【最新】浙江省杭州市数学中考模拟试卷 (5)及答案
2023年浙江省杭州市中考数学真题模拟试卷附解析
2023年浙江省杭州市中考数学真题模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.正方形 ABCD 的边长为 1,对角线 AC 、BD 相交于点O ,若以 O 为圆心作圆,要使点A 在⊙O 外,则所选取的半径可能是( )A .12BCD .22.若抛物线2-6y x x c =+的顶点在x 轴上,则 c 的值为( )A .9B .3C .-9D .0 3.一个正方形的对角线长为2 cm ,则它的面积是( )A .2 cm 2 8.4 cm 2 C .6 cm 2 D .8 cm 2 4.8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x ,81,这组成绩的平均数是77,则x 的值为( )A .76B .75C .74D .735.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a6.某市气象预报称:“明天本市的降水概率为70%”,这句话指的是( )A .明天本市70%的时间下雨,30%的时间不下雨B .明天本市70%的地区下雨,30%的地区不下雨C .明天本市一定下雨D .明天本市下雨的可能性是70%7.已知∠α= 42°,则∠α的补角等于( )A . 148°B . 138°C .58°D . 48°8.已知数据:25,21,23,25,29,27,28,25,27,30,22,26,25,24,26,28,26,25,24,27.在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是 ( )A .0.6 B.0.5 C.0.4 D.0.39.如图,8×8方格纸的两条对称轴EF ,MN 相交于点0,对图a 分别作下列变换:①先以直线MN 为对称轴作轴对称图形,再向上平移4格;②先以点0为中心旋转180°,再向右平移1格;③先以直线EF 为对称轴作轴对称图形,再向右平移4格,其中能将图a 变换成图b 的是( )A .①②B .①③C .②③D .③二、填空题10.一次函数y kx b =+的图象经过点A(0,2),B(3,0),则此函数的解析式为 ;若将该图象沿x 轴向左平移4个单位,则新图象对应的函数解析式是 .11.在坐标平面上点(x+4,2y-1)与点(y-2,8- x)表示同一点,则点(x ,y)在坐标平面上的第 象限内.12.一组数据1,2,3,x 的平均数是4,则这组数据的中位数是 .13.如果4n x y 与2m xy 相乘的结果是572x γ,那么m ,n = .14.某市某中学随机调查了部分九年级学生的年龄,并画出了这些学生的年龄分布统计图(如图),那么,从该校九年级中任抽一名学生,抽到学生的年龄是l6岁的概率是 .15.某一天杭州的最低气温是零下3℃,最高气温是零上8℃,则这一天杭州的最大温差是 ℃.16.如图,DB=3 cm ,BC=7 cm ,C 是AD 的中点,则AB= .17.请你写出两个在1~5之间的无理数 .18.太阳的半径约是69660千米,用科学记数法表示(保留3个有效数字)约是 千米.19. 计算:32()5-= ;332⨯= ;3(32)⨯= ;32(3)(4)-⨯-= ;22233()44--= . 20.最大的负整数是 ,绝对值最小的数是 .三、解答题21.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°.(1)求∠APB 的度数;(2)当OA =3时,求AP 的长.22.某人骑自行车以每时10km 的速度由A 地到达B 地,路上用了6小时.(1)写出时间t 与速度v 之间的关系式.(2)如果返程时以每时12km 的速度行进,利用上述关系式求路上要用多少时间?(1)t=60v; (2)5h .23.如图,正方形网格中的每个小正方形边长都是1,•每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:(1)在图甲中,画出一个平行四边形,使其面积为6;(2)在图乙中,画出一个梯形,使其面积为6.24. 如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF=EC ,DE=4cm ,矩形ABCD 的周长为32cm ,求AE 的长.25.为了了解某中学九年级175名男生的身高情况,从中抽测了50名男生的身高,下面是数据整理与计算的一部分:(1)填写频率分布表中未完成的部分.(2)根据整理与计算回答下列问题:该校九年级男生身高在155.5~159.5cm 范围内的人数是 ,占 %.(3)绘制频数分布折线图.26.比较下面 4 个算式结果的大小(在横线上填“>”“<”或“=”).2245+ 245⨯⨯;22(1)2-+ 2(1)2⨯-⨯;221()3+123; 2233+ 233⨯⨯.通过观察归纳,写出反映这种规律的一般结论.2 1 E D C B A27.如图,在△ABC 中,AB =AC ,D 为 BC 边上的一点,∠BAD = ∠CAD ,BD = 6cm ,求BC 的长.28.如图,图中有哪些直线互相平行?为什么?29. 如图,已知在△ABC 中,BE 和CD 分别为∠ABC 和∠ACB 的平分线,且BD=CE ,∠1=∠2.说明BE=CD 的理由.30.如图,已知直线AB 与CD 、EF 相交于同一点0,且∠AOE=122°,∠BOC=107°. 求∠DOF 的度数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.A4.D5.C6.D7.B8.C9.D二、填空题10.223y x =-+,223y x =--11.二12.2.513.3,414.92015. 1116.11 cm17.18.6.97×10419.8125 ,24,216,432,451620.-1 ,0三、解答题21.解:(1)∵在△ABO 中,OA =OB ,∠OAB =30°∴∠AOB =180°-2×30°=120°∵PA 、PB 是⊙O 的切线∴OA ⊥PA ,OB ⊥PB .即∠OAP =∠OBP =90°∴在四边形OAPB 中,∠APB =360°-120°-90°-90°=60°.(2)如图①,连结OP,∵PA 、PB 是⊙O 的切线,∴PO 平分∠APB ,即∠APO =12∠APB =30° 又∵在Rt △OAP 中,OA =3, ∠APO =30°,∴AP =tan 30OA °=23.解:图形略,答案不惟一.24.解:在Rt△AEF和Rt△DEC中,∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.又∠FAE=∠EDC=90°,EF=EC,∴Rt△AEF≌Rt△DCE.∴AE=CD,AD=AE+4.∵矩形ABCD的周长为32 cm,∴2(AE+AE+4)=32.解得,AE=6 (cm).25.(1)略;(2)14人,8;(3)略26.>,>,>,= 一般结论:设两数为a,b,则a2+b2≥2ab(当a=b时,等号成立) 27.∵∠BAD=∠CAD,∴AD是∠BAC的平分线.∵AB=AC,∴△ABC是等腰三角形.∴AD是△ABC的BC边上的中线,∴BD=CD=12 BC.∵BD=6cm,∴BC=12(cm)28.a∥b,m∥n,同位角相等,两直线平行29.BE和CD分别为∠ABC和∠ACB的平分线,可得∠ABC=2∠1,∠ACB=2∠2, 由于∠1=∠2,∴∠ABC=∠ACB,△BCD≌△CBE(AAS),∴BE=CD.30.49°。
2023年浙江省杭州市中考数学模拟考试试卷附解析
2023年浙江省杭州市中考数学模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在ABC △中,90C AC BC ∠=,,的长分别是方程27120x x -+=的两个根,ABC△内一点P 到三边的距离都相等.则PC 为( )A .1B .2C .322D .222.下列各式正确的是( )A .sin30°+sin30°=sin60°B .tan60°-tan30°=tan30°C .cos (60°-30°)=cos60°-cos30°D .3tg30°=3 3.已知1x =-是一元二次方程20x px q ++=的一个根,则代数式p q -的值是( )A .1B .-1C .2D .-24.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线互相平分的四边形是平行四边形C .四条边相等的四边形是菱形D .对角线互相垂直且相等的四边形是正方形5.有两棵树,高度分别为6米、2米,它们相距5米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米( )A .41B .41C .3D .96.下列各曲线中不表示y 是x 的函数的是( )A .B .C .D . 7.如图,AB ∥CD ,如果∠2=2∠1,那么∠2 为( ) A .105° B .120° C .135°D .150°8.下列长度的三条线段,能组成三角形的是( )A . 1,2,3B .1,3,5C . 2,2,4D .2,3,49.图(1)、图 (2)分别是2005~2008年我国某省初中在校生人数和初中学校数目统计图,由图可知,2005~2008年,该省初中( )A .在校生人数逐年增加,学校数也逐年增加B .在校生人数逐年增加,学校数逐年减少C .在校生人数逐年减少,学校数也逐年减少D .在校生人数逐华减少,学校数逐年增加10.若a a ±=-时,a 是( )A . 全体实数B . 正实数C .负实数D .零 11.已知线段AB=3 cm ,延长BA 到C 使BC=5 cm ,则AC 的长是( )A .11 cmB .8 cmC .3 cmD .2 cm 二、填空题12.皮影戏中的皮影是由 投影得到的.13.两个相似三角形的周长分别为8cm 和16cm ,则它们的对应高的比为 .14.如图,菱形ABCD 的对角线AC =24,BD =10,则菱形的周长L=________.15. 解方程:2324x =-,x = .16.点P(2,-3)到x 轴的距离是 ,到y 轴的距离是 .17.如图,若∠1+∠2 =180°,则1l ∥2l ,试说明理由(填空).∵∠2+∠3= ( )又∵∠1+∠2=180°( ),∴∠1= ( ),∴1l ∥2l ( )18.轮船在静水中每小时行驶akm ,水流的速度为每小时bkm ,则轮船在逆流中行驶skm 需要 小时.解答题19.一个长方形的面积等于(2268a b ab +)cm 2,其中长是(34a b +)cm ,则该长方形的宽是 cm .20.将与水平方向成一定角度的线段AB 向右平移3个单位得到CD ,其中点A 与点C 对应,点B 与点D 对应,则AC 与BD 的关系是 .三、解答题21.如图,在△ABC 中,CD 交 AB 于点 E ,且AE :EB =1:2,EF ∥BC ∥AD ,EF 交AC 于点F ,ADE =1S ∆,求BCE s ∆和AEF S ∆.22.有一个抛物线的拱形隧道,隧道的最大高度为 6m ,跨度为 8m ,把它放在如图所示的平面直角坐标系中.(1)求这条抛物线所对应的函数解析式;(2)若要在隧道壁上 P 点处 (如图 )安装一盏照明灯,灯离地面高 4.5 m ,求灯与点B 的距离.23.已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.24.如图,已知四边形ABCD是等腰梯形,CD∥BA,四边形AEBC是平行四边形.求证:∠ABD=∠ABE.25.如图所示,人民公园的入口处原设有三级台阶,每级台阶高为 20 cm,深为 30 cm.但这三级台阶给残疾人带来了诸多的不便,为此,园林工作人员拟将台阶改成斜坡,原台阶的起始点为 A,斜坡的起始点为 C,且拟定斜坡的坡比为 1:8. 求AC 与 EC 的长. (精确到0. 1 cm)26.在直角坐标中,画出以A(0,0),B(3,4),C(3,-4)为顶点的△ABC,并判断△ABC的形状.27.解下列不等式组:(1)1212x--≤<(2)2x1511 32513(1)xx x-+⎧-≤⎪⎨⎪-<+⎩28.如图,在△ABC 中,AB=AC,∠A =30°,BD是△ABC 的高,求∠CBD 的度数.29.观察下列各式:2x x x-+=-(1)(1)123-++=-x x x x(1)(1)1324-++÷=-x x x x x(1)(1)1…由上面的规律:(1)求5432+++++的值;222221(2)求200820072006+++++的个位数字.2222130.在下列方框内填上“+”,“-”,“×”,“÷”或小括号,使算式成立.①4□4□4□4=1②4□4□4□口4=3③4□10□6□3=24【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.A4.D5.B6.D7.B8.D9.B10.D11.D二、填空题12.中心13.1214. 5215.2m =-.3,217.180°;平角的定义;已知,∠3;同角的补角相等;同位角相等,两直线平行 18.b a s-19.2ab 20.平行且相等三、解答题21.∵AD ∥BC,∵△ADE ∽△BCE .∵12AE BE =,1AED s ∆=,∴4BEC s ∆=, 又∵AEC 21BEC S S ∆∆=,∴2AEC S ∆=,∵12AEF CEF S AF S FC ∆∆==,∴23AEF S ∆=. 22.(1)由题意,设26(0)y ax a =+<,∵ 点 A(—4,0)和点 B(4,0)在抛物线上, ∴20(4)6a =⋅-+,得38a =-. 所求函数解析式是2368y x =-+ (2)将y=4. 5 代入2368y x =-+中,得2x =±,∴P(-2,4. 5). 作 PQ ⊥AB ,连接 PB ,则 Q(—2,0),∴ PQ= 4.5 , BQ= 6. ∴224.567.5PB =+=,即灯与B 的距离是7. 5 m .23.(1)证明:在△A BC 中, AB =AC ,AD ⊥BC .∴ ∠BAD =∠DAC .∵ AN 是△ABC 外角∠CAM 的平分线,∴ MAE CAE ∠=∠.∴∠DAE=∠DAC+∠CAE=⨯21180°=90°.又∵ AD⊥BC,CE⊥AN,∴ADC CEA∠=∠=90°,∴四边形ADCE为矩形.(2)例如,当AD=12BC时,四边形ADCE是正方形.证明:∵ AB=AC,AD⊥BC于D.∴ DC=12BC.又 AD=12BC,∴ DC=AD.由(1)四边形ADCE为矩形,∴矩形ADCE是正方形.24.证△ABD≌△BAC25.AC =420 cm,BC= 483.7cm26.作图略,△ABC为等腰三角形27.(1)-1<x≤5;(2)-1≤x<228.15°29.(1)63;(2)130.答案不唯一如①4×4÷4÷4=1 ②(4+4+4)÷4=3 ③4+10× 6÷3 =24。
浙江省杭州市数学中考模拟试卷 及答案
中考模拟试卷数学卷考试时间:120分钟 满分:120分一.选择题 (本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(原创)2015年11月22日,“球冠杯”萧山戴村山地越野赛在戴村举行。
此次越野赛以徒步登山为主,线路两条,分为健身组路线、挑战组路线。
其中,健身组路线全长12.88km 。
以下用科学计数法表示12.88km 正确的是( )A. 310288.1⨯ mB. 410288.1⨯ mC. 510288.1⨯ mD.610288.1⨯m 2.(原创)[]=--2)1(x ( )A.122++x xB. 122++-x xC. 122+-x xD.122-+-x x 3.(原创)下列关于“0”的说法错误的是( )A.0的相反数是0B. 0的算术平方根是0C. 0是无理数D.0既不是正数也不是负数 4.(原创)已知某几何体的三视图(单位:cm )则该几何体的底面积等于( )2cm A. 12 B. 24 C. 128 D. 255.(原创)在RT △ABC 中,已知∠C=90°,∠A=20°,AB =5,则AC=( )A. ο20sin 5 B. ο70cos 5 C. ο20tan 5 D. ο20cos 56.(改编)设26,22,35-=-=-=c b a ,则 a ,b ,c 的大小关系式( )A. a >b >cB. c >b >aC. c >a >bD. b >c >a7.(改编)反比例函数y =kx 的图象经过二次函数 y =ax 2+bx 图象的顶点 (-12,m )(m >0),则A. a =b +2kB. a =b -2kC. k <b <0D. a <k <08.以下是某手机店1~4月份的统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )A. 4月份三星手机销售额为65万元B. 4月份三星手机销售额比3月份有所上升C. 4月份三星手机销售额比3月份有所下降D. 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额 9.(原创)如右图所示,⊙O 内OAB ∆绕圆心O 顺时针旋转90°得到B A O ''∆。
初中数学浙江省杭州市中考模拟数学模拟考试卷及答案5.docx
xx学校xx 学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下面是一位同学做的四道题:①;②;③;④.其中做对了几道题()A.0B.1C.2D.3试题2:如图,BC∥DE,∠1=117°, ∠AED=77°, 则∠A的大小是()A.25° B.35° C.40° D.60°试题3:相邻两边长分别为2和3的平行四边形,若边长保持不变,则它可以变为()A. 矩形B. 菱形C. 正方形D. 梯形试题4:如图①,有6张写有实数的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开两张都是无理数的概率是()评卷人得分(A)(B)(C)(D)试题5:两圆的半径分别为,圆心距为4.若,则两圆()A.内含B.相交C.外切D.外离试题6:如图,一块直角三角板ABC的斜边AB与量角器的直径重合,点D对应54°,则∠BCD的度数为()A. 27°B. 54°C. 63°D. 36°试题7:已知a>b,则下列不等式中,错误的是()A、3a>3bB、-<-C、4a-3>4b-3D、(c-1)2a>(c-1)2b关于分式,有下列说法,错误的有()个:(1)当x取1时,这个分式有意义,则a≠3;(2)当x=5时,分式的值一定为零;(3)若这个分式的值为零,则a≠-5;(4)当x取任何值时,这个分式一定有意义,则二次函数y=x2-4x+a与x轴没有交点。
A. 0B. 1C. 2D. 3试题9:如图,设三角形ABC为一等腰直角三角形,角ABC为直角,D为AC中点。
以B为圆心,AB为半径作一圆弧AFC,以D为中心,AD为半径,作一半圆AGC,作正方形BDCE。
2023年浙江省杭州市中考数学模拟卷(含答案解析)
2023年浙江省杭州市中考数学模拟卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算42-÷的结果是().A.2-B.2C.12-D.122.第四届世界茉莉花大会、2022年中国(横州)茉莉花文化节于9月19日、20日在南宁市和横州市两地举行,茉莉花产业成了横州市一张靓丽的名片,目前横州市茉莉花种植面积约125000亩.数据125000用科学记数法可表示为()A.60.12510⨯B.51.2510⨯C.412.510⨯D.312510⨯3.计算62a a⋅的结果是()A.3a B.4a C.8a D.12a4.在平面直角坐标系中,点(1,2)P-关于原点对称的点在()A.第一象限B.第二象限C.第三象限D.第四象限5.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.数学活动课上,孙老师对圆周率的小数点后100位数字进行了统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数与中位数分别为()A.14,5B.5,9C.9,5D.14,4.56.从甲、乙、丙、丁四名青年骨干教师中随机选取两名去参加“同心向党”演讲比赛,则恰好抽到甲、丙两人的概率是()A.18B.16C.14D.127.如果关于x的一元二次方程210ax bx++=的一个解是x=1,则代数式2022-a-b 的值为()A.-2022B.2021C.2022D.20238.若一个多边形的每一个内角都等于140︒,则这个多边形的边数是()A.7B.8C.9D.109.某活动小组购买了4个篮球和5个足球,一共花费435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意可列方程组为()A .343435x y y y -=⎧⎨+=⎩B .345435y x x y -=⎧⎨+=⎩C .345435x y x y =-⎧⎨+=⎩D .345435x y x y -=⎧⎨+=⎩10.已知在平面直角坐标系xOy 中,过点O 的直线交反比例函数1y x=的图象于A ,B 两点(点A 在第一象限),过点A 作AC x ⊥轴于点C ,连结BC 并延长,交反比例函数图象于点D ,连结AD ,将ACB △沿线段AC 所在的直线翻折,得到1ACB ,1AB 与CD 交于点E .若点D 的横坐标为2,则AE 的长是()A .23BC.2D .1二、填空题11.分解因式:229x y -=________.12.五线谱是一种记谱法,通过在五根等距离的平行横线上标以不同时值的音符及其他记号来记载音乐.如图,A ,B ,C 为直线l 与五线谱的横线相交的三个点,则AB BC的值是_______.13.不等式组34214x x +<⎧⎪⎨-≤⎪⎩的解为_________.14.如图,一辆小车沿倾斜角为α的斜坡向上行驶26米,已知12cos 13α=,则小车上升的高度是________米.15.如图,以AD 为直径的半圆O 经过Rt △ABC 的斜边AB 的两个端点,交直角边AC 于点E .B 、E 是半圆弧的三等分点,弧BE 的长为23π,则图中阴影部分的面积为_____.16.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为()50-,,对角线AC 和OB 相交于点D 且40AC OB ⋅=.若反比例函数(0)ky x x=<的图象经过点D ,并与BC 的延长线交于点E ,则OCE S = _____.三、解答题17.计算:(1)(052020--;(2)x (1-x )+(x +1)(x -1).18.某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.19.已知,如图,点A ,D ,B ,E 在同一条直线上,,,AC EF AD EB A E ==∠=∠,BC 与DF 交于点G .(1)求证:ABC EDF △≌△;(2)当110CGD ∠=︒时,求GBD ∠的度数.20.如图,ABC 内接于O ,AB AC =,ADC △与ABC 关于直线AC 对称,AD 交O 于点E .(1)求证:CD 是O 的切线.(2)连接CE ,若1cos 3D =,6AB =,求CE 的长.21.小李、小王分别从甲地出发,骑自行车沿同一条路到乙地参加公益活动.如图,折线OAB 和线段CD 分别表示小李、小王离甲地的距离y (单位:千米)与时间x (单位:小时)之间的函数关系.根据图中提供的信息,解答下列问题:(1)求小王的骑车速度,点C 的横坐标;(2)求线段AB 对应的函数表达式;(3)当小王到达乙地时,小李距乙地还有多远?22.如图,在正方形ABCD 中,6AB =,E 为AB 的中点,连接CE ,作CF EC ⊥交射线AD 于点F ,过点F 作FG CE ∥交射线CD 于点G ,连接EG 交AD 于点H .(1)求证:CE CF =.(2)求HD 的长.(3)如图2,连接CH ,点P 为CE 的中点,Q 为AF 上一动点,连接PQ ,当QPC ∠与四边形GHCF 中的一个内角相等时,求所有满足条件的DQ 的长.23.如图1,抛物线()2102y x bx c c =++<与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点C 作CD x ∥轴,与抛物线交于另一点D ,直线BC 与AD 相交于点M .(1)已知点C 的坐标是()04-,,点B 的坐标是()40,,求此抛物线的解析式;(2)若112b c =+,求证:AD BC ⊥;(3)如图2,设第(1)题中抛物线的对称轴与x 轴交于点G ,点P 是抛物线上在对称轴右侧部分的一点,点P 的横坐标为t ,点Q 是直线BC 上一点,是否存在这样的点P ,使得PGQ △是以点G 为直角顶点的直角三角形,且满足GQP OCA ∠=∠,若存在,请直接写出t 的值;若不存在,请说明理由.参考答案:1.A【分析】按照“两数相除,异号得负,并把绝对值相除”的法则直接计算即可.【详解】解:(-4)÷2=-2故选:A .【点睛】本题考查有理数除法运算,解题的关键是熟练掌握运算法则,注意先确定运算的符号,同号得正,异号得负.2.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:5125000 1.2510=⨯.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.C【分析】根据同底数的幂相乘,底数不变,指数相加求解即可.【详解】解:62a a ⋅=a 6+2=a 8,故选C .【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解答本题的关键.4.D【分析】根据关于原点对称的点坐标变换规律即可得.【详解】解: 点(1,2)P -关于原点对称的点的坐标为(1,2)-,∴在平面直角坐标系中,点(1,2)P -关于原点对称的点在第四象限,故选:D .【点睛】本题考查了关于原点对称的点坐标变换规律,熟练掌握关于原点对称的点坐标变换规律是解题关键.5.C【分析】直接根据众数和中位数的定义可得答案.【详解】解:圆周率的小数点后100位数字的出现次数最多的为9,故众数为9;处于最中间的两位数为5和5,所以中位数为5故答案为:9,5.【点睛】本题主要考查众数和中位数,解题的关键是掌握求一组数据的众数和中位数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.找出处于最中间的两位数取他们的平均数,即为中位数.6.B【分析】根据列表法求概率即可.【详解】解:设,,,A B C D 表示甲、乙、丙、丁四名青年骨干教师,列表如下AB C D A --AB AC AD B BA --BC BD C CA CB --CD DDADBDC--共有12种等可能结果,其中恰好抽到甲、丙两人有2种结果,故恰好抽到甲、丙两人的概率为21=126.故选B【点睛】本题考查了列表法求概率,掌握求概率的方法是解题的关键.7.D【分析】根据一元二次方程解得定义即可得到1a b +=-,再由()20222022a b a b --=-+进行求解即可.