气体动理论习题解答
第7章气体动理论习题解答
第7章 气体动理论7.1基本要求1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。
2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。
3.理解自由度和内能的概念,掌握能量按自由度均分定理。
掌握理想气体的内能公式并能熟练应用。
4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。
5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。
7.2基本概念1 平衡态系统在不受外界的影响下,宏观性质不随时间变化的状态。
2 物态参量描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强p 、体积V 和温度T 3 温度宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。
4 自由度确定一个物体在空间的位置所需要的独立坐标数目,用字母i 表示。
5 内能理想气体的内能就是气体内所有分子的动能之和,即2iE RT ν= 6 最概然速率速率分布函数取极大值时所对应的速率,用p υ表示,p υ==≈其物理意义为在一定温度下,分布在速率p υ附近的单位速率区间内的分子在总分子数中所占的百分比最大。
7 平均速率各个分子速率的统计平均值,用υ表示,υ==≈8 方均根速率各个分子速率的平方平均值的算术平方根,用rms υ表示,rms υ==≈ 9 平均碰撞频率和平均自由程平均碰撞频率Z 是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程λ是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:Zυλ==或λ=7.3基本规律1 理想气体的物态方程pV RT ν=或'm pV RT M=pV NkT =或p nkT =2 理想气体的压强公式23k p n ε=3 理想气体的温度公式21322k m kT ευ==4 能量按自由度均分定理在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为12kT 5 麦克斯韦气体分子速率分布律 (1)速率分布函数()dNf Nd υυ=表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。
大学物理气体的动理论习题答案
(4)从微观上看,气体的温度表示每个气体分子的冷热程度。
上述说法中正确的是
(A)(1)、(2)、(4);(B)(1)、(2)、(3);(C)(2)、(3)、(4);(D)(1)、(3)、(4)。
2. 两 容 积 不 等 的 容 器 内 分 别 盛 有 He 和 N2 , 若 它 们 的 压 强 和 温 度 相 同 , 则 两 气 体
9.速率分布函数 f(v)的物理意义为:
[B ]
(A)具有速率 v 的分子占总分子数的百分比。
(B)速率分布在 v 附近的单位速率间隔中的分子数占总分子数的百分比。
(C)具有速率 v 的分子数。
(D)速率分布在 v 附近的单位速率间隔中的分子数。
1
10.设 v 代表气体分子运动的平均速率,vP 代表气体分子运动的最可几速率,( v2 )2 代表
℃升高到 177℃,体积减小一半。试求:
(1)气体压强的变化;
(2)气体分子的平均平动动能的变化;
(3)分子的方均根速率为原来的倍数。
解:
(1)由
p1V1 T1
p2V2 T2
,
代入T1
=300K,T2
=450K,V2
=
1 2
V1可得
p2 =3p1
即压强由p1变化到了3 p1。
(2)分子的平均平动动能
(D) 6 p1 。
5. 一瓶氦气和一瓶氮气,两者密度相同,分子平均平动动能相等,而且都处于平衡状态, 则两者[ C ]
(A)温度相同,压强相等; (B)温度,压强都不相同; (C)温度相同,但氦气的压强大于氮气压强; (D)温度相同,但氦气的压强小于氮气压强。
6.1mol 刚性双原子分子理想气体,当温度为 T 时,其内能为
大学物理第十一章气体动理论习题详细答案
第十一章 气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v 的统计意义即可得出。
()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。
2、答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,后面三个选项的说法都是对的,而只有而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。
正确。
3、答案: A 解:2rms 1.73RT v v M ==,据题意得222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。
正确。
4、 由理想气体分子的压强公式23k p n e =可得压强之比为:可得压强之比为:A p ∶B p ∶C p =n A kA e ∶n B kB e ∶n C kC e =1∶1∶1 5、 氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RT n =代入内能公式2iE RT n =可得2iE pV =,所以氧气和氦气的内能之比为5 : 6,故答案选C 。
6、 解:理想气体状态方程PV RTn =,内能2iU RT n =(0m M n =)。
由两式得2UiP V =,A 、B 两种容积两种气体的压强相同,A 中,3i =;B 中,5i =,所以答案A 正确。
正确。
7、 由理想气体物态方程'm pV RT M=可知正确答案选D 。
