= a 2 a(a 1) a ……… 3 分 a 1 (a 2)(a 2) a 2
当 a=-1 时, 原式= -1
…………….2 分 …………….1 分
18. (本题 6 分) 解:(1)图略 ………… ………………………………3 分
23.(本题满分 10 分)某公司投资新建了一商场,共有商铺 30 间.据预测,当每间的年租金定为 10 万元时,可全部租出.每间的年租金每增加 5 000 元,少租出商铺 1 间.(假设年租金的增加额 均为 5000 元的整数倍)该公司要为租出的商铺每间每年交各种费用 1 万元,未租出的商铺每 间每年交各种费用 5 000 元.
)
①正方体
②圆柱
③圆锥
④球
A. ①②
B. ②③
C. ②④
D. ③④
7.如图,把⊙O1 向右平移 8 个单位长度得⊙O2,两圆相交于 A.B,
1
第7题
且 O1A⊥O2A,则图中阴影部分的面积是(
A.4π-8 B. 8π-16
C.16π-16
) D. 16π-32
2010 8. 已知函数 y=― t3― ,则在平面直角坐标系中关于该函数图像的位置判断正确的是
2011年陕西中考数学
2011年陕西中考数学姓名___________班级__________学号__________分数___________一、选择题1.(15165-2011陕西)32-的倒数为( ) A . 23-B .23C .32D . 32-2.(15166-2011陕西)下面四个几何体中,同一个几何体的主视图和俯视图相同的共有( )A .1个B .2个C .3个D .4个3.(15167-2011陕西)我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学记数法表示为( )A .1.37×109B .1.37×107C .1.37×108D .1.37×10104.(15168-2011陕西)下列四个点,在正比例函数的图象上的点是( )A .(2,5)B .(5,2)C .(2,-5)D .(5,-2)5.(15169-2011陕西)在△ABC 中,若三边BC ,CA ,AB 满足BC :CA :AB =5:12:13,则cosB =( )A .B .C .D .6.(15170-2011陕西)某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,则这组数据的中位数和众数分别是( )A .181,181B .182,181C .180,182D .181,1827.(15171-2011陕西)同一平面内的两个圆,他们的半径分别为2和3,圆心距为d ,当1<d <5时,两圆的位置关系是( )A .外离B .相交C .内切或外切D .内含8.(15172-2011陕西)如图,过y 轴上任意一点P ,作x 轴的平行线,分别与反比例函数4y x =-和2y x=的图象交于A 点和B 点,若C 为x 轴上任意一点,连接AC ,BC ,则△ABC 的面积为( )A .3B .4C .5D .69.(15173-2011陕西)如图,在▱ABCD 中,E 、F 分别是AD ,CD 边上的点,连接BE 、AF ,他们相交于G ,延长BE 交CD 的延长线于点H ,则图中的相似三角形共有( )A.2对B.3对C.4对D.5对10.(15174-2011陕西)若二次函数y=x2-6x+c的图象过A(-1,y1),B(2,y2),C(,y3),则y1,y2,y3的大小关系是( )A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2二、填空题11.(15175-2011陕西)计算:=____________.(结果保留根号)12.(15176-2011陕西)如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=64°,则∠2=____________.13.(15177-2011陕西)分解因式:ab2-4ab+4a=____________.14.(15178-2011陕西)一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为____________.15.(15179-2011陕西)若一次函数y=(2m-1)x+3-2m的图象经过一、二、四象限,则m的取值范围是____________.16.(15180-2011陕西)如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,若AD=3,BC=7,则梯形ABCD面积的最大值____________.三、计算题17.(15181-2011陕西)解分式方程:43122xx x-=--.四、证明题18.(15182-2011陕西)在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE.ABEFG CD1234五、解答题 19.(15183-2011陕西)某校有三个年级,各年级的人数分别为七年级600人,八年级540人,九年级565人,学校为了解学生生活习惯是否符合低碳观念,在全校进行了一次问卷调查,若学生生活习惯符合低碳观念,则称其为“低碳族”;否则称其为“非低碳族”,经过统计,将全校的低碳族人数按照年级绘制成如下两幅统计图:(1)根据图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图;(2)小丽依据图①、图②提供的信息通过计算认为,与其他两个年级相比,九年级的“低碳族”人数在本年级全体学生中所占的比例较大,你认为小丽的判断正确吗?说明理由.20.(15184-2011陕西)一天,数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些坑道对河道的影响,如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:①先测出沙坑坑沿的圆周长34.54米;②甲同学直立于沙坑坑沿的圆周所在的平面上,经过适当调整自己所处的位置,当他位于B 时恰好他的视线经过沙坑坑沿圆周上一点A 看到坑底S (甲同学的视线起点C 与点A ,点S 三点共线),经测量:AB =1.2米,BC =1.6米.根据以上测量数据,求圆锥形坑的深度(圆锥的高).(π取3.14,结果精确到0.1米)21.(15185-2011陕西)2011年4月28日,以“天人长安,创意自然一一城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园,这次园艺会的门票分为个人票和团体票两大类,其中个人票设置有三种:某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票的张数是A种票张数的3倍还多8张,设购买A种票张数为x,C种票张数为y(1)写出y与x之间的函数关系式;(2)设购票总费用为W元,求出W(元)与X(张)之间的函数关系式;(3)若每种票至少购买1张,其中购买A种票不少于20张,则有几种购票方案?并求出购票总费用最少时,购买A,B,C三种票的张数.22.(15186-2011陕西)七年级五班在课外活动时进行乒乓球练习,体育委员根据场地情况,将同学分成3人一组,每组用一个球台,甲乙丙三位同学用“手心,手背”游戏(游戏时,手心向上简称“手心”,手背向上简称“手背”)来决定那两个人首先打球,游戏规则是:每人每次随机伸出一只手,出手心或者手背,若出现“两同一异”(即两手心、一手背或者两手背一手心)的情况,则出手心或手背的两个人先打球,另一人裁判,否则继续进行,直到出现“两同一异”为止.(1)请你列出甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现的所有等可能的情况(用A表示手心,B表示手背);(2)求甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现“两同一异”的概率.23.(15187-2011陕西)如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D(1)求证:AP=AC;(2)若AC=3,求PC的长.24.(15188-2011陕西)如图,二次函数的图象经过△AOB的三个顶点,其中A(-1,m),B(n,n)(1)求A,B的坐标;(2)在坐标平面上找点C,使以A.O、B.C为顶点的四边形是平行四边形.①这样的点C有几个?②能否将抛物线平移后经过A.C两点,若能,求出平移后经过A.C两点的一条抛物线的解析式;若不能,说明理由.25.