【详解】解:∵关于x 的一元二次方程210ax bx ++=的一个解是x =1,∴10a b ++=,∴1a b +=-,∴()()20222022202212023a b a b --=-+=--=,故选D .【点睛】本题主要考查了代数式求值和一元二次方程的解,熟知一元二次方程解得定义是解题的关键.8.C【分析】先求出外角的度数,根据多边形的外角和等于360︒即可求出多边形的边数.【详解】解:∵一个多边形的每一个内角都等于140︒,∴这个多边形的每一个内角对应的外角度数为18014040︒-︒=︒,∵多边形的外角和为360°,∴多边形的边数为360940°=°,故选:C .【点睛】本题考查了多边形的内角和外角,能灵活运用多边形的外角和等于360︒进行求解是解此题的关键.9.D【分析】设篮球的单价为x 元,足球的单价为y 元,根据题意列出二元一次方程组,即可求解.【详解】解:设篮球的单价为x 元,足球的单价为y 元,由题意得:345435x y x y -=⎧⎨+=⎩,故选:D .【点睛】本题考查了列二元一次方程组,找到等量关系是解题的关键.10.B【分析】求出直线BC ,1AB 的解析式,联立两个解析式,求出E 点坐标,利用两点间距离公式,进行求解即可.【详解】解:设点A 的坐标为1,m m ⎛⎫ ⎪⎝⎭,则点B 的坐标为1,m m ⎛⎫-- ⎪⎝⎭∵AC x ⊥轴,∴(),0C m ,设直线BC 的解析式为y kx b =+,把1,,B m m ⎛⎫-- ⎪⎝⎭(),0c m 代入,得10km b m mk b ⎧-+=-⎪⎨⎪+=⎩,解得:21212k m b m ⎧=⎪⎪⎨⎪=-⎪⎩,∴2122x y m m=-,∵点D 的横坐标为2,∴12,2D ⎛⎫ ⎪⎝⎭把点12,2D ⎛⎫⎪⎝⎭代入2122x y m m =-得:121,2m m ==-(舍),∴()()()1,1,1,11,0A B C --,直线BC 的解析式为:1122y x =-,∵将ACB △沿线段AC 所在的直线翻折,得到1ACB ,∴点1B 的坐标为()3,1-,设直线1AB 的解析式为y ax n =+,把()1,1A ,()13,1B -代入可得:1,31a n a n +=⎧⎨+=-⎩解得:12a n =-⎧⎨=⎩,∴2y x =-+,联立21122y x y x =-+⎧⎪⎨=-⎪⎩,解得:5313x y ⎧=⎪⎪⎨⎪=⎪⎩,∴51,33E ⎛⎫⎪⎝⎭,∴3AE ==.故选:B .【点睛】本题考查反比例函数与一次函数综合应用,坐标系下的旋转.熟练掌握旋转的性质,正确的求出一次函数的解析式,是解题的关键.11.()()33x y x y +-##()()33x y x y -+【分析】直接根据平方差公式因式分解即可求解.【详解】解:229x y -=()()33x y x y +-,故答案为:()()33x y x y +-.【点睛】本题考查了因式分解,掌握平方差公式是解题的关键.12.2【分析】过点A 作AD a ⊥于D ,交b 于E ,根据平行线分线段成比例定理列出比例式,计算即可.【详解】过点A 作AD a ⊥于D ,交b 于E,∵a b ,∴2==AB AE BC ED,故答案为:2.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.13.21x -£<【分析】分别解出两个不等式的解集,并将解集表示在数轴上,找到公共解集即可.【详解】解:34214x x +<⎧⎪⎨-≤⎪⎩①②解不等式①得,1x <解不等式②得,2x ≥-将解集表示在数轴上,如图,∴不等式组的解集为21x -£<故答案为:21x -£<.【点睛】本题考查解一元一次不等式组、在数轴上表示不等式的解集等知识,是基础考点,掌握相关知识是解题关键.14.10【分析】由题意易得该直角三角形的三边之比为5∶12∶13,进而可得5sin 13α=,然后问题可求解.【详解】解:∵12cos 13α=,∴该直角三角形的三边之比为5∶12∶13,∴5sin 13α=,∵小车沿倾斜角为α的斜坡向上行驶26米,∴小车上升的高度是26sin 2056113α⨯=⨯=米;故答案为10.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数是解题的关键.1523π【分析】连接BD ,BE ,BO ,EO ,由 BE 的长为23π,可求出圆的半径,然后根据图中阴影部分的面积为:S △ABC -S 扇形BOE ,即可求解.【详解】解:连接BD ,BE ,BO ,EO ,∵B ,E 是半圆弧的三等分点,∴∠EOA =∠EOB =∠BOD =60°,∴∠BAC =∠EBA =30°,∴BE ∥AD ,∵ BE 的长为23π,∴6021803R ππ=,解得R =2.∴AB =AD ∴BC =12AB3,AC =13,22ABC s BC AC ∆=⨯⨯==∵△BOE 和△ABE 同底等高,∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为:S △ABC -S 扇形BOE 23π,23π.【点睛】本题考查扇形的面积公式,解直角三角形,勾股定理,圆周角定理的推论,添加辅助线,利用割补法求面积是关键.16.2【分析】如图所示,过点C 作CG AO ⊥于G ,根据菱形和三角形的面积公式可得1210OAC OABC S S ==菱形V ,再由5OA =,求出CG 4=,在Rt OGC △中,根据勾股定理得3OG =,即()34C -,,根据菱形的性质和两点中点坐标公式求出()42D -,,将D 代入反比例函数解析式可得k ,进而求出点E 坐标,最后根据三角形面积公式分别求得OCE S 即可.【详解】解:如图所示,过点C 作CG AO ⊥于G ,∵40BO AC ⋅=,∴1202OABC BO S AC =⋅=菱形,∴1210OAC OABC S S ==菱形V ,∴1102AO CG ⋅=,∵()50A -,,∴5OA =,∴CG 4=,在Rt OGC △中,54OC OA CG ===,,∴3OG ==,∴()34C -,,∵四边形OABC 是菱形,∴()84B -,,∵D 为BO 的中点,∴()42D -,,又∵D 在反比例函数上,∴428k =-⨯=-,∵()34C -,,∴E 的纵坐标为4,又∵E 在反比例函数上,∴E 的横坐标为824-=-,∴()24E -,,∴1CE =,∴1114222OCE S CE CG =⋅=⨯⨯=△,故答案为:2.【点睛】本题主要考查了反比例函数图象上点的坐标特征以及菱形性质的运用,解题时注意:菱形的对角线互相垂直平分.17.(1)9(2)1x -【分析】(1)利用绝对值的代数意义,算术平方根的定义以及零指数幂的定义计算即可.(2)利用单项式乘多项式的运算法则以及平方差公式化简即可.【详解】(1)解:(052020-+5519=+-=.(2)解:原式221x x x =-+-,【点睛】本题考查了平方差公式,算术平方根,单项式乘多项式以及零指数幂的定义和法则,牢固掌握运算法则是解题的关键.18.(1)5,20,80(2)图见解析(3)3 5【分析】(1)用喜欢跳绳的学生人数除以所占的百分比,求出班级人数,用班级人数减去喜欢跳绳,乒乓球和其他项目的人数,求出喜欢篮球项目的人数,用喜欢乒乓球的人数除以班级总人数,得到乒乓球的百分比,用全校人数乘以喜欢篮球的百分比,求出全校喜欢篮球的人数;(2)补全条形图即可;(3)画树状图求概率即可.【详解】(1)解:调查的总人数为2040%50÷=人,∴喜欢篮球项目的同学的人数502010155=---=人;扇形图中:“乒乓球”的百分比:1020% 50=,全校喜欢篮球的人数:58008050⨯=人,∴估计全校学生中有80人喜欢篮球项目;故答案为:5,20,80;(2)补全条形图如下:(3)解:画树状图如下:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果所以所抽取的2名同学恰好是1名女同学和1名男同学的概率123205==.【点睛】本题考查条形图和扇形图综合应用,以及画树状图法求概率.通过扇形图和条形图有效地获取信息,是解题的关键.19.(1)证明见解析;(2)55︒.【分析】(1)先根据线段的和差可得AB ED =,再根据三角形全等的判定定理即可得证;(2)先根据三角形全等的性质可得GBD GDB ∠=∠,再根据三角形的外角性质即可得.【详解】证明:(1)AD EB = ,AD BD EB BD ∴+=+,即AB ED =,在ABC 和EDF 中,AC EF A E AB ED =⎧⎪∠=∠⎨⎪=⎩,()ABC EDF SAS ∴≅ ;(2)由(1)已证:ABC EDF ≅ ,ABC EDF ∴∠=∠,即GBD GDB ∠=∠,110GBD G D DB CG ∠+∠=∠=︒ ,5512CG BD D G ∠∴=∠=︒.【点睛】本题考查了三角形全等的判定定理与性质、三角形的外角性质等知识点,熟练掌握三角形全等的判定方法是解题关键.20.(1)证明见解析(2)4【分析】(1)如图所示,连接OC ,连接AO 并延长交BC 于F ,根据等边对等角得到A ABC CB =∠∠,再证明AF BC ⊥,得到90ACF CAF ∠+∠=︒,由OA OC =,得到OAC OCA ∠=∠,由轴对称的性质可得ACB ACD ∠=∠,即可证明90ACD OCA ∠+∠=︒,从而证明CD 是O 的切线;(2)由轴对称的性质得B D ∠=∠,CD BC =,再由圆内接四边形对角互补推出,CED D ∠=∠,得到CE CD BC ==,解Rt ABF ,求出2BF =,则24BC BF ==,即可得到4CE BF ==.【详解】(1)证明:如图所示,连接OC ,连接AO 并延长交BC 于F ,∵AB AC =,∴A ABC CB =∠∠,∵ABC 内接于O ,∴AF BC ⊥,∴90ACF CAF ∠+∠=︒,∵OA OC =,∴OAC OCA ∠=∠,∴90ACF OCA +=︒∠∠,由轴对称的性质可得ACB ACD ∠=∠,∴90ACD OCA ∠+∠=︒,即90OCD ∠=︒,又∵OC 是O 的半径,∴CD 是O 的切线;(2)解:由轴对称的性质得B D ∠=∠,CD BC =,∵四边形ABCE 是圆内接四边形,∴180B AEC AEC CED +=︒=+∠∠∠∠,∴CED D ∠=∠,∴CE CD BC ==,∵1cos 3D =,∴1cos cos 3B D ==,在Rt ABF 中,cos 2BF AB B =⋅=,∴24BC BF ==,∴4CE BF ==.【点睛】本题主要考查了切线的判定,等腰三角形的性质与判定,锐角三角函数,轴对称的性质等等,灵活运用所学知识是解题的关键.21.(1)18千米/小时,0.5(2)()9 4.50.5 2.5y x x =+≤≤;(3)4.5千米【分析】(1)根据函数图象中的数据先求出小王的骑车速度,再求出点C 的坐标;(2)用待定系数法可以求得线段AB 对应的函数表达式;(3)将2x =代入(2)中的函数解析式求出相应的y 的值,再用27减去此时的y 值即可求得当小王到达乙地时,小李距乙地的距离.【详解】(1)解:由图可得,小王的骑车速度是:()()2792118-÷-=(千米/小时),点C 的横坐标为:19180.5-÷=;(2)设线段AB 对应的函数表达式为()0y kx b k =+≠,∵()0.5,9A ,()2.5,27B ,∴0.592.527k b k b +=⎧⎨+=⎩,解得:94.5k b =⎧⎨=⎩,∴线段AB 对应的函数表达式为()9 4.50.5 2.5y x x =+≤≤;(3)当2x =时,18 4.522.5y =+=,∴此时小李距离乙地的距离为:2722.5 4.5-=(千米),答:当小王到达乙地时,小李距乙地还有4.5千米.【点睛】本题考查了从函数图象获取信息,以及一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)证明见解析(2)2(3)DQ 的值为333,3,414【分析】(1)证明△△BCE DCF ≌即可得结论;(2)由E 为AB 中点,6AE =,得3AE BE ==,进而求得1tan 2ECB ∠=,从而有1tan 2GFD ∠=,32GD =,再证明△△AEH DGH ∽即可求解;(3)由“边边边”证明△≌△ECH FCH ,得45,ECH FCH HEC HFC ∠=∠=︒∠=∠.进而分四种情况讨论求解,①如图2,当90QPC GFC ∠=∠=︒时,②如图3,当QPC HGF ∠=∠时,③如图4,当QPC GHC ∠=∠时,进而求得DQ 的长.【详解】(1)证明: 四边形ABCD 为正方形,BC CD ∴=,90ABC BCD CDF ∠=∠=∠=︒.CF EC ⊥ ,90DCF ECD ∴∠+∠=︒,90∵ECB ECD ∠+∠=︒,ECB DCF ∴∠=∠,BCE DCF ∴≌△△,CE CF ∴=.(2)解:E 为AB 中点,6AE =,3AE BE ∴==,1tan 2ECB ∴∠=.GF EC ∥ ,90GFC ECF ∴∠=∠=︒,1tan tan tan 2GFD DCF ECB ∴∠=∠=∠=,32GD ∴=.AE GD ∥ ,AEH DGH ∴∽△△,21AE AH GD DH ∴==,123HD AD ∴==.(3)解:2,3HD DF == ,5EH FH ∴==.,EC CF CH CH == ,ECH FCH ∴△≌△,45,ECH FCH HEC HFC ∴∠=∠=︒∠=∠.①如图2,当90QPC GFC ∠=∠=︒时,可得PQ FC ∥,tan tan 2AQP AFC ∴∠=∠=.过点P 作MN AD ⊥于点MP 为中点,1322PN BE ∴==,39622PM ∴=-=,94QM ∴=,93344DQ MD QM ∴=-=-=.②如图3,当QPC HGF ∠=∠时,GF EC ∥ ,180HGF HEC ∴∠+∠=︒,180∵QPC QPE +∠=︒.QPC HGF ∠=∠,QPE HEC ∴∠=∠,HEC HFC ∠=∠ ,QPE HFC BEC ∴∠=∠=∠,PQ AB ∴∥,3DQ ∴=.③如图4,当QPC GHC ∠=∠时,2,6HD DC == ,tan 3DHC ∴∠=.QPC GHC ∠=∠ ,EHC QPE FHC ∴∠=∠=∠,45,tan 3EMP ECH QPE ∴∠=∠=︒∠=.过点M 作MN EP ⊥于点N ,∴设NP a =,则33,2a MN a EN ==.32a a +a =91,22EM MH ∴==.在QMH △中,过点Q 作QJ EH ⊥于点J ,∴设3,4,3QJ b JH b MJ b ===.117,214b b =∴=514QH ∴=,3314DQ ∴=.综上所述,DQ 的值为333,3,414.【点睛】本题主要考查了全等三角形的判定及性质、正方形的性质、相似三角形的判定及性质以及解直角三角形,掌握分类思想,构造恰当辅助线是解题的关键.23.(1)2142y x x =--(2)证明见解析(3)t =或t =【分析】(1)利用待定系数法求解即可;(2)先求出当112b c =+时,抛物线的解析式为211122y x c x c ⎛⎫=+++ ⎪⎝⎭,由此求出()()200A B c --,,,,再求出()2D c c --,,求出直线AD 的解析式为2y x =--,设直线AD 与y 轴交于点E ,则()02E -,,得到2OA OE ==,则45OAE ∠=︒,同理得45OBC ∠=︒,从而得到90AMB ∠=︒,即可证明AD BC ⊥;(3)如图所示,连接AC PQ ,,求出抛物线对称轴为直线1x =,则()20A -,,推出1tan tan 2GQP OCA ∠=∠=,求出直线BC 的解析式为4y x =-,设()21442P t t t Q s s ⎛⎫--- ⎪⎝⎭,,,,然后分当点Q 在点P 下方时,如图3-1所示,过点Q 、P 分别作x 轴的垂线,垂足分别为M 、N ,证明QMG GNP △∽△,得到24121142s s t t t --==--++,解方程即可;当点Q 在点P 上方时,如图3-2所示,过点G 作MN y ∥轴,过点P 、Q 分别作直线MN 的垂线,垂足分别为N 、M ,同理可得21421142s s t t t --==--++,解方程即可.【详解】(1)解:把()40B ,,()04C -,代入212y x bx c =++得:8404b c c ++=⎧⎨=-⎩,∴14b c =-⎧⎨=-⎩,∴抛物线解析式为2142y x x =--;(2)解:∵112b c =+,∴抛物线解析式为211122y x c x c ⎛⎫=+++ ⎪⎝⎭,令2102y x bx c =++=,则2111022x c x c ⎛⎫+++= ⎪⎝⎭,解得x c =-或2x =-,∴()()200A B c --,,,,∴抛物线对称轴为直线22c x +=-,∵CD x ∥轴,∴()2D c c --,,设直线AD 的解析式为()2y k x =+,∴()22k c c --+=,解得1k =-,∴直线AD 的解析式为()22y x x =-+=--,设直线AD 与y 轴交于点E ,∴()02E -,,∴2OA OE ==,∴45OAE ∠=︒,∵OC OB c ==,∴45OBC ∠=︒,∴90AMB ∠=︒,∴AD BC ⊥;(3)解:如图所示,连接AC PQ ,,∵抛物线解析式为()2211941222y x x x =--=--,∴抛物线对称轴为直线1x =,∴()20A -,,∴24OA OC ==,,∴1tan 2OA ACO OC ∠==;∵GQP OCA ∠=∠,∴1tan tan 2GQP OCA ∠=∠=,设直线BC 的解析式为11y k x b =+,∴111404k b b -+=⎧⎨=-⎩,∴1114k b =⎧⎨=-⎩,∴直线BC 的解析式为4y x =-,设()21442P t t t Q s s ⎛⎫--- ⎪⎝⎭,,,,当点Q 在点P 下方时,如图3-1所示,过点Q 、P 分别作x 轴的垂线,垂足分别为M 、N ,∵90QGP =︒∠,∴90MGQ MQG MGQ NGP +=︒=+∠∠∠∠,1tan 2PG GQP QG ∠==,∴MQG NGP =∠∠,又∵90QMG GNP ==︒∠∠,∴QMG GNP △∽△,∴2QM GM GQ GN PN PG===,∴24121142s s t t t --==--++,∴422s t -=-,2128s t t -=-++,∴216228t t t -+=-++,解得t =;当点Q 在点P 上方时,如图3-2所示,过点G 作MN y ∥轴,过点P 、Q 分别作直线MN 的垂线,垂足分别为N 、M ,同理可得2QM GM GQ GN PN PG ===,∴21421142s s t t t --==--++,∴422s t -=-,2128s t t -=-++,∴222128t t t +-=-++,解得t =(负值舍去);综上所述,t t =.【点睛】本题主要考查了二次函数综合,待定系数法求二次函数解析式,一次函数与几何综合,相似三角形的性质与判定,解直角三角形等等,利用分类讨论的思想求解是解题的关键.。
初中数学浙江省杭州市中考模拟数学模拟考试卷5.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:的平方根是()A. 4B. 2C. ±4D.±2试题2:估算的值()A.在2和3之间 B.在3和4之间 C.在4和5之间 D.在5和6之间试题3:若反比例函数的图象经过点,其中,则此反比例函数的图象在()A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限试题4:由两块大小不同的正方体搭成如图所示的几何体,它的主视图是()试题5:评卷人得分把二次根式中根号外的因式移到根号内,结果是()A. B. C. D.试题6:如图,是⊙O的直径,点在的延长线上,切⊙O于若则等于()A. B. C. D.试题7:函数中自变量x的取值范围是()A.x≤3 B.x=4 C.x<3且x≠4 D.x≤3且x≠4试题8:函数在同一直角坐标系内的图象大致是()试题9:如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角a的度数应为()A.15°或30° B.30°或45° C.45°或60° D.30°或60°试题10:正方形、正方形和正方形的位置如图所示,点在线段上,正方形的边长为4,则的面积为()A、10 B、12 C、14 D、16试题11:一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为__________.试题12:一串有趣的图案按一定的规律排列(如图):按此规律在右边的圆中画出的第2011个图案:。
试题13:与的比例中项是 .试题14:已知,则代数式的值为_________.试题15:如图所示,正方形的面积为12,是等边三角形,点在正方形内,在对角线上有一点,使的和最小,则这个最小值为 .试题16:如图,n+1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P1M1N1N2面积为S1,四边形P2M2N2N3的面积为S2,……,四边形P n M n N n N n+1的面积记为S n,则S n= ▲试题17:;试题18:试题19:已知关于的函数的图像与坐标轴只有2个交点,求的值.试题20:“知识改变命运,科技繁荣祖国”.我区中小学每年都要举办一届科技比赛.下图为我区某校2010年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图:(1)该校参加机器人、建模比赛的人数分别是人和人;(2)该校参加科技比赛的总人数是人,电子百拼所在扇形的圆心角的度数是°,并把条形统计图补充完整;(3)从全区中小学参加科技比赛选手中随机抽取80人,其中有32人获奖. 今年我区中小学参加科技比赛人数共有2485人,请你估算今年参加科技比赛的获奖人数约是多少人?试题21:如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D.(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);(2)求证:BC是过A,D,C三点的圆的切线;试题22:如图,一艘渔船位于海洋观测站P的北偏东60°方向,渔船在A处与海洋观测站P的距离为60海里,它沿正南方向航行一段时间后,到达位于海洋观测站P的南偏东45°方向上的B处。
初中数学浙江省杭州中考模拟数学模拟命题比赛考试题5考试卷及答案.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列运算正确的是()A.6a-5a=1B.a+2a2=3a3C.-(a-b)=-a+bD.2(a+b)=2a+b试题2:在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )A B C D试题3:一个盒子中放着三种颜色的球,每个球除颜色外都相同,红球x个,白球7个,黑球y个,如果从中任取一个球,取得的白球的概率与取得非白球的概率相同,那么x与y的关系是()A. x+y=7B. x+y=14C. x=y=7D. x-y=7试题4:如图,矩形OABC的边OA长为2 ,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )评卷人得分A.2.5B.2C.D.试题5:九年级(10)班数学进行了六次测试,其中李明六次成绩分别为:110、98、97、103、105、105,则他的中位数和众数分别是( )A.100、105 B.104、105 C.105、105 D.103、105试题6:正方形具有而矩形不一定具有的性质是( )A. 对角线互相垂直B. 四个角都是直角C. 对角线相等D. 两对角线将其分割的四个三角形面积相等试题7:如图,在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是()A. B.2 C.D.试题8:如图三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其主视图是边长为2的正方形,则此三棱柱左视图的面积为()A. B. C. 2 D. 4试题9:学校大门出口处有一自动感应栏杆,点是栏杆转动的支点,当车辆经过时,栏杆AE会自动升起,某天早上,栏杆发生故障,在某个位置突然卡住,这时测得栏杆升起的角度,已知⊥,支架AB高1.2米,大门BC打开的宽度为2米,以下哪辆车可以通过(栏杆宽度,汽车反光镜忽略不计) ( )A.宝马Z4()B.奇瑞QQ()B.大众朗逸()D.奥迪A4()(参考数据:sin 37°≈ 0.60,cos 37°≈ 0.80,tan 37°≈ 0.75.车辆尺寸:)试题10:在直角梯形中,,为边上一点,,且.连接交对角线于,连接.下列结论:①;②为等边三角形;③;④.其中结论正确的是()A.只有①② B.只有①②④C.只有③④ D.①②③④试题11:因式分解:=试题12:用一个半径为㎝的半圆围成一个圆锥的侧面,则这个圆锥的高为㎝试题13:一次函数y=ax+b与反比例函数,x与y的对应值如下表:x -3 -2 -1 1 2 3y=ax+b 4 3 2 0 -1 -21 2 -2 -1方程ax+b=-的解为___ __;不等式ax+b>-的解集为___ __.试题14:某居民区一处圆形下水管道破裂,修理人员准备更换一段与原管道同样粗细的新管道。
浙江省杭州市西湖区2024届中考数学五模试卷含解析