8、 由理想气体物态方程pV NkT =可得气体的分子总数可以表示为PV N kT =,故答案选C 。
9、理想气体温度公式21322k m kT e u ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。
9-气体动理论-习题分析与解答(第二版)
第9章 气体动理论 习题解答(一). 选择题1. 已知某理想气体的压强为p ,体积为V ,温度为T ,气体的摩尔质量为M ,k 为玻尔兹曼常量,R 为摩尔气体常量,则该理想气体的密度为(A )M/V (B )pM/(RT) (C )pM/(kT) (D )p/(RT) [ ] 【分析与解答】气体的密度V m =ρ,由理想气体状态方程 RT M m pV =得RT pMV m ==ρ 正确答案是B 。
2. 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()2/122/122/12::CB A v v v =1∶2∶4,则其压强之比A p ∶B p ∶C p 为:(A) 1∶2∶4. (B) 1∶4∶8.(C) 1∶4∶16. (D) 4∶2∶1. [ ] 【分析与解答】同种理想气体,分子数密度n 相同,由理想气体压强公式)21(322v m n p =()()()16:4:1v :v :v ::222==C B A C B A p p p正确答案是C 。
3. 已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强. (B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度. (C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大. (D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. [ ] 【分析与解答】(A )温度相同,分子平均平动动能相等,wn p 32=,因无法比较单位体积分子数,故无法比较压强大小;(B)由一1密度公式RT pM V m ==ρ,压强不确定,故密度不能判定;(C)讨论分子速率一定要讨论统计平均值;(D) =,氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. 正确答案是D 。
4. 关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义.(3) 温度的高低反映物质内部分子运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 这些说法中正确的是(A) (1)、(2) 、(4). (B) (1)、(2) 、(3). (C) (2)、(3) 、(4).(D) (1)、(3) 、(4). [ ] 【分析与解答】上述表述中(1)、(2) 、(3)是正确的。
《大学物理》第十章气体动理论习题参考答案
第十章 气体动理论一、选择题参考答案1. (B) ;2. (B );3. (C) ;4. (A) ;5. (C) ;6. (B );7. (C ); 8. (C) ;9. (D) ;10. (D) ;11. (C) ;12. (B) ;13. (B) ;14. (C) ;15. (B) ;16.(D) ;17. (C) ;18. (C) ;19. (B) ;20. (B) ;二、填空题参考答案1、体积、温度和压强,分子的运动速度(或分子的动量、分子的动能)2、一个点;一条曲线;一条封闭曲线。
3. kT 21 4、1:1;4:1 5、kT 23;kT 25;mol /25M MRT 6、12.5J ;20.8J ;24.9J 。
7、1:1;2:1;10:3。
8、241092.3⨯9、3m kg 04.1-⋅10、(1)⎰∞0d )(v v v Nf ;(2)⎰∞0d )(v v v f ;(3)⎰21d )(212v v v v v Nf m 11、氩;氦12、1000m/s ; 21000m/s13、1.514、215、12M M三、计算题参考答案1.解:氧气的使用过程中,氧气瓶的容积不变,压强减小,因此可由气体状态方程得到使用前后的氧气质量,进而将总的消耗量和每小时的消耗量比较求解。
已知atm 1301=p ,atm 102=p ,atm 13=p ;L 3221===V V V ,L 4003=V 。
质量分布为1m ,2m ,3m ,由题意可得RT Mm V p 11=RT Mm V p 22= RT M m V p 333=所以该瓶氧气使用的时间为h)(6.94000.132)10130(3321321=⨯⨯-=-=-=V p V p V p m m m t 2.解:设管内总分子数为N ,由V NkT nkT p ==有 1210611)(⨯==.kT pV N (个)空气分子的平均平动动能的总和= J 10238-=NkT 空气分子的平均转动动能的总和 = J 106670228-⨯=.NkT 空气分子的平均动能的总和 = J 10671258-⨯=.NkT3.解:(1)根据状态方程RT MRT MV m p RT M m pV ρ==⇒=得 ρp M RT = ,pRT M ρ= 气体分子的方均根速率为1-2s m 49533⋅===ρp M RT v (2)气体的摩尔质量为1-2m ol kg 108.2⋅⨯==-p RTM ρ所以气体为N 2或CO 。
第十二章 气体动理论 习题解答
专业班级
12.5
学号
5
姓名
一容器内储有氧气,其压强为 1.01 10 Pa ,温度为 300K。求:
(1)气体分子的数密度; (2)氧气的质量密度; (3)氧气分子的平均平动能。 1.01 105 P 2.45 10 25 m 3 kT 1.38 10 23 300 32 10 3 M 25 (2)方法一: nm n 2.45 10 1.3kg / m3 (注意摩尔质量的单位); 23 NA 6.02 10 解: (1) 物态方程 p nkT ,得 n