(15189-2011陕西)如图①,在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B,E,F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个____________三角形(2)如图②、在矩形ABCD中,AB=2,BC=4,,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;(3)如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?((((2011年陕西中考数学答案一、选择题 1.(15165)A .考点:倒数. 专题:计算题.分析:根据倒数的意义,两个数的积为1,则两个数互为倒数,因此求一个数的倒数即用1除以这个数. 解答:解:32-的倒数为,1÷23⎛⎫- ⎪⎝⎭=3-2, 故选:A .点评:此题考查的是倒数,关键是由倒数的意义,用1除以这个数即是. 2.(15166)B .考点:简单几何体的三视图.分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形. 解答:解:圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同; 圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同; 球主视图、俯视图都是圆,主视图与俯视图相同; 正方体主视图、俯视图都是正方形,主视图与俯视图相同. 共2个同一个几何体的主视图与俯视图相同. 故选B .点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中. 3.(15167)A .考点:科学记数法与有效数字.分析:较大的数保留有效数字需要用科学记数法来表示.用科学记数法保留有效数字,要在标准形式a ×10n 中a 的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.解答:解:1370536875=1.370536875×109≈1.37×109, 故选:A .点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的有效数字的确定方法. 4.(15168)考点:一次函数图象上点的坐标特征. 专题:函数思想.分析:根据函数图象上的点的坐标特征,经过函数的某点一定在函数的图象上,一定满足函数的解析式.根据正比例函数的定义,知是定值. 解答:解:由,得=-;A .∵=,故本选项错误;B .∵=,故本选项错误;C .∵=-,故本选项错误;D .∵=-,故本选项正确;故选D.点评:本题考查了正比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.在这条直线上的各点的坐标一定适合这条直线的解析式.5.(15169)考点:锐角三角函数的定义;勾股定理的逆定理.专题:计算题.分析:根据三角形余弦表达式即可得出结果.解答:解:根据三角函数性质,cosB==,故选C.点评:本题主要考查了锐角三角函数的定义及比例关系,比较简单.6.(15170)考点:众数;中位数.专题:计算题.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:在这一组数据中182是出现次数最多的,故众数是182;处于这组数据中间位置的数是182、182,那么由中位数的定义可知,这组数据的中位数是182.故选D.点评:本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.(15171)考点:圆与圆的位置关系.专题:数形结合.分析:根据两圆位置关系与数量关系间的联系即可求解.注意相交,则R-r<d<R+r(d表示圆心距,R,r分别表示两圆的半径).解答:解:∵他们的半径分别为2和3,圆心距为d,当1<d<5时,∴两圆的位置关系是相交.故选B.点评:此题考查了圆与圆的位置关系.解题的关键是抓住两圆位置关系与数量关系间的联系:外离,则d >R+r;外切,则d=R+r;相交,则R-r<d<R+r;内切,则d=R-r;内含,则d<R-r.(d表示圆心距,R,r分别表示两圆的半径).8.(15172)A.;考点:反比例函数综合题.特值法,当C与O重合时。
2011年陕西省中考数学试卷
2011年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(2011•陕西)的倒数为()A. B.C.D.2.(2011•陕西)下面四个几何体中,同一个几何体的主视图和俯视图相同的共有()A.1个B.2个C.3个D.4个3.(2011•陕西)我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学记数法表示为()A.1.37×109B.1.37×107C.1.37×108D.1.37×10104.(2011•陕西)下列四个点,在正比例函数的图象上的点是()A.(2,5)B.(5,2)C.(2,﹣5)D.(5,﹣25.(2011•陕西)在△ABC中,若三边BC,CA,AB满足BC:CA:AB=5:12:13,则cosB=()A.B.C.D.6.(2011•陕西)某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,则这组数据的中位数和众数分别是()A.181,181 B.182,181 C.180,182 D.181,1827.(2011•陕西)同一平面内的两个圆,他们的半径分别为2和3,圆心距为d,当1<d<5时,两圆的位置关系是()A.外离 B.相交 C.内切或外切D.内含8.(2011•陕西)如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3 B.4 C.5 D.69.(2011•陕西)如图,在▱ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,他们相交于G,延长BE交CD的延长线于点H,则图中的相似三角形共有()A.2对B.3对C.4对D.5对10.(2011•陕西)若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2二、填空题(共6小题,每小题3分,计18分)11.(2011•陕西)计算:=_________.(结果保留根号)12.(2011•陕西)如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=64°,则∠2=_________.13.(2011•陕西)分解因式:ab2﹣4ab+4a=_________.14.(2011•陕西)一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为_________.15.(2011•陕西)若一次函数y=(2m﹣1)x+3﹣2m的图象经过一、二、四象限,则m的取值范围是_________.16.(2011•陕西)如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,若AD=3,BC=7,则梯形ABCD面积的最大值_________.三、解答题(共9小题,计72分.解答应写出过程)17.(2011•陕西)解分式方程:.18.(2011•陕西)在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE.19.(2011•陕西)某校有三个年级,各年级的人数分别为七年级600人,八年级540人,九年级565人,学校为了解学生生活习惯是否符合低碳观念,在全校进行了一次问卷调查,若学生生活习惯符合低碳观念,则称其为“低碳族”;否则称其为“非低碳族”,经过统计,将全校的低碳族人数按照年级绘制成如下两幅统计图:(1)根据图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图;(2)小丽依据图①、图②提供的信息通过计算认为,与其他两个年级相比,九年级的“低碳族”人数在本年级全体学生中所占的比例较大,你认为小丽的判断正确吗?说明理由.20.