《高等数学(上册)》 第七章

合集下载

高等数学上第七章教材答案

高等数学上第七章教材答案

高等数学上第七章教材答案首先,我们需要明确在高等数学第七章教材中涉及的主要内容和问题。

第七章通常是关于多元函数的导数和微分学的学习。

在本文中,将提供一些关于多元函数导数和微分的例题和详细解答。

1. 多元函数的导数第七章首先介绍了多元函数的导数的定义和性质。

多元函数的导数可以通过偏导数求解,即固定其它变量,只对某个变量求导。

举例来说,如果给出一个多元函数 f(x, y),其中 x 和 y 是变量,我们可以通过求解∂f/∂x 和∂f/∂y 来得到该函数的偏导数。

例题 1:考虑函数 f(x, y) = x^2 + 3xy + y^2,求该函数的偏导数∂f/∂x 和∂f/∂y。

解答 1:对于∂f/∂x,将 y 视为常数,则有∂f/∂x = 2x + 3y。

对于∂f/∂y,将 x 视为常数,则有∂f/∂y = 3x + 2y。

2. 多元函数的微分在第七章的后半部分,我们学习了多元函数的微分。

微分是导数的线性逼近,可以用于估计函数值的变化。

多变量函数的微分可以通过求出各个偏导数的和来得到。

例题 2:给定函数 g(x, y) = x^3 + 2xy^2 - y^3,求该函数在点 (1, 2) 处的微分dg。

解答 2:首先计算各个偏导数:∂g/∂x = 3x^2 + 2y^2,∂g/∂y = 4xy - 3y^2。

然后带入点 (1, 2) 得到∂g/∂x = 7,∂g/∂y = -8。

因此,在点 (1, 2) 处的微分dg = ∂g/∂x · dx + ∂g/∂y · dy = 7dx - 8dy。

3. 高阶偏导数和混合偏导数在处理多元函数时,我们还需要了解高阶偏导数和混合偏导数的概念。

高阶偏导数指的是多次对同一变量求导的结果,而混合偏导数则是对多个变量进行求导后的结果。

例题 3:考虑函数 h(x, y) = x^3 + x^2y + xy^2 + y^3,求该函数的二阶偏导数∂^2h/∂x^2。

高等数学 上册 第7章 微分方程

高等数学 上册 第7章 微分方程

形如
dny dxn
a1
(
x)
d n1 y dxn1
an1
(
x)
dy dx
an (x) y
f (x)
的微分方程称为n阶线性微分方程.否则,就称为 n阶非线性微分方程.
例如,xy 2 y x2 y 0 是三阶线性微分方程.
dy dx
2
x
dy dx
y
cos
x
是一阶非线性微分方程.
y 2 y( y)2 2x 1 是二阶非线性微分方程.
可分离变量的微分方程 dy f (x)g( y) 的解法总结如下:
dx
① 分离变量: 1 dy f (x)dx
g( y)

两边积分:
1 g( y)
dy
f
(x)dx
二、可分离变量的微分方程
例1. 求微分方程
的通解.
解: 分离变量,得 d y 4x3 d x 说明: 在求解过程中
y
每一步不一定是同解
dx x

5、回代变量:将u回代成 .
一、齐次方程
例1. 求微分方程 x2 dy y2 xy 满足初值条件 y |x1 1 的特解 x2

假定方程①中的f(x),g(y)是连续的,且 g( y) 0,
设y=(x)是方程①的解, 则有恒等式
1 (x) d x f (x) d x g( (x))
两边积分, 得
f (x)dx
设函数G(y)和F(x)依次为 则有
和f(x)的原函数, ② 这说明方程①的解满足等式②
二、可分离变量的微分方程

dx
y x1 3

由①得
( C为任意常数)