12.11 在常压下,把一定量的理想气体温度升高 50℃,需要 160J 的热量。在体积不变的情况 下,把此气体温度降低 100℃,将放出 240J 的热量,则此气体分子的自由度是_6_。 分析:本题为第十三章内容。 根据摩尔定体热容和摩尔定压热容公式: CV,m
dQ p i 2 dQV i R 和 C p,m R 得到 2 2 dT dT
m MP 32 10 3 1.01 105 m RT ,得到 1.3kg / m3 M V RT 8.31 300 3 3 (3)氧气分子的平均平动能: k kT 1.38 10 23 300 6.21 10 21 J 2 2 注意:物态方程中的参数都要使用国际单位,因此摩尔质量 M 的单位应该取 kg / mol ,例
专业班级
学号
§12.1~12.3
姓名
12.1 置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情 况下气体的状态 【B】 (A) 一定都是平衡态. (B) 不一定都是平衡态. (C) 前者一定是平衡态,后者一定不是平衡态. (D) 后者一定是平衡态,前者一定不是平衡态. 分析:一定量的气体,在不受外界的影响下,经过一定的时间,系统达到一个稳定的宏观 性质不随时间变化的状态称为平衡态.(第十二章复习提纲 P.5) 根据物态方程 pV RT 可知,当一定量的气体各处压强(或者温度)相等时,并不能保证 气体的体积和温度(或者压强)时时不变,因此不能说此时气体达到平衡态。 如果本题改为:一定量的气体,各处压强相同,并且各处温度也都相同,此时气体的体积 也就是确定的值,因此气体达到平衡态。 12.2 若理想气体的体积为 V,压强为 P,温度为 T,一个分子的质量为 m,k 为玻尔兹曼常 量,R 为普适气体常量,则该理想气体的分子数为【B】 (A)
《大学物理》第8章气体动理论练习题及答案
《大学物理》第8章气体动理论练习题及答案练习1一、选择题1. 在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态。
A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 3p1;B. 4p1;C. 5p1;D. 6p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B. pVkT⁄; C. pV RT⁄; D. pV mT⁄。
3. 一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度( )A. 将升高;B. 将降低;C. 不变;D. 升高还是降低,不能确定。
二、填空题1. 解释下列分子动理论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:。
2. 在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) 。
练习2一、选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是 ( )A. p 1>p 2;B. p 1<p 2;C. p 1=p 2;D. 不能确定。
2. 两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数为n ,单位体积内的气体分子的总平动动能为E k V ⁄,单位体积内的气体质量为ρ,分别有如下关系 ( )A. n 不同,E k V ⁄不同,ρ不同;B. n 不同,E k V ⁄不同,ρ相同;C. n 相同,E k V ⁄相同,ρ不同;D. n 相同,E k V ⁄相同,ρ相同。
3. 有容积不同的A 、B 两个容器,A 中装有刚体单原子分子理想气体,B 中装有刚体双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能E A 和E B 的关系( )A. E A <E B ;B. E A >E B ;C. E A =E B ;D.不能确定。
大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第12章 气体动理论
第十二章 气体动理论12-1 一容积为10L 的真空系统已被抽成1.0×10-5 mmHg 的真空,初态温度为20℃。
为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出所吸附的气体,如果烘烤后压强为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子?解:由式nkT p =,有3202352/1068.15731038.1760/10013.1100.1m kT p n 个⨯≈⨯⨯⨯⨯⨯==-- 因而器壁原来吸附的气体分子数为个183201068.110101068.1⨯=⨯⨯⨯==∆-nV N12-2 一容器内储有氧气,其压强为1.01⨯105 Pa ,温度为27℃,求:(l )气体分子的数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。
(设分子间等距排列)分析:在题中压强和温度的条件下,氧气可视为理想气体。
因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。
又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。