浙江省杭州市西湖区2024届中考数学五模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为( )A .14.4×103B .144×102C .1.44×104D .1.44×10﹣42.在半径等于5 cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为 A .60° B .120° C .60°或120° D .30°或120°3.方程x (x -2)+x -2=0的两个根为( )A .10x =,22x =B .10x =,22x =-C .11x =- ,22x =D .11x =-, 22x =-4.小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )A .B .C .D .5.图为一根圆柱形的空心钢管,它的主视图是( )A .B .C .D .6.已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是()A.B.C.D.7.如图所示的几何体的俯视图是( )A.B.C.D.8.光年天文学中的距离单位,1光年大约是9500000000000km,用科学记数法表示为()A.109.510km⨯0.9510km⨯D.1395010km⨯C.12⨯B.129510km9.下列计算正确的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2D.(a﹣b)2=a2﹣2ab+b210.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.63C.33D.911.如图1,点P从△ABC的顶点A出发,沿A﹣B﹣C匀速运动,到点C停止运动.点P运动时,线段AP的长度y 与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是()A.10 B.12 C.20 D.2412.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A.3.5 B.3 C.4 D.4.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:2(a-b)+3b=___________.14.如图,矩形ABCD面积为40,点P在边CD上,PE⊥AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF=_____.15.分解因式:a3﹣a=_____.16.一个正n边形的中心角等于18°,那么n=_____.17.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正确结论是_________.(填写序号)18.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象分别交x 轴、y 轴于A 、B 两点,与反比例函数()0m y m x=≠的图象交于C 、D 两点.已知点C 的坐标是(6,-1),D (n ,3).求m 的值和点D 的坐标.求tan BAO ∠的值.根据图象直接写出:当x 为何值时,一次函数的值大于反比例函数的值?20.(6分)如图,在△ABC 中,∠ABC=90°,以AB 为直径的⊙O 与AC 边交于点D ,过点D 的直线交BC 边于点E ,∠BDE=∠A .判断直线DE 与⊙O 的位置关系,并说明理由.若⊙O 的半径R=5,tanA=34,求线段CD 的长.21.(6分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m = ,n = ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?22.(8分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃 花椒 甘蓝 每辆汽车运载量(吨) 10 6 4每吨土特产利润(万元) 0.7 0.8 0.5若装运核桃的汽车为x 辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y 万元.(1)求y 与x 之间的函数关系式;(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.23.(8分)如图所示,小王在校园上的A 处正面观测一座教学楼墙上的大型标牌,测得标牌下端D 处的仰角为30°,然后他正对大楼方向前进5m 到达B 处,又测得该标牌上端C 处的仰角为45°.若该楼高为16.65m ,小王的眼睛离地面1.65m ,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(3≈1.732,结果精确到0.1m ).24.(10分)在平面直角坐标系 xOy 中,抛物线 y=ax 2﹣4ax+3a ﹣2(a≠0)与 x 轴交于 A ,B 两(点 A 在点 B 左侧).(1)当抛物线过原点时,求实数 a 的值;(2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含 a 的代数式表示);(3)当 AB≤4 时,求实数 a 的取值范围. 25.(10分)如图,抛物线y =ax 2+bx+c (a >0)的顶点为M ,直线y =m 与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶.(1)由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是_____.(2)抛物线y =212x 对应的准蝶形必经过B (m ,m ),则m =_____,对应的碟宽AB 是_____. (3)抛物线y =ax 2﹣4a ﹣53(a >0)对应的碟宽在x 轴上,且AB =1. ①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P(x p,y p),使得∠APB为锐角,若有,请求出y p的取值范围.若没有,请说明理由.26.(12分)如图,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,求证:△CDA≌△CEB.27.(12分)已知:在⊙O中,弦AB=AC,AD是⊙O的直径.求证:BD=CD.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【题目详解】14400=1.44×1.故选C.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、C【解题分析】根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.【题目详解】如图所示,∵OD⊥AB,∴D为AB的中点,即53 2在Rt△AOD中,OA=5,53 2∴sin∠AOD=5332=52,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=12∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【题目点拨】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.3、C【解题分析】根据因式分解法,可得答案.【题目详解】解:因式分解,得(x-2)(x+1)=0,于是,得x-2=0或x+1=0,解得x1=-1,x2=2,故选:C.【题目点拨】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键.4、C【解题分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:【题目详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:A、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;B、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;C、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;D、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误.故选C【题目点拨】考核知识点:正方体的表面展开图.5、B【解题分析】试题解析:从正面看是三个矩形,中间矩形的左右两边是虚线,故选B.6、B【解题分析】∵2a=3b,∴,∴,∴A、C、D选项错误,B选项正确,故选B.7、D【解题分析】试题分析:根据俯视图的作法即可得出结论.从上往下看该几何体的俯视图是D .故选D .考点:简单几何体的三视图.8、C【解题分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】解:将9500000000000km 用科学记数法表示为129.510⨯.故选C .【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9、D【解题分析】A 、原式=a 2﹣4,不符合题意;B 、原式=a 2﹣a ﹣2,不符合题意;C 、原式=a 2+b 2+2ab ,不符合题意;D 、原式=a 2﹣2ab+b 2,符合题意,故选D10、B【解题分析】连接DF ,根据垂径定理得到DE DF = , 得到∠DCF=12∠EOD=30°,根据圆周角定理、余弦的定义计算即可. 【题目详解】解:连接DF ,∵直径CD过弦EF的中点G,∴DE DF=,∴∠DCF=12∠EOD=30°,∵CD是⊙O的直径,∴∠CFD=90°,∴CF=CD•cos∠DCF=12×32=63,故选B.【题目点拨】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.11、B【解题分析】过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,观察图象可知AB=AC=5,∴BM=22AB AM-=3,∴BC=2BM=6,∴S△ABC=1BC?AM2=12,故选B.【题目点拨】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.12、B【解题分析】解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=12∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=1.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2a+b.【解题分析】先去括号,再合并同类项即可得出答案.【题目详解】原式=2a-2b+3b=2a+b.故答案为:2a+b.14、4【解题分析】由矩形的性质可得AO=CO=5=BO=DO,由S△DCO=S△DPO+S△PCO,可得PE+PF的值.【题目详解】解:如图,设AC与BD的交点为O,连接PO,∵四边形ABCD是矩形∴AO=CO=5=BO=DO,∴S△DCO=14S矩形ABCD=10,∵S△DCO=S△DPO+S△PCO,∴10=12×DO×PF+12×OC×PE∴20=5PF+5PE ∴PE+PF=4故答案为4【题目点拨】本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键.15、a(a+1)(a﹣1)【解题分析】解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).16、20【解题分析】由正n边形的中心角为18°,可得方程18n=360,解方程即可求得答案.【题目详解】∵正n边形的中心角为18°,∴18n=360,∴n=20.故答案为20.【题目点拨】本题考查的知识点是正多边形和圆,解题的关键是熟练的掌握正多边形和圆.17、①②④【解题分析】①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到PQBQ的值;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ 的值;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得32DN PQAN BQ==,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.【题目详解】解:①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1.故①正确;②连接AQ,如图4.则有CP=12,BP=22151()22+=.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求得BQ=55,则PQ=5535 255-=,∴32 PQBQ=.故②正确;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求得QH=35,∴S△DPQ=12DP•QH=12×12×35=320.故③错误;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得32 DN PQAN BQ==,则有3 12 DNDN=-,解得:DN=35.由DQ=1,得cos∠ADQ=35 DNDQ=.故④正确.综上所述:正确结论是①②④.故答案为:①②④.【题目点拨】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.18、【解题分析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90∘,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD−C′D=−1.故答案为:−1.点睛:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)m=-6,点D的坐标为(-2,3);(2)1tan BAO2∠=;(3)当2x<-或06x<<时,一次函数的值大于反比例函数的值. 【解题分析】(1)将点C的坐标(6,-1)代入myx=即可求出m,再把D(n,3)代入反比例函数解析式求出n即可.(2)根据C (6,-1)、D (-2,3)得出直线CD 的解析式,再求出直线CD 与x 轴和y 轴的交点即可,得出OA 、OB 的长,再根据锐角三角函数的定义即可求得;(3)根据函数的图象和交点坐标即可求得.【题目详解】⑴把C (6,-1)代入m y x=,得()m 616=⨯-=-. 则反比例函数的解析式为6y x=-, 把y 3=代入6y x =-,得x 2=-, ∴点D 的坐标为(-2,3).⑵将C (6,-1)、D (-2,3)代入y kx b =+,得6123k b k b +=-⎧⎨-+=⎩,解得122k b ⎧=-⎪⎨⎪=⎩. ∴一次函数的解析式为1y x 22=-+, ∴点B 的坐标为(0,2),点A 的坐标为(4,0).∴OA 4OB 2==,,在在Rt ΔABO 中, ∴OB 21tan BAO OA 42∠===. ⑶根据函数图象可知,当x 2<-或0x 6<<时,一次函数的值大于反比例函数的值【题目点拨】此题考查了反比例函数与一次函数的交点问题.其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用.20、(1) DE 与⊙O 相切; 理由见解析;(2)92. 【解题分析】(1)连接OD ,利用圆周角定理以及等腰三角形的性质得出OD ⊥DE ,进而得出答案;(2)得出△BCD ∽△ACB ,进而利用相似三角形的性质得出CD 的长.【题目详解】解:(1)直线DE 与⊙O 相切.理由如下:连接OD .∵OA=OD∴∠ODA=∠A又∵∠BDE=∠A∴∠ODA=∠BDE∵AB 是⊙O 直径∴∠ADB=90°即∠ODA+∠ODB=90°∴∠BDE+∠ODB=90°∴∠ODE=90°∴OD ⊥DE∴DE 与⊙O 相切;(2)∵R=5,∴AB=10,在Rt △ABC 中∵tanA=34BC AB = ∴BC=AB•tanA=10×31542=, ∴2222152510()22AB BC +=+=, ∵∠BDC=∠ABC=90°,∠BCD=∠ACB∴△BCD ∽△ACB ∴CD CB CB CA= ∴CD=2215()922522CB CA ==. 【题目点拨】本题考查切线的判定、勾股定理及相似三角形的判定与性质,掌握相关性质定理灵活应用是本题的解题关键.21、(1)100,35;(2)补全图形,如图;(3)800人【解题分析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.【题目详解】解:(1)∵被调查总人数为m=10÷10%=100人,∴用支付宝人数所占百分比n%=30100%30% 100⨯=,∴m=100,n=35.(2)网购人数为100×15%=15人,微信人数所占百分比为40100%40% 100⨯=,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.【题目点拨】本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.22、(1)y=﹣3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【解题分析】(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,从而可以得到y与x的函数关系式;(1)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.【题目详解】(1)若装运核桃的汽车为x 辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x ﹣(1x+1)=(12﹣3x )辆,根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x )=﹣3.4x+141.1. (1)根据题意得:()29382130x x x -≤⎧⎨++≤⎩, 解得:7≤x≤293, ∵x 为整数,∴7≤x≤2.∵10.6>0,∴y 随x 增大而减小,∴当x=7时,y 取最大值,最大值=﹣3.4×7+141.1=117.4,此时:1x+1=12,12﹣3x=1.答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【题目点拨】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.23、大型标牌上端与下端之间的距离约为3.5m .【解题分析】试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE 和BE 的长,然后求得DE 的长,用CE 的长减去DE 的长即可得到上端和下端之间的距离.试题解析:设AB ,CD 的延长线相交于点E ,∵∠CBE=45°,CE ⊥AE ,∴CE=BE ,∵CE=16.65﹣1.65=15,∴BE=15,而AE=AB+BE=1.∵∠DAE=30°,∴DE =tan 30203o AE ⋅=⨯=11.54, ∴CD=CE ﹣DE=15﹣11.54≈3.5 (m ),答:大型标牌上端与下端之间的距离约为3.5m.24、(1)a=23;(2)①x=2;②抛物线的顶点的纵坐标为﹣a﹣2;(3)a 的范围为a<﹣2 或a≥23.【解题分析】(1)把原点坐标代入y=ax2﹣4ax+3a﹣2即可求得a的值;(2)①②把抛物线解析式配成顶点式,即可得到抛物线的对称轴和抛物线的顶点的纵坐标;(3)设A(m,1),B(n,1),利用抛物线与x 轴的交点问题,则m、n 为方程ax2﹣4ax+3a﹣2=1 的两根,利用判别式的意义解得a>1 或a<﹣2,再利用根与系数的关系得到m+n=4,mn=32aa-,然后根据完全平方公式利用n﹣m≤4 得到(m+n)2﹣4mn≤16,所以42﹣4•32aa-≤16,接着解关于a的不等式,最后确定a的范围.【题目详解】(1)把(1,1)代入y=ax2﹣4ax+3a﹣2 得3a﹣2=1,解得a=;(2)①y=a(x﹣2)2﹣a﹣2,抛物线的对称轴为直线x=2;②抛物线的顶点的纵坐标为﹣a﹣2;(3)设A(m,1),B(n,1),∵m、n 为方程ax2﹣4ax+3a﹣2=1 的两根,∴△=16a2﹣4a(3a﹣2)>1,解得a>1 或a<﹣2,∴m+n=4,mn=,而n﹣m≤4,∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,∴42﹣4• ≤16,即≥1,解得a≥或a<1.∴a 的范围为a<﹣2 或a≥.【题目点拨】本题考查了抛物线与x 轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠1)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.25、(1)MN与AB的关系是:MN⊥AB,MN=12AB,(2)2,4;(2)①y=13x2﹣2;②在此抛物线的对称轴上有这样的点P ,使得∠APB 为锐角,y p 的取值范围是y p <﹣2或y p >2.【解题分析】(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B (m ,m ),代入抛物线解析式进而得出m 的值,即可得出AB 的值;(2)①根据题意得出抛物线必过(2,0),进而代入求出答案;②根据y =13x 2﹣2的对称轴上P (0,2),P (0,﹣2)时,∠APB 为直角,进而得出答案. 【题目详解】 (1)MN 与AB 的关系是:MN ⊥AB ,MN =12AB , 如图1,∵△AMB 是等腰直角三角形,且N 为AB 的中点,∴MN ⊥AB ,MN =12AB , 故答案为MN ⊥AB ,MN =12AB ;(2)∵抛物线y =212x 对应的准蝶形必经过B (m ,m ), ∴m =12m 2, 解得:m =2或m =0(不合题意舍去), 当m =2则,2=12x 2, 解得:x =±2, 则AB =2+2=4;故答案为2,4;(2)①由已知,抛物线对称轴为:y 轴,∵抛物线y =ax 2﹣4a ﹣53(a >0)对应的碟宽在x 轴上,且AB =1. ∴抛物线必过(2,0),代入y =ax 2﹣4a ﹣53(a >0), 得,9a ﹣4a ﹣53=0,解得:a=13,∴抛物线的解析式是:y=13x2﹣2;②由①知,如图2,y=13x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,∴在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,y p的取值范围是y p<﹣2或y p>2.【题目点拨】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.26、见解析.【解题分析】试题分析:根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可.试题解析:证明:∵△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ECB=∠DCA,在△CDA与△CEB中,,∴△CDA≌△CEB.考点:全等三角形的判定;等腰直角三角形.27、证明见解析【解题分析】根据AB=AC,得到AB AC=,于是得到∠ADB=∠ADC,根据AD是⊙O的直径,得到∠B=∠C=90°,根据三角形的内角和定理得到∠BAD=∠DAC,于是得到结论.【题目详解】证明:∵AB=AC,∴AB AC=,∴∠ADB=∠ADC,∵AD是⊙O的直径,∴∠B=∠C=90°,∴∠BAD=∠DAC,∴BD CD,∴BD=CD.【题目点拨】本题考查了圆周角定理,熟记圆周角定理是解题的关键.。
杭州市中考数学模拟卷(解析版)
浙江省杭州市中考数学模拟卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)2023的相反数是( )A.﹣2023B.C.2023D.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:2023的相反数是﹣2023.故选:A.2.(3分)2022年北京冬奥会国家速滑馆“冰丝带”屋顶上安装的光伏电站,据测算,每年可输出约44.8万度的清洁电力.将44.8万度用科学记数法可以表示为( )A.0.448×106度B.44.8×104度C.4.48×105度D.4.48×106度【分析】根据1万=104,然后写成科学记数法的形式:a×10n,其中1≤a<10,n为正整数即可.【解答】解:44.8万=44.8×104=4.48×105,故选:C.3.(3分)如图,在△ABC中,BC边上的高是( )A.线段AE B.线段BD C.线段BF D.线段CF【分析】根据三角形的高的定义,可直接进行排除选项.【解答】解:由图可知:BC边上的高是线段AE;故选:A.4.(3分)如果不等式(a﹣3)x<a﹣3的解集为x>1,则a必须满足的条件是( )A.a>0B.a>3C.a≠3D.a<3【分析】根据不等式的性质,发现不等号方向改变了,说明两边同时乘或除了一个负数,由此求出a的范围即可.【解答】解:∵不等式(a﹣3)x<a﹣3的解集为x>1,∴a﹣3<0,∴a<3,故选:D.5.(3分)下列命题中,真命题是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.两条对角线互相平分且相等的四边形是正方形D.顺次连接四边形的各边中点所得的四边形是平行四边形【分析】利用矩形的判定、菱形的判定、正方形的判定及平行四边形的判定定理分别进行判定后即可确定正确的选项.【解答】解:A、对角线的相等的平行四边形是矩形,故错误,是假命题;B、对角线互相垂直的平行四边形是菱形,故错误,是假命题;C、两条对角线互相平分且相等的四边形是矩形,故错误,是假命题;D、顺次连接四边形各边中点所得的四边形是平行四边形,正确,是真命题,故选:D.6.(3分)如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于( )A.25°B.50°C.100°D.115°【分析】根据折叠的性质,得∠BFE=(180°﹣∠1),求出∠EFC的度数,再根据平行线的性质即可求得∠AEF的度数.【解答】解:∵长方形ABCD沿EF对折,∠1=50°,∴∠BFE=(180°﹣∠1)=65°,∵AD∥BC,∴∠AEF=180°﹣∠BFE=180°﹣65°=115°.故选:D.7.(3分)公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂,小伟欲用撬棍撬动一块石头,已知阻力和阻力分别1000 N和0.5 m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是( )A.F=B.F=C.F=D.F=【分析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.【解答】解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1000N和0.5m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1000×0.5=Fl,则F=,故选:C.8.(3分)一份摄影作品【七寸照片(长7英寸,宽5英寸)】,现将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的2倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是( )A.2(7+x)(5+x)=7×5B.(7+x)(5+x)=2×7×5C.2(7+2x)(5+2x)=7×5D.(7+2x)(5+2x)=2×7×5【分析】根据关键语句“矩形衬纸的面积为照片面积的2倍”列出方程求解即可.【解答】解:设照片四周外露衬纸的宽度为x英寸,根据题意得:(7+2x)(5+2x)=2×7×5,故选:D.9.(3分)已知二次函数y=(x+k+6)(x﹣k)+m,其中k,m为常数,则下列说法正确的( )A.若k=1,m≠0,则二次函数y的最小值小于0B.若k=﹣3,m>0,则二次函数的y最大值小于0C.若k<2,m≠0,则二次函数y的最大值大于0D.若k>﹣3,m<0,则二次函数y的最小值小于0【分析】将函数解析式化为顶点式,根据选项进行判断即可.【解答】解:∵y=(x+k+6)(x﹣k)+m=(x+3)2﹣(k+3)2+m,∴当x=﹣3时,函数最小值为y=﹣(k+3)2+m,则当m<0时,有y=﹣(k+3)2+m<0,则二次函数y的最小值小于0.