高等数学上册第七章第五节 曲面及其方程

高等数学上册第七章第五节  曲面及其方程

0z 3

yOz面上的投影
z
3y2 ,
xOy面上的圆 x 2 y 2 R2
叫做它的准线,平行于 z 轴的直线 l 叫做它的母线。 其实在 yOz 面内的一条直线: y R, 绕z轴旋转而成的旋转
曲面就是该圆柱面,则圆柱面方程为: x 2 y 2 R. 即
x2 y2 R2.
9
P11
定义: 平行于定直线并沿定曲线C平行移动的直线 l形成的轨迹
方程 Fx, y 0, 在空间 z
Fx, y 0,
直角坐标系中表示:
o 母线平行于 z 轴的柱面,
其准线是 xOy 面上的曲线
y
C : Fx, y 0.
x
C
方程 Gx,z 0, 在空间
直角坐标系中表示:
方程中缺哪个字母,母线 平行于相应的轴。
母线平行于 y轴的柱面, 其准线是 xOz 面上的曲线
1
在空间解析几何中关于曲面的研究,有下列两个基本问题: (1) 已知曲面点的几何轨迹,求曲面的方程; (2) 已知曲面的方程,求这方程所表示的曲面的形状。
1、球面方程
例1 建立球心在 M 0 x0 , y0 , z0 ,
半径为 R 的球面 S 的方程.
解:Mx, y, z S M0M R
M0 M x x0 2 y y0 2 z z0 2 ,
xz 0
o
x
y
12
小 结:
1.曲面的概念
2.球面方程 x x0 2 y y0 2 z z0 2 R2
3.平面方程 Ax By Cz D 0 作业:习题7-5
4.旋转曲面
作业纸P50
设 C : f y, z 0 yoz面
下次交P49-50

《高等数学》第七章 空间解析几何与向量代数

《高等数学》第七章 空间解析几何与向量代数

首页
上页
返回
下页
结束
关于向量的投影定理(2)
两个向量的和在轴上的投影等于两个向量在 该轴上的投影之和. (可推广到有限多个)
Pr j(a1 a2 ) Pr ja1 Pr ja2 .
A a1 B a2
C
u
A
B
C
首页
上页
返回
下页
结束
关于向量的投影定理(3)
Pr
ju a
M 2M 3 (5 7)2 (2 1)2 (3 2)2 6
M1M3 (5 4)2 (2 3)2 (3 1)2 6
M 2M3 M1M3
M1
M3
即 M1M 2M3 为等腰三角形 .
M2
首页
上页
返回
下页
结束
2. 方向角与方向余弦
设有两非零向量
M B
o
A
中点公式:
B
x1
2
x2
,
y1
2
y2
,
z1 z2 2
M
首页
上页
返回
下页
结束
五、向量的模、方向角、投影
1. 向量的模与两点间的距离公式
设 r (x , y , z ), 作 OM r, 则有 r OM OP OQ OR
由勾股定理得
r OM
z R
解 a 4m 3n p


4(3i 5 j 8k ) 3(2i 4 j 7k )


(5i j 4k ) 13i 7 j 15k,
在x 轴上的投影为ax
13,

高等数学第七章微分方程微分方程

高等数学第七章微分方程微分方程
了解高阶线性微分方程阶的结构,并知道高阶常系数齐线 性微分方程的解法.
熟练掌握二阶常系数齐线性微分方程的解法. 掌握自由项(右端)为多项式、指数函数、正弦函数、余
弦函数以及它们的和或乘积的二阶常系数非齐线性微分方 程的解法.
2013/9/23
第一节 微分方程的基本概念

2
在许多物理、力学、生物等现象中,不能直接找到联 系所研究的那些量的规律,但却容易建立起这些量与它们 的导数或微分间的关系。
例1
解 原方程即 对上式两边积分,得原方程的通解
例2

对上式两边积分,得原方程的通解 经初等运算可得到原方程的通解为
4
原方程的解为
例3
解 两边同时积分,得
故所求通解为
2013/9/23
例4
解 原方程即 两边积分,得 故通解为
曲线族的包络。
例6求解微分方程 解 分离变量
两端积分
工程技术中 解决某些问题时, 需要用到方程的 奇解。
18
例.
的通解.
解: 特征方程为
其根为
对应齐次方程的通解为
为特征方程的单根 ,因此设非齐次方程特解为
代入方程: 比较系数, 得 因此特解为 所求通解为
2013/9/23
19
特解:

等式两边取共轭 :
为方程 ③ 的特解 .
第三步 求原方程的特解 原方程 利用第二步的结果, 根据叠加原理, 原方程有特解 :
均为 m 次多项式 .
第四步 分析

本质上为实函数 ,
均为 m 次实多项式 .
内容小结
为特征方程的 k (=0, 1, 2) 重根, 则设特解为
为特征方程的 k (=0, 1 )重根, 则设特解为 3. 上述结论也可推广到高阶方程的情形.