(2011•陕西)一天,数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些坑道对河道的影响,如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:①先测出沙坑坑沿的圆周长34.54米;②甲同学直立于沙坑坑沿的圆周所在的平面上,经过适当调整自己所处的位置,当他位于B时恰好他的视线经过沙坑坑沿圆周上一点A看到坑底S(甲同学的视线起点C与点A,点S三点共线),经测量:AB=1.2米,BC=1.6米.根据以上测量数据,求圆锥形坑的深度(圆锥的高).(π取3.14,结果精确到0.1米)21.(2011•陕西)2011年4月28日,以“天人长安,创意自然一一城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园,这次园艺会的门票分为个人票和团体票两大类,其中个人票设置有三种:票得种类夜票(A)平日普通票(B)指定日普通票(C)单价(元/张)60 100 150某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票的张数是A种票张数的3倍还多8张,设购买A种票张数为x,C种票张数为y(1)写出y与x之间的函数关系式;(2)设购票总费用为W元,求出W(元)与X(张)之间的函数关系式;(3)若每种票至少购买1张,其中购买A种票不少于20张,则有几种购票方案?并求出购票总费用最少时,购买A,B,C三种票的张数.22.(2011•陕西)七年级五班在课外活动时进行乒乓球练习,体育委员根据场地情况,将同学分成3人一组,每组用一个球台,甲乙丙三位同学用“手心,手背”游戏(游戏时,手心向上简称“手心”,手背向上简称“手背”)来决定那两个人首先打球,游戏规则是:每人每次随机伸出一只手,出手心或者手背,若出现“两同一异”(即两手心、一手背或者两手背一手心)的情况,则出手心或手背的两个人先打球,另一人裁判,否则继续进行,直到出现“两同一异”为止.(1)请你列出甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现的所有等可能的情况(用A表示手心,B 表示手背);(2)求甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现“两同一异”的概率.23.(2011•陕西)如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D;(1)求证:AP=AC;(2)若AC=3,求PC的长.24.(2011•陕西)如图,二次函数的图象经过△AOB的三个顶点,其中A(﹣1,m),B(n,n)(1)求A、B的坐标;(2)在坐标平面上找点C,使以A、O、B、C为顶点的四边形是平行四边形.①这样的点C有几个?②能否将抛物线平移后经过A、C两点?若能,求出平移后经过A、C两点的一条抛物线的解析式;若不能,说明理由.25.(2011•陕西)如图①,在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个_________三角形(2)如图①、在矩形ABCD中,AB=2,BC=4,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;(3)如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?2011年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(2011•陕西)的倒数为()A. B.C.D.考点:倒数。
陕西省2011年中考数学试卷
2011陕西省初中毕业学业考试·数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1. 32-的倒数为 ( )A .23-B .23C .32D . 32- 2.下面四个几何体中,同一几何体的主视图和俯视图相同的共有 ( )A.1个B.2个C.3个D.4个3.我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学计数法表示为 ( ) A.91037.1⨯ B.71037.1⨯ C.81037.1⨯ D. 101037.1⨯4、下列四个点,在正比例函数25y x =-的图像上的点是( )A.( 2, 5 )B.( 5, 2)C.(2,-5)D. ( 5 , -2 )5.在△ABC 中,若三边BC ,CA ,AB 满足 BC :CA :AB =5:12:13,则cos B =( )A.125B.512 C.135 D.1312 6.某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,则这组数据的中位数和众数分别是( )A.181,181B.182,181C.180,182D.181,1827.同一平面内的两个圆,他们的半径分别为2和3 ,圆心距为d,当51<<d 时,两圆的位置关系是 ( )A.外离B.相交C.内切或外切D.内含 8.如图,过y 轴上任意一点p ,作x 轴的平行线,分别与反比例函数xy x y 24=-=和的图像交于A 点和B 点,若C 为x 轴上任意一点,连接AC ,BC 则△ABC 的面积为( )A.3B.4C.5D.6正方体 圆锥 球 圆柱 第2题图9.如图,在ABCD中EF分别是AD,CD边上的点,连接BE,AF,他们相交于G,延长BE 交CD的延长线于点H,则图中的相似三角形有()A.2对 B.3对 C.4对 D.5对10.若二次函数cxxy+-=62的图像过)321,23(),,2(),,1(YCYBYA+-,则321,,yyy的大小关系是()A.321yyyφφ B.321yyyφφ C.312yyyφφ D.213yyyφφ第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,计18分)11.计算:23-= .(结果保留根号)12.如图,AC∥BD,AE平分∠BAC交BD于点E,若0641=∠,则=∠1.13.分解因式:=+-aabab442.14.一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为元.15.若一次函数mxmy23)12(-+-=的图像经过一、二、四象限,则m的取值范围是.16.[2011陕西,16]如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,若AD=3,BC=7,则梯形ABCD面积的最大值.第8题图第9题图三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分) 解分式方程:xx x -=--2312418.(本题满分6分)在正方形ABCD 中,点G 是BC 上任意一点,连接AG ,过B ,D 两点分别作BE ⊥AG ,DF ⊥AG ,垂足分别为E ,F 两点,求证:△ADF ≌△BAE .第18题图 19.(本题满分7分)某校有三个年级,各年级的人数分别为七年级600人,八年级540人,九年级565人,学校为了解学生生活习惯是否符合低碳观念,在全校进行了一次问卷调查,若学生生活习惯符合低碳观念,则称其为“低碳族”;否则称其为“非低碳族”,经过统计,将全校的低碳族人数按照年级绘制成如下两幅统计图:第19题图(1)根据图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图;(2)小丽依据图①、图②提供的信息通过计算认为,与其他两个年级相比,九年级的“低碳族”人数在本年级全体学生中所占的比例较大,你认为小丽的判断正确吗?说明理由。
2011陕西中考数学试题-解析版
2011年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分.) 1、(2011•陕西)32-的倒数为( ) A . 23-B .23C .32D . 32-考点:倒数。
专题:计算题。
分析:根据倒数的意义,两个数的积为1,则两个数互为倒数,因此求一个数的倒数即用1除以这个数. 解答:解:32-的倒数为,1÷23⎛⎫- ⎪⎝⎭=3-2, 故选:A .点评:此题考查的是倒数,关键是由倒数的意义,用1除以这个数即是. 2、(2011•陕西)下面四个几何体中,同一个几何体的主视图和俯视图相同的共有( )A 、1个B 、2个C 、3个D 、4个 考点:简单几何体的三视图。