故选:D.10.(3分)已知在扇形OAB中,∠AOB=90°,OB=4,C为弧AB的中点,D为半径OB上一动点,点B 关于直线CD的对称点为M,若点M落在扇形OAB内(不含边界),则OD长的取值范围是( )A.B.C.D.【分析】求出两种特殊位置:当点M落在OB上时,当点M落在OA上时,OD的值,可得结论.【解答】解:如图,连接OC,当点M落在OB上时,CD⊥OB.∵∠AOB=90°,=,∴∠AOC=∠COB=45°,∵CDO=90°,∴∠DCO=∠COD=45°,∴CD=OC=2.当点M落在OA上时,连接CM,CB,CO,DM,过点C作CT⊥OB于点T,CJ⊥OA于点J,∵∠CJO=∠JOT=∠OTC=90°,∴四边形JOTC是矩形,∵OT=TC,∴四边形JOTC是正方形,∴OJ=OT=CJ=CT=2,∵CM=CN,CJ=CT,∠CJM=∠CTB=90°,∴Rt△CJM≌Rt△CTB(HL),∴JM=TN=4﹣2,设OD=y,则DM=DB=4﹣y.∵OM2+OD2=DM2,∴[2﹣(4﹣2)]2+y2=(4﹣y)2,∴y=4﹣4,观察图象可知:点M落在扇形OAB内(不含边界),则4﹣4<OD<2.故选:A.二.填空题(共6小题,满分24分)11.(4分)计算:3﹣2+20230= .【分析】根据负整数指数幂与零指数幂的运算法则计算即可得到答案.【解答】解:原式=+1=+1=1.故答案为:1.12.(4分)如图所示的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,把左转盘的数字作为十位数字,把右转盘的数字作为个位数字,同时自由转动两个转盘,转盘停止后(指针落在边界处重新转动转盘直至不落在边界为止),指针落点所构成的两位数为3的倍数的概率是 .【分析】画树状图得出所有等可能的结果数和所构成的两位数为3的倍数的结果数,再利用概率公式可得出答案.【解答】解:画树状图如下:共有20种等可能的结果,所构成的两位数分别为:13,14,18,19,23,24,28,29,33,34,38,39,43,44,48,49,53,54,58,59,其中所构成的两位数为3的倍数的有:18,24,33,39,48,54,共6种,∴所构成的两位数为3的倍数的概率为=.故答案为:.13.(4分)已知一次函数y=﹣x+m与y=nx(m,n为常数,n≠0)的图象交点坐标为(1,2),则二元一次方程组的解是 .【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.【解答】解:∵一次函数y=﹣x+m与y=nx(m,n为常数,n≠0)的图像交点坐标为(1,2),∴方程组的解为.故答案为:.14.(4分)如图,在A时测得一棵大树的影长为4米,B时又测得该树的影长为9米,若两次日照的光线互相垂直,则树的高度是 .【分析】根据题意作辅助线CD⊥EF于点D,然后根据相似三角形的判定和性质,即可求得树的高度.【解答】解:作CD⊥EF于点D,由已知可得,DE=4米,DF=9米,∵CD⊥EF,CE⊥CF,∴∠CDE=∠FDC=90°,∠ECF=90°,∴∠ECD+∠E=90°,∠ECD+∠DCF=90°,∴∠E=∠DCF,∴△ECD∽△CFD,∴,即,解得DC=6或DC=﹣6(不合题意,舍去),即树的高为6米,故答案为:6米.15.(4分)已知一元二次方程ax2+bx+c=0的两根是﹣1和2,则抛物线y=bx2﹣ax+c的对称轴为 .【分析】先根据一元二次方程根与系数的关系得到=﹣1,再根据抛物线对称轴公式即可得到抛物线的对称轴为直线x===﹣.【解答】解:∵﹣元二次方程ax2+bx+c=0的两根是﹣1和2,∴﹣1+2=,即=﹣1,∴抛物线y=bx2﹣ax+c的对称轴为直线x===﹣,故答案为:直线x=﹣.16.(4分)如图,在矩形ABCD中,AB=2,AD=2,点E为线段CD的中点,动点F从点C出发,沿C→B→A的方向在CB和BA上运动,将矩形沿EF折叠,点C的对应点为C′,当点C′恰好落在矩形的对角线上时(不与矩形顶点重合),点F运动的距离为 .【分析】分点C′落在对角线BD上和点C′落在对角线AC上两种情况分别进行讨论求解,即可得出点F运动的距离.【解答】解:分两种情况:①当点C′落在对角线BD上时,连接CC′,如图1所示:∵将矩形沿EF折叠,点C的对应点为点C′,且点C'恰好落在矩形的对角线上,∴CC′⊥EF,∵点E为线段CD的中点,∴CE=ED=EC′,∴∠CC′D=90°,即CC′⊥BD,∴EF∥BD,∴点F是BC的中点,∵在矩形ABCD中,AD=2,∴BC=AD=2,∴CF=1,∴点F运动的距离为1;②当点C′落在对角线AC上时,作FH⊥CD于H,则CC′⊥EF,四边形CBFH为矩形,如图2所示:在矩形ABCD中,AD=2,AB=2,∠B=∠BCD=90°,AB∥CD,∴BC=AD=2,tan∠BAC===,∴∠BAC=30°,∵EF⊥AC,∴∠AFE=60°,∴∠FEH=60°,∵四边形CBFH为矩形,∴HF=BC=2,∴EH===,∵EC=CD=,∴BF=CH=CE﹣EH=﹣=,∴点F运动的距离为2+;综上所述:点F运动的距离为1或2+;故答案为:1或2+.三.解答题(共7小题,满分66分)17.(6分)(1)计算:.(2)下面是某同学化简分式的运算过程.解:原式=第①步;=第②步;=第③步;=第④步;=﹣x.第⑤步上面的运算过程从第 步开始出现错误,请你写出正确完整的解答过程.【分析】(1)根据零指数幂、负整数指数幂和特殊角的三角函数值可以解答本题;(2)根据解答过程可知第②错误,第一个分式的分子存在变号错误;然后计算括号内的式子,再算括号外的除法即可.【解答】解:(1)=1+2﹣2×=1+2﹣=3﹣;(2)根据题目中的解答过程可知:从第②步开始出现错误,正确的过程为:原式==•==﹣.故答案为:②.18.(8分)我国男性的体质系数计算公式是:,其中W表示体重(单位:kg,H表示身高(单位:cm),通过计算出的体质系数m对体质进行评价,某中学在九年级学生中随机抽取了n名男生进行体质评价,将体质评价结果分为五组,并绘成了如下统计图表.频数分布表m评价结果结果占比<80%明显消瘦5%80%~90%消瘦b90%~110%正常c110%~120%过重40%>120%肥胖d(1)求n,a,d的值;(2)已知某男生的身高是170cm,体重是75kg,求他的体质评价结果;(3)若该校九年级共有男生400人,试估计该校九年级体质评价结果为“消瘦”和“正常”的男生人数和.【分析】(1)用明显消瘦的人数除以它所占的百分比得出抽查的学生数n的值;再求出过重的人数,然后根据各组人数之和等于数据总数求出a,用肥胖的人数除以总人数求出d;(2)根据我国男性的体质系数计算公式是:m=%,求出m,即可得出评价结果;(3)先求出体质评价结果为“消瘦”与“正常”的男生所占的百分比之和,再乘以400即可.【解答】解:(1)抽查的学生数n=3÷5%=60;过重的人数为60×40%=24(人),a=60﹣(3+16+24+12)=5,d=×100%=20%;(2)∵某男生的身高是170cm,体重是75kg,∴m=×100%≈115%,∴他的体质评价结果是过重;(3)400×=140(人).答:估计该校九年级体质评价结果为“消瘦”和“正常”的男生人数和为140人.19.(8分)如图,在△ABC中,AB=AC,D是BC上一点,延长BC至点E,使得∠DAE=∠BAC,延长AD至点F,使得AF=AE.(1)求证:△ABF≌△ACE.(2)若AD⊥BC,DF=15,BC=16,求CE的长.【分析】(1)根据等式的性质得出∠BAF=∠CAE,再根据SAS证明△ABF与△ACE全等即可;(2)根据等腰三角形的性质和勾股定理得出BF,进而利用全等三角形的性质解答即可.【解答】(1)证明:∵∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠CAE﹣∠DAC,即∠BAF=∠CAE,在△ABF与△ACE中,,∴△ABF≌△ACE(SAS);(2)解:∵AB=AC,AD⊥BC,∴BD=BC=8,由勾股定理可得,BF=,∵△ABF≌△ACE,∴CE=BF=17.20.(10分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+5的图象与反比例函数y=(k>0)的图象相交于A,B两点,与x轴相交于点C,连接OB,且△BOC的面积为.(1)求反比例函数的表达式;(2)将直线AB向下平移,若平移后的直线与反比例函数的图象只有一个交点,试说明直线AB向下平移了几个单位长度?【分析】(1)由一次函数解析式求得C的坐标,根据三角形面积求得B的纵坐标,代入一次函数解析式求得B的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=﹣x+5﹣m,则直线y=﹣x+5﹣m与反比例函数有且只有一个公共点,即方程=﹣x+5﹣m只有一组解,再根据判别式的意义得到关于m的方程,最后解方程求出m的值.【解答】解:(1)一次函数y=﹣x+5中,令y=0,解得x=5,∴C(5,0),∴OC=5,作BD⊥OC于D,∵△BOC的面积为,∴OC•BD=,即BD=,∴BD=1,∴点B的纵坐标为1,代入y=﹣x+5中,求得x=4,∴B(4,1),∵反比例函数y=(k>0)的图象经过B点,∴k=4×1=4,∴反比例函数的解析式为y=;(2)将直线AB向下平移m(m>0)个单位长度得直线解析式为y=﹣x+5﹣m,∵直线AB向下平移m(m>0)个单位长度后与反比例函数的图象只有一个公共交点,∴=﹣x+5﹣m,整理得x2+(m﹣5)x+4=0,△=(m﹣5)2﹣4×1×4=0,解得m=9或m=1,即m的值为1或9.21.(10分)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且DE=AC,连接CE.(1)求证:四边形OCED为矩形;(2)连接AE,若BD=6,AE=,求菱形ABCD的边长.【分析】(1)先证四边形OCED是平行四边形,再由∠DOC=90°,即可得出结论;(2)根据勾股定理和菱形的性质解答即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC,∴∠DOC=90°,∵DE∥AC,DE=AC,∴DE=OC,DE∥OC,∴四边形OCED是平行四边形,又∵∠DOC=90°,∴平行四边形OCED是矩形;(2)解:由(1)可知,平行四边形OCED是矩形,∴∠ECA=90°,EC=OD=BD=3,DE=OC=AC,由勾股定理可得,AC=,∴OC=4,∴DC=,∴菱形ABCD的边长=5.22.(12分)定义:将函数C1的图象绕点P(m,0)旋转180o,得到新的函数C2的图象,我们称函数C2是函数C1关于点P的相关函数.例如:当m=1时,函数y=(x﹣3)2+9关于点P(1,0)的相关函数为y=﹣(x+1)2﹣9.(1)当m=0时,①一次函数y=﹣x+7关于点P的相关函数为 .②点A(5,﹣6)在二次函数y=ax2﹣2ax+a(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣2)2+6关于点P的相关函数是y=﹣(x﹣10)2﹣6,则m= .(3)当m﹣1≤x≤m+2时,函数y=x2﹣6mx+4m2关于点P(m,0)的相关函数的最大值为8,求m的值.【分析】(1)①由相关函数的定义,将y=﹣x+7旋转变换可得相关函数为y=﹣x﹣7;②先求出二次函数的相关函数,然后求出相关函数,再把点A代入,即可得到答案;(2)两函数顶点关于点P中心对称,可用中点坐标公式获得点P坐标,从而获得m的值;(3)先确定相关函数,然后根据m的取值范围,对m进行分类讨论,以对称轴在给定区间的左侧,中部,右侧,三种情况分类讨论,获得对应的m的值.【解答】解:(1)①根据相关函数的定义,y=﹣x+7关于点P(0,0)旋转变换可得相关函数为y=﹣x﹣7,故答案为:y=﹣x﹣7;②y=ax2﹣2ax+a=a(x﹣1)2,∴y=ax2﹣2ax+a关于点P(0,0)的相关函数为y=﹣a(x+1)2,∵点A(5,﹣6)在二次函数y=﹣a(x+1)2的图象上,∴﹣6=﹣a(5+1)2,解得:a=;(2)y=(x﹣2)2+6的顶点为(2,6),y=﹣(x﹣10)2﹣66的顶点坐标为(10,﹣6);∵两个二次函数的顶点关于点P(m,0)成中心对称,∴m==6,故答案为:6;(3)y=x2﹣6mx+4m2=(x﹣3m)2﹣5m2,∴y=x2﹣6mx+4m2关于点P(m,0)的相关函数为y=﹣(x+m)2+5m2.①当﹣m≤m﹣1,即m≥时,当x=m﹣1时,y有最大值为8,∴﹣(m﹣1+m)2+5m2=8,解得m1=﹣2﹣(不符合题意,舍去),m2=﹣2+;②当m﹣1<﹣m≤m十2,即﹣1≤m<时,当x=﹣m时,y有最大值为8,∴5m2=8,解得:m=±(不合题意,舍去);③当﹣m>m+2,即m<﹣1时,当x=m+2,y有最大值为8,∴﹣(m+2+m)2+5m2=8,解得:m=4﹣2或,m=4+2(不符合题意,舍去),综上,m的值为﹣2+或4﹣2.23.(12分)如图,△ABC内接于⊙O,AC=BC,CD⊥AB,垂足为E,直线CD交⊙O于点D.(1)如图1,求证:CD为⊙O直径;(2)如图2,在CD上截取EG=ED,连接AG并延长交BC于点F,求证:AF⊥BC;(3)如图3,在(2)的条件下,作OH⊥AF,垂足为H,K为AC边中点,连接KH,若HK=4,AE=3,求HF的长.【分析】(1)连接BD,根据等腰三角形的性质可得∠AEC=∠BEC=90°,设∠ACD=∠BCD=α,则∠CAB=∠CDB=90°﹣α,从而得出∠CBD=∠ABC+∠DBE=90°﹣α+α=90°,则CD为⊙O直径;(2)利用SAS证明△AED≌△AEG,得AD=AG,∠DAE=∠GAE,再根据三角形内角和定理可得结论;(3)延长AF交⊙O于点M,连接CM,可知KH是△ACM的中位线,再说明△GCM为等腰三角形,设GE=DE=a,则CE=CG+GE=8+a,根据△AED∽△CEA,可得CE的长,进而解决问题.【解答】(1)证明:连接BD,∵AC=BC,CD⊥AB,∴∠ACD=∠BCD,∠AEC=∠BEC=90°,设∠ACD=∠BCD=α,∴∠CAE=90°﹣α,∵,∴∠CAB=∠CDB=90°﹣α,在Rt△△BED中,∠DBE=90°﹣∠CDB=90°﹣(90°﹣α)=α,∵AC=BC,∴∠CAB=∠ABC=90°﹣α,∴∠CBD=∠ABC+∠DBE=90°﹣α+α=90°,∴CD为⊙O直径;(2)证明:连接AD,在△AED与△AEG中,,∴△AED≌△AEG(SAS),∴AD=AG,∠DAE=∠GAE,∴∠BAD=∠BCD=∠BAG,∵∠CGF=∠AGE,∴∠AFC=90°,∴AF⊥BC;(3)解:延长AF交⊙O于点M,连接CM,∵OH⊥AF,AH=MH,K为AC中点,∴AK=CK,∴KH是△ACM的中位线,∴KH∥CM,CM=2KH=8,∵,∴∠ABC=∠M=90°﹣α,在△CGF中,∠GCF=α,∠GFC=90°,∴∠CGF=90°﹣α,∴∠M=∠CGF=90°﹣α,∴CG=CM=8,∴△GCM为等腰三角形,∵CF⊥GM,∴GF=MF,∠GCF=∠MCF=α,设GE=DE=a,∴CE=CG+GE=8+a,∵△AED∽△CEA,∴,∴AE2=ED•CE,∴32=a(8+a),解得a=1或a=﹣9(舍去),∴CE=9,∴tan,在Rt△AEG中,由勾股定理得,AG==,∵△AEG∽△CFG,∴,∴GF=,∵CD=10,∴OD=,∴OG=OD﹣DG=5﹣2=3,∵sin,在△GOH中,sinα=,∴GH=,∴FH=GF﹣GH=.。
【中考冲刺】2023年浙江省杭州市中考模拟数学试卷(附答案)
2023年浙江省杭州市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是( ) A .等边三角形B .平行四边形C .正五边形D .菱形2.下面运算正确的是( ) A .234a a a += B .541a a -=C .325x y xy +=D .()222581016xy x xy x --=-+3.如图所示的几何体是由6个大小相同的小正方体组成,它的主视图为( )A .B .C .D .4x 的取值范围是( ). A .2x >B .2x ≥C .2x <D .2x ≤5.点P 的坐标为()6,2,A 是x 轴正半轴上一点,O 为原点,则tan AOP ∠的值为( )A .3B C D .136.如图,在△ABC 中,∠C =90°,∠B =15°,AC =l ,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN 交BC 于点D ,连接AD ,则AD 的长为( )A .l.5 BC .2D 7.多顶式x 2+kx +25是一个完全平方式,则k 的值为( ) A 10B 10C ±10D ±58.一次函数y 1=x +4的图象与一次函数y 2=-x +b 的图象的交点不可能...在( ) A .第一象限B .第二象限C .第三象限D .第四象限9.小明、小亮参加学校运动会800米赛跑;小明前半程的速度为2x 米/秒,后半程的速度为x 米/秒,小亮则用一米32x/秒的速度跑完全程,结果是( ) A .小明先到终点B .小亮先到终点C .同时到达D .不能确定10.如图,已知正方形ABCD 的边长为a ,延长BA ,BC ,使AF =CE =b ,以BE 为边长在正方形ABCD 外围作正方形BFGE ,以点E 为圆心,EG 为半径画弧交BE 的延长线于点H ,连接DH ,交GE 于点M ,延长AD 交GE 于点K ,交圆弧于点J ,连接GJ ,记∠GKJ 的面积为S 1,阴影部分的面积为S 2. 当F ,D ,H 三点共线时,12S S 的值为( )AB .12CD二、填空题11.因式分解:24x -=__________.12.已知一个圆锥的底面半径为3cm ,母线长为10cm,则这个圆锥的侧面积为____________.13.李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需_______分钟. 14.已知点()1,A m y ,()22,B m y +且0m >,在反比例函数22k y x+=的图像上,则1y _______2y (填><、).15.如图,在四边形ABCD 中,∠A =80°,∠B =120°,∠B 与∠ADC 互为补角,点E 在直线BC 上,将∠DCE 沿DE 翻折,得到△DC E ',若AB ∥C E ',则∠CDE 的度数为_______°.16.如图,是一个“摩天轮”蛋糕架,圆周上均匀分布了8个蛋糕篮悬挂点,圆O 半径为20cm ,O 到MN 的距离为32cm ,A ,B 两个悬挂点之间间隔了一个悬挂点. (1)A 、B 两个悬挂点之间的高度差最大可达到__________cm .(2)当A 在B 的上方且两个悬挂点的高度差为4cm 时,A 到MN 的距离为________________cm .三、解答题17.计算:1013920222sin603-⎛⎫-⨯+++︒ ⎪⎝⎭.18.解不等式组50,31212x x x +≤⎧⎪⎨-≥+⎪⎩.19.如图,已知四边形ABCD 是平行四边形,BE ∠AC , DF ∠A C ,求证:AE =CF .20.“中国梦”关系每个人的幸福生活,为展现巴中人追梦的风采,我市某中学举行“中国梦•我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有 名,在扇形统计图中,表示“D 等级”的扇形的圆心角为 度,图中m 的值为 ; (2)补全条形统计图;(3)组委会决定从本次比赛中获得A 等级的学生中,选出2名去参加市中学生演讲比赛,已知A 等级中男生有1名,请用“列表”或“画树状图”的方法求出所选2名学生中恰好是一名男生和一名女生的概率.21.北京冬奥会的召开燃起了人们对冰雪运动的极大热情,如图是某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系,图中的抛物线21144:1233C y x x =-++近似表示滑雪场地上的一座小山坡,小雅从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线223:2C y ax x c =++运动.(1)当小雅滑到离A 处的水平距离为6米时,其滑行达到最高位置为172米.求出a ,c 的值;(2)小雅若想滑行到坡顶正上方时,与坡顶距离不低于103米,请求出a 的取值范围. 22.如图,AB 是∠O 的直径,AC 是弦,P 为AB 延长线上一点,∠BCP =∠BAC ,∠ACB 的平分线交∠O 于点D ,交AB 于点E ,(1)求证:PC 是∠O 的切线; (2)若AC +BC =2时,求CD 的长. 23.我们定义:当m ,n 是正实数...,且满足1mm n =-时,就称P ,m m n ⎛⎫ ⎪⎝⎭为“完美点”. (1)m =3时,则n = ,P 点的坐标为 .(2)已知点A (0,5)与点B 都在直线y =-x +b 上,且B 是“完美点”,若C 也是“完美点”且BC ,求点C 的坐标.(3)正方形A 1B 1C 1D 1一边在y 轴上,其他三边都在y 轴的右侧,且点E (1,t )是此正方形对角线的交点,若正方形A 1B 1C 1D 1边上存在“完美点”,求t 的取值范围. 24.如图,在矩形ABCD 中,已知AD =6,CD =8,点H 是直线AB 上一点,连接CH ,过顶点A 作AG ⊥CH 于G ,AG 交直线CB 于点E .(1)如图,当点E 在CB 边上时, ∠求证:∠CGE ~∠ABE ; ∠连接BG ,求tan∠AGB ;(2)作点B 关于直线CH 的对称点F ,连接FG .当直线FG 截∠ADC 所得的三角形是等腰三角形时,求BH 的长.参考答案:1.D 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】解:A 、是轴对称图形,不是中心对称图形.故不符合题意; B 、不是轴对称图形,是中心对称图形.故不符合题意; C 、是轴对称图形,不是中心对称图形.故不符合题意; D 、是轴对称图形,也是中心对称图形.故符合题意. 故选:D . 【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 2.D 【解析】 【分析】根据同类项的定义及合并同类项的方法逐项分析即可. 【详解】解:A.34a a a +=,故原式不正确; B.54a a a -=,故原式不正确;C.3x 与2y 不是同类项,不能合并,故原式不正确;D.()222581016xy x xy x --=-+,正确;故选D . 【点睛】本题考查了同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变. 3.B【解析】【分析】首先从正面看几何体得到的平面图形是几个正方形的组合图形;然后再分别得到的图形的列数和每列小正方形的个数,由此可得出答案.【详解】解:根据主视图可知有上下两行,上面一行有1个正方形且在最后边,下面一行有3个正方形,故选B.【点睛】本题主要考查的是简单组合体的三视图,熟练掌握几何体三视图的画法是解题的关键. 4.B【解析】【分析】根据被开方数大于等于0列不等式求解即可.【详解】解:由题意得,x-2≥0,解得x≥2.故选:B.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.5.D【解析】【分析】过点P作PB∠x轴于点B,根据点P的坐标可得PB=2,OB=6,利用勾股定理求出OP,然后根据三角函数的概念进行计算.【详解】解:过点P作PB∠x轴于点B,如图所示:∠点P的坐标为(6,2),∠PB=2,OB=6,∠1tan3BPAOPOB∠==,故D正确.故选:D.【点睛】题主要考查了求一个角的正切值,根据正切的定义,将∠AOP放在相应的直角三角形中是解题的关键.6.C【解析】【分析】利用基本作图可判断MN垂直平分AB,则利用线段垂直平分线的性质得到DA=DB,所以∠DAB=∠B=15°,再利用三角形外角性质得∠ADC=30°,然后根据含30度的直角三角形三边的关系可得到AD的长.【详解】解:由作法得MN垂直平分AB,则DA=DB,∠∠DAB=∠B=15°,∠∠ADC=∠DAB+∠B=30°,在Rt△ACD中,AD=2AC=2.故选C.【点睛】本题考查作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.7.C【分析】根据完全平方公式的特点求解即可. 【详解】解:多顶式x 2+kx +25是一个完全平方式, 则2510kx x x =±⨯=±, ∠10k =±, 故选:C 【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的特点. 8.D 【解析】 【分析】由图象可知一次函数y 1=x+4的图象在第一,二,三象限上;根据一次函数的图象和性质,可知与一次函数y 2=-x+b 的图象的交点不可能在第几象限上. 【详解】因为一次函数y 1=x+4的图象在第一,二,三象限上, 所以与一次函数y 2=-x+b 的图象的交点不可能在第四象限. 故选D. 【点睛】本题主要考查了一次函数的图象和性质的应用,解题的关键是熟练掌握一次函数的图象和性质. 9.B 【解析】根据题意分别求解出两人跑完全程所用的时间,然后利用作差法比较大小即可. 【详解】由题意,小明的总用时为:14004002004006002t x x x x x=+=+=秒, 小亮的总用时为:23160080023x t x=÷=秒, 则126001600180016002003333t t x x x x x-=-=-=, ∠由题意可知,0x >,∠120t t ->,12t t >,即:小亮用时更少,先到达终点, 故选:B . 【点睛】本题考查列分式表示实际问题,并比较大小,理解题意,准确列出分式,掌握比较分式大小的方法是解题关键. 10.D 【解析】 【分析】利用F ,D ,H 三点共线,即有tan∠FDA =tan∠DHC ,即可求得a =2b ,连接EJ ,在Rt ∠KJE 中求出KJ ,则S 1可求,再证∠DKM ∠∠HEM ,即有ME HEMK DK=,进而求出ME ,则S 2可求,则问题得解. 【详解】根据题意可知AB =CD =AD =a ,AF =GK =DK =CE =b , 即EH =a +b ,CH =CE +EH =b +a +b ,∠F ,D ,H 三点共线,在正方形ABCD 中,AD BC ∥, ∠∠FDA =∠DHC , ∠tan∠FDA =tan∠DHC , ∠AF DC AD CH=,即b aa b a b =++,∠2220a ab b --=,即()(2)0a b a b +-=, 显然0a b +≠, ∠20a b -=,如图,连接EJ ,则有EJ =EH =EG =a +b ,∠在Rt ∠KJE 中,KJ,∠S 1=12b ⨯2, ∠AD BC ∥,∠∠DKM ∠∠HEM , ∠ME HE MK DK =,即ME HE EK ME DK =-, ∠ME a b a ME b+=-, ∠ME =2a b a a b +⨯+=2222b b b b b +⨯+=32b , ∠S 2=13(2)322b b b b b ⨯+⨯+⨯=2194b , ∠12S S2÷(2194b故选:D .