高等数学上册第七章课件.ppt

高等数学上册第七章课件.ppt

y C2 ex ,再利用 y (0) = 1 得 C2 1, 故所求曲线方程为
第四节 可降阶的二阶微分方程
小结 可降阶微分方程的解法 —— 降阶法
逐次积分
令 y p(x) ,
令 y p(y) ,
第五节 二阶线性微分方程解的结构
•n 阶线性微分方程的一般形式为
y(n) a1(x) y(n1) an1(x) y an (x) y f (x) f (x) 0 时, 称为非齐次方程 ; f (x) 0 时, 称为齐次方程.
第四节 可降阶的二阶微分方程
例 求解 解
代入方程得
则 y d p d p dy p d p dx dy dx dy
两端积分得 ln p ln y ln C1 , 即 p C1y,
(一阶线性齐次方程)
故所求通解为
第四节 可降阶的二阶微分方程

解初值问题
y e2y 0 y x 0 0 ,
y p(x) y q(x) y f (x), 为二阶线性微分方程.
复习: 一阶线性方程 y P(x) y Q(x)
通解:
y
C
e
P(x)d
x
eP(x)d x
Q(x) eP(x)d x dx
齐次方程通解Y 非齐次方程特解 y
第五节 二阶线性微分方程解的结构
•线性齐次方程解的结构
定理 若函数 y1(x), y2 (x) 是二阶线性齐次方程 y P(x) y Q(x) y 0
的两个解, 则 y C1y1(x) C2 y2 (x)
也是该方程的解. (叠加原理)
证 将 y C1y1(x) C2 y2 (x) 代入方程左边, 得 [C1y1 C2 y2 ] P(x)[C1y1 C2 y2 ]

第七章第三节空间平面与直线及其方程

第七章第三节空间平面与直线及其方程

A 4C 0 , 即 A 4C ,
代入所设方程并消去C (C 0) , 得所求的平面方程为
4x z 0 .
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
三、空间直线的方程
1.空间直线的点向式方程与参数方程 (1) 直线的方向向量的定义 与直线平行的非零向量, 称为这条直线的一个方向向量. 直线的方向向量有无数多个.
i 1 0 j 1 1 k 0 1
n
M1

M3 M2
(1 , 1 , 1)
又 M1 , 利用点法式得平面 的方程为:
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
例7.3.1 求过三点
的平面 的方程.
解: 平面 的法向量垂直于该平面内任一向量, 于是可取平面 的法向量为:

高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
例7.3.2 设一平面与
轴的交点分别为
R(0,0, c ) (其中 a 0,b 0,c 0 ), 求该平面的方程.
分析: 可用平面的一般方程做 或平面的点法式方程做. 解: 设平面的方程为
Ax By Cz D 0,
x x0 y y0 n m 得 y y0 z z0 p n
法2: 先找直线上两点A, B; AB 就是直线的方向向量.
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
例7.3.5 用点向式方程及参数方程表示直线
分析: 先找直线上一点; 再找直线的方向向量. 解: 先在直线上找一点 M0 ( x0 , y0 , z0 ) . y0 z 0 1 0 , 令 x0 0 , 代入原方程组得 2 y0 z 0 1 0 ,