分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.解答:解:圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同; 圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同; 球主视图、俯视图都是圆,主视图与俯视图相同;正方体主视图、俯视图都是正方形,主视图与俯视图相同. 共2个同一个几何体的主视图与俯视图相同. 故选B .点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中. 3、(2011•陕西)我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学记数法表示为( ) A 、1.37×109 B 、1.37×107 C 、1.37×108 D 、1.37×1010 考点:科学记数法与有效数字。
分析:较大的数保留有效数字需要用科学记数法来表示.用科学记数法保留有效数字,要在标准形式a×10n 中a 的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍. 解答:解:1370536875=1.370536875×109≈1.37×109, 故选:A .点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的有效数字的确定方法. 4、(2011•陕西)下列四个点,在正比例函数的图象上的点是( )A 、(2,5)B 、(5,2)C 、(2,﹣5)D 、(5,﹣2 考点:一次函数图象上点的坐标特征。
陕西省2011年中考数学真题及答案(纠错版)(word版含扫描答案)
例 2011年上海市虹口区中考模拟第24题如图1,在平面直角坐标系中,抛物线y=x2+bx+c经过点(0,2)和点(3,5).(1)求该抛物线的表达式并写出顶点坐标;(2)点P为抛物线上一动点,如果直径为4的⊙P与y轴相切,求点P的坐标.图1动感体验请打开几何画板文件名“11虹口24”,拖动点P在抛物线上运动,可以体验到,与y 轴相切的⊙P有两个.请打开超级画板文件名“11虹口24”,思路点拨1.⊙P与y轴相切,圆心P到y轴的距离等于圆的半径,y轴两侧各有一个点P.满分解答(1)因为抛物线y=x2+bx+c经过点(0,2)和点(3,5),所以2,93 5.cb c=⎧⎨++=⎩解得2,2.bc=-⎧⎨=⎩因此抛物线的表达式为y=x2-2x+2.顶点坐标为(1,1).(2)如果⊙P与y轴相切,那么圆心P到y轴的距离等于圆的半径.已知圆的直径为4,所以圆心P到y轴的距离等于2.因此点P的横坐标为2或-2.如图2,当x=2时,y=x2-2x+2=2,此时点P的坐标为(2,2).如图3,当x=-2时,y=x2-2x+2=10,此时点P的坐标为(-2,10).图2 图3 图4考点伸展1.如果第(2)题的条件改为“⊙P与坐标轴相切”,那么就要分为“⊙P与y轴相切”和“⊙P与x轴相切”两种情况.因为点P在x轴上方,当⊙P与x轴相切时,y=2.解方程x2-2x+2=2,得x=0或x=2.所以点P的坐标为(0,2)(如图4)或(2,2)(如图3).综合两种情况,与坐标轴相切的⊙P有三个.2.在本题情景下,我们再提出几个问题:如果⊙P在坐标轴上截得的弦所对的弦心距相等,那么点P到x轴和y轴的距离相等,符合条件的圆心P有(1,1)(如图5)和(2,2)(如图3).如图5中,弦AB所对的圆心角等于120°,那么⊙P在坐标轴上截得的弦所对的圆心角等于120°的⊙P有两个,还有一个如图6,P(-1,5).如果⊙P在坐标轴上截得的弦所对的圆心角等于90°,那么点P有几个?点P到坐标轴的距离等于2的点有4个,其中一个如图7.图5 图6 图7。
2011年陕西省中考数学真题
2011年陕西省中考数学真题(word 版)及答案第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.32-的倒数为 【 】 A . 23- B .23 C .32 D . 32-2.下面四个几何体中,同一几何体的主视图和俯视图相同的共有 【 】A 、1个B 、2个C 、3个D 、4个3.我国第六次人口普查显示,全国人口为人,将这个总人口数(保留三个有效数字)用科学计数法表示为 【 】 A 、 91037.1⨯B 、71037.1⨯ C 、81037.1⨯ D 、 101037.1⨯4、下列四个点,在正比例函数X Y 52-=的图像上的点是 【 】 A 、( 2, 5 ) B 、( 5, 2) C 、(2,-5)D 、 ( 5 , -2 )5.在△ABC 中,若三边BC ,CA,AB 满足 BC :CA :AB=5:12:13,则cosB= 【 】A 、125B 、512 C 、135 D 、13126.某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,则这组数据的中位数和众数分别是 【 】 A 、181,181 B 、182,181 C 、180,182 D 、181,1827.同一平面内的两个圆,他们的半径分别为2和3 ,圆心距为d,当51 d 时,两圆的位置关系是 【 】 A 、外离 B 、相交 C 、内切或外切 D 、内含正方体 圆锥 球 圆柱 (第二题图)8.如图,过y 轴上任意一点p ,作x 轴的平行线,分别与反比例函数xy x y 24=-=和的图像交于A 点和B 点,若C 为x 轴上任意一点,连接AC,BC 则△ABC 的面积为【 】9、 如图,在ABCD 中EF 分别是AD 、 CD 边上的点,连接BE 、AF,他们相交于G ,延长BE 交CD 的延长线于点H,则图中的全等三角形有 【 】 A 、2对 B 、3对 C 、4对 D 、5对10、若二次函数c x x y +-=62的图像过)321,23(),,2(),,1(Y C Y B Y A +-,则321,,y y y 的大小关系是 【 】 A 、321y y y B 、321y y y C 、312y y y D 、213y y y第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分) 11.计算:23-= .(结果保留根号)12.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E ,若0641=∠ 则=∠1 .13、分解因式:=+-a ab ab 442.14、一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为 元15、若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .16、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,若AD=3,BC=7,则梯形ABCD 面积的最大值(第8题图) (第9题图)三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分) 解分式方程:xx x -=--2312418.(本题满分6分)在正方形ABCD 中,点G 是BC 上任意一点,连接AG ,过B,D 两点分别作BE ⊥AG ,DF ⊥AG ,垂足分别为E,F 两点,求证:△ADF ≌△BAE 19.(本题满分7分)某校有三个年级,各年级的人数分别为七年级600人,八年级540人,九年级565人,学校为了解学生生活习惯是否符合低碳观念,在全校进行了一次问卷调查,若学生生活习惯符合低碳观念,则称其为“低碳族”;否则称其为“非低碳族”,经过统计,将全校的低碳族人数按照年级绘制成如下两幅统计图:(1)根据图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图;(2)小丽依据图①、图②提供的信息通过计算认为,与其他两个年级相比,九年级的“低碳族”人数在本年级全体学生中所占的比例较大,你认为小丽的判断正确吗?说明理由。
2011年陕西省中考数学试卷(含解析)