【点睛】本题考查了解直角三角形、勾股定理、平行的性质、相似三角形的判定与性质等知识,利用F ,D ,H 三点共线可求得a =2b ,是解答本题的关键.11.(x+2)(x-2)【解析】【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-12.30πcm 2.【分析】圆锥的侧面积=π×底面半径×母线长,把相关数值代入即可.【详解】这个圆锥的侧面积=π×3×10=30πcm 2.故答案为30πcm 2.【点睛】考点: 圆锥的计算.13.40.【解析】【详解】设李师傅加工1个甲种零件需要x 分钟,加工1个乙种零件需要y 分钟,依题意得:3555{4985x y x y +=+=①②, 由∠+∠,得:7x+14y=140,所以x+2y=20,则2x+4y=40,所以李师傅加工2个甲种零件和4个乙种零件共需40分钟.故答案为40.考点:二元一次方程组的应用.14.>【解析】【分析】先根据反比例函数中22k +>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】∠22k +>0∠反比例函数22k y x+=的图象的两个分支分别位于一、三象限,且在每一象限内y 随x 的增大而减小.∠()1,A m y ,()22,B m y +且0m >,∠12y y >故答案为:>.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.20【解析】【分析】根据补角性质即可求得ADC ∠,利用四边形内角和可求得C ∠,再根据翻折及平行线的性质即可求得答案.【详解】∠B =120°,∠B 与∠ADC 互为补角,18012060ADC ∴∠=︒-︒=︒,又80A ∠=︒,360100C A B ADC ∴∠=︒-∠-∠-∠=︒,又//'AB C E ,'120CEC B ∴∠=∠=︒,将△DCE 沿DE 翻折,得到△DC E ',1''602CED C ED CEC ∴∠=∠=∠=︒, 18020CDE C CED ∴∠=︒-∠-∠=︒,故答案为:20.【点睛】本题考查了翻折变换的性质、平行线的性质、多边形内角和定理及补角性质,熟练掌握翻折变换的性质及平行线的性质是解题的关键.16. 44或48或20或16【解析】【分析】(1)90AOB ∠=︒,勾股定理求得AB =A 、B 两点在同一竖直线上时,A 、B之间高度差达到最大值(2)A 、B 两个悬挂点的高度差为4cm ,需分为两类情况:A 比B 高4cm (情形∠、∠)B 比A 高4cm (情形∠、∠),如图,过点O 作MN 的平行线,过A 、B 分别向该平行线作垂线,垂足记为F 、E ,证明BOE ∆∠AOF ∆.设Rt AOF ∆较短直角边为x (cm ),则较长直角边为(x +4)cm ,勾股定理建立方程,解方程求解,根据O 到MN 的距离为32cm ,结合图形分情况即可求解.【详解】(1)圆周上均匀分布了8个蛋糕篮悬挂点,A ,B 两个悬挂点之间间隔了一个悬挂点. ∴90AOB ∠=︒,如图,连接AB ,圆O 半径为20cm ,∴AB =,当A 、B 两点在同一竖直线上时,A 、B之间高度差达到最大值故答案为:(2)A 、B 两个悬挂点的高度差为4cm ,需分为两类情况:A 比B 高4cm (情形∠、∠)B 比A 高4cm (情形∠、∠).如图,过点O 作MN 的平行线,过A 、B 分别向该平行线作垂线,垂足记为F 、E , 则9090BOE B AOF OAF ∠=︒-∠=︒-∠=∠,在BOE ∆与AOF ∆中,BOE OAF E FOA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴BOE ∆∠AOF ∆.设Rt AOF ∆较短直角边为x (cm ),则较长直角边为(x +4)cm ,在Rt AOF ∆中,由勾股定理可得:()222420x x ++=,解得1212,16x x ==-(舍去). 情形∠、∠中,AF =12cm ,情形∠、∠中,AF =16cm .O 到MN 的距离为32cm ,四个情形中,A 到MN 的距离分别为32+12=44,32+16=48,32-12=20,32-16=16. 故答案为:44或48或20或16∠ ∠∠【点睛】本题考查了圆的性质,勾股定理,全等三角形的性质与判定,旋转的性质,掌握以上知识是解题的关键.17.1【解析】【分析】先化简再计算即可.【详解】原式=339121-⨯++= 【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、实数绝对值、0指数幂、特殊角度三角函数值进行化简.18.5x ≤-【解析】【分析】根据解一元一次不等式组的方法求解即可.【详解】解:解不等式50x +≤得5x ≤-. 解不等式31212x x -≥+得3x ≤-. ∠不等式组的解集为5x ≤-.【点睛】本题考查解一元一次不等式组,熟练掌握该知识点是解题关键.19.见解析【解析】【分析】 可证明ABE ≌CDF ,即可得到结论.【详解】证明:∠四边形ABCD 是平行四边形∠AB =CD ,AB ∥CD∠∠BAC =∠DCA∠BE ⊥AC 于E ,DF ⊥AC 于F∠∠AEB =∠DFC =90°在ABE 和CDF 中 ,BAE DCF AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∠ABE ≌CDF (AAS )∠AE =CF【点睛】此题考查平行四边形的性质和全等三角形的判定及性质,掌握平行四边形的性质和全等三角形的判定是解决问题的关键.20.(1)20,72,40;(2)作图见试题解析;(3)23.【解析】【分析】(1)根据等级为A 的人数除以所占的百分比求出总人数,根据D 级的人数求得D 等级扇形圆心角的度数和m 的值;(2)求出等级B 的人数,补全条形统计图即可;(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【详解】(1)根据题意得:3÷15%=20(人),表示“D 等级”的扇形的圆心角为420×360°=72°; C 级所占的百分比为820×100%=40%,故m=40, 故答案为20,72,40.(2)故等级B 的人数为20﹣(3+8+4)=5(人),补全统计图,如图所示;(3)列表如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P (恰好是一名男生和一名女生)=46=23. 考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图.21.(1)18a =-,4c = (2)3032a -≤< 【解析】【分析】(1)根据题意,抛物线2C 的顶点坐标为(6,172),设C 2的解析式为:()21762y a x =-+,代入0,4x y ==,即可求解; (2)求出山坡的顶点坐标为(8,203),根据题意列出不等式,解不等式即可求得a 的取值范围.(1)解:根据题意,抛物线2C 的顶点坐标为(6,172), 设C 2:()21762y a x =-+,代入0,4x y ==,得173642a +=, 解得18a =-, ∴()2117682y x =--+213482x x =-++, 18a ∴=-,4c =; (2)解:抛物线C 1:()2214412081233123y x x x =-++=--+, 因此抛物线C 1的顶点坐标为(8,203), 即当x =8时,运动员到达坡顶, 此时238842a ⨯+⨯+≥103+203, 解得332a ≥-, 根据实际情况,0a <,3032a ∴-≤<. 【点睛】本题考查二次函数的实际应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.22.(1)见解析【解析】【分析】(1)连接OC ,根据AB 为直径,得出∠ACB =90°,则∠ACO +∠OCB =90°,从而得出∠BCP +∠OCB =90°,即∠OCP =90°,即可得出结论;(2)连接BD ,作DM AC DN CB ⊥⊥,,垂足为M ,N ,根据CD 平分ACB ∠,DM AC ⊥,DN CB ⊥,得出DM DN AD BD ==,,推出AD BD =,再利用HL 证明AMD BND ≌,得出四边形CMDN 为矩形,再推出矩形CMDN 为正方形,则CN =,即可得出答案 (1)连接OC ,∠AB 为直径,∠∠ACB =90°,∠∠ACO +∠OCB =90°,∠OA =OC ,∠∠BAC =∠ACO ,∠∠BCP =∠BAC ,∠∠BCP =∠ACO∠∠BCP +∠OCB =90°,即∠OCP =90°,∠PC 是∠O 的切线;(2)连接BD ,作DM AC DN CB ⊥⊥,,垂足为M ,N ,∠CD 平分ACB ∠,DM AC ⊥,DN CB ⊥, ∠DM DN AD BD ==,,∠AD BD =,∠90AMD BND ∠∠==︒,∠AMD BND HL ≌(), ∠90DMC MCN CND ∠∠∠===︒,∠四边形CMDN 为矩形,∠DM DN =,∠矩形CMDN 为正方形,∠CN =, ∠2AC BC CM AM CB CN +=++=,∠AC BC +=,∠2AC BC +=,∠CD =【点睛】本题是圆的综合题,主要考查了圆周角定理,圆的切线的判定与性质,正方形的判定与性质,全等三角形的判定与性质等知识,熟练掌握切线的判定是解题的关键.23.(1)32,(3,2) (2)点C 的坐标(2,1)或(4,3)(3)-1<t ≤2【解析】【分析】(1)根据“完美点”的定义即可求解;(2)先根据A 点坐标求出直线解析式,根据B 点在直线5y x -=+上,设B 点坐标为(,5)-+a a ,再根据B 点是“完美点”,即可求出B 点坐标,设“完美点”C 点坐标为00(,)x y ,即有001y x =-,再利用勾股定理有:22200(3)(2)BC x y =-+-,即可求解出C 点坐标;(3)设正方形1111D C B A 的四个顶点的坐标为1(0,)A p 、1(,)B w p 、1(,)C w q 、1(0,)D q ,即有11111111A B C D A D B C ===,即q p w -=,再根据正方形1111D C B A 对角线交点E 的坐标为(1,)t ,利用中点坐标公式可得到112q t p t w =+⎧⎪=-⎨⎪=⎩,则可用t 表示出1(0,1)A t -、1(2,1)B t -、1(2,1)C t +、1(0,1)D t +,根据题意设“完美点”的坐标为(,)m P m n ,即有1m m n =-,再根据m 、n 时正实数,可知m n也为正实数,即1m >,再分当“完美点”P 点在边长11A D 上时、当“完美点”P 点在边长11A B 上时、当“完美点”P 点在边长11B C 上时、当“完美点”P 点在边长11C D 上时四种情况讨论,即可求出t 的取值范围.(1)∠m =3, ∠1312m m n =-=-=,即P 点坐标为(3,2), ∠32n=, ∠32n =, 故答案为:32,(3,2); (2)∠A (0,5)在直线5y x -=+上,∠5b =,即直线的解析式为:5y x -=+,∠B 点在直线5y x -=+上,∠设B 点坐标为(,5)-+a a ,∠B 点是“完美点”,∠51a a -+=-,解得a =3,∠B 点坐标为(3,2),设C 点坐标为00(,)x y∠C 点是“完美点”,∠001y x =-,∠BC ,∠利用勾股定理有:22200(3)(2)BC x y =-+-,∠代入001y x =-有:2200(3)(12)2x x -+--=,解得02x =或者04x =,∠01y =或者03y =,∠C 点坐标为:(2,1)或(4,3);(3)按题意作图如下,∠四边形1111D C B A 是正方形,则设1(0,)A p 、1(,)B w p 、1(,)C w q 、1(0,)D q ,即有11111111A B C D A D B C ===,即q p w -=,∠正方形1111D C B A 对角线交点E 的坐标为(1,)t ,∠根据中点坐标公式有:0122w p q t +⎧=⎪⎪⎨+⎪=⎪⎩, ∠22w p q t =⎧⎨+=⎩, ∠q p w -=,∠2q p -=,∠联立22q p p q t -=⎧⎨+=⎩,即得:11q t p t =+⎧⎨=-⎩, ∠1(0,1)A t -、1(2,1)B t -、1(2,1)C t +、1(0,1)D t +,根据题意设“完美点”的坐标为(,)m P m n, ∠1m m n =-, ∠m 、n 时正实数, ∠m n也为正实数,∠10m m n=->,即1m >, 当“完美点”P 点在边长11A D 上时,即有m =0,此时不满足1m >,故“完美点”P 点不可能在边长11A D 上;当“完美点”P 点在边长11A B 上时即有02m ≤≤,11m m t n =-=-, 即有m =t ,∠1m >,∠此时2m ≤1<,∠12t <≤;当“完美点”P 点在边长11B C 上时,即有2m =,11m t t n -≤≤+, ∠1m m n =-, ∠1211m m n=-=-=, ∠111t t -≤≤+,即有:02t ≤≤;当“完美点”P 点在边长11C D 上时即有02m ≤≤,11m m t n=-=+, 即有m =t +2,∠1m >,∠此时2m ≤1<,∠22t +≤1<;∠0t ≤-1<,综上所述:t 的取值范围:2t ≤-1<.【点睛】本题考查了一次函数图像上点的坐标特征、勾股定理、正方形的性质、中点坐标公式等知识,利用E 点坐标表示出正方形1111D C B A 四个顶点的坐标是解答本题的关键.24.(1)∠见解析;∠43(2)74,2,8,42 【解析】【分析】(1)∠根据对顶角相等可得CEG AEB ∠=∠,根据,90AG CH ABC ⊥∠=︒,可得BAE GCE ∠=∠,即可得证;∠由90ABC AGC ∠=∠=︒得,,,A B G C 四点共圆,则AGB ACB ∠=∠,即可求解.(2)根据题意画出图形建立平面直角坐标系,分4种情况讨论求解即可.(1)∠证明:,90AG CH ABC ⊥∠=︒,CEG AEB ∠=∠,∠BAE AEB GCE CEG ∠+∠=∠+,即BAE GCE ∠=∠∠∠CGE ~∠ABE ;∠∠90ABC AGC ∠=∠=︒,∠,,,A B G C 四点共圆,∠AGB ACB ∠=∠在矩形ABCD 中,已知AD =6,CD =8,6,8BC AD AB CD ∴====,∴tan tan AGB ACB ∠=∠8463AB BC ===; (2)解:如图1所示,以B 为原点,以BC 所在的直线为y 轴,以AB 所在的直线为x 轴建立平面直角坐标系,设点H 的坐标为(m ,0),由(1)∠可知∠ABE =∠CBH =90°,∠BAE =∠BCH ,∠∠BAE ∠∠BCH , ∠AB BC BE BH =,即86BE m=, ∠43BE m =,∠点E 的坐标为(0,43m ), 设直线AE 的解析式为y kx b =+, ∠8043k b b m -+=⎧⎪⎨=⎪⎩, ∠66m k b ⎧=⎪⎨⎪=⎩,∠直线AE 的解析式为463m y x m =+, 同理可以求出直线CH 的解析式为66y x m =-+, 联立46366m y x m y x m ⎧=+⎪⎪⎨⎪=-+⎪⎩, 解得22223683664836m m x m m m y m ⎧-=⎪⎪+⎨+⎪=⎪+⎩, ∠点G 的坐标为22223686483636m m m m m m ⎛⎫-+ ⎪++⎝⎭,; 过点F 作FT ∠x 轴于T ,设BL FL n ==(轴对称的性质),∠AG ∠CH ,BF ∠CH ,∠AG BF ∥,∠∠BAE =∠LBH ,∠ABE ∠∠BTF , ∠8643BT AB FT BE mm ===, ∠∠ABE =∠BLH =90°(轴对称的性质∠BLH =90°),∠∠ABE ∠∠BLH , ∠BE HL AB BL =,即438m HL n=, ∠6mn HL =, 又∠1122BHF S BH FT OF HL =⋅=⋅△,∠112226mn m FT n ⋅=⋅⋅, ∠213FT n =, ∠222BH BL HL =+, ∠222236m n m n =+, ∠2223636m n m =+, ∠221236m FT m =+, ∠267236m BT FT m m ==+, ∠点F 的坐标为(27236m m +,221236m m +), 设直线FG 的解析式为11y k x b =+, ∠22112221122368648363672123636m m m m k b m m m m k b m m ⎧-++=⎪⎪++⎨⎪+=⎪++⎩, 解得113244182429m k m m b m -⎧=⎪⎪+⎨⎪=⎪+⎩, ∠直线FG 的解析式为3242441829m m y x m m -=+++, 设直线FG 与y 轴交于K ,与AC 交于点M ,与BC 交于点N ,∠点K 的坐标为24029m m ⎛⎫ ⎪+⎝⎭,, ∠24629m CK m =-+, 当6y =时,32424641829m m x m m -=+++, ∠24418629324m m x m m +⎛⎫=-⋅ ⎪+-⎝⎭, ∠24418629243m m CN m m +⎛⎫=-⋅ ⎪+-⎝⎭, 当MN =MC ,即∠MNC =∠MCN 时,如图1所示,∠∠NCK =∠ADC =90°,∠∠ADC ∠∠KCN ,∠43 CN CDCK AD==,∠244186429243243629m mm mmm+⎛⎫-⋅⎪+-⎝⎭=-+,∠12549612m m+=-,解得74m=,∠74 BH=;当CN=CM时,如图2所示,过点M作MQ∠CD于Q,则MQ AD∥,∠CQM CDA△∽△,∠10AC==,∠CM QM CQAC AD CD==,即1068CM QM CQ==,∠4355CQ CM QM CM ==,,∠15NQ CM=,∠13 NQQM=,同理可证NMQ NKC△∽△,∠13 NC NQNK CK==,∠244186129243243629m mm mmm+⎛⎫-⋅⎪+-⎝⎭=-+,∠1254243m m+=-,解得2m=-,即此时的情形如图3所示,∠2BH=;如图4所示,当H运动到与点A重合时,此时,G、H、M三点都与点A重合,由轴对称的性质可知∠F AC=∠BAC,又∠AB CD∥,∠∠ACD=∠BAC,∠∠NAC=∠BCA,∠NA=NC,即∠NAC为等腰三角形,∠当H为点A重合时满足题意,∠此时BH=8;如图5所示,当点H 在A 点左侧时,设直线FG 与x 轴交于J ,与y 轴交于Z , 同理可以求出直线FG 的解析式为3242441829m m y x m m -=+++, ∠∠DMN 是等腰三角形,且∠D =90°,∠∠DMN 是等腰直角三角形,∠∠DNM =45°,∠==45ZJB DNM ︒∠∠,∠∠BZJ =∠BJZ =45°,∠BJ =BZ ,设直线JZ 的解析式为22y k x b =+,∠点Z 的坐标为(0,2b ),点J 的坐标为(22b k -,0), ∠222b BJ BZ b k ===, ∠21k =, ∠3241418m m -=+, ∠324418m m -=+,∠42m =-,∠42BH =,综上所述,当直线FG 截∠ADC 所得的三角形是等腰三角形时,74BH =或2或8或42.【点睛】本题考查了求正切值,相似三角形的性质与判定,圆周角定理,等腰三角形的性质与判定,一次函数与综合等等,利用分类讨论和属性结合的思想求解是解题的关键.答案第26页,共26页。
最新浙江省杭州市中考数学真题模拟试卷附解析
浙江省杭州市中考数学真题模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,箭头表示投影线的方向,则图中圆柱体的正投影是( )A .圆B .圆柱C .梯形D .矩形 2.如图,梯形护坡石坝的斜坡AB 的坡度i =1:3,坝高BC 为2米,则斜坡AB的长是( )A .25米B .210米C .45米D .6米 3.方程0232=+-x x 的实数根有( )A .4个B .3个C .2个D .1个 4. 如图,宽为 50 cm 的矩形图案由 10个全等的小长方形拼成,其中一个小长方形的面积为( )A .400cm 2B .500 cm 2C .600 cm 2D .4000 cm 25.若))(3(152n x x mx x ++=-+,则m 的值为 ( )A .5-B .5C .2-D .2 6.12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的取值是( )A .5B .-5C .2D .1 7.如图①,在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >),再沿黑线剪开,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( )A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .222()a b a b ⋅-=-8.用代入解方程组52231x y x y -=⎧⎨-=⎩时,下列代入方法正确的是( ) A .231x x -= B .21531x x -+= C .23(52)1x x --= D . 21561x x --=二、填空题9.若函数m mx m y +-=2)1(是二次函数,则m = . -2 10.在实数范围内有意义,则x 的取值范围为: .11.已知一个样本中,50个数据分别落在5个组内,第一,二,三,五的数据个数分别为2,8,15,5,则第四组的频数为 ,频率为 .12.用正十二边形与三角形组合能够铺满地面,每个顶点周围有 个三角形和 个正十二边形.13.若方程02=-m x 有整数根,则m 的值可以是_____ ____(只填一个).14.两个连续自然数的积是156,则这两个数是 .15. 当2x =-时,二次三项式224x mx ++的值等于 18,那么当2x =时,这个二次三项式的值为 .16.已知正比例函数y=kx (k ≠0)的图象经过原点、第二象限与第四象限,请写出符合上述条件的k 的一个值:_________.解答题17.如图是第29届北京奥运会上获得金牌总数前六名国家的统计图:则这组金牌数的中位数是 枚.奥运金牌榜前六名国家18. 已知∠AOB 是由∠DEF 经过平移变换得到的,且∠AOB+∠DEF=120°,则∠AOB= .解答题19.甲、乙两名运动员照镜子时,波波看到他们胸前的号码在镜子中的像分别是和,那么甲胸前的号码是,乙胸前的号码是 .20.判断下列各组图形分别是哪种变换?21.如图,把△ABC沿虚线剪一刀,若∠A=40°,则∠l+∠2= .三、解答题22.如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.23.如图,等腰梯形ABCD 中,上底AD=24 cm ,下底BC=28 cm ,动点P 从A 开始沿AD 边向D 以1 cm /s 的速度运动,动点Q 从点C 开始沿CB 边向B 以3 cm /s 的速度运动,P ,Q 分别从点A ,C 同时出发,当其中一点到端点时,另一点也随之停止运动,设运动时间为t(s).(1)t 取何值时,四边形PQCD 为平行四边形?(2)t 取何值时,四边形PQCD 为等腰梯形?24.解下列方程:(1)()22116x -= (2)390x x -=25.先化简,再求值:(4)(2)(1)(3)x x x x ----+,其中52x =-.26.计算下列各式,结果用幂的形式表示:(1)32(2);(2)54[(3)]-;(3)352()x x ⋅;(4)3443()()a a ⋅;(5)23(5)-;(6)24[()]a b +27.解方程组2345y x x y =⎧⎨-=⎩和124223x y x y ⎧-=⎪⎨⎪+=⎩各用什么方法解比较简便?求出它们的解.28.如图,由火柴棒拼出的一列图形中,第n个图形由n个正方形组成.请问:(1)第4个图形中火柴棒有几根?(2)第n个图形中火柴棒有几根?(3)已知最后一个图形由691根火柴棒组成,那么这个图形由几个正方形组成?29.如图所示,在Rt △ABC中,∠ACB为直角,∠CAD的平分线交BC的延长线于点E,若∠B=35°,求∠BAE和∠E的度数.30.如图,在一个横截面为Rt△ABC的物体中,∠ACB=90°,∠CAB=30°,BC=1米.工人师傅要把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1BC1的位置(BC1在l上),最后沿射线BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).⑴请直接写出AB、AC的长;⑵画出.......,并求出该路径的长度(精确到0.1米)..在搬动此物体的整个过程中A.点所经过的路径【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.A4.A5.C6.A7.A8.C二、填空题9.10.x≥311.12.1,213.O ,1,4等14.12,1315.616.例如:“-1”17.2118.60°19.96,6920.轴对称,平移,旋转,相似21.220°三、解答题22.(1)画图略;(2)B ′(-6,2),C ′(-4,-2).(3)M ′(-2x ,-2y).23.(1) t 取6 s 时,四边形PQCD 为平行四边形;(2)t 取7s 时,四边形PQCD 为等腰梯形 24.(1)1253,22x x ==- ,(2)1230,3,3x x x ===- 25.811x -+,3126.(1)62;(2)203;(3)16x ;(4)24a ;(5)65-;(6)8()a b +对于方程组2345y x x y =⎧⎨-=⎩,用代入法解得12x y =-⎧⎨=-⎩;对于方程组124223x y x y ⎧-=⎪⎨⎪+=⎩,用加减法解得5412x y ⎧=⎪⎪⎨⎪=⎪⎩28.(1)13 根 (2) (31n +)根 (3)230 个 29.∠E=27.5°,∠BAF=117.5° 30.(1)AB=2(米),AC=3(米);(2)画出A 点经过的路径:经过的路径长4π/3+3≈5.9(米).。
2023年浙江省杭州市中考数学仿真模拟试卷(含答案)