高等数学第七章 向量代数与空间解析几何

高等数学第七章 向量代数与空间解析几何

第七章向量代数与空间解析几何空间解析几何是多元函数微积分学必备的基础知识.本章首先建立空间直角坐标系,然后引进有广泛应用的向量代数,以它为工具,讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第一节空间直角坐标系平面解析几何是我们已经熟悉的,所谓解析几何就是用解析的,或者说是代数的方法来研究几何问题.坐标法把代数与几何结合起来.代数运算的基本对象是数,几何图形的基本元素是点.正如我们在平面解析几何中所见到的那样,通过建立平面直角坐标系使几何中的点与代数的有序数之间建立一一对应关系.在此基础上,引入运动的观点,使平面曲线和方程对应,从而使我们能够运用代数方法去研究几何问题.同样,要运用代数的方法去研究空间的图形——曲面和空间曲线,就必须建立空间内点与数组之间的对应关系.一、空间直角坐标系空间直角坐标系是平面直角坐标系的推广.过空间一定点O,作三条两两互相垂直的数轴,它们都以O为原点.这三条数轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称坐标轴.它们的正方向按右手法则确定,即以右手握住z轴,右手的四个手指指向x轴的正向以π2角度转向y轴的正向时,大拇指的指向就是z轴的正向(图7-1),这样的三条坐标轴就组成了一空间直角坐标系Oxyz,点O叫做坐标原点.图7-1三条坐标轴两两分别确定一个平面,这样定出的三个相互垂直的平面:xOy,yOz,zOx,统称为坐标面.三个坐标面把空间分成八个部分,称为八个卦限,上半空间(z>0)中,从含有x 轴、y轴、z轴正半轴的那个卦限数起,按逆时针方向分别叫做Ⅰ,Ⅱ,Ⅲ,Ⅳ卦限,下半空间(z<0)中,与Ⅰ,Ⅱ,Ⅲ,Ⅳ四个卦限依次对应地叫做Ⅴ,Ⅵ,Ⅶ,Ⅷ卦限(图7-2).图7-2确定了空间直角坐标系后,就可以建立起空间点与数组之间的对应关系.设M为空间的一点,过点M作三个平面分别垂直于三条坐标轴,它们与x轴、y轴、z 轴的交点依次为P、Q、R(图7-3).这三点在x轴、y轴、z轴上的坐标依次为x,y,z.这样,空间的一点M就惟一地确定了一个有序数组(x,y,z),它称为点M的直角坐标,并依次把x,y和z叫做点M的横坐标,纵坐标和竖坐标.坐标为(x,y,z)的点M通常记为M(x,y,z).图7-3反过来,给定了一有序数组(x,y,z),我们可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴,y轴与z 轴的垂直平面,这三个平面的交点M就是具有坐标(x,y,z)的点(图7-3).从而对应于一有序数组(x,y,z),必有空间的一个确定的点M.这样,就建立了空间的点M和有序数组(x,y,z)之间的一一对应关系.如图7-3所示x轴,y轴和z轴上的点的坐标分别为P(x,0,0),Q(0,y,0),R(0,0,z);xOy面,yOz面和zOx面上的点的坐标分别为A(x,y,0),B(0,y,z),C(x,0,z);坐标原点O的坐标为O(0,0,0).它们各具有一定的特征,应注意区分.二、空间两点间的距离设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d,我们过M1,M2各作三个分别垂直于三条坐标轴的平面.这六个平面围成一个以M1,M2为对角线的长方体(图7-4).根据勾股定理,有图7-4|M 1M 2|2=|M 1N |2+|NM 2|2=|M 1P |2+|M 1Q |2+|M 1R |2.由于|M 1P |=|P 1P 2|=|x 2-x 1|,|M 1Q |=|Q 1Q 2|=|y 2-y 1|,|M 1R |=|R 1R 2|=|z 2-z 1|,所以d =|M 1M 2|=212212212)()()(z z y y x x -+-+-,这就是两点间的距离公式.特别地,点M (x,y,z )与坐标原点O (0,0,0)的距离为d =|OM |=222z y x ++。