2011年陕西省中考数学试卷一、选择题1、的倒数为()A.B.C.D.2、下面四个几何体中,同一个几何体的主视图和俯视图相同的共有()A.1个B.2个C.3个D.4个3、我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学记数法表示为()A.1.37×109B.1.37×107C.1.37×108D.1.37×10104、下列四个点,在正比例函数的图象上的点是()A.(2,5)B.(5,2)C.(2,-5)D.(5,-2)5、在△ABC中,若三边BC,CA,AB满足=5:12:13,则cosB=()A.B.C.D.6、某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,则这组数据的中位数和众数分别是()A.181,181B.182,181C.180,182D.181,1827、同一平面内的两个圆,他们的半径分别为2和3,圆心距为d,当1<d<5时,两圆的位置关系是()A.外离B.相交C.内切或外切D.内含8、如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3B.4C.5D.69、如图,在▱ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,他们相交于G,延长BE交CD的延长线于点H,则图中的相似三角形共有()A.2对B.3对C.4对D.5对10、若二次函数y=x2-6x+c的图象过A(-1,y1),B(2,y2),C(,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2二、填空题11、计算:= __________ .(结果保留根号)12、如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=64°,则∠2=__________.13、分解因式:ab2-4ab+4a= __________ .14、一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为 __________ .15、若一次函数y=(2m-1)x+3-2m的图象经过一、二、四象限,则m的取值范围是 __________ .三、解答题16、如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,若AD=3,BC=7,则梯形ABCD面积的最大值 __________ .17、解分式方程:.18、在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE.19、某校有三个年级,各年级的人数分别为七年级600人,八年级540人,九年级565人,学校为了解学生生活习惯是否符合低碳观念,在全校进行了一次问卷调查,若学生生活习惯符合低碳观念,则称其为“低碳族”;否则称其为“非低碳族”,经过统计,将全校的低碳族人数按照年级绘制成如下两幅统计图:(1)根据图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图;(2)小丽依据图①、图②提供的信息通过计算认为,与其他两个年级相比,九年级的“低碳族”人数在本年级全体学生中所占的比例较大,你认为小丽的判断正确吗?说明理由.20、一天,数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些坑道对河道的影响,如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:①先测出沙坑坑沿的圆周长34.54米;②甲同学直立于沙坑坑沿的圆周所在的平面上,经过适当调整自己所处的位置,当他位于B时恰好他的视线经过沙坑坑沿圆周上一点A看到坑底S(甲同学的视线起点C与点A,点S三点共线),经测量:AB=1.2米,BC=1.6米.根据以上测量数据,求圆锥形坑的深度(圆锥的高).(π取3.14,结果精确到0.1米)21、2011年4月28日,以“天人长安,创意自然一一城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园,这次园艺会的门票分为个人票和团体票两大类,其中个人票设置有三种:票的种类夜票(A)平日普通票(B)指定日普通票(C)单价(元/张)60100150某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票的张数是A种票张数的3倍还多8张,设购买A种票张数为x,C种票张数为y(1)写出y与x之间的函数关系式;(2)设购票总费用为W元,求出w(元)与x(张)之间的函数关系式;(3)若每种票至少购买1张,其中购买A种票不少于20张,则有几种购票方案?并求出购票总费用最少时,购买A,B,C三种票的张数.22、七年级五班在课外活动时进行乒乓球练习,体育委员根据场地情况,将同学分成3人一组,每组用一个球台,甲乙丙三位同学用“手心,手背”游戏(游戏时,手心向上简称“手心”,手背向上简称“手背”)来决定那两个人首先打球,游戏规则是:每人每次随机伸出一只手,出手心或者手背,若出现“两同一异”(即两手心、一手背或者两手背一手心)的情况,则出手心或手背的两个人先打球,另一人裁判,否则继续进行,直到出现“两同一异”为止.(1)请你列出甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现的所有等可能的情况(用A表示手心,B表示手背);(2)求甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现“两同一异”的概率.23、如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D;(1)求证:AP=AC;(2)若AC=3,求PC的长.24、如图,二次函数的图象经过△AOB的三个顶点,其中A(-1,m),B(n,n)(1)求A、B的坐标;(2)在坐标平面上找点C,使以A、O、B、C为顶点的四边形是平行四边形.①这样的点C有几个?②能否将抛物线平移后经过A、C两点?若能,求出平移后经过A、C 两点的一条抛物线的解析式;若不能,说明理由.25、如图①,在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后再展开铺平,则以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”一定是一个__________ 三角形(2)如图②,在矩形ABCD中,AB=2,BC=4,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;(3)如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?2011年陕西省中考数学试卷的答案和解析一、选择题1、答案:A试题分析:根据倒数的意义,两个数的积为1,则两个数互为倒数,因此求一个数的倒数即用1除以这个数.试题解析:的倒数为1÷=-.故选:A.2、答案:B试题分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.试题解析:圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同;圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同;球主视图、俯视图都是圆,主视图与俯视图相同;正方体主视图、俯视图都是正方形,主视图与俯视图相同.共2个同一个几何体的主视图与俯视图相同.故选B.3、答案:A试题分析:较大的数保留有效数字需要用科学记数法来表示.用科学记数法保留有效数字,要在标准形式a×10n中a的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.试题解析:1370536875=1.370536875×109≈1.37×109,故选:A.4、答案:D试题分析:根据函数图象上的点的坐标特征,经过函数的某点一定在函数的图象上,一定满足函数的解析式.根据正比例函数的定义,知是定值.试题解析:由,得=-;A、=,故A选项错误;B、=,故B选项错误;C、=-,故C选项错误;D、=-,故D选项正确;故选:D.5、答案:C试题分析:根据三角形余弦表达式即可得出结果.试题解析:∵BC:CA:AB=5:12:13,∴BC2+CA2=AB2,∴△ABC是直角三角形,根据三角函数性质,cosB==,故选C.6、答案:D试题分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.试题解析:在这一组数据中182是出现次数最多的,故众数是182;处于这组数据中间位置的数是180、182,那么由中位数的定义可知,这组数据的中位数是181.故选D.7、答案:B试题分析:根据两圆位置关系与数量关系间的联系即可求解.注意相交,则R-r<d<R+r(d表示圆心距,R,r分别表示两圆的半径).试题解析:∵他们的半径分别为2和3,圆心距为d,当1<d<5时,∴两圆的位置关系是相交.