2023年浙江省杭州市中考数学仿真模拟试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 在―3,―2,0,5四个数中,负数有( )A. 4个B. 3个C. 2个D. 1个2. 旅游行业触底反弹以来,旅游消费需求剧增.今年春节期间,我县实现旅游业总收入162000000元,其中数据162000000用科学记数法可表示为( )A. 16.2×106B. 0.162×107C. 1.62×107D. 1.62×1083. 如图是一个几何体的主视图和俯视图,则该几何体为( )A.B.C.D.4. 下列运算正确的是( )A. 3x +3y =6xy B. 2a 2÷a =2a C. (a +b )2=a 2+b 2D. (―3pq )2=―6p 2q 25. 已知a <b ,下列结论中成立的是( )A. ―a +1<―b +1B. ―3a <―bC. ―12a +2>―12b +2D. 如果c <0,那么ac <bc6. 已知一次函数y =ax ―4(a ≠0),y 随x 的增大而增大,则a 的值可以是( )A. ―2B. ―(―1)C. 0D. ―|―3|7. 如图,已知BD 是⊙O 的直径,△ABC 内接于⊙O ,若AB =12,AD =5,则tanC 的值为( )A. 513B.125C. 512D. 13128. 《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的那么乙也共有钱50,问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为y ”则可列方程组为( )A. {2x ―y =50x ―23x =50B. {2x ―y =50x ―23y =50C. {x +12y =50y +23x =50D. {x ―12y =50y +23y =509. 如图,在△ABC 中,BD 平分∠ABC 交AC 于点D ,过点D 作DE ⊥AB ,垂足为点E ,且恰好AE =BE ,若S △ADB =S △BCD ,则tanA =( )A. 12B.22C. 1D. 310. 如图,在正方形ABCD 中,E 是BC 边上的一点,BE =4,EC =8,将正方形边AB 沿AE 折叠到AF ,延长EF 交DC 于G ,连接CF ,现在有如下4个结论:①∠EAG =45°;②FG =FC ;③FC//AG ;④S △GFC =14.其中正确结论的个数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共24.0分)11. 因式分解:3a 2―3= ______ .12. 在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,则cosA 的值为______ .13. 如果三点P 1(1,y 1),P 2(3,y 2)和P 3(4,y 3)在抛物线y =―x 2+6x +c 的图象上,那y 1,y 2,y 3之间的大小关系是______ .14. 在数学实践活动课中,老师让学生制作圆锥,他们用一种半径长为30cm ,圆心角为120°的扇形纸片制作圆锥,则这种圆锥的底面圆的半径是 cm .15. 如图,⊙O外一点P作⊙O的切线,与⊙O相切于点A,连结PO交⊙O于点C,延长PO交⊙O于点B,连结AB、AC,若PA=20,PC=10,则⊙O的半径______ .16. 如图,点P为等边△ABC内的一个动点,且∠APB=120°,PD⊥AC于点D,PE⊥BC于点E,若AB=3,则2PD+PE的最小值为______ .三、解答题(本大题共7小题,共66.0分)17.解不等式:3x―24―1≤5x―76.18. 云南鲜花饼以盛开在味蕾里的沁人花香、本真而自然的美好让人食而不忘,成为云南最具特色的伴手礼.某超市现有五种口味的鲜花饼,分别是:A原味,B紫薯味,C抹茶味,D 茉莉味,E坚果味.数学兴趣小组为了解人们对这五种口味鲜花饼的喜爱情况,对该超市一天的顾客进行抽样调查,然后根据统计结果绘制如下统计图:说明:参与本次抽样调查的每一位顾客在上述五种口味的鲜花饼中,选择且只选择了一种喜爱的鲜花饼.请根据以上信息,解答下列问题:(1)本次接受调查的顾客共有______ 人,m=______ ,n=______ ;(2)补全条形统计图;(3)若该超市这天有3650名顾客,估计喜爱原味鲜花饼的顾客有多少人?19.如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE ;(2)若∠A =100°,∠C =50°,求∠AEB 的度数.20.如图,一次函数y =x +2的图象与双曲线y =kx 在第一象限交于点A(2,a),在第三象限交于点B .(1)求反比例函数的解析式;(2)点P 为x 轴上的一点,连接PA 、PB ,若S △PAB =9,求点P 的坐标.21.正方形ABCD 对角线AC 、BD 交于点O ,E 为线段OD 上一点,延长AE 到点N ,使AE =EN ,AN 交CD 边于点F ,连接CN .(1)求证:△CAN 为直角三角形.(2)若点E 为OD 中点,正方形的边长为6,求DF 的长.22.如图,抛物线y =―12x 2+bx +c 过点A(3,2),且与直线y =―x +72交于B 、C 两点,点B 的坐标为(4,m).(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+PA的最小值.23.如图1,在△ABC中,D为边AC上的一点,以BD为直径的⊙O恰好经过点A且交BC于点E,点F是线段CE上的一点,连接DF,∠ABD=∠CDF.(1)求证:FD是⊙O的切线;(2)连接AE,若DF=CF,求证:AE=AB;(3)如图2,在(2)的条件下,过点E作EH//AC,交BD于点H.若DH=4,BH=8,求AB的长.1.C2.D3.B4.B5.C6.B7.B8.C9.C10.B11.3 (a+1)(a―1)12.3513.y2>y3>y114.1015.1516.33―317.解:3x―24―1≤5x―76,去分母得:3(3x―2)―12≤2(5x―7),去括号得:9x―6―12≤10x―14,移项得:9x―10x≤―14+6+12,合并同类项得:―x≤4,化系数为1得:x≥―4.18.解:(1)本次接受调查的顾客共有:30÷15%=200(人),故m=360×80200=144,n%=40200×100%=20%,即n=20,故答案为:200,144,20.(2)D组人数为:200―80―30―40―20=30(人),补全条形统计图如下:(3)3650×80200=1460(人).答:估计喜爱原味鲜花饼的顾客有1460人.19.(1)证明:∵BE平分∠ABC,∴∠ABE=∠DBE,在△ABE 和△DBE 中,{AB =DB∠ABE =∠DBE BE =BE ,∴△ABE≌△DBE(SAS);(2)解:∵∠A =100°,∠C =50°,∴∠ABC =30°,∵BE 平分∠ABC ,∴∠ABE =∠DBE =12∠ABC =15°,在△ABE 中,∠AEB =180°―∠A ―∠ABE =180°―100°―15°=65°.20.解:(1)一次函数y =x +2的图象与双曲线y =kx 在第一象限交于点A(2,a),∴a =2+2=4,∴k =2a =8,∴反比例函数的解析式为y =8x;(2)由题意可知,A 、B 关于原点对称,∴OA =OB ,∵S △PAB =9,∴S △POA =92,∴12OP ⋅|y A |=92,即12OP ⋅4=92,∴OP =94,∴点P 的坐标是(94,0)或(―94,0).21.(1)证明:∵四边形ABCD 是正方形,对角线AC 、BD 交于点O ,∴AC ⊥BD ,点O 是AC 的中点,∵AE =EN ,即点E 是AN 的中点,∴OE 是△ACN 的中位线,∴OE//CN ,∴CN ⊥AC ,即∠ACN =90°,∴△CAN 为直角三角形;(2)解:由(1)得OE 是△ACN 的中位线,∴OE =12CN,OE//CN ,∵点E 为OD 中点,∴OE =DE =12CN ,∵DE//CN ,∴△DEF∽△CNF ,∴CF DF =CNDE=2,即CF =2DF ,∵正方形的边长为6,∴DF =13CD =2.22.解:(1)将点B 的坐标为(4,m)代入y =―x +72,m =―4+72=―12,∴B 的坐标为(4,―12),将A(3,2),B(4,―12)代入y =―12x 2+bx +c ,{―12×32+3b +c =2―12×42+4b +c =―12,解得b =1,c =72,∴抛物线的解析式y =―12x 2+x +72;(2)设D(m,―12m 2+m +72),则E(m,―m +72),DE =(―12m 2+m +72)―(―m +72)=―12m 2+2m =―12(m ―2)2+2,∴当m =2时,DE 有最大值为2,此时D(2,72),作点A 关于对称轴的对称点A′,连接A′D ,与对称轴交于点P .PD +PA =PD +PA′=A′D ,此时PD +PA 最小,∵A(3,2),∴A′(―1,2),A′D = (―1―2)2+(2―72)2=325,即PD +PA 的最小值为325;23.(1)证明:∵BD 为⊙O 的直径,∴∠BAC =90°,∴∠ABD +∠ADB =90°,∵∠ABD =∠CDF ,∴∠CDF +∠ADB =90°,∴∠BDF =180°―(∠CDF +∠ADB)=90°,∵BD 为⊙O 的直径,∴FD 是⊙O 的切线;(2)证明:∵DF =CF ,∴∠C =∠CDF ,∴∠ADB =90°―∠CDF =90°―∠C ,∴∠AEB =∠ADB =90°―∠C ,∵∠ABC =90°―∠C ,∴∠ABC =∠AEB ,∴AE =AB ;(3)解:如图2,延长EH 交AB 于M , ∵EH//AC ,∴∠AEM =180°―∠BAC =90°,BM AM =BHDH=2,设AM =x ,则BM =2x ,∴AB =3x ,由(2)知,AE =AB ,∴AE =3x ,∵EH//AC ,∴∠AEH =∠CAE ,∵∠CAE =∠DBE ,∵∠AME =∠FDB ,∴△AME∽△FDB ,∴AM DF =AEBF ,∴xDF =3xBF,∴BF =3DF ,在Rt △BDF 中,BD =BH +DH =12,根据勾股定理得,BF 2―DF 2=122,∴DF =3 2,BF =9 2,∴CF =DF =3 2,∴BC =BF +CF =12 2,∵∠ABD=∠ACB,∠BAD=∠CAB=90°,∴△ABD∽△ACB,∴AB AC =BDBC=12122=12,∴AC=2AB,在Rt△ABC中,AB2+AC2=BC2,∴AB2+(2AB)2=(122)2,∴AB=46.。
2023年浙江省杭州市中考数学综合模拟试卷附解析
2023年浙江省杭州市中考数学综合模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.同时抛掷两枚均匀硬币,正面都同时向上的概率是( )A .31B .41C .21D .432.如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P 的距离是( )A .2cmB .43cmC .6cmD .8cm3.如图,是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是( )4.如图,ABCD 为正方形,边长为a ,以点B 为圆心,以BA 为半径画弧,则阴影部分的面积是( )A . (1-л)a 2B . l-лC .244a π-D .44π- 5.在下列定理中,没有逆定理的是( )A .有斜边和一直角边对应相等的两个直角三角形全等B .直角三角形两个锐角互余C .全等三角形对应角相等D .角平分线上的点到这个角两边的距离相等6.如图,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确...的是( )A .∠ACD=∠B B .CH=CE=EFC .AC=AFD .CH=HD7.下列计算正确的是( ) A 164=± B .32221= C 2464÷= D .2632=⋅ 8.由四个大小相同的小立方体叠成的几何体的左视图如图所示.则这个几何体的叠法不可能是( )A. B.C. D.9.(1)一辆汽车在公路上行驶,两次拐弯后,仍与原来的方向平行前进,那么这两次拐弯的角度可能是()A.第一次右拐40°,第二次左拐140°B.第一次左拐 40°,第二次右拐 40.C.第一次左拐 40°,第二饮右拐 140°D.第一次右拐 40°,第二次右拐 140°(2)要想保证两次拐后,汽车仍在原来的方向上平行前进,你还能设计出新的拐弯方案吗?从中你得出了什么规律?10.如图,直线AB、CD交于点O,OE平分∠AOD,OF⊥OE于点0,若∠BOC=80°,则∠DOF= ()A.100°B.120°C. 130°D.140°11.如果一个多项式的次数是5,那么这个多项式的各项次数()A.都小于 5 B.都大于 5 C.都不小于 5 D.都不大于5二、填空题12.抛物线y=ax2+2ax+a2+2的一部分如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是_____________.(1,0)13.某工厂第一年的利润为 20 万元,则第三年的利润 y(万元)与年平均增长率x之间的函数关系式是.14.在矩形ABCD中,对角线AC,BD相交于点O,若对角线AC=10cm,边BC=•8cm,则△ABO的周长为________.15.已知点A(3,O)、B(-1,O)、C(0,2),以A,B,C为顶点画平行四边形,则第四个顶点D的坐标是 (写出一个即可).16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形.若最大正方形的边长为8cm,则正方形A,B,C,D的面积和是 cm2.17.在“222a ab b □□”方框中,任意填上“+”或“-”.能够构成完全平方式的概率是 . 18.如图,AB ∥CD ,EG 平分∠BEF.∠2 = 60°, 则∠1= .19.如图所示,请根据小强在镜中的像,可知他的运动衣上的实际号码是 .20.如图,点C 是∠AOB 的OA 边上一点,0、E 是OB 边上的两点,则图中共有 条线段, 条射线, 个角.21.说出下列几何体的名称:22.( )2= 16, ( )3 = 64.三、解答题23.你看过篮球赛吗 下图是篮球场简单图示,你知道在哪些区域投中是得2分吗?请用阴影表示.24.抛物线y=ax2+bx+c经过A(1,-4)、B(-1,0)、C(-2,5)三点.(1)求抛物线的解析式;(2)直角坐标系中点的横坐标与纵坐标均为整数的点称为整点.试写出在第四象限内抛物线上的所有整点的坐标.25.如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连结AE.求证:(1)BF=DF;(2)AE∥BD.26.解方程:(1)250-=;x x(2) 2+=+;(34)7(34)x x(3)24120x x--=27.如图所示,一棵大树被龙卷风吹断了,折断点离地面9 m,树顶端落在离树根12 m处,问这棵大树原先高度是多少?28.如图,将面积为2a的小正方形和面积为2b的大正方形拼在一起(0>>).b a(1)试用含a、b的代数式表示△ABC的面积;(2)当3a=,5b=时,计算△ABC的面积.29.某公司第一季度的营业额为a万元,预计本年度每季度比上季度的营业额增长x%,请用代数式分别表示第二季度、第三季度、第四季度的预计营业额.30.利用字母表示数来表示下列数学规律.(1)两个互为相反数的数的和为零;(2)一个数的立方根的立方就是这个数本身.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.B4.C5.C6.D7.D8.A9.(1)B;(2)如:第一次左拐40°,第二次左拐320°.规律:两次拐的方向一样,角度之和为360°,两次拐的方向相反,所拐角度相等10.C11.D二、填空题12.13.220(1)y x =+14.1615.(4,2)等16.6417.1218. 60°19.10820.6,5,1021.圆柱,球体,圆锥22.4±,4三、解答题23.如图所示.24.(1)y =x 2-2x -3;(2)(1,-4)、(2,-3). 25.思路:(1)能正确说明ADB EBD ∠=∠(或ABF EDF △≌△),BF DF =∴.(2)证明AEB DBE ∠=∠(或EAD BDA ∠=∠),AE BD ∴∥. 26.(1)10x =,25x =;(2)143x =-,21x =;(3)16x =,22x =- 27.24m28. (1)2221111()()2222ABC s a b a b b a b a b ∆=+⨯+--+⨯= (2)把3a =,5b =代入212ABC s b ∆=得215252ABC S ∆=⨯= 29. a(1+x%)万元,a(1+x%)2 万元,a(1+x%)3万元 30.(1)()0a a +-= (2)3a =。
2023年浙江省杭州市中考数学名校模拟试卷附解析
2023年浙江省杭州市中考数学名校模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.半径为4和2的两圆相外切,则其圆心距为( )A .2B .3C .4D .62.在△ABC 中,AB = AC ,AB = 2BC ,那么sinB 的值等于 ( )A .12BCD .143.菱形和矩形一定都具有的性质是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .每条对角线平分一组对角4.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121, 130, 133,146, 158, 177,188.则跳绳次数在90~110这一组的频率是( )A .0.1B .0.2C .0.3D .0.7 5. 若方程2(1)()4x x a x bx ++=+-,则( ) A .4a =,3b = B . 4a =-,3b = C . 4a =,3b =- D . 4a =-,3b =-6.在盒子里放有三张分别写有整式1a +、2a +、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( )A . 13B . 23C . 16D . 34 7.下列各式中,是二元一次方程的是( ) A .32=xy B .72=+y x x C .3=+y x D .422=+y x8.计算220(2)2(2)----+-得( )A .9B .112 C .1 D .129.2006 年 8月超强台风登陆浙江苍南,苍南遭受严重的损失,各方积极投入抢险,抗洪救灾小组A 地段有 28 人,B 地段有 15 入,现又凋来 29 人,分配在 A ,B 两个地段,使A 地段的人是B 地段的 2倍,则调往A ,B 地段的人数分别是( )A .l8 人, 11人B . 24 人,25 人C. 20人 ,9人 D . 14 人,15 人 10.下列合并同类项正确的是( ) A .22523x x -= B .6713x y xy +=C .2222a b a b a b -+=D .523x x -= 11.任何有理数的平方的末位数,不可能是( )A . 1,4,9,0B . 2,3,7,8C .4,5,6,1D .1,5,6,9二、填空题12.在一组数据中,最大值为 99,最小值是28. 据的极差为 . 13.一次体检,七(1)班24名男生有2人是1.48 m ,7人身高在1.50 m 到1.60 m 之间,ll 人身高在1.60 m 至1.70 m 之问,有4人身高超过1.70 m ,最高的身高已达1.79 m ,则七(1)班男生身高的极差是 .14.一个底面为正方形的直棱柱的侧面展开图是一个边长为4的正方形,它的表面积为 ,体积为 .15.x 轴上的点的纵坐标等于 .16. 如图,1l ∥2l ,∠CAB= 90°,CB=10,AC=8,BA= 6,则1l ,2l 之间的距离是 .17.在一次抽奖活动中,印发奖券 1000张,其中一等奖(记为a )20张,二等奖(记为b )80张,三等奖(记c )200张,其他没有奖(记为d ),如果任意摸一张,把摸到奖券的可能性事件按从大到小的顺序排列起来是 .18.中央电视台大风车栏目的图标如图(1)所示,其中心为点0,半圆ACB 固定,其半径为2r ,车轮绕中心旋转 180°能与原来的图形重合,轮片是半圆形,小红通过观察发现车轮旋转过程中留在半圆ACB 内的轮片面积是不变的(如图(2)),这个不变的面积值是 .19.写出下列各式分解因式时应提取的公因式:(1)ax ay -应提取的公因式是 ;(2)236x mx n -应提取的公因式是 ;(3)2x xy xz -+-应提取的公因式是 ;(4)322225520x y x y x y --应提取的公因式是 ;(5)()()a x y b x y +-+应提取的公因式是 .20.某教室要换新桌椅,教室中共有(1n +)行桌椅,其中每行 7 人的有n 行,另有一行有 8 人,共需 套新桌椅;当6n =时,共需 套新桌椅.21.a 的 2倍的立方与b 的5倍的平方的差可表示为 .22.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示(有字一面朝外).如图所示,是一个正方体的平面展开图,如果图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面,那么“祝”、“你”、“前”分别表示正方体的.23.生活中常见的数字:(1)邮政编码是位数,你家所在地的邮编是,你家所在地的长途区号是.(2) 报警电话是,火警电话是电话,120 是电话,121是电话.三、解答题24.已圆柱形烟囱的直径是15 cm,现有一个圆心角为 150°,半径为 12 cm 的扇形,用它来制作圆锥形烟囱帽,能把烟囱盖住吗?为什么?25.某公司为了扩大经营,决定购进 6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示. 经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060(1)按该公司要求,可以有哪几种购买方案?(2)如果该公司要求购进的 6 台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?26.某中学开展“八荣八耻”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.(1)根据左图填写下表平均分(分)中位数(分)众数(分)九(1)班8585九(2班8580(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好?(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些,说明理由.27.如图所示,直线CD与∠AOB的边0B相交.(1)写出图中所有的同位角,内错角和同旁内角.(2)如果∠1=∠2,那么∠l与∠4相等吗?∠1与∠5互补吗?为什么?28.如图,四边形ABCD是一防洪堤坝的横截面,AE⊥CD,BF⊥CD,且AE=BF,∠D=∠C,问:AD与BC是否相等?说明你的理由.解: AE⊥CD∴∠AED=BF⊥CD∴∠BFC=∴ =在△ADE和△BCF中,()()()⎪⎩⎪⎨⎧=∠=∠=∠_____________________________________________________________________AE AED D ∴△ADE ≌△BCF( )∴AD=BC( )90 º ,90 º,∠AED ,∠BFC ,∠C ,已知,BFC ,已证,BF , 已知,AAS ,全等三角形的对应边相等.29.下列各图中,有∠1和∠2是对顶角的图吗?若没有请画一对对顶角.30.计算下列各题: (1) 12-(-16 )+(-4)-5;(2)211[2(3)]25-⨯--; (3)213()48348--⨯; (4)21545(2)1()2---⨯--÷-.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.B4.B5.D6.B7.C8.C9.C10.C11.B二、填空题12.7113.0.31 m14.18,415.16.817.d , c , b , a18.2r π19.(1) a ;(2)3x ;(3)x -;(4)25x y ;(5)x y +20.78n +,5021.32(2)(5)a b -22.后面、上面、左面23.(1)6略,略 (2) 1lO , 119,急救,天气预报三、解答题24.不能.∵圆锥母线为12l =cm ,∴15036012r =⋅,∴1552r =< cm 25.(1)3种:方案一:选购甲机器2台,乙机器4台;方案二:选购甲机器1 台,乙机器5 台;方案三:选乙机器6台 (2)选购甲机器 1台,乙机器 5 台26.(1)85;100.(2)解:∵两班的平均数相同,初三(1)班的中位数高,初三(1)班的复赛成绩好些.(3)解:∵初三(1)班、初三(2)班前两名选手的平均分分别为92.5,100分,∴在每班参加复赛的选手中分别选出2人参加决赛,初三(2)班的实力更强一些.27.(1)同位角:∠l与∠4;内错角:∠l与∠2;同旁内角:∠l与∠5 ;(2)∠1=∠4,∠1+∠5=180°理由略28.29.没有,图略30.(1)19; (2) 0;(3) 2;(4)-9。
2024年浙江省中考数学模拟练习试卷(解析版)