高等数学上册第七章教材

高等数学上册第七章教材

高等数学上册第七章教材高等数学是大学中理工科专业的一门重要课程,它涵盖了许多基础和高级的数学概念和理论。

在高等数学上册的第七章中,我们将讨论一些与多元函数相关的内容。

本章将介绍多元函数的概念、连续性、偏导数以及多元函数的极值问题。

通过学习本章的内容,我们将能够更深入地理解和应用多元函数的基本概念和性质。

一、多元函数概念在第七章中,我们将学习多元函数的定义和性质。

所谓多元函数,简而言之,就是具有多个自变量的函数。

我们将研究多元函数的定义域、值域以及图像等特征,同时了解多元函数与一元函数的差异。

二、多元函数的连续性连续性是多元函数中非常重要的一个性质。

在本章中,我们将讨论多元函数的连续性及其判定方法。

我们将学习如何通过函数的定义和极限的性质来确定一个多元函数是否连续,以及如何判断多元函数在某个点是否连续。

三、多元函数的偏导数偏导数是多元函数中的一个重要概念,它描述了函数在某个方向上的变化率。

在本章的第三节中,我们将学习多元函数的偏导数的定义和性质,以及如何计算偏导数。

我们将学习如何通过偏导数来判断多元函数的增减性,并掌握偏导数的链式法则和隐函数求导等重要技巧。

四、多元函数的极值问题极值问题是多元函数研究的核心内容之一。

在第七章的最后一节,我们将重点讨论多元函数的极值问题。

我们将学习如何通过求偏导数和二阶导数来判断多元函数的极值,并通过举例来加深对多元函数极值问题的理解。

通过学习高等数学上册第七章的教材,我们将更好地理解多元函数的概念及其基本性质。

同时,我们将能够掌握多元函数的连续性判定、偏导数的计算和应用、以及多元函数的极值问题的解决方法。

这些知识将为我们今后在数学和相关领域的研究和应用奠定坚实的基础。

高等数学作为一门重要的核心课程,对于培养学生的数学思维和分析问题的能力具有重要意义。

通过仔细学习和理解高等数学上册第七章教材中的内容,我们将能够更好地应用数学方法解决实际问题,并为我们的学习和职业发展打下坚实的数学基础。

《高等数学》第7章空间向量与空间解析几何

《高等数学》第7章空间向量与空间解析几何
它们之间的距离为d = |M1M2|. 过点 M1 、M2 各作三个平面分别垂直 z 于三个坐标轴,形成如图的长方体. z2
d 2 M1M2 2
M1Q2QM 22
(△M1QM2 是直角三角形) M 1P2P2 Q Q2 M 2
z1 M1
P
(△M1PQ都是直角三角形)
x1
M 1 P 2P M 2 2Q2 M 2 x2
标式来表示向量M1M 2 与 2M1M2 .
2.已知 O A 4,1,5与O B 1,8,0,求向量AB
与 OAOB的坐标.
7.2 向量的数量积与向量积
掌握向量的数量积和向量积的定 义,能够灵活运用运算规律,并 熟训练使用判断向量平行或垂直 的条件.
7.2.1 向量的数量积
引例 设一物体在常力F 作用下沿直线从点M1移动 到点M2,以S 表示位移M1M 2,则力F 所做的功
C (2, 4, 7), 求 AB 的 C面积.
解:
根据向量积的定义,可
知 ABC 的面积为
S ABC
1 AB 2
AC sin A 1 AB AC . 2
由于 AB 2,2,2,AC 1,2,4,所以
i jk
AB AC 2 2 2 4 i 6 j 2 k
124
于是 S ABC
Oxyz ,点O 叫做坐标原点(或原点).
八封限
每两个坐标轴确定的平面称为坐标
平面,简称为坐标面.x 轴与y 轴所 确定的坐标面称为xOy面,类似地, 有yOz面,zOx面.
z




O
Ⅶx


Ⅵy
这些坐标面把空间分成八个部分,每一个部分称
为一个卦限.x、y、z 轴的正半轴的卦限称为第

《高等数学》第七章-数量积-向量积-混合积

《高等数学》第七章-数量积-向量积-混合积

首页
上页
返回
下页
结束
3. 运算律
(1) 交换律 (2) 结合律
b a
a ( b)
( a ) ( b) a ( b)
(ab)
(3) 分配律
(a b) c
Pr jc a Pr jc b Pr jc ( a b)
事实上, 当 c 0 时, 显然成立 ; 当c 0时
a b c c Pr jc a b c Prjc a Prjc b
c Pr jc a c Pr jc b a c b c
首页
上页
返回
下页
结束
例1. 证明三角形余弦定理
c2 a2 b2 2abcos
证: 如图 . 设
i j jk ki 0
a b axbx ayby azbz
两向量的夹角公式 当 为非零向量时, 由于
a b cos , 得
cos

axbx ayby azbz
ab
a
2 x

a
2 y

az2
bx2 by2 bz2
首页
上页Biblioteka 返回下页结束
例2. 已知三点 M (1,1,1), A( 2, 2,1), B( 2,1, 2), 求
叉积:
i jk ab ax ay az
bx by bz
首页
上页
返回
下页
结束
ax ay az
混合积: a b c ( a b ) c bx by bz
2. 向量关系:
cx cy cz
ab 0
bx by bz ax ay az