故选B.8、答案:A试题分析:先设P(0,b),由直线AB∥x轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数的图象上,可得到A点坐标为(-,b),B点坐标为(,b),从而求出AB的长,然后根据三角形的面积公式计算即可.设P(0,b),∵直线AB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=-的图象上,∴当y=b,x=-,即A点坐标为(-,b),又∵点B在反比例函数y=的图象上,∴当y=b,x=,即B点坐标为(,b),∴AB=-(-)=,∴S△ABC=•AB•OP=•b=3.故选:A.9、答案:C试题分析:根据四边形ABCD是平行四边形,利用相似三角形的判定定理,对各个三角形逐一分析即可.∵在▱ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,他们相交于G,延长BE交CD的延长线于点H,∴△AGB∽△FGH,△HED∽△HBC,△HED∽△EBA,△AEB∽△HBC,共4对.故选C.10、答案:B试题分析:根据二次函数图象上点的坐标特征,将A(-1,y1),B(2,y2),C(,y3)分别代入二次函数的解析式y=x2-6x+c求得y1,y2,y3,然后比较它们的大小并作出选择.试题解析:根据题意,得y1=1+6+c=7+c,即y1=7+c;y2=4-12+c=-8+c,即y2=-8+c;y3=9+2+6-18-6+c=-7+c,即y3=-7+c;∵7>-7>-8,∴7+c>-7+c>-8+c,即y1>y3>y2.故选B.二、填空题11、答案:试题分析:本题需先判断出的符号,再求出的结果即可.试题解析:∵-2<0∴=2-故答案为:2-12、答案:试题分析:由AC∥BD,根据两直线平行,同位角相等,即可求得∠B的度数;由邻补角的定义,求得∠BAC的度数;又由AE平分∠BAC交BD于点E,即可求得∠BAE的度数,根据三角形外角的性质即可求得∠2的度数.∵AC∥BD,∴∠B=∠1=64°,∴∠BAC=180°-∠1=180°-64°=116°,∵AE平分∠BAC交BD于点E,∴∠BAE=∠BAC=58°,∴∠2=∠BAE+∠B=64°+58°=122°.故答案为:122°.13、答案:试题分析:先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2-2ab+b2=(a-b)2.试题解析:ab2-4ab+4a=a(b2-4b+4)--(提取公因式)=a(b-2)2.--(完全平方公式)故答案为:a(b-2)2.14、答案:试题分析:此题的相等关系为,原价的80%等于销售价,依次列方程求解.试题解析:设这款羊毛衫的原销售价为x元,依题意得:80%x=120,解得:x=150,故答案为:150元.15、答案:试题分析:根据一次函数的性质进行分析:由图形经过一、二、四象限可知(2m-1)<0,3-2m>0,即可求出m的取值范围试题解析:∵y=(2m-1)x+3-2m的图象经过一、二、四象限∴2m-1<0,3-2m>0∴解不等式得:m<,m<∴m的取值范围是m<.故答案为:m<.三、解答题16、答案:试题分析:解法一、平移对角线AC后,会构造出一个直角三角形,这个直角三角形的面积就等于原梯形的面积.该三角形的斜边为3+7=10,此时,它的高越大,面积就越大.解法二、过O作ON⊥AD于N,设ON=h,AO=a,DO=ka,求出△ANO∽△AOD,得出比例式,代入求出h=,根据勾股定理得出a2+(ka)2=32,求出a2=,推出h=,只有当k=1时,即△AOD是等腰三角形时,h有最大值是1.5,同理求出△BOC边BC上的高的最大值式3.5,据梯形的面积公式代入求出即可,试题解析:解法一、过D作DE∥AC交BC延长线于E,∵AD∥BC,DE∥AC,∴四边形ACED是平行四边形,∴AD=CE,∴根据等底等高的三角形面积相等得出△ABD的面积等于△DCE的面积,即梯形ABCD的面积等于△BDE的面积,∵AC⊥BD,DE∥AC,∴∠BDE=90°,BE=3+7=10,∴此时△BDE的边BE边上的高越大,它的面积就越大,即当高是BE时最大,即梯形的最大面积是×10××10=25;解法二、过O作ON⊥AD于N,设ON=h,AO=a,DO=ka,∵∠DAO=∠DAO,∠ANO=∠AOD=90°,∴△ANO∽△AOD,∴=,∴=∴h=,而在Rt△AOD中,由勾股定理得:a2+(ka)2=32,a2=,∴h=,∵k>0,∴只有当k=1时,即△AOD是等腰三角形时,h有最大值是1.5,同理求出△BOC边BC上的高的最大值式3.5,∴梯形ABCD的面积的最大值是:S=×(3+7)×(1.5+3.5)=25,解故答案为:25.17、答案:试题分析:观察两个分母可知,公分母为x-2,去分母,转化为整式方程求解,结果要检验.试题解析:去分母,得4x-(x-2)=-3,去括号,得4x-x+2=-3,移项,得4x-x=-2-3,合并,得3x=-5,化系数为1,得x=-,检验:当x=-时,x-2≠0,∴原方程的解为x=-.18、答案:试题分析:根据正方形的性质,可以证得DA=AB,再根据同角的余角相等即可证得∠2=∠3,∠1=∠4,根据ASA即可证得两个三角形全等.试题解析:证明:∵四边形ABCD是正方形,∴DA=AB,∠1+∠2=90°又∵BE⊥AG,DF⊥AG∴∠1+∠3=90°,∠2+∠4=90°∴∠2=∠3,∠1=∠4又∵AD=AB∴△ADF≌△BAE.19、答案:试题分析:(1)根据七年级的人数与所占的百分比可求出总人数,再乘以八年级对应的百分比可求出人数,九年级对应的百分比可用1减去七八年级的百分比求得,再画图即可解答.(2)分别算出三个年级的“低碳族”人数在本年级全体学生中所占的比例,再比较即可解答.试题解析:(1)由题意可知,全校“低碳族”人数为300÷25%=1200人,∴八年级“低碳族”人数为1200×37%=444人,∴九年级“低碳族”人数占全校“低碳族”人数的百分比=1-25%-37%=38%.补全的统计图如①②所示.(2)小丽的判断不正确,理由如下:∵七年级“低碳族”人数占该年级人数的百分比=×100%=50%,八年级“低碳族”人数占该年级人数的百分比=×100%≈82.2%,九年级“低碳族”人数占该年级人数的百分比=×100%≈80.7%,∴小丽的判断不正确,八年级的学生中,“低碳族”人数比例较大.20、答案:试题分析:取圆锥底面圆心O,连接OS、OA,OS∥BC可得出△SOA∽△CBA,再由相似三角形的对应边成比例即可解答.试题解析:取圆锥底面圆心O,连接OS、OA,则∠O=∠ABC=90°,OS∥BC,∴∠ACB=∠ASO,∴△SOA∽△CBA,∴=,∴OS=,∵OA=≈5.5米,BC=1.6米,AB=1.2米,∴OS=≈7.3米,∴“圆锥形坑”的深度约为7.3米.故答案为:7.3米.21、答案:试题分析:(1)根据A、B、C三种票的数量关系列出y与x的函数关系式;(2)根据三种票的张数、价格分别算出每种票的费用,再算出总数w,即可求出W (元)与X(张)之间的函数关系式;(3)根据题意求出x的取值范围,根据取值可以确定有三种方案购票,再从函数关系式分析w随x的增大而减小从而求出最值,即购票的费用最少.试题解析:(1)由题意得,B种票数为:3x+8则y=100-x-3x-8化简得,y=-4x+92.即y与x之间的函数关系式为:y=-4x+92;(2)w=60x+100(3x+8)+150(-4x+92)化简得,w=-240x+14600即购票总费用W与X(张)之间的函数关系式为:w=-240x+14600(3)由题意得,解得20≤x≤,∵x是正整数,∴x可取20、21、22那么共有3种购票方案.从函数关系式w=-240x+14600∵-240<0,∴w随x的增大而减小,当x=22时,w的最值最小,即当A票购买22张时,购票的总费用最少.购票总费用最少时,购买A、B、C三种票的张数分别为22、74、4.22、答案:试题分析:(1)首先此题需三步完成,所以采用树状图法求解比较简单;然后依据树状图分析所有等可能的出现结果,根据概率公式即可求出该事件的概率;(2)首先求得出手一次出现“两同一异”的所有情况,然后根据概率公式即可求出该事件的概率.试题解析:(1)画树状图得:∴共有8种等可能的结果:AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB;(2)∵甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现“两同一异”的有6种情况,∴出手一次出现“两同一异”的概率为:=.23、答案:试题分析:(1)连接OA,可得∠AOC=120°,所以,可得∠P=∠C=30°,即可证明;(2)AC=3,所以,PO=,所以PC=3.