2024年浙江省中考数学模拟练习试卷(解析版)(考试时间:120分钟 试卷满分:120分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下图是由一个长方体和一个圆柱组成的几何体,它的俯视图是( )A. B. C. D.【答案】D【解析】【分析】根据从上面看得到的图形是俯视图即可解答.【详解】解:从上面看下边是一个矩形,矩形的上边是一个圆,故选:D .2.下列计算正确的是( )A .422a a −=B .842a a a ÷=C .235a a a ⋅=D .()325b b = 【答案】C【分析】根据整式的减法运算,同底数幂的乘法、除法运算,幂的乘方进行运算求解,然后进行判断即可.【详解】解:A 中4222a a a −=≠,错误,故不符合要求;B 中8424a a a a ÷=≠,错误,故不符合要求;C 中235a a a ⋅=,正确,故符合要求;D 中()3265b b b =≠,错误,故不符合要求;故选C .3.截至2022年3月24日,携带“祝融号”火星车的“天问一号”环绕器在轨运行609天,距离地球277000000千米;数据277000000用科学记数法表示为( )A .627710×B .72.7710×C .82.810×D .82.7710× 【答案】D【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同, 当原数绝对值≥10时,n 是正整数数.【详解】解:由题意可知: 8277000000=2.7710×.故选:D .4.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【分析】中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,中心对称,是针对两个图形而言,是指两个图形的(位置)关系;如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.由此即可求解.【详解】解:A 选项,不是轴对称图形,也不是中心对称图形,不符合题意;B 选项,不是轴对称图形,是中心对称图形,不符合题意;C 选项,是轴对称图形,也是中心对称图形,符合题意;D 选项,是轴对称图形,不是中心对称图形,不符合题意;故选:C .5.已知点P (m ﹣3,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .【答案】D【分析】先根据题意列出不等式组,求出其中各不等式的解集,再求出这些解集的公共部分即可.【详解】解:∵点P (m ﹣3,m ﹣1)在第二象限,∴3010m m −< −> , 解得:1<m <3,故选D .6.化简24142x x −−−的结果是( ) A .12x −+ B .12x −− C .12x + D .12x − 【答案】A【分析】根据题意首先应通分,然后进行分式的加减运算进而上下约分即可得出答案. 【详解】解:24142x x −−− 224244x x x +−−−2424x x −−=− (2)(2)(2)x x x −−=−+ 12x =−+ 故选:A .7 .从甲、乙、丙三人中任选两人参加青年志愿者活动,甲被选中的概率是( )A .13B .12C .23 D .19【答案】C【分析】画出树状图,共有6种等可能的结果,其中甲被选中的结果有4种,由概率公式即可得出结果.【详解】解:根据题意画图如下:共有6种等可能的结果数,其中甲被选中的结果有4种, 则甲被选中的概率为4263=. 故选:C .8. 如图,AB 为O 的直径,C 、D 为O 上的点,AD CD =,若40CAB ∠=°,则CAD ∠=( )A .20°B .35°C .30°D .25°【答案】D【分析】连接 OD 、OC ,如图,利用等腰三角形的性质和三角形内角和定理计算出 100AOC ∠=° ,再根据圆心角、弧、弦的关系得到 50AOD COD ∠=∠=°,然后根据圆周角定理得到 CAD ∠ 的度数; 【详解】连接 OD 、OC ,如图,,OA OC =OCA OAC ∴∠=∠40=°180AOC ∴∠=°4040100−°−°=°AD CD =,AD CD∴= 12AOD COD AOC ∴∠=∠=∠50=° 125.2CAD COD ∴∠=∠=° 故选:D9.如图,在平面直角坐标系xOy 中,直线AB 经过A (4,0)、B (0,4),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A B .﹣1 C .2 D .【答案】C 【分析】连接OP 、OQ ,根据勾股定理知 222PQ OP OQ =﹣, 当PO ⊥AB 时,线段PQ 最短,即线段PQ 最小. 【详解】解:如图,连接OP 、OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ;由勾股定理知222PQ OP OQ =﹣,, ∵当PO ⊥AB 时,线段PQ 最短;又∵A (4,0)、B (0,4), ∴OA =OB =4,∴AB ,∴1122OP AB ==× ∵OQ =2,∴2PQ .故选C .10.如图,矩形ABCD 的内部有5个全等的小正方形,小正方形的顶点,,,E F G H 分别落在边,,,AB BC CD DA上,若20,16AB BC ==,则小正方形的边长为( )A.B .5 C.D.【答案】B 【分析】由矩形的性质可得BEG DGE ∠=∠,求出AEH CGF ∠=∠,证得(AAS)AEH CGF ≌,得出AE CG =,过点K 作GK AB ⊥于K ,可证明AEH KGE ∽,利用相似三角形对应边成比例求出144AE KG ==,再求出12EK =,然后利用勾股定理列式求出EG ,然后求解即可. 【详解】解:∵四边形ABCD 是矩形,∴AB CD ,∴BEG DGE ∠=∠, ∴AEH CGF ∠=∠, ∵5个小正方形全等,∴EH GF =,在AEH △和CGF △中,90AEH CGF A C EH GF ∠=∠ ∠=∠=° =, ∴(AAS)AEH CGF ≌, ∴AE CG =,过点K 作GK AB ⊥于K ,如下图所示,则四边形BCGK 为矩形,∴,16BKCG AE KG BC ====, ∵90,90AEH KEGKGE KEG ∠+∠=°∠+∠=°, ∴AEH KGE ∠=∠, ∵90A EKG ∠=∠=°, ∴AEH KGE ∽, ∴14AE EH KG GE ==, ∴144AE KG ==, ∴204412EK AB AE BK −−−−,在Rt KEG 中,20EG ,∴小正方形的边长为5420=÷,故选:B .二、填空题:本题共6小题,每小题3分,共18分。
2023年浙江省杭州市中考数学模拟试卷附解析
2023年浙江省杭州市中考数学模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为( )A .11.5米B .11.75米C .11.8米D .12.25米2.下列立体图形的主视图是矩形的是( )A .圆锥B .球C .圆柱D .圆台3.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( )A . 118B .112C .19D .164. 从某班学生中随机选取一名学生是男生的概率为35,则该班男生与女生的人数比是( ) A .35 B .23 C .32 D .255.一个密闭不透明的盒子里有若干个白球,在不允许将球全部倒出来的情况下,为估计白球的个数,小刚向其中放人 8 个黑球,摇匀后从中随机模出一个球记下颜色,再把它放回盒中,不断重复,共模球 400 次,其中 88次摸到黑球,估计盒中大约有白球( )A .28 个B .30 个C . 36 个D . 42 个 6.两个相似三角形的面积比为 4:9,那么这两个三角形对应边的比为( ) A .4:9B .l6:81C .2:3D .8:9 7.在一个圆中任意引两条直径,顺次连结它们的四个端点组成一个四边形,则这个四边形一定是( )A .菱形B .等腰梯形C .矩形D .正方形8.桌子上放了一个lO0 N 的物体,则桌面受到的压强 P (Pa )与物体和桌子的接触面的面积 S(m2)的函数图象大致是()A.B.C.D.9.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的()A.南偏西50°方向B.南偏西40°方向C.北偏东50°方向D.北偏东40°方向10.下列图形中,由已知图形通过平移变换得到的是()11.如图,∠B=∠C,BF=CD,BD=CE,则∠α与∠A 的关系是()A.2∠α+∠A= 180°B.∠α+∠A= 180°C.∠α+∠A= 90°D.2∠α+∠A= 90°12.若2+-可分解因式(21)(2)22x mx+-,则m的值是()x xA.-1 B.1 C.-3 D.313.用科学记数法表示0.00038得()A.5⨯D.30.3810-⨯3.8103810-⨯C.4⨯B.43.810-14.下列等式一定成立的是()A.-a-b= -(a-b) B.-a+b= -(a-b) C.2-3x=-(2+3x) D.30-x= 5(6-x)15.2007年12月某日,我国部分城市的平均气温情况如下表,记温度零上为正(单位:℃),则当天平均气温最低的城市是()城市温州上海北京哈尔滨广州平均气温/℃60-9-1515D.上海二、填空题16.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于.17.观察下列各式:32-1=2×4,42-1=3×5,52-1=4× 6 ……,则第n个等式为:_______________________________________.18.方程240x x -=的二次项系数为 , .19.如图,已知 ∠1 = 70°,∠2 = 70°,∠3 = 60°,则∠4= .20.如图,从A 地到 C 地,可供选择的方案是走水路、走陆路、走空中. 从A 地到B 地有2条水路、2条陆路,从B 地到 C 地有 3条陆路可供选择,走空中是从A 地不经B 地直接到C 地,则从A 地到 C 地可供选择的方案有 种.21. 如图中每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为 .22.判断正误,正确的打“√”,错误的打,“×”(1)111222()a b a b +=+; ( ) (2)111bb b b a a a a ---+==-; (3)11110a b b a a b a b +=-=----; (4)220()()x x a b b a +=-- 23.(1)用度、分、秒表示:①123.38°= ;②(3154)°= ;(2)用度表示:①51°25′48″= ;②128°20′42″= . 三、解答题24.正比例函数y=-2x 的图象与反比例函数y=k x的图象的一个交点的纵坐标是-4,求反比例函数的解析式.25.下列各题中,哪些变量之间的关系是反比例函数关系?哪些是正比例函数关系?哪些既不是正比例函数又不是反比例函数?(1)当速度v一定时,路程 s 与时间t之间的关系;(2)当路程s一定时,速度 v 与时间 t 之间的关系;(3)当被减数 a一定时,减数b与差c 之间的关系(4)圆面积S与半径r 之间的关系.26.如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.27.一天,爸爸叫儿子去买一盒火柴,临出门前,爸爸嘱咐儿子要买能划燃的火柴.儿子拿着钱出门了,过了很久,儿子回到了家.“火柴能划燃吗?”爸爸问.“都能划燃.”“你这么肯定?”儿子递过一盒划过的火柴,兴奋地说:“我每根都试过啦.”(1)在这则笑话中,儿子采用的是什么调查方式?这种调查方式好不好?(2)应采用什么方法调查比较合理?(3)请你谈谈什么情况下应进行抽样调查(至少讲出两点以上).28.画出如图所示的轴对称图形的对称轴,并回答下列问题:(1)连结BD,则对称轴和线段BD有怎样的位置关系?(2)原图形中有哪些相等的角?哪些全等的三角形?(3)分别作出图形中点F 、G 的对称点.29.如图,一长方形的长为12,宽为8.(1)将其四周往内各减少1,得一新的小长方形,则原长方形与新长方形是相似图形吗?为什么?(2)如果将宽增加l ,则长增加多少后,所得长方形与原长方形为相似图形?30.有这样一道题,计算)3()2(2)433(323323223y y x x y xy x xy y x x -+-++---- 的值,其中3,51-==y x ,有位同学说即使不告诉他x 的值,他也能求出来,你觉得他说的有道理吗?为什么?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.B4.C5.A6.C7.C8.D9.B10.C11.A12.C13.B14.B15.B二、填空题16.2417.311)2(2+⨯+=-+nnn(n≥1,n为正整数)18.4,019.60°20.1321.-3122.(1) × (2) × (3)√ (4)×23.(1)①123°22′48″②l5°45′ (2)①51.43°②l28.345°三、解答题24.y=-8x.25.(1) s vt=,当v一定时,s与t 成正比例函数关系;(2)svt=,当s一定时,v 与 t 成反比例函数关系;(3 )b=a-c , 当a 一定时,b 与 c 既不是正比例函数关系也不是反此例函数关系;(4)2s r π=,S 与r 既不是正比例函数关系也不是反比例函数关系.26.证△CBE ≌△CDE ,得∠CDF=∠CBE=∠AFD27.(1)普查,不合适;(2)抽样讽查;(3)不唯一,如:①当调查数量特别大或调查范围特别广时应选用抽样调查;②当调查的事件具有危险性或破坏性时应选用抽样调查28.如图所示,连结BD ,作线段BD 的垂直平分线m ,直线m•就是所求的对称轴.(1)对称轴垂直平分线段BD ;(2)原图形中相等的角有:∠B=∠D ,∠BAC=∠DEC ,∠BCA=∠DCE ,∠CAE=∠CEA ,∠BCE=∠DCA ,∠BAE=∠DEA .全等的三角形有:△ABC 和△EDC ;(3)点F 、G 的对称点分别是F ′、G ′,如图所示.29.(1)不是相似图形,理由略;(2)1.530.有道理,原式=-3y 3,与x 值无关,当3y =-时,原式=81。
2023年浙江省杭州中考数学模拟试卷(5月份)(含解析)
2023年浙江省杭州中考数学模拟试卷(5月份)一.选择题(共10小题,满分30分,每小题3分)1.(3分)第19届亚运会将于2023年9月23日至10月8日在中国浙江省杭州市举行,杭州奥体博览城游泳馆区建筑总面积272000平方米,将数272000用科学记数法表示为( )A.0.272×107B.2.72×106C.2.72×105D.272×104 2.(3分)下列计算正确的是( )A.b6+b3=b2B.b3•b3=b6C.a2+a2=a2D.(a3)3=a6 3.(3分)某校七年级学生的平均年龄为13岁,年龄的方差为3,若学生人数没有变动,则两年后的同一批学生,对其年龄的说法正确的是( )A.平均年龄为13岁,方差改变B.平均年龄为15岁,方差不变C.平均年龄为15岁,方差改变D.平均年龄为13岁,方差不变4.(3分)如图,等腰三角形ABC中,AB=AC,∠A=40°,BD是△ABC的平分线,DE∥BC,则∠BDE的度数为( )A.20°B.35°C.40°D.70°5.(3分)如图,PA,PB分别与⊙O相切于A,B两点,Q是优弧上一点,若∠APB=40°,则∠AQB的度数是( )A.50°B.70°C.80°D.85°6.(3分)直线y=x﹣3与x轴,y轴分别交于A,B两点,把△AOB绕着A点旋转180°得到△AO'B′,则点B′的坐标为( )A.(﹣6,3)B.(﹣6,﹣3)C.(6,3)D.(6,﹣3)7.(3分)若关于x的一元二次方程ax2+bx﹣3=0(a≠0)有一个根为x=2023,则方程a (x﹣1)2+bx﹣3=b必有一根为( )A.2021B.2022C.2023D.20248.(3分)如图,AB是半径为4的⊙O的直径,P是圆上异于A,B的任意一点,∠APB的平分线交⊙O于点C,连接AC和BC,△ABC的中位线所在的直线与⊙O相交于点E、F,则EF的长是( )A.B.C.3D.9.(3分)已知二次函数y=ax2+bx+c,当x=2时,该函数取最大值8.设该函数图象与x 轴的一个交点的横坐标为x1,若x1>4,则a的取值范围是( )A.﹣3<a<﹣1B.﹣2<a<0C.﹣1<a<1D.2<a<410.(3分)如图,在Rt△ABC中,∠ABC=90°,以其三边为边向外作正方形,连结EH,交AC于点P,过点P作PR⊥FG于点R.若,,则PR的值为( )A.10B.11C.D.二.填空题(共6小题,满分24分,每小题4分)11.(4分)已知代数式x+y的值是3,则代数式2x+2y+1的值是 .12.(4分)一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有80次摸到红球,则估计这个口袋中白球的个数为 个.13.(4分)如图,已知直线y=ax+b和直线y=kx交于点P,则关于x,y的二元一次方程组的解是 .14.(4分)如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60°,如果这时气球的高度CD为100米,且点A、D、B在同一直线上,则建筑物A、B之间的距离为 米(结果保留根号).15.(4分)某地2020年新能源汽车A的销量为100万辆,2022年新能源汽车A的销量为144万辆,设此地新能源汽车A的年平均增长率为x(x>0),则x= (用百分数表示).16.(4分)如图,将矩形纸片ABCD折叠,折痕为MN,点M,N分别在边AD,BC上,点C,D的对应点分别为点E,F,且点F在矩形内部,MF的延长线交边BC于点G,EF 交边BC于点H.EN=2,AB=4,当点H为GN的三等分点时,MD的长为 .三.解答题(共7小题,共66分)17.(6分)化简:﹣﹣1圆圆的解答如下:﹣﹣1=4x﹣2(x+2)﹣(x2﹣4)=﹣x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.(8分)4月17日是“世界血友病日”,某高校开展义务献血活动,经过检测,献血者血型有“A,B,AB,O”四种类型,随机抽取部分献血结果统计,根据结果制作如图两幅不完整统计图表:血型A B AB O人数2010(1)本次随机抽取献血者人数为 人,图表中m= ;(2)若该高校总共有2万名学生,估计其中A型血的学生有 人;(3)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.19.(8分)如图,AB=AC,CE∥AB,D是AC上的一点,且AD=CE.(1)求证:△ABD≌△CAE.(2)若∠ABD=25°,∠CBD=40°,求∠BAE的度数.20.(10分)已知:一次函数y=x﹣2﹣k与反比例函数.其中y2的图象过.(1)求出两个函数图象的交点坐标;(2)根据图象直接回答:x取何值时,y1<y2.21.(10分)在△ABC中,D,E分别是AB,AC的中点,延长ED至点F,使得DF=DE,连结BF.(1)求证:四边形BCEF是平行四边形.(2)BG⊥CE于点G,连结CF,若G是CE的中点,CF=6,tan∠BCG=3,①求CG的长.②求平行四边形BCEF的周长.22.(12分)已知函数与y2=ax+5(a为常数,且a≠0).(1)若a=1,请求出y1,y2解析式,并写出y的对称轴.(2)若y1与y2的函数图象没有交点,请求出a的取值范围;(3)若,当0<x<2时,比较y1,y2的大小,并说明理由:23.(12分)如图,四边形ABCD内接于⊙O,AB=AD,AC为直径,E为一动点,连结BE交AC于点G,交AD于点F,连结DE.(1)设∠E为α,请用α表示∠BAC的度数.(2)如图1,当BE⊥AD时,①求证:DE=BG.②当,BG=5时,求半径的长.(3)如图2,当BE过圆心O时,设tan∠ABE=x,,求y关于x的函数表达式.2023年浙江省杭州中考数学模拟试卷(5月份)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)第19届亚运会将于2023年9月23日至10月8日在中国浙江省杭州市举行,杭州奥体博览城游泳馆区建筑总面积272000平方米,将数272000用科学记数法表示为( )A.0.272×107B.2.72×106C.2.72×105D.272×104【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:272000=2.72×105,故选:C.【点评】本题考查了科学记数法的表示方法,用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,解题的关键是要正确确定a和n的值.2.(3分)下列计算正确的是( )A.b6+b3=b2B.b3•b3=b6C.a2+a2=a2D.(a3)3=a6【分析】利用合并同类项的法则,同底数幂的乘法的法则,幂的乘方的法则对各项进行运算即可.【解答】解:A、b6与b3不属于同类项,不能合并,故A不符合题意;B、b3•b3=b6,故B符合题意;C、a2+a2=2a2,故C不符合题意;D、(a3)3=a9,故D不符合题意;故选:B.【点评】本题主要考查合并同类项,幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握.3.(3分)某校七年级学生的平均年龄为13岁,年龄的方差为3,若学生人数没有变动,则两年后的同一批学生,对其年龄的说法正确的是( )A.平均年龄为13岁,方差改变B.平均年龄为15岁,方差不变C.平均年龄为15岁,方差改变D.平均年龄为13岁,方差不变【分析】根据两年后的同一批学生的年龄均增加2岁,其年龄的波动幅度不变知平均年龄为15岁,方差不变.【解答】解:两年后的同一批学生的年龄均增加2岁,其年龄的波动幅度不变,所以平均年龄为15岁,方差不变.故选:B.【点评】本题主要考查平均数与方差,解题的关键是掌握平均数和方差的意义.4.(3分)如图,等腰三角形ABC中,AB=AC,∠A=40°,BD是△ABC的平分线,DE∥BC,则∠BDE的度数为( )A.20°B.35°C.40°D.70°【分析】根据等腰三角形的性质推出∠ABC=70°,根据角平分线的定义得出∠DBC=35°,根据平行线的性质即可得解.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠A=40°,∴∠ABC=×(180°﹣40°)=70°,∵BD是△ABC的平分线,∴∠DBC=∠ABC=35°,∵DE∥BC,∴∠BDE=∠DBC=35°,故选:B.【点评】此题考查了等腰三角形的性质,熟记等腰三角形的性质是解题的关键.5.(3分)如图,PA,PB分别与⊙O相切于A,B两点,Q是优弧上一点,若∠APB=40°,则∠AQB的度数是( )A.50°B.70°C.80°D.85°【分析】连接OA、OB,如图,先根据切线的性质得OA⊥PA,OB⊥PB,再利用四边形的内角和计算出∠AOB=140°,然后根据圆周角定理得到∠AQB的度数.【解答】解:连接OA、OB,如图,∵PA,PB分别与⊙O相切于A,B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∵∠AOB=360°﹣90°﹣90°﹣∠P=180°﹣40°=140°,∴∠AQB=∠AOB=70°.故选:B.【点评】本题看了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.6.(3分)直线y=x﹣3与x轴,y轴分别交于A,B两点,把△AOB绕着A点旋转180°得到△AO'B′,则点B′的坐标为( )A.(﹣6,3)B.(﹣6,﹣3)C.(6,3)D.(6,﹣3)【分析】先根据一次函数图象上点的坐标特征求出A点和B点坐标,则可得到OA=3,OB=3,再根据旋转的性质得到AO′=AO=3,O′B′=OB=3,∠AO′B′=∠AOB =90°,然后根据第二象限点的坐标特征写出点B′的坐标.【解答】解:当y=0时,x﹣3=0,解得x=3,则A(3,0),所以OA=3,当x=0时,y=x﹣3=﹣3,则B(0,﹣3),所以OB=3,因为△AOB绕着A点旋转180°得到△AO′B′,所以AO′=AO=3,O′B′=OB=3,∠AO′B′=∠AOB=90°,所以点B′的坐标为(6,3).故选:C.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了一次函数图象上点的坐标特征.7.(3分)若关于x的一元二次方程ax2+bx﹣3=0(a≠0)有一个根为x=2023,则方程a (x﹣1)2+bx﹣3=b必有一根为( )A.2021B.2022C.2023D.2024【分析】把a(x﹣1)2+bx﹣3=b化为:a(x﹣1)2+b(x﹣1)﹣3=0再结合题意可得x ﹣1=2023,从而可得方程的解.【解答】解:a(x﹣1)2+bx﹣3=b可化为:a(x﹣1)2+b(x﹣1)﹣3=0关于x的一元二次方程ax2+bx﹣3=0(a≠0)有一个根为x=2023,∴把x﹣1看作是整体未知数,则x﹣1=2023,∴x=2024,即a(x﹣1)2+bx﹣3=b有一根为x=2024.故选:D.【点评】本题考查的是一元二次方程的根的含义,掌握“利用整体未知数求解方程的根”是解本题的关键.8.(3分)如图,AB是半径为4的⊙O的直径,P是圆上异于A,B的任意一点,∠APB的平分线交⊙O于点C,连接AC和BC,△ABC的中位线所在的直线与⊙O相交于点E、F,则EF的长是( )A.B.C.3D.【分析】连接OE、OC,OC交EF于D,由圆周角定理得出,如果连接OC交EF 于D,根据垂径定理可知:OC必垂直平分EF.由MN是△ABC的中位线,根据三角形中位线定理可得:OD=CD=OC=2.在Rt△OED中求出ED的长,即可得出EF的值.【解答】解:如图所示,∵PC是∠APB的角平分线,∴∠APC=∠CPB,∴弧AC=弧BC;∴AC=BC;∵AB是直径,∴∠ACB=90°.即△ABC是等腰直角三角形.连接OC,交EF于点D,则OC⊥AB;∵MN是△ABC的中位线,∴MN∥AB;∴OC⊥EF,OD=OC=2.连接OE,根据勾股定理,得:DE==2,∴EF=2ED=4.故选:A.【点评】此题考查圆周角定理,垂径定理,三角形的中位线,综合运用了圆周角定理及其推论发现等腰直角三角形,再进一步根据等腰三角形的性质以及中位线定理,求得EF 的弦心距,最后结合垂径定理和勾股定理求得弦长.9.(3分)已知二次函数y=ax2+bx+c,当x=2时,该函数取最大值8.设该函数图象与x 轴的一个交点的横坐标为x1,若x1>4,则a的取值范围是( )A.﹣3<a<﹣1B.﹣2<a<0C.﹣1<a<1D.2<a<4【分析】根据二次函数y=ax2+bx+c,当x=2时,该函数取最大值8,可以写出该函数的顶点式,得到a<0,再根据该函数图象与x轴的一个交点的横坐标为x1,x1>4,可知,当x=4时,y>0,即可得到a的取值范围,本题得以解决.【解答】解:∵二次函数y=ax2+bx+c,当x=2时,该函数取最大值8,∴a<0,该函数解析式可以写成y=a(x﹣2)2+8,∵设该函数图象与x轴的一个交点的横坐标为x1,x1>4,∴当x=4时,y>0,即a(4﹣2)2+8>0,解得,a>﹣2,∴a的取值范围时﹣2<a<0,故选:B.【点评】本题考查二次函数图象与系数的关系、二次函数的最值、抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.10.(3分)如图,在Rt△ABC中,∠ABC=90°,以其三边为边向外作正方形,连结EH,交AC于点P,过点P作PR⊥FG于点R.若,,则PR的值为( )A.10B.11C.D.【分析】设PR与AB交于点N,如图,过点E作EM⊥AB交BA的延长线于点M,利用正方形性质可证得△ACB≌△EAM(AAS),得出EM=AB,AM=BC,设AB=x,BC=y,根据tan∠AHE=,可得EM=2y,MH=4y,利用勾股定理建立方程求解可得x=8,再由tan∠CAB===,可得PA=PH,利用等腰三角形性质和解直角三角形可求得PH=3,再证明四边形BGRN是矩形,得出NR=BG=8,利用PR=PN+NR即可求得答案.【解答】解:设PR与AB交于点N,如图,过点E作EM⊥AB交BA的延长线于点M,则∠M=90°,∵四边形ACDE、BCIH、ABGF均为正方形,∴AE=AC,BC=BH,AB=BG,∠CAE=∠CBH=∠ABG=∠G=90°,AB∥FG,∵∠ABC=90°,∴∠ABC=∠M=90°,∴∠ACB+∠CAB=90°,∵∠EAM+∠CAB=90°,∴∠ACB=∠EAM,∴△ACB≌△EAM(AAS),∴EM=AB,AM=BC,∴AM=BH=BC,设AB=x,BC=y,则EM=x,AM=BH=y,MH=x+2y,∵tan∠AHE=,∴=,即MH=2EM,∴x+2y=2x,∴x=2y,∴EM=2y,MH=4y,∵EM2+MH2=EH2,∴(2y)2+(4y)2=(8)2,解得:y=4或y=﹣4(舍去),∴x=8,∴AM=BC=BH=4,AB=BG=8,∵∠ABC+∠CBH=180°,∴A、B、H三点共线,∴AH=AB+BH=8+4=12,∵tan∠CAB===,∴tan∠CAB=tan∠AHE,∴∠CAB=∠AHE,∴PA=PH,∵AB∥FG,∴∠PNB=∠PRG=90°,∴AN=AH=×12=6,∴=tan∠CAB=,∴PN=AN=×6=3,∵PR⊥FG,∴∠PRG=90°,∴∠ABC=∠G=∠PRG=90°,∴四边形BGRN是矩形,∴NR=BG=8,∴PR=PN+NR=3+8=11.故选:B.【点评】本题主要考查了勾股定理,正方形的性质,全等三角形的判定与性质,矩形的判定与性质,勾股定理,三角函数定义等知识,利用勾股定理建立方程求得AB=8,BC=4是解题的关键.