《高等数学》 第七章

《高等数学》 第七章

C

第三步,求积分的通解: G( y) F(x) C .
其中 G( y) , F (x) 分别是 1 , f (x) 一个原函数. g ( y)
第二节 一阶微分方程
例 1 求微分方程 dy y sin x 0 的通解. dx
解 将方程分离变量,得到 dy sin xdx , y
两边积分,即得
(*)
例如,以上六个方程中,(1)、(2)、(5)、(6)是一阶常微分方程,(3)是二阶
常微分方程,(4)是二阶偏微分方程.
定义 3 如果微分方程中含的未知函数及其所有导数都是一次多项式,则称该方
程为线性方程,否则称为非线性方程.
一般说来,n 阶线性方程具有如下形状:
a0(x) y(n) a1(x) y(n1) an1(x) y an (x) y (x) .
第二节 一阶微分方程
例 3 求方程 dy y 1 的解. dx x 1
为方便起见,以后在解微分方程的过程中,如果积分后出现对数,理应都需作
类似下述的处理,其结果是一样的.以例 3 为例叙述如下:
分离变量后得
1 dy 1 dx , y 1 x 1
两边积分得
ln | y 1| ln | x 1| ln C ,
再分离变量,得 du 1 dx ; f (u) u x
第三步,两端分别积分后得
du f (u) u
ln | x | C1

求出积分后,再用 y 代替 u ,便可得到方程关于 x 的通解. x
第二节 一阶微分方程
例 4 求微分方程 xy y(1 ln y ln x) 的通解.

将方程化为齐次方程的形式
dy dx
y x
1

《高等数学(上册)》 第七章

《高等数学(上册)》 第七章
V b A(x)dx . a
7.2.2 立体的体积
例 9 如图所示,计算底面是半径为 R 的圆,且垂直于底面的所有截面都是等 边三角形的立体体积.
解 设过点 x 且垂直于 x 轴的截面面积为 A(x) .
由已知条件知,它是边长为 2 R 2 x 2 的等边三角形的面积,
其值为 A(x) 1 2 R 2x 2 3 2 R 2 x 2 3(R2 x 2) ,
x
x2 2
1
1
9 8

2
7.2.1 平面图形的面积
例 2 计算抛物线 y2 2x 与直线 y x 4 所围成的图形的面积.
解 (1)画图,如图所示;
(2)确定图形在 y 轴上的投影区间:[2,4] ;
(3)确定左右曲线, 左 ( x)
1 2
y2
, 右 (x)
y
4;
(4)计算积分:
S
解 由对称性可得所求旋转体的体积为
V 2
a y2dx 2
a2
(a 3
2
x 3 )3dx
0
0
42
24
2 a (a2 3a 3 x 3 3a 3 x 3 x2 )dx . 0
2
a
2
x
9
a
4 3
x
5 3
5
9 7
27
a3x3
1 3
a
x3
0
32 a3 105
7.2.2 立体的体积
例8
x2 y2 3,


y
1 2
x2
解得抛物线与圆的两个交点分别
为 ( 2 ,1) 和 ( 2 ,1) ,于是所求的弧长为
2
S 2 0

高等数学教材第七章答案

高等数学教材第七章答案

高等数学教材第七章答案第七章:多元函数微分学1. 习题一答案:1.1 题目:求函数 $z = 2x^3 + 3y^2 - 6xy$ 在点 $(1, 2)$ 处的偏导数$\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$。

解答:首先计算 $\frac{\partial z}{\partial x}$。

根据偏导数的定义,我们将 $y$ 视为常数,对 $z$ 对 $x$ 进行求偏导数:$$\frac{\partial z}{\partial x} = 6x^2 - 6y$$接下来计算 $\frac{\partial z}{\partial y}$。

同样,我们将 $x$ 视为常数,对 $z$ 对 $y$ 进行求偏导数:$$\frac{\partial z}{\partial y} = 6y - 6x$$所以,函数 $z = 2x^3 + 3y^2 - 6xy$ 在点 $(1, 2)$ 处的偏导数为$\frac{\partial z}{\partial x} = 6x^2 - 6y$ 和 $\frac{\partial z}{\partial y} = 6y - 6x$。

1.2 题目:计算函数 $f(x, y) = x^3 + y^3$ 在点 $(1, 1)$ 处的全微分。

解答:根据全微分的定义,我们有:$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$首先计算 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$。

对 $f(x, y) = x^3 + y^3$ 分别对 $x$ 和 $y$ 求偏导数:$$\frac{\partial f}{\partial x} = 3x^2, \quad \frac{\partial f}{\partial y} =3y^2$$代入点 $(1, 1)$,得到 $\frac{\partial f}{\partial x} = 3$ 和$\frac{\partial f}{\partial y} = 3$。