(1)证明:连接AO,则AO⊥PA,∠AOC=2∠B=120°,∴∠AOP=60°,∴∠P=30°,又∵OA=OC,∴∠ACP=30°,∴∠P=∠ACP,∴AP=AC.(2)在Rt△PAO中,∠P=30°,PA=3,∴AO=,∴PO=2;∵CO=OA=,∴PC=PO+OC=3.24、答案:试题分析:(1)把A(-1,m)代入函数式而解得m的值,同理解得n值,从而得到A,B的坐标;(2)①由题意可知:这样的C点有3个,②能,分别考虑函数图象经过三个点,从而得到函数方程.试题解析:(1)∵y=的图象过点A(-1,m)∴即m=1同理:n=解之,得n=0(舍)或n=2∴A(-1,1),B(2,2)(2)①由题意可知:这样的C点有3个.如图:当OA是对角线时,C是过O平行于AB的直线,以及过A平行于OB的直线的交点,设直线OB的解析式是y=kx,则2=2k,解得:k=1,设直线AC的解析式是:y=x+c,则-1+c=1,解得:c=2,直线的解析式是y=x+2,设直线AB的解析式是:y=mx+n,则,解得:,即直线的解析式是:y=x+,设直线OC的解析式是:y=x,解方程组,解得:,则C的坐标是(-3,-1);同理,当AB是对角线时,C的坐标是(1,3);OB是对角线时,C的坐标是(3,1).故:C1(-3,-1),C2(1,3),C3(3,1).②能当平移后的抛物线经过A、C1两个点时,将B点向左平移3个单位再向下平移1个单位.使点B移到A点,这时A、C1两点的抛物线的解析式为y+1=即y=附:另两条平移后抛物线的解析式分别为:i)经过A、C2两点的抛物线的解析式为ii)设经过A、C3两点的抛物线的解析式为,OC3可看作线段AB向右平移1个单位再向下平移1个单位得到m,则C3(3,1)依题意,得,解得.故经过A、C3两点的抛物线的解析式为.25、答案:试题分析:(1)由图形结合线段垂直平分线的性质即可解答;(2)由折叠性质可知,折痕垂直平分BE,求出AB、AE的长,判断出四边形ABFE为正方形,求得F点坐标;(3)矩形ABCD存在面积最大的折痕三角形BEF,其面积为4,①当F在边OC上时,S△BEF≤S矩形ABCD,即当F与C重合时,面积最大为4;②当F在边CD上时,过F作FH∥BC交AB于点H,交BE于K,再根据三角形的面积公式即可求解;再根据此两种情况利用勾股定理即可求出AE的长,进而求出E点坐标.试题解析:(1)等腰.(2)如图①,连接BE,画BE的中垂线交BC与点F,连接EF,△BEF是矩形ABCD 的一个折痕三角形.∵折痕垂直平分BE,AB=AE=2,∴点A在BE的中垂线上,即折痕经过点A.∴四边形ABFE为正方形.∴BF=AB=2,∴F(2,0).(3)矩形ABCD存在面积最大的折痕三角形BEF,其面积为4,理由如下:①当F在边OC上时,如图②所示.S△BEF≤S矩形ABCD,即当F与C重合时,面积最大为4.②当F在边CD上时,如图③所示,过F作FH∥BC交AB于点H,交BE于K.∵S△EKF=KF•AH≤HF•AH=S矩形AHFD,S△BKF=KF•BH≤HF•BH=S矩形BCFH,∴S△BEF≤S矩形ABCD=4.即当F为CD中点时,△BEF面积最大为4.下面求面积最大时,点E的坐标.①当F与点C重合时,如图④所示.由折叠可知CE=CB=4,在Rt△CDE中,ED===2.∴AE=4-2.∴E(4-2,2).②当F在边DC的中点时,点E与点A重合,如图⑤所示.此时E(0,2).综上所述,折痕△BEF的最大面积为4时,点E的坐标为E(0,2)或E(4-2,2).。
【推荐下载】2011陕西省中考数学试题及答案 解析版
[键入文字]
2011 陕西省中考数学试题及答案解析版
一、选择题(共10 小题,每小题3 分,计30 分.每小题只有一个选项是符合题意的)
1、(2011•陕西)的倒数为()
A、B、
C、D、
考点:倒数。
专题:计算题。
分析:根据倒数的意义,两个数的积为1,则两个数互为倒数,因此求一个数的倒数即用1 除以这个数.
解答:解:的倒数为,
1÷ =﹣,
故选:A.
点评:此题考查的是倒数,关键是由倒数的意义,用1 除以这个数即是.
2、(2011•陕西)下面四个几何体中,同一个几何体的主视图和俯视图相同的共有()
A、1 个
B、2 个
C、3 个
D、4 个
考点:简单几何体的三视图。
分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.
解答:解:圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同;
圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同;
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省2011年中考数学模拟试题及答案一、细心填一填(本大题共有12小题,15空,每空2分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)1、-2的倒数是_________,()=-32 ________.2、9的平方根是__________,-8是_______的立方根.3、用四舍五入所得的数是-2.164,它精确到 位.4、计算:cos45︒= ,tan30︒= .5、函数y =11-x 中,自变量x 的取值范围是__________;函数yx 的取值范围是_________.6、在实数内分解因式:x 4-2x 2= .7、一个多边形的每个外角都等于30︒,这个多边形的内角和为_________度.8、下面一组数据表示初三(1)班23位同学衣服上衣口袋的数目,若任选一位同学,则其上衣口袋的数目为5的概率为 .3,4,2,6,5,5,3,1,4,2,4,2,4,5,10,6,1,5,5,62,10,3 9、一个矩形的周长为60㎝,其面积为S ,则S 的取值不超过 ㎝2.10、⊙O 的直径CD 与弦AB 交于点M ,添加条件 (写出一个即可)就可得到M 是AB 的中点.11、如下图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.12、如图所示是由7个完全相同的正方形拼成的图形,请你用一条直线将它分成面积相等的两部分.(在原图上作出).二、精心选一选(本大题共8小题,每题3分,共24分. 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)13、已知x =-1是方程x 2+mx +1=0的一个实数根,则m 的值是( ) A 、0 B 、1 C 、2 D 、-214、下列各式中,与3是同类二次根式的是( ) A 、9 B 、27 C 、18 D 、2415、如图所示,在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分)的面积,验证了一个等式是( )A 、()()b a b a b a -+=-22B 、()2222b ab a b a ++=-(1)(2)(3)第11题第12ab abab bbC 、()2222b ab a b a +-=-D 、()()2222b ab a b a b a -+=-+16、在直角坐标系中,⊙O 的圆心在圆点,半径为3,⊙A 的圆心A 的坐标为(-3,1),半径为1,那么⊙O 与⊙A 的位置关系为( )A 、外离B 、外切C 、内切D 、相交17、有十五位同学参加智力竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛( )A 、平均数B 、众数C 、最高分数D 、中位数18、在“抛一枚均匀硬币”的实验中,如果现在没有硬币,则下面各个试验中哪个不能代替( )A 、两张扑克,“黑桃” 代替“正面”,“红桃” 代替“反面”B 、两个形状大小完全相同,但一红一白的两个乒乓球C 、扔一枚图钉D 、人数均等的男生、女生,以抽签的方式随机抽取一人 19、相信同学们都玩过万花筒,右图是某个万花筒的造型,图中的小三角形均是全等的等边三角形,那么图中的菱形AEFG 可以看成是把菱形ABCD 以A 为旋转中心( ) A 、顺时针旋转60°得到 B 、顺时针旋转120°得到 C 、逆时针旋转60°得到 D 、逆时针旋转120°得到20、将一张正方形的纸片按下图所示的方式三次折叠,折叠后再按图所示沿MN 裁剪,则可得( )A 、多个等腰直角三角形B 、一个等腰直角三角形和一个正方形C 、四个相同的正方形D 、两个相同的正方形三、认真答一答(本大题共7小题,满分58分. 