解:(l )单位体积分子数325m 1044.2-⨯==kT p n(2)氧气的密度3m kg 30.1-⋅===RT pM V m ρ(3)氧气分子的平均平动动能J 1021.62321k -⨯==kT ε(4)氧气分子的平均距离m1045.3193-⨯==n d12-3 本题图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。
试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。
分析:由M RT v /2p =可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率p v 也就不同。
因22O H M M <,故氢气比氧气的p v 要大,由此可判定图中曲线II 所标13p s m 100.2-⋅⨯=v 应是对应于氢气分子的最概然速率。
气体动理论习习题解答
欢迎阅读习题8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。
若此理想气体的压强为1.35×1014 Pa 。
试估计太阳的温度。
(已知氢原子的质量m = 1.67×10-27 kg ,太阳半径R = 6.96×108 m ,太阳质量M = 1.99×1030 kg ) 解:m R M Vm M m n 3π)3/4(===ρ8-2 目前已可获得1.013×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个解:8-3 (1∑t εn p i =∑8-4 气的解:8-5 温度从27 ℃上升到177 ℃,体积减少一半,则气体的压强变化多少?气体分子的平均平动动能变化多少?分子的方均根速率变化多少?解:已知 K 300atm 111==T p 、根据RT pV ν=⇒222111T V p T V p =⇒atm 3312==p p8-6 温度为0 ℃和100 ℃时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1 eV ,气体的温度需多高?解:(1)J 1065.515.2731038.12323212311--⨯=⨯⨯⨯==kT t ε (2)kT 23J 101.6ev 1t 19-==⨯=ε 8-7 一容积为10 cm 3的电子管,当温度为300 K 时,用真空泵把管内空气抽成压强为5×10-4 mmHg 的高真空,问此时(1)管内有多少空气分子?(2)这些空气分子的平均平动动能的总和是多少?(3)平均转动动能的总和是多少?(4)平均动能的总和是多少?(将空气分子视为刚性解:(1(2(3(48-8 也就是解:8-9 3。
求:(1和转动动能各为多少?(4)容器单位体积内分子的总平动动能是多少?(5)若该气体有0.3 mol ,其内能是多少?解:(1)231v p ρ=⇒m/s 49432≈=ρp v (2)g 28333⇒322≈===ρμμpRT v RTRTv 所以此气体分子为CO 或N 2(3)J 1065.52321-⨯==kT t ε (4)J 1052.123233∑⨯===P kT n t ε (5)J 170125==RT E ν 8-10 一容器内储有氧气,其压强为1.01×105 Pa ,温度为27.0℃,求:(1)分子数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。
大学物理基础教程答案第05章习题分析与解答
5-1 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常数,R 为摩尔气体常数,则该理想气体的分子数为( )。
(A )PV m (B )PV kT (C )PV RT (D ) PVmT解:由N p nkT kT V ==得,pVN kT=,故选B 5-2 两个体积相同的容器,分别储有氢气和氧气(视为刚性气体),以1E 和2E 分别表示氢气和氧气的内能,若它们的压强相同,则( )。
(A )12E E = (B )12E E > (C )12E E < (D ) 无法确定 解:pV RT ν=,式中ν为摩尔数,由于两种气体的压强和体积相同,则T ν相同。
又刚性双原子气体的内能52RT ν,所以氢气和氧气的内能相等,故选A 5-3 两瓶不同种类的气体,分子平均平动动能相同,但气体分子数密度不同,则下列说法正确的是( )。
(A )温度和压强都相同 (B )温度相同,压强不同 (C )温度和压强都不同(D )温度相同,内能也一定相等解:所有气体分子的平均平动动能均为32kT ,平均平动动能相同则温度相同,又由p nkT =可知,温度相同,分子数密度不同,则压强不同,故选B5-4 两个容器中分别装有氦气和水蒸气,它们的温度相同,则下列各量中相同的量是( )。
(A )分子平均动能 (B )分子平均速率 (C )分子平均平动动能 (D )最概然速率解:分子的平均速率和最概然速率均与温度的平方根成正比,与气体摩尔质量的平方根成反比,两种气体温度相同,摩尔质量不同的气体,所以B 和D 不正确。
分子的平均动能2i kT ε=,两种气体温度相同,自由度不同,平均动能则不同,故A 也不正确。
而所有分子的平均平动动能均为k 32kT ε=,只要温度相同,平均平动动能就相同,如选C 5-5 理想气体的压强公式 ,从气体动理论的观点看,气体对器壁所作用的压强是大量气体分子对器壁不断碰撞的结果。
大学物理(气体动理论)习题答案
大学物理(气体动理论)习题答案8-1 目前可获得的极限真空为Pa 1033.111-⨯,,求此真空度下3cm 1体积内有多少个分子?(设温度为27℃)[解] 由理想气体状态方程nkT P =得 kT V NP =,kT PV N =故 323611102133001038110110331⨯=⨯⨯⨯⨯⨯=---...N (个)8-2 使一定质量的理想气体的状态按V p -图中的曲线沿箭头所示的方向发生变化,图线的BC 段是以横轴和纵轴为渐近线的双曲线。
(1)已知气体在状态A 时的温度是K 300=A T ,求气体在B 、C 、D 时的温度。