二.填空题(共6小题,满分24分,每小题4分)11.(4分)已知代数式x+y的值是3,则代数式2x+2y+1的值是 7 .【分析】原式前两项提取2变形后,把已知x+y=3代入计算即可求出值.【解答】解:∵x+y=3,∴原式=2(x+y)+1=6+1=7,故答案为:7【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.(4分)一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有80次摸到红球,则估计这个口袋中白球的个数为 2 个.【分析】用球的总个数乘以摸到红球的频率即可.【解答】解:估计这个口袋中红球的数量为10×=8(个),10﹣﹣8=2,估计这个口袋中白球的个数为2.故答案为:2.【点评】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.13.(4分)如图,已知直线y=ax+b和直线y=kx交于点P,则关于x,y的二元一次方程组的解是 .【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【解答】解:∵直线y=ax+b和直线y=kx交点P的坐标为(1,2),∴关于x,y的二元一次方程组的解为.故答案为.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.14.(4分)如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60°,如果这时气球的高度CD为100米,且点A、D、B在同一直线上,则建筑物A、B之间的距离为 米(结果保留根号).【分析】在直角△ACD中利用三角函数求得AD,然后在直角△BCD中,利用三角函数求得BD,根据AB=AD+BD即可求解.【解答】解:在直角△ACD中,∠A=30°,tan A=,∴AD=CD=100(米);同理,BD=CD=(米),则AB=AD+BD=(米).故答案为:.【点评】本题考查运用俯角的定义,三角函数,通过作高线转化为解直角三角形的问题.15.(4分)某地2020年新能源汽车A的销量为100万辆,2022年新能源汽车A的销量为144万辆,设此地新能源汽车A的年平均增长率为x(x>0),则x= 20% (用百分数表示).【分析】利用此地2022年新能源汽车A的销量=此地2020年新能源汽车A的销量×(1+此地新能源汽车A的年平均增长率)2,可列出关于x的一元二次方程,解之取其符合题意的值,即可得出结论.【解答】解:根据题意得:100(1+x)2=144,解得:x1=0.2=20%,x2=﹣2.2(不符合题意,舍去),∴x的值为20%.故答案为:20%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.(4分)如图,将矩形纸片ABCD折叠,折痕为MN,点M,N分别在边AD,BC上,点C,D的对应点分别为点E,F,且点F在矩形内部,MF的延长线交边BC于点G,EF 交边BC于点H.EN=2,AB=4,当点H为GN的三等分点时,MD的长为 2﹣4或4 .【分析】根据点H为GN三等分点,分两种情况分别计算,根据折叠的性质和平行线的性质证明∠GMN=∠MNG,得到MG=NG,证明△FGH∽△ENH,求出FG的长,过点G作GP⊥AD于点P,则PG=AB=4,设MD=MF=x,根据勾股定理列方程求出x即可.【解答】解:当HN=GN时,GH=2HN,∵将矩形纸片ABCD折叠,折痕为MN,∴MF=MD,CN=EN,∠E=∠C=∠D=∠MFE=90°,∠DMN=∠GMN,AD∥BC,∴∠GFH=90°,∠DMN=∠MNG,∴∠GMN=∠MNG,∴MG=NG,∵∠GFH=∠E=90°,∠FHG=∠EHN,∴△FGH∽△ENH,∴==2,∴FG=2EN=4,过点G作GP⊥AD于点P,则PG=AB=4,设MD=MF=x,则MG=GN=x+4,∴CG=x+6,∴PM=6,∵GP2+PM2=MG2,∴42+62=(x+4)2,解得:x=2﹣4,∴MD=2﹣4;当GH=GN时,HN=2GH,∵△FGH∽△ENH,∴==,∴FG=EN=1,∴MG=GN=x+1,∴CG=x+3,∴PM=3,∵GP2+PM2=MG2,∴42+32=(x+1)2,解得:x=4,∴MD=4;故答案为:2﹣4或4.【点评】本题考查了翻折变换(折叠问题),矩形的性质,考查了分类讨论的思想,根据勾股定理列方程求解是解题的关键.三.解答题(共7小题,共66分)17.(6分)化简:﹣﹣1圆圆的解答如下:﹣﹣1=4x﹣2(x+2)﹣(x2﹣4)=﹣x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.【分析】直接将分式进行通分,进而化简得出答案.【解答】解:圆圆的解答错误,正确解法:﹣﹣1=﹣﹣===﹣.【点评】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.18.(8分)4月17日是“世界血友病日”,某高校开展义务献血活动,经过检测,献血者血型有“A,B,AB,O”四种类型,随机抽取部分献血结果统计,根据结果制作如图两幅不完整统计图表:血型A B AB O人数2010(1)本次随机抽取献血者人数为 100 人,图表中m= 20 ;(2)若该高校总共有2万名学生,估计其中A型血的学生有 4800 人;(3)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m的值;(2)用样本中A型的人数除以100得到血型是A型的百分比,然后用20000乘以此百分比可估计这20000人中是A型血的人数;(3)画出树状图,根据概率公式即可得到结果.【解答】解:(1)这次随机抽取的献血者人数为10÷10%=100(人),所以;故答案为:100,20;(2)O型献血的人数为46%×100=46(人),A型献血的人数为100﹣20﹣10﹣46=24(人),从献血者人群中任抽取一人,其血型是A型的百分比=,,估计这2万名学生中大约有4800人是A型血;故答案为:4800;(3)画树状图如图所示,共有12个等可能的结果,两人血型均为O型的结果有2个,∴两人血型均为O型的概率为.【点评】此题考查了树状图法求概率以及统计表和扇形统计图等知识.树状图法可以不重不漏的表示出所有等可能的结果,适合两步或两步以上完成的事件,用到的知识点为:概率=所求情况数与总情况数之比.19.(8分)如图,AB=AC,CE∥AB,D是AC上的一点,且AD=CE.(1)求证:△ABD≌△CAE.(2)若∠ABD=25°,∠CBD=40°,求∠BAE的度数.【分析】(1)由CE∥AB,得∠BAD=∠ACE,而AB=CA,AD=CE,即可根据全等三角形的判定定理“SAS”证明△ABD≌△CAE;(2)由∠ABD=∠CAE=25°,∠CBD=40°,得∠ACB=∠ABC=∠ABD+∠CBD=65°,则∠BAC=50°,所以∠BAE=∠BAC+∠CAE=75°.【解答】(1)证明:∵CE∥AB,∴∠BAD=∠ACE,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS).(2)解:∵△ABD≌△CAE,∴∠ABD=∠CAE=25°,∵∠CBD=40°,∴∠ABC=∠ABD+∠CBD=25°+40°=65°,∵AB=AC,∴∠ABC=∠ACB=65°,∴∠BAC=180°﹣2×65°=50°,∴∠BAE=∠BAC+∠CAE=50°+25°=75°,∴∠BAE的度数是75°.【点评】此题重点考查平行线的性质、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识,证明∠BAD=∠ACE及△ABD≌△CAE是解题的关键.20.(10分)已知:一次函数y=x﹣2﹣k与反比例函数.其中y2的图象过.(1)求出两个函数图象的交点坐标;(2)根据图象直接回答:x取何值时,y1<y2.【分析】(1)根据条件先求出两个函数解析式,联立方程组即可求出交点坐标;(2)画出图象示意图,根据图象写出y1<y2时x的取值范围.【解答】解:(1)∵y2的图象过.∴=,k=1.∴反比例函数解析式为:y=﹣,一次函数解析式为:y=x﹣3,联立方程组,解得或.∴交点坐标为(1,﹣2)或(2,﹣1).(2)由题意,作图如下:∵y1<y2,∴一次函数图象在反比例函数图象下方时,对应的x的取值范围是:x<0,或1<x<2.【点评】本题考查了反比例函数与一次函数的交点问题,该题是在反比例函数一条分支上的两个交点问题,自变量取值范围一定要考虑到另一分支.21.(10分)在△ABC中,D,E分别是AB,AC的中点,延长ED至点F,使得DF=DE,连结BF.(1)求证:四边形BCEF是平行四边形.(2)BG⊥CE于点G,连结CF,若G是CE的中点,CF=6,tan∠BCG=3,①求CG的长.②求平行四边形BCEF的周长.【分析】(1)根据三角形中位线定理证明EF∥BC,EF=BC,进而可以解决问题;(2)①设BG与FC交于点H,设EG=CG=x,则FB=EC=2x,证明△FBH∽△CGH,得===,所以FH=4,HC=2,由tan∠BCG==3,得BG=3CG =3x;②证明△GHC是等腰直角三角形,再利用勾股定理求出x的值,进而可以解决问题.【解答】(1)证明:∵D,E分别是AB,AC的中点,∴DE∥BC,DE=BC,∵DF=DE=EF,∴EF∥BC,EF=BC,∴四边形BCEF是平行四边形;(2)解:①设BG与FC交于点H,∵G是CE的中点,∴EC=2EG=2CG,∵四边形BCEF是平行四边形,∴FB=EC,EF=BC,FB∥EC,设EG=CG=x,则FB=EC=2x,∵FB∥EC,∴△FBH∽△CGH,∴===,∵FH+HC=CF=6,∴FH=4,HC=2,∵tan∠BCG==3,∴BG=3CG=3x,∵BH=2GH,BG=BH+GH,∴BH=2x,GH=x,∴GH=CG=x,∵BG⊥CE,∴△GHC是等腰直角三角形,∵HC=2,∴GH=CG=x=HC=,②∵EG=CG=,∴FB=EC=2x=2,在Rt△BCG中,根据勾股定理得:BC===x=2,∴平行四边形BCEF的周长=2(BC+FB)=2(2+2)=4+4.【点评】本题考查了平行四边形的性质,相似三角形的判定与性质,解直角三角形,勾股定理,等腰直角三角形的判定与性质,解决本题的关键是得到△FBH∽△CGH.22.(12分)已知函数与y2=ax+5(a为常数,且a≠0).(1)若a=1,请求出y1,y2解析式,并写出y的对称轴.(2)若y1与y2的函数图象没有交点,请求出a的取值范围;(3)若,当0<x<2时,比较y1,y2的大小,并说明理由:【分析】(1)把a=1代入解析式,并根据对称轴公式求对称轴;(2)根据函数与方程的关系求解;(3)设y=y1﹣y2,根据函数发增减性求解.【解答】解:(1)当a=1时,y1=x2+3x+1,y2=x+5,∴y1的对称轴为:直线x=﹣;(2)∵y1与y2的函数图象没有交点,∴ax2+3ax+1=ax+5没有实数根,∴方程ax2+2ax﹣4=0没有实数解,即:Δ=4a2+16a<0,解得:﹣4<a<0;(3)设y=y1﹣y2=ax2+2ax﹣4,∵函数y=ax2+2ax﹣4的图象的对称轴为直线x=﹣1,∴函数y=ax2+2ax﹣4的图象在0<x<2时,y随x的增大而增大或y随x的增大而减小,当x=2时,y=4a+4a﹣4=8a﹣4,∵a<,∴8a﹣4<0,即x=2时,y<0,∴y1<y2,当x=0时,y=﹣4<0,∴y1<y2,综上所述,当0<x<2时,y1<y2.【点评】本题考查了函数和方程、不等式的关系,掌握数形结合思想是解题的关键.23.(12分)如图,四边形ABCD内接于⊙O,AB=AD,AC为直径,E为一动点,连结BE交AC于点G,交AD于点F,连结DE.(1)设∠E为α,请用α表示∠BAC的度数.(2)如图1,当BE⊥AD时,①求证:DE=BG.②当,BG=5时,求半径的长.(3)如图2,当BE过圆心O时,设tan∠ABE=x,,求y关于x的函数表达式.【分析】(1)由AB=AD,得=,则∠ACB=∠ACD,由AC是⊙O的直径,得∠ABC =∠ADC=90°,则∠BAC+∠ACB=90°,∠DAC+∠ACD=90°,所以∠BAC=∠DAC =∠BAD=α;(2)①连结BD,由∠AFB=∠ADC=90°,得BE∥CD,则∠DBE=∠BDC,所以=,则DE=BC,而∠BGC=∠ACD=∠ACB,则BC=BG,所以DE=BG;②作GL⊥AB于点L,则GL=GF,=tan∠ABE=,设GL=GF=3m,BL=4m,则BG=5m,BF=8m,所以AF=BF•tan∠ABE=6m,则=tan∠BAC=tan∠DAC==,而BC=BG=5,所以AB=2BC=2×5=10,由勾股定理得AC=5,即可求得⊙O的半径的长为;(3)连结BD交AC于点M,由垂径定理得AC⊥BD,MB=MD,因为OB=OE,所以OM∥ED,ED=2OM,由△AOF∽△DEF,得=,可推导出=,则y===+=+1,因为∠AMB=∠BMC=90°,∠ABE=∠BAC=∠DAC=∠DBC,所以==tan∠ABE=x,设AM=a,则BM=ax,CM=x•BM=ax2,所以AC=a+ax2,OA=,OM=,则y=+1=.【解答】解:(1)∵AB=AD,∴=,∴∠ACB=∠ACD,∵AC是⊙O的直径,∴∠ABC=∠ADC=90°,∴∠BAC+∠ACB=90°,∠DAC+∠ACD=90°,∵∠BAD=∠E=α,∴∠BAC=∠DAC=∠BAD=α.(2)①证明:如图1,连结BD,∵BE⊥AD于点F,∴∠AFB=∠ADC=90°,∴BE∥CD,∴∠DBE=∠BDC,∴=,∴DE=BC,∵∠BGC=∠ACD=∠ACB,∴BC=BG,∴DE=BG.②如图1,作GL⊥AB于点L,则GL=GF,∠BLG=90°,∴=tan∠ABE=,设GL=GF=3m,BL=4m,则BG==5m,∴BF=5m+3m=8m,∴AF=BF•tan∠ABE=8m×=6m,∴=tan∠BAC=tan∠DAC===,∵BC=BG=5,∴AB=2BC=2×5=10,∴AC==5,∴OA=AC=×5=,∴⊙O的半径的长为.(3)如图2,连结BD交AC于点M,∵AC是⊙O的直径,=,∴AC⊥BD,MB=MD,∵OB=OE,∴OM∥ED,ED=2OM,∵OA∥ED,∴△AOF∽△DEF,∴=,∴+1=+1,∴=,∵OA=OB=OE,∴y===+=+=+1=+1,∵∠AMB=∠BMC=90°,∠ABE=∠BAC=∠DAC=∠DBC,∴=tan∠BAC=tan∠DBC==tan∠ABE=x,设AM=a,则BM=ax,CM=x•BM=ax2,∴AC=AM+CM=a+ax2,∴OA=,OM=AM﹣OA=a﹣=,∴y=+1=+1=,∴y关于x的函数表达式为y=.【点评】此题重点考查圆周角定理、垂径定理、平行线的判定与性质、角平分线的性质、三角形的中位线定理、勾股定理、相似三角形的判定与性质、锐角三角函数与解直角三角形等知识,此题综合性强,难度较大,属于考试压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
萧山区中考模拟试卷 数学卷(本试卷满分120分,考试时间100分钟)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的. 1.21-的绝对值为( ) A .21B .2C .21-D .﹣22.【原创】生活中,有时也用“千千万”来形容数量多,“千千万”就是100亿,“千千万”用科学记数法可表示为( ) A .0.1×1011元 B .10×109元 C .1010元 D .1×1011元 3.【原创】如图,将两张完全相同的正方形纸片完全重合地叠放在一起,中心是点O ,按住下面的纸片不动,将上面的纸片绕点O 逆时针旋转15°,所得重叠部分....的图形( ) A .既不是轴对称图形也不是中心对称图形 B .是轴对称图形但不是中心对称图形 C .是中心对称图形但不是轴对称图形D .既是轴对称图形也是中心对称图形 4.【原创】“排列3”是全国联网的体育彩票的一种玩法,即从000-999的数字中任选一个三位数为投注号码进行投注,投注方式分为直选投注和组选投注. 直选投注是所选号码与中奖号码相同且顺序一致,即可获得1000元奖金. 则下列关于“排列3”的直选投注事件中,属必然事件的是( ) A .直选投注1个号码,即获1000元奖金 B .直选投注1000注,即获1000元奖金C .直选投注1000元,即获1000元奖金D .直选投注1000个不同号码,即获1000元奖金5.【改编】如图,∠AOB =90°,∠B =35°,△A ′OB ′可以看作是由△AOB 绕点O顺时针旋转α角度得到的.若点A ′在AB 上,则旋转角α的大小可以是( )A .70°B .65°C .55°D .50° 6.【原创】下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能..折成无盖..小方盒的是( )A .B .C .D .7.【原创】已知大长方形的长为a ,宽为b (a ≠2b ),三个形状和大小都相同的小长方形按如图的方式放置在大长方形内,若x 、y 表示小长方形的长A OB A ′ B ′ .O第3题图和宽,给出下列四个等式不成立的是( )A .x -y =a -bB .x 2-y 2=a 2-b 23C .(x +y )2= ab 2D . x y = 2a -b2b -a8.【08金华模拟改编】下列各图中,每个正方形网格都是由四个边长为1的小正方形组成,其中阴影部分面积为25的是( )9.【14年一级重高模拟改编】在平面直角坐标系中,有点(m ,n )经过一次跳动到达(m +1,n +1)或(m +1,n -1);现在在第一象限内(含边界),点P 从原点出发,经过5次跳动可到达(5,1),问共有( )种跳动方式A .6B .5C .4D .710.【原创】如图,抛物线与x 轴交于A 、B 两点,以线段AB 为直径的半圆与抛物线在第二象限的交点为C ,与y 轴交于D点,设∠BCD =α,则BOAO的值为( ) A .sin 2α B .cos 2α C .tan 2α D .tan -2α 二、认真填一填(本题有6个小题,每小题4分,共24分) 11.因式分解:x 2-4=______________.12.【15年襄阳改编】如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上,如果∠2=55°,那么∠1的度数为 . 13.在端午节到来之前,学校食堂推荐了A ,B ,C 三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,在我们学过的方差,平均数,中位数,众数这4个统计量中,你觉得最值得关注的统计量是 . 14.【原创】二次函数y =-x 2++x -7,当x 取值为t ≤x ≤t +2时有最大值y =-(t -3)2+2,则t 的取值范围为 .15.【12年省一级重高改编】矩形O 1A 1BC 1由矩形OABC 旋转得到,点A 在y 轴上,点C , O 1在x 轴上,O 1A 1与BC 交于点D ,B 的坐标为(-1,3).直线O 1A 1的解析式 ;如果函数y =ax 2+bx +c (a ≠0)的图像过O 1,O ,D 三点,该抛物线上有一点P ,使得三角形P O 1D 的面积为2,则满足条件的点P 的坐标是 .16.【原创】有两个直角三角形,第一个直角三角形的两条直角边长为3和4,第二个直角三角形有一条直角边与第一个直角三角形的一条直角边相等,现将这两个直角三角形不重叠地拼成一个三角形,若所拼成的三角形是等腰三角形,则这个等腰三角形的面积为 .A .B .C . 2130°三、全面答一答(本题有7个小题,共66分) 解答应写出文字说明,证明过程或推演步骤. 17.【改编】为迎接杭州市G20峰会,学校举行了“我是小主人”演讲比赛. 赛后组委会整理参赛同学的成绩,并制作了如下不完整的频数分布表和频数分布直方图.分数段(分数为x 分)频数 百分比 60≤x <70 8 20% 70≤x <80 a 30% 80≤x <90 16 b % 90≤x <100410%请根据图表提供的信息,解答下列问题:(1)表中的a = ,b = ;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x <80对应扇形的圆心角的度数是 ; 18.【原创】在△ABC 中,已知∠A =60°,∠B 为锐角,且tan A ,cos B 恰为一元二次方程2x 2-3mx +3=0的两个实数根. 求m 的值并判断△ABC 的形状.19.【改编】如图,已知,36,AB AC A AB =∠=︒的中垂线MN 交AC 于点D ,交AB 于点M ,有下面4个结论:①射线BD 是ABC ∠的角平分线; ②BCD ∆是等腰三角形; ③ABC ∆∽BCD ∆; ④AM D ∆≌BCD ∆.(1)判断其中正确的结论是哪几个?(2)从你认为是正确的结论中选一个加以证明.20.【原创】如图,□ABCD 放置在平面直角坐标系中,已知点A (2,0),B (6,0),D (0,3),反比例函数的图像经过点C . (1)求反比例函数的解析式;(2)将□ABCD 向上平移,使点B 恰好落在双曲线上,此时A ,B ,C ,D 的对应点分别为A ′,B ′,C ′,D ′,且C ′D ′与双曲线交于点E ,求线段AA ′的长及点E 的坐标.第17题图21.【改编】如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.(3)“六一”儿童节,班级里需要一些小丑帽子,如果每个(2)里的圆形纸片可以做三个一样的圆锥帽子,这些圆锥帽子的高是多少?22.【08常州改编,23】如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,把AB所的直线沿y轴向上平移,使它经过原点O,得到直线l,设P是直线l上一动点.(1)求点A的坐标;(2)若以A 、B、O、P为顶点的四边形是菱形,请求P点的坐标;(3)以点A、B、P为顶点的三角形是直角三角形,请直接顶点P的坐标;(4)设以点A、B、O、P为顶点的四边形的面积为S,点P的横坐标为x(x>0),当462682S+≤≤+时,求x的取值范围.23.【原创】如图,平面直角坐标系中,已知半径为6的扇形OAB分别交x轴、y轴于A、B两点点P是»AB上异于A、B的动点,过点P作PC⊥OA于点C,作PD⊥OB于点D,连结CD,点E、F 在线段CD上,且CF=EF=DE,设∠OCD=α.(1)若点P在反比例函数kyx=的图象上,请用α的三角函数值表示k;(2)当点C是OA中点时,求直线PF的解析式;(3)求证:PC2+3PE2是定值.yxFPEDCBAO萧山区中考模拟试卷数学卷参考答案及评分标准二、认真填一填(本题有6个小题,每小题4分,共24分)11.(x +2)(x -2 ) 12.25° 13.众数 14.t ≥3 15.y =34x +38(2133+-,313210+-)或(2133--,313210--) 16.10,12,215,325三、全面答一答(本题有7个小题,共66分)17.(本小题满分6分) 解:(1)a=12 b=40 ……………………………………………………………………2+2分 (2)108…………………………………………………………………………………………2分 18.(本小题满分8分)解:∵∠A =60°,tan A ……………………………………………………………………2分把x =2x 2-3mx +3=0得2230-+=,解m =. …………………2分把m =代入方程2x 2-3mx +3=0得2230x -+=,解得1x =2x =.………………………………………………………………………………2分∴cos B ,即∠B =30°.∴∠C =90°,即△ABC 是直角三角形. …………………………………………………………………………2分19.(本小题满分8分)解(1)正确的结论是①、②、③;…………………………………………………………3分 (2)证明略 ………………………………………………………………………………5分 20.(本小题满分10分) 解:(1)∵A (2,0), B (6,0)∴AB =4 ∵□ABCD ,∴AB=CD=4 ∵D (0,3)∴C (4,3) ∵C 在k y x =的图象上,∴43k =,∴k =12,∴12y x=.………………4分 (2)∵B (6,0)向上平移落在12y x=上,∴B′(6,2)∴AA′=2…………2分 ∵AA′=2∴D′(0,3+2)………………………………………1分 ∵C′D′∥x 轴∴当12y x ==5时,x=512………………………………………2分 ∴E (512,5) ………………………………………1分 21.(本小题满分10分) 解:(1)(1)保留痕迹,作图正确………………3分 (2)∵OD ⊥AB ,∴AD =21AB=4, ∵CD =22AD AC -=3………………2分(3)∵做三个一样的圆锥帽子∴圆锥侧面展开图的圆心角θ=120°……………………1分 ∵θ=360×lr=120° l =R =5…………1分 ∴r=35…………1分 ∵h =22r l -=3210……………………2分 22.(本小题满分12分) 解:(1)A (-2,-4)…………………………………………2分 (2)令y =0,解得x =0或-4, ∴B 点坐标为(-4,0),∵A 点到x 轴距离是4∴根据勾股定理得:AB =OA =5情形一:若以A 、B 、O 、P 为顶点的四边形是菱形因为OB =4<5,∴OB <AB =OA 所以AB 、OB 或OA 、OB 不能同时作为菱形的边∴只能是OA 、AB 作为菱形的两边,OB 作为菱形的对角线所以P 点是A 点关于x 轴的对称点所以P 点坐标为(-2,4)(此时OP 1//AB ,所以P 1一定在直线L 上)…………4分(3)P (45-,85)或(65,125-)…………………………………………………………4分(4)∵直线L 的解析式是:y =-2X ,P 的坐标为(x ,-2x ),此时以A 、B 、O 、P 为顶点的四边形可以看着是一个梯形,上底为OP 5x ,下底为AB =5,高为H 85, ∴S =5x +5)85·12=4x +8 ∴4+2<4x +8<6+2321<x <212…………………………………2分23.(本小题满分12分)解:(1)连结OP. 易证四边形OCPD是矩形,则CD=OP=6.在Rt△OCD中,易得OD=CD·sinα=6sinα,OC=CD·cosα=6cosα,∴P(6cosα,6sinα)∴k=36sinα·cosα………………………………………4分(2)∵C是OA中点,∴cosα=cos∠POC=12 OC OCOP OA==,∴α=60°,∴P(3,.由CF=EF=DE,易得F(23×6cosα,13×6sinα),即F(2,),∴直线PF的解析式为y=-………………………………………………………………………4分(3)设OP交CD于G,作PH⊥CD于H.设PC=a,则PD,∴PH=PC PDCD⋅=. ∴CH26a,∴EH=426a-,∴PE2=EH2+PH2=16213a-,∴PC2+3PE2=a2+3(16213a-)=48,为定值.………………………………………………………………………4分HGyxFPEDCBAO。