(完整版)复数的三角形式
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数的三角形式
1、复数的三角形式
(1)复数的幅角:设复数Z=a+bi对应向量,以x轴的正半轴为始边,向量所在的射线(起点为O)为终边的角θ,叫做复数Z的辐角,记作ArgZ,其中适合0≤θ<2π的辐角θ的值,叫做辐角的主值,记作argZ.
说明:不等于零的复数Z的辐角有无限多个值,这些值中的任意两个相差2π的整数倍.
(2)复数的三角形式:r(cosθ+isinθ)叫做复数Z=a+bi的三角形式,其中.
说明:任何一个复数Z=a+bi均可表示成r(cosθ+isinθ)的形式.其中r为Z的模,θ为Z的一个辐角.
2、复数的三角形式的运算:
设Z=r(cosθ+isinθ),Z1=r1(cosθ1+isinθ1),Z2=r2(cosθ2+isinθ2).则
3、应用
例1求下列复数的模和辐角主值
(1)i +1 (2)
i -3 解:(1)
211122=+=+i 又
a b tan =θ=1,点(1,1)在第一象限。所以41πθ=+=)(i arg (2)
213322=-+=-)()(i 有31
-=θtan ,点(
13-,)在第四象限,所以611623π
π
πθ=-=-=)(i arg
想一想:怎样求复数i z 43-=的辐角? 想一想:复数的三角形式有哪些特征?下列各式是复数的三角形式吗?
(1)θθcos sin i + (2)[])()(︒-+︒-30302sin i cos
(3))(6655ππsin i cos +
例2 把下列复数转化为三角形式
(1)-1;(2)i 2; (3)
i -3 解:(1)
2201+-=)(r =1,辐角主值为θ=π=-)(1arg ,所以
-1=ππsin i cos +