(2)将上述状态变化过程在 T V -图(T 为横轴)中画出来,并标出状态变化的方向。
[解] (1)由理想气体状态方程PV /T =恒量,可得:由A →B 这一等压过程中BBA A T V T V = 则 6003001020=⋅=⋅=A AB B T V V T (K) 因BC 段为等轴双曲线,所以B →C 为等温过程,则==B C T T 600 (K)C →D 为等压过程,则CCD D T V T V = 3006004020=⋅=⋅=C CD D T V V T (K) (2)8-3 有容积为V 的容器,中间用隔板分成体积相等的两部分,两部分分别装有质量为m 的分子1N 和2N 个, 它们的方均根速率都是0υ,求: (1)两部分的分子数密度和压强各是多少?(2)取出隔板平衡后最终的分子数密度和压强是多少?010203040[解] (1) 分子数密度 VNV N n VN V N n 2222111122====由压强公式:231V nm P =, 可得两部分气体的压强为 VV mN V m n P VV mN V m n P 3231323120220222012011====(2) 取出隔板达到平衡后,气体分子数密度为 VN N V N n 21+==混合后的气体,由于温度和摩尔质量不变,所以方均根速率不变,于是压强为:VV m N N V nm P 3)(31202120+==8-4 在容积为33m 105.2-⨯的容器中,储有15101⨯个氧分子,15104⨯个氮分子,g 103.37-⨯氢分子混合气体,试求混合气体在K 433时的压强。
大学物理习题册答案第11单元 气体动理论
第11单元 气体动理论一、选择题【C 】1.在标准状态下, 若氧气(视为刚性双原子分子的理想气体)和氦气的体积比2121=V V ,则其内能之比21/E E 为: (A) 1/2 (B) 5/3 (C) 5/6 (D) 3/10【B 】2.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为(A) pV/m (B) pV/(kT) (C) pV/(RT) (D) pV/(mT)【D 】3.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT v x 32= (B)m kT v x 3312= (C) m kT v x 32= (D)mkT v x =2 【解析】m kT v 32=,222231v v v v z y x ===,故mkT v x =2。
【变式】一定量的理想气体贮于某一容器内,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向分量的平均值为( ) 0 D. π38 . C π831 B. π8 A.==⋅==x x x x mkT m kT m kT v v v v 解:在热平衡时,分子在x 正反两个方向上的运动是等概率的,故分子速度在x 方向分量的平均值为零。
所以答案选D 。
【D 】4.若)(v f 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则)(21221v Nf mv v v ⎰ d v 的物理意义是(A) 速率为v 2的各分子的总平均动能与速率为v 1的各分子的总平均动能之差(B) 速率为v 2的各分子的总平动动能与速率为v 1的各分子的总平动动能之和(C) 速率处在速率间隔v 1~ v 2之内的分子的平均平动动能(D) 速率处在速率间隔v 1~ v 2之内的分子平动动能之和 【D 】5.在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态,A 种气体的分子数密度为1n ,它产生的压强为1p ,B 种气体的分子数密度为12n ,C 种气体的分子数密度为3n 1,则混合气体的压强p 为(A)31p (B)41p 1p (D)61p【A 】6.两种不同的理想气体,若它们的最概然速率相等,则它们的(A) 平均速率相等,方均根速率相等 (B) 平均速率相等,方均根速率不相等.(C) 平均速率不相等,方均根速率相等 (D) 平均速率不相等,方均根速率不相等.【解析】根据nkT p =,321n n n n ++=,得到1132166)(p kT n kT n n n p ==++=。
第6章 气体动理论习题解答
第6章习题解答6-1 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为[ B ]A. /pV m .B. /pV kT . C . /pV RT . D. /pV mT .6-2 两容器内分别盛有氢气和氦气,若在平衡态时,它们的温度和质量分别相等,则[ A ] A. 两种气体分子的平均平动动能相等. B. 两种气体分子的平均动能相等. C . 两种气体分子的平均速率相等. D. 两种气体的内能相等.6-3 两瓶不同类别的理想气体,设分子平均平动动能相等,但其分子数密度不相等,则[ B ]A .压强相等,温度相等.B .温度相等,压强不相等.C .压强相等,温度不相等.D .压强不相等,温度不相等.6-4 温度,压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε有如下关系 [ A ] A. k ε相等,而ε不相等. B. ε相等,而k ε不相等. C .ε和k ε都相等.D.ε和k ε都不相等.6-5 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,在x 方向分子速度的分量平方的平均值为[ D ]A. 2x =v B. 2x =v C . 23x kT m =v . D. 2x kT m =v .6-6 若()f v 为气体分子速率分布函数,N 为气体分子总数,m 为分子质量,则2121()d 2m Nf υυ⎰v v v 的物理意义是[ A ] A. 