只要你认真思考, 仔细运算, 一定会解答正确的!)21、(本题共有3小题,每小题5分,共15分)(1)计算:()0020053323++-A BC DF EG 第A B C DA B C D A B C D A B C D N N M(2)已知不等式5(x -2)+8<6(x -1)+7的最小整数解是方程2x -ax =4的解,求a 的值.(3)先化简,再求值:112223+----x x xx x x ,其中x =2.22、(本题满分6分)方格纸中每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.(1)在10³10的方格中(每个小方格的边长为1个单位),画一个面积为1的格点钝角三角形ABC ,并标明相应字母.(2)再在方格中画一个格点△DEF ,使得△DEF ∽△ABC ,且相似比为2,并加以证明.23、(本题满分7分)如图,给出五个条件:①AE 平分∠BAD ,②BE 平分∠ABC ,③E 是CD 的中点,④AE ⊥EB ,⑤AB=AD+BC(1)请你以其中三个作为命题的条件,写出一个能推出AD ∥BC 的正确命题,并加以说明;(2)请你以其中三个作为命题的条件,写出一个不一定能推出AD ∥BC 的正确命题,并举例说明.A B DE24、(本题满分6分)夏雪同学调查了班级同学身上有多少零用钱,将每位同学的零用钱记录下来,下面是全班40名同学的零用钱的数目(单位:元)2,5,0,5,2,5,6,5,0,5,5,52,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.(1)请你写出同学的零用钱(0元,2元,5元,6元8元)出现的频数;(2)求出同学的零用钱的平均数、中位数和众数;(3)假如老师随机问一个同学的零用钱,老师最有可能得到的回答是多少元?25、(本题满分8分)某校每学期都要对优秀的学生进行表扬,而每班采取民主投票的方式进行选举,然后把名单报到学校. 若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得. 现在学校有30个班级,平均每班50人.(1)作为一名学生,你恰好能得到荣誉的机会有多大?(2)作为一名学生,你恰好能当选三好生、模范生的机会有多大?(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的?(4)你可以用哪些方法来模拟实验?26、(本题满分8分)某市的一家报刊摊点从报社买进一种晚报,其价格为每份0.30元,卖出的价格为0.50现经市场调查发现,在一个月中(按30天记数)有20天可卖出150份/天,有10天只能卖出100份/天,而报社规定每天批发给摊点的报纸的数量必须相同.(1)通过在坐标系中(以退还的钱数为纵坐标,退还的报纸数量为横坐标)描出点,分析出退还的钱数y(元)与退还的报纸数量k(份)之间的函数关系式.(2)若该家报刊摊点每天从报社买进的报纸数x份(满足100<x<150),则当买进多少报纸时,毛利润最大?最多可赚多少钱?27、(本题满分8分)在一块长16m 、宽12m 的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半. 下面分别是小明和小颖的设计方案.小明说:我的设计方案如图(1),其中花园四周小路的宽度相等. 通过解方程,我得到小路的宽为2m 或12m.小颖说:我的设计方案如图(2),其中花园中每个角上的扇形相同. (1)你认为小明的结果对吗?请说明理由.(2)请你帮助小颖求出图中的x (精确到0.1m ).(3)你还有其他的设计方案吗?请在下边的矩形中画出你的设计草图,并加以说明.四、动脑想一想(本大题共有2小题,共18分. 开动你的脑筋,只要你勇于探索,大胆实践,你一定会获得成功的!)28、(本题满分8分)如图,在△ABC 中,∠C=90°,AC=6,BC=8,M 是BC 的中点,P 为AB 上的一个动点,(可以与A 、B 重合),并作∠MPD=90°,PD 交BC (或BC 的延长线)于点D.(1)记BP 的长为x ,△BPM 的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)是否存在这样的点P ,使得△MPD 与△ABC 相似?若存在,请求出x 的值;若不存在,请说明理由.29、(本题满分10分)如图,已知AB 是⊙O 的直径,AC 是⊙O 的弦,点D 是ABC 的中点,弦DE ⊥AB ,垂足为F ,DE 交AC 于点G.(1)图中有哪些相等的线段?(要求:不再标注其他字母,找结论的过程中所作的辅12m 16m图图12m 16m x 12m16m A BC PD (助线不能出现在结论中,不写出推理过程)(2)若过点E 作⊙O 的切线ME ,交AC 的延长线于点M (请补完整图形),试问:ME=MG 是否成立?若成立,请证明;若不成立,请说明理由.(3)在满足第(2)问的条件下,已知AF=3,FB=34,求AG 与GM 的比.〖第(1)的结论可直接利用〗参考答案一、细心填一填1. ﹣21 ,﹣8 2. ±3 ,﹣125 3. 千分位 4. 22,33 5. x ≠1 ,x ≥3 6 . x 2(x+2)(x-2) 7. 1800 8.2349. 225 10. CD ⊥AB 11. 179 12. 略 二、精心选一选13. C 14. B 15. A 16. C 17. D 18. C 19. D 20. C 三、认真答一答21. (1)3;(2)a=4 ; (3) 2x-1 ,3 22. 略 23.(1) ①②⑤⇒AD ∥BC .证明:在AB 上取点M ,使AM =AD ,连结EM ,可证△AEM ≌△AED , △BEM ≌△BCE ,∴∠D =∠AME , ∠C =∠BME ,故∠D +∠C =∠AME +∠BME =180° ∴AD ∥BC .(2)①②③⇒ AD ∥BC 为假命题 反例 :△ABM 中,E 是内心,过E 作DC ⊥EM ,显然有,AE 平分∠BAM ,BE 平分∠ABM ,ED =EC ,但AD 不平分于BC .24.(1)0元的频数是5,2元的频数是7,5元的频数是21,6元的频数是5,8元的频数是2.(2)平均数是4.125,中位数是5,众数是5. (3)5元.25.(1)256;(2)503,252;(3)班级人数、三好生数、模范生数、成绩提高奖人数;(4)用50个小球,其中3个红球、4个白球、5个黑球,其余均位黄球,把它B们装进不透明的口袋中搅均,闭着眼从中摸出一个球,则摸到非黄球的机会就是得到荣誉的机会,摸到红球或白球的机会就是当选为三好生和模范生的机会. 26.(1)通过作图,知y =mk +n ,⎩⎨⎧+=+=,1020.0,525.0n m n m ⎩⎨⎧=-=.3.0,1.0n m当0<k <30,且为整数, y =﹣0.1k +0.3;当k ≥30 , y =0.02.(2) S =2³0.2x +100³10³0.2-(0.3-y)(x -100)= 4x +200-0.1(x -100)2=﹣0.1x +24x -800.当x =﹣)1.0(224-⨯=120时,即每天买进120份报纸时,可获最大毛利润为640元.27.(1)设小路的宽为x m ,则(16-2x )(12-2x )=21×16³12,解得x=2,或x=12(舍去). ∴x=2,故小明的结果不对.(2故有πr 2=21×16³12,解得r ≈5.5m. (3)依此连结各边的中点得如图的设计方案.28.(1)作PK ⊥BC 于K ,BM =4,AB =10,∵PK ∥AC ,∴8pk =10x ⇒pk =54x ,∴y =21³4³54x =58x (0<x<10). (2)①∠PMB=∠B, PM=PB ,MK=KB=2 ,10x =82, x=2.5; ②∠PMD=∠A, 又∠B =∠B ,∴△BPM ∽△BAC ,∴BP ²AB =BM ²BC , ∴10x=4³8 ,x =3.2,∴存在 x =2.5或3.2.29.(本题仅供学有余力的同学参考)(1)OA=OB ,DF=EF ,DE=AC ,AG=DG ,EG=CG .(2)ME=GM. 理由是:连EO 并延长交⊙O 于点N ,连结DN. ∵EM 是⊙O 的切线,∴∠OEM=90º,∴∠GEM+∠GEN=90º. ∵EN 是⊙O 的直径,∠N+∠GEN=90º, ∴∠N=∠GEM. ∵AB 是⊙O 的直径,∴∠B+∠BAC=90º,∵∠AGF+∠GAF=90º,∴∠AGF=∠B ,∵∠AGF=∠CGE ,∴∠CGE=∠B. ∵AC=DE ,∴∠N=∠B ,∴∠GEM=∠CGE ,∴MG=ME.(3)答案:310.。