速率处在速率间隔12~v v 之间的分子平动动能之和. B. 速率处在速率间隔12~v v 间的分子平均平动动能.C . 速率为2v 的各分子的总平动动能与速率1v 为的各分子的总平动动能之和. D. 速率为2v 的各分子的总平动动能与速率1v 为的各分子的总平动动能之差.6-7在A 、B 、C 三个容器中装有同种理想气体,其分子数密度n 相同,方均根速率之比为1:2:4=,则其压强之比::A B C p p p 为[ C ]A. 1:2:4B. 4:2:1 C . 1:4:16 D. 1:4:86-8 题6-8图所示的两条曲线,分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H pv 分别表示氧气和氢气的最概然速率,则[ B ]A .图中a表示氧气分子的速率分布曲线,()()22O H/4p p =v v .B .图中a表示氧气分子的速率分布曲线,()()22O H1/4p p =v v . 题6-8图 C .图中b表示氧气分子的速率分布曲线,()()22O H1/4pp =v v . D .图中b表示氧气分子的速率分布曲线,()()22O H/4pp =v v .6-9 题6-9图是在一定的温度下,理想气体分子速率分布函数曲线。
气体动理论一章习题解答
解:根据理想气体状态方程
P = nkT ∝ T
分子平均平动能 ε k =
1 2 3 kT ,且 ε k = 2 m v ,所以,气体温度与气体分子的 2
方均根速率的平方成正比,即
T ∝ v2
因此,气体的压强
2 ⎞ P∝⎛ ⎜ v ⎟ ⎝ ⎠ 2
所以,气体的压强之比 PA:PB:PC 为 12:22:42 = 1:4:16,答案(C)正确。
P = nkT
氦气和氮气密度相同, 氦气的分子量小,它的分子数密度大,所以氦气的 压强大于氮气的压强。 所以,只有答案(C)是正确的。
习题 6─3
图示两条曲线分别表示在相同的温度下氧气和氢气分子速率分布曲 ]
线, ( v P ) O2 和 ( v P ) H 2 分别表示氧气和氢气分子的最可几速率,则: [ (A) 图中 a 表示氧气分子的速率分布曲线, ( v P ) O2 (v P ) H = 4 。
习题 6—6
若室内升起炉子后温度从 15℃升高到 27℃,而室内气压不变,则此 ] (B) 4%。 (C) 9%。 (D) 21%。
时室内的分子数减少了: [ (A)0.5%。
解:依题设条件并应用公式
P = nkT 可得
P1 = n1 kT1 = P2 = n2 kT2
所以
n2 T1 273 + 15 288 = = = n1 T2 273 + 27 300
2
解:由麦氏速率分布率,在相同温度下,气体的分子量越大其速率大的分子 比率越少,曲线峰值左移,从给定的分布曲线可以判断图中 a 表示氧气分子的速 率分布曲线。另一方面,由于气体分子最可几速 率为
f(v) a b
vP =
所以
《大学物理》气体动理论练习题及答案解析
《大学物理》气体动理论练习题及答案解析一、简答题1、你能够从理想气体物态方程出发 ,得出玻意耳定律、查理定律和盖吕萨克定律吗? 答: 方程RT Mm pV '=描述了理想气体在某状态下,p ,V ,T 三个参量所满足的关系式。
对给定量气体(Mm '不变),经历一个过程后,其初态和终态之间有222111T V p T V p =的关系。
当温度不变时,有2211V p V p =,这就是玻意耳定律;当体积不变时,有2211T p T p =,这就是查理定律;当压强不变时,有2211T V T V =,这就是盖吕萨克定律。
由上可知三个定律是理想气体在经历三种特定过程时所表现出来的具体形式。
换句话说,遵从玻意耳定律、查理定律和盖吕萨克定律的气体可作为理想气体。
2、为什么说温度具有统计意义? 讲一个分子具有多少温度,行吗?答:对处于平衡态的理想气体来说,温度是表征大量分子热运动激烈程度的宏观物理量,是对大量气体分子热运动状态的一种统计平均,这一点从公式kT v m 23212=中的2v 计算中就可以看出(∑∑=iii Nv N v22),可见T 本质上是一种统计量,故说温度具有统计意义,说一个分子的T 是毫无意义的。
3、解释下列分子运动论与热力学名词:(1) 状态参量;(2) 微观量;(3) 宏观量。
答:(1)状态参量:在一定的条件下,物质系统都处于一定的状态下,每个状态都需用一组物理量来表征,这些物理量称为状态参量。
(2)微观量:描述个别分子运动状态的物理量。
(3)宏观量:表示大量分子集体特征的物理量。
4、一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量和不随时间变化的微观量分别有哪些?建议:本题“不随时间变化的微观量分别有哪些”不知道通过该设问需要学生掌握什么东西。
其实从微观角度来讲,分子的任何量,如分子速度,动能,动量,严格说来甚至质量也是变化的。
可能会有人回答为平均速度、平均速率、平均自有程等,但那又是一种统计行为,该值对应着某些宏观量,这只能称为统计量,与微观量和宏观量相区别。
第十三章气体动理论习题解
第十三章 气体动理论13-1 真空设备内部的压强可达到1.013×10-10 Pa ,若系统温度为300K ,在此压强下,气体分子数密度为多少?解: 102310102.45300101.38101.013⨯=⨯⨯⨯==--kT p n m -313-2 2.0×10-2 kg 氢气装在2.0×10-3 m 3的容器内,当容器内的压强为3.90×105 Pa 时,氢气分子的平均平动动能为多大?解: 根据公式p =k εn 32,可得5222233333 3.9010 1.94102.010 6.021022 2.010 2.010k p nε----⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯J13-3 体积为1.0×10-3 m 3的容器中含有1.01×1023个氢气分子,如果其中压强为1.01×105Pa ,求该氢气的温度和分子的方均根速率。
解: 由理想气体物态方程可得氢气温度为:T =p / (nk )=p V / (Nk )=72.5K氢气分子的方均根速率为:29.5110m ==⨯s -113-4 一容器内贮有氧气,其压强为1.01×105 Pa ,温度为27.0℃,求:(1)气体分子的数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离(设分子间均匀等距排列)。
解: (1)气体分子的数密度n =p / (kT )=2.44⨯1025 m -3 (2)氧气的密度ρ=m / v =p M / R T =1.30 kg ⋅m -3 (3)氧气分子的平均平动动能k ε=3kT / 2=6.21⨯10-21J(4)氧气分子的平均距离d⨯10-9 m(本题给出了通常状态下气体的分子数密度、平均平动动能、分子间平均距离等物理量。
)13-5 某些恒星的温度可达到1.0×108 K ,这也是发生核聚变反应(也称热核反应)所需要的温度,在此温度下的恒星可视为由质子组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。
若此理想气体的压强为×1014Pa 。
试估计太阳的温度。
(已知氢原子的质量m = ×10-27kg ,太阳半径R = ×108 m ,太阳质量M = ×1030 kg )解:mR MVm M m n 3π)3/4(===ρ8-2 目前已可获得×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个气体分子解:3462310/cm 1045.2103001038.110013.1⨯=⨯⨯⨯⨯===---V kT p nV N 8-3 容积V =1 m 3的容器内混有N 1=×1023个氢气分子和N 2=×1023个氧气分子,混合气体的温度为 400 K ,求:(1) 气体分子的平动动能总和;(2)混合气体的压强。
解:(1)J 1014.41054001038.123)(233232321⨯=⨯⨯⨯⨯⨯=+=-∑N N kT tε(2)Pa kT n p i 323231076.21054001038.1⨯=⨯⨯⨯⨯==-∑8-4 储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。
设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。
问气体的温度及压强各升高多少(将氧气分子视为刚性分子)解:1mol 氧气的质量kg 10323-⨯=M ,5=i 由题意得T R Mv ∆=⋅ν25%80212K 102.62-⨯=∆⇒T 8-5 一个具有活塞的容器中盛有一定量的氧气,压强为 1 atm 。
如果压缩气体并对它加热,使温度从27 ℃上升到177 ℃,体积减少一半,则气体的压强变化多少气体分子的平均平动动能变化多少分子的方均根速率变化多少解:已知 K 300atm 111==T p 、 根据RT pV ν=⇒222111T V p T V p =⇒atm 3312==p p 8-6 温度为0 ℃和100 ℃时理想气体分子的平均平动动能各为多少欲使分子的平均平动动能等于1 eV ,气体的温度需多高解:(1)J 1065.515.2731038.12323212311--⨯=⨯⨯⨯==kT t ε (2)kT 23J 101.6ev 1t 19-==⨯=ε8-7 一容积为10 cm 3的电子管,当温度为300 K 时,用真空泵把管内空气抽成压强为5×10-4 mmHg 的高真空,问此时(1)管内有多少空气分子(2)这些空气分子的平均平动动能的总和是多少(3)平均转动动能的总和是多少(4)平均动能的总和是多少(将空气分子视为刚性双原子分子,760mmHg = ×105 Pa )解:Pa 13376010013.115=⨯=mmHg (1)个141061.1⨯===kT pVnV N (2)J 1012323236-⨯≈===∑pV RT kT N t νε(3)J 1065.6227∑-⨯====pV RT kT N r νε(4)J 1065.1256-⨯==+=∑∑∑pV r t εεε8-8 水蒸气分解为同温度的氢气和氧气,即 H 2O →H 2+21O 2也就是1mol 水蒸气可分解成同温度的1mol 氢和1/2mol 的氧。
当不计振动自由度时,求此过程的内能增量。
解:RT i E ν2=Θ,mol 1=ν 若水蒸气温度是100℃时8-9 已知在273 K 、×10-2 atm 时,容器内装有一理想气体,其密度为×10-2kg/m 3。
求:(1)方均根速率;(2)气体的摩尔质量,并确定它是什么气体;(3)气体分子的平均平动动能和转动动能各为多少(4)容器单位体积内分子的总平动动能是多少(5)若该气体有 mol ,其内能是多少解:(1)231v p ρ=⇒m/s 49432≈=ρpv(2)g 28333⇒322≈===ρμμpRTv RT RTv 所以此气体分子为CO 或N 2 (3)J 1065.52321-⨯==kT t ε (4)J 1052.123233∑⨯===P kT n t ε (5)J 170125==RT E ν8-10 一容器内储有氧气,其压强为×105 Pa ,温度为27.0℃,求:(1)分子数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。
(设分子间均匀等距排列)解:(1)325/m 1044.2⨯==kTpn (2)32kg/m 297.1333====RTPRTpv p μμρ(3)J 1021.62321-⨯==kT t ε(4)m 1045.3193-⨯=⇒=d nd8-11 设容器内盛有质量为1M 和2M 的两种不同的单原子理想气体,此混合气体处在平衡态时内能相等,均为E ,若容器体积为V 。
试求:(1)两种气体分子平均速率1v 与2v 之比;(2)混合气体的压强。
解:(1) RT M RT M E 22112323μμ==Θ⇒2121μμ=M M (2)VEE V kT V N kT V N kT V N kT n p i 343222121===+==∑ 8-12 在容积为×10-3 m 3的容器中,有内能为102J 的刚性双原子分子理想气体。
(1)求气体的压强;(2)设分子总数为1022个,求分子的平均平动动能及气体的温度。
解:(1)pV i RT iE 22==ν⇒pa 1035.125⨯==iVE p (2)K 3.3621038.1104.51021035.1232235=⨯⨯⨯⨯⨯⨯==--Nk pV T 8-13 已知)(v f 是速率分布函数,说明以下各式的物理意义: (1)v v f d )(;(2)v v Nf d )(;(3)⎰p0d )(v v v f解:(1)dv v v +-范围内的粒子数占总粒子数的百分比; (2)dv v v +-范围内的粒子数(3)速率小于p v 的粒子数占总粒子数的百分比8-14 图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦速率分布曲线。
试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。
解:(1)由习题8-14图可知:(2)由μRTv p 2=⇒K 3.48131.8210325002322=⨯⨯⨯==-R v T p μ8-15 在容积为×10-2 m 3的容器中装有×10-2 kg 气体,容器内气体的压强为104 Pa ,求气体分子的最概然速率。
解:由RT MpV μ=⇒MpVRT=μ8-16 质量m =×10-14g 的微粒悬浮在27℃的液体中,观察到悬浮粒子的方均根速率为1.4 cm/s ,假设粒子服从麦克斯韦速率分布函数,求阿伏伽德罗常数。
解:AmN RTmkTv 3=3=2 8-17 有N 个粒子,其速率分布函数为⎩⎨⎧>>≥=)(0)0()(00v v v v c v f(1)作速率分布曲线;(2)由0v 求常数c ;(3)求粒子平均速率。
解:(2)00110v c cdv v =⇒=⎰ (3)⎰⎰===02)(v v v cv dv v vf v 8-18 有N 个粒子,其速率分布曲线如图所示,数a ;(2)速率大当02v v >时0)(=v f 。
求:(1)常粒子平均速率。
于0v 和小于0v 的粒子数;(3)求解:(1)由速率分布函数的归一化条件可得(2)0v v <时:0v v >时:N N N N 3212=-= (3)⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤=≤==0000020023232)(v v v v v v a v v v v kv v f8-19 质点离开地球引力作用所需的逃逸速率为grv 2=,其中r 为地球半径。
(1)若使氢气分子和氧气分子的平均速率分别与逃逸速率相等,它们各自应有多高的温度;(2)说明大气层中为什么氢气比氧气要少。
(取r =×106 m )解:(1)由题意知gr RTv 28==πμRgr T 82πμ⋅=∴ 又kg/mol 103232-⨯=O μ kg/mol 10232-⨯=H μ(2)根据上述分析,当温度相同时,氢气的平均速率比氧气的要大(约为4倍),因此达到逃逸速率的氢气分子比氧气分子多。
按大爆炸理论,宇宙在形成过程中经历了一个极高温过程。
在地球形成的初期,虽然温度已大大降低,但温度值还是很高。
因而,在气体分子产生过程中就开始有分子逃逸地球,其中氢气分子比氧气分子更易逃逸。
另外,虽然目前的大气层温度不可能达到上述计算结果中逃逸速率所需的温度,但由麦克斯韦分子速率分布曲线可知,在任一温度下,总有一些气体分子的运动速率大于逃逸速率。
从分布曲线也可知道在相同温度下氢气分子能达到逃逸速率的可能性大于氧气分子。
*8-20 试求上升到什么高度时大气压强减至地面的75%设空气温度为0℃,空气的摩尔质量为0.0289 kg/mol 。
解:由)exp(0RTgzp p μ-=⇒pp g RT z 0ln μ-= 8-21 (1)求氮气在标准状态下的平均碰撞次数和平均自由程;(2)若温度不变,气压降低到×10-4 Pa ,平均碰撞次数又为多少平均自由程为多少(设分子有效直径为10-10 m )解:m 1038.8221722-⨯====pd kT n d Z v ππλ 8-22 真空管的线度为10-2 m ,真空度为×10-3 Pa ,设空气分子有效直径为3×10-10 m ,求27℃时单位体积内的空气分子数、平均自由程和平均碰撞频率。
解:317233/m 1021.33001038.11033.1⨯=⨯⨯⨯==--kT p n由pd kT n d Z v 22221ππλ===,当容器足够大时,取m 10310-⨯=d 代入可得m 10m 8.72->>=λ(真空管线度)所以空气分子间实际不会发生碰撞,而只能与管壁碰撞,因此平均自由程就是真空管的线度,即m 102-=λ8-23 在气体放电管中,电子不断与气体分子碰撞。
因电子速率远大于气体分子的平均速率,所以可以认为气体分子不动。
设气体分子有效直径为d ,电子的“有效直径”比起气体分子来可以忽略不计,求:(1)电子与气体分子的碰撞截面;(2)电子与气体分子碰撞的平均自由程。
(气体分子数密度为n )解:(1)4)22(22d d d e ππσ≈+=(2) un vZ v e e σλ==其中u 为电子相对于分子的平均相对速率 由于分子v v e >>,所以e v u ≈*8-24 在标准状态下,氦气(He )的内摩擦系数η= ×10-5 Pa·s,求:(1)在此状态下氦原子的平均自由程;(2)氦原子半径。