高等数学第七章.ppt

高等数学第七章.ppt



a11x1+a12x2+…+a1nxn=b1
(1)

a21x1+a22x2+…+a2nxn=b2
(2)


……

am1x1+am2x2+…+amnxn=bm
(m)
x1 ,x2 ,…xn≥0
第三节 单纯形法
其简缩形式为

max Z c1x1 c2 x2 cn xn
线 性
n
aij x j bi
ZA=300 ZB=175 ZC=110 ZD=150
x2 15 A
3x1+x2=15
可行域
10
B
x1+x2=10
5
C
O
5
10
A(0,15) B(2.5,7.5) C(9,1) D (15,0)
x1+6x2=15
D
15
x1
10x1+20x2=0
第三节 单纯形法
单纯形方法是一种较为完善的、步骤 化的线性规划问题求解方法。它的原理涉 及到较多的数学理论上的推导和证明,我 们在此仅介绍这种方法的具体操作步骤及 每一步的经济上的含义。为更好地说明问 题,我们仍结合实例介绍这种方法



线
《经济大词典》定义线性规划:一种

具有确定目标,而实现目标的手段又有

一定限制,且目标和手段之间的函数关
划 模 型
系是线性的条件下,从所有可供选择的 方案中求解出最优方案的数学方法。





二、线性规划三要素

高等数学 第七章 向量代数与空间解析几何

高等数学 第七章 向量代数与空间解析几何

第四节 空间直线及其方程
一、空间直线的一般方程 二、空间直线的对称式方程与参数方程
三、两直线的夹角 四、直线与平面的夹角
一、空间直线的一般方程
空间直线可以看作是两个平面的交线.
设直线L是平面1和2的交线, 平面的方程分别为
A1xB1yC1zD10和A2xB2yC2zD20, 那么直线L可以用方程组
设α=x1i+y1j+z1k=(x1 , y1 ,z1), 则有:β=x2i+y2j+z2k= (x2,y2,z2).
α+β =(x1+x2 )i +(y1+y2)j +(z1+z2) k
=(x1+x2 , y1+y2 , z1+z2 ). α-β=(x1-x2) i+ (y1-y2 ) j+ (z1-z2)k
一方向向量s(m, n, p)为已知时, 直线L 的位置就完全确定了.
❖直线的对称式方程
求通过点M0(x0, y0, x0), 方向向量为s(m, n, p)的直线的方 程.
设M(x, y, z)为直线上的任一点,
则从M0到M的向量平行于方向向量:
从而有
(xx0, yy0, zz0)//s ,
>>>注
λ >0
由性质1, Prj(λα)=|λα|cos(φ1)
α φ1 = φ
=λ|α|cosφ
λα φ1=π- φ
=λPrjlα
λ<0
当λ<0时 φ1=π-φ
λα
Prj(λα)=|λ|.|α|cos(φ1) =-λ|α|(-cosφ)
λ >0 α
=λPrjlα; 当λ=0时

《高等数学》第七章 6空间直线及其方程

《高等数学》第七章 6空间直线及其方程

1,3,10.
4,1,1
131,3,1.
在L1上任取一点(3,0,-6),
则1: ( x 3) 3( y 0) (z 6) 0
即 x 3 y z 9 0,
L1
1
x 3y z 9 0
L:
4
x

y

z

1

. 0
L
首页
x 3y z 9 0
4 x

y

z

1

. 0
首页
上页
返回
L
下页
结束
例7
求直线
2x L1 3x

4y z 0 y90
在平面 : 4x y z 1 内的投影直线L的方程.
解法取二s1:n先12求,s14,11的n方3程1,,31,1,00
首页
上页
返回
下页
结束
二、线面间的位置关系
1. 两直线的夹角
两直线的夹角指其方向向量间的夹角(通常取锐角)
设直线 L1 , L2 的方向向量分别为
则两直线夹角 满足
cos s1 s2
s1 s2
L1
s1
L2
s2

m1m2 n1n2 p1 p2
m12 n12 p12 m22 n22 p22
交已知直线的两平面的法向量为
s n1 , s n2 s n1 n2
首页
上页
返回
下页
结束
i jk
s n1 n2 1 1 1 (4, 1, 3) 2 1 3
故所给直线的对称式方程为 x 1 y

高等数学 第七章 定积分应用与广义积分 7-2(1)平面图形的面积

高等数学 第七章 定积分应用与广义积分 7-2(1)平面图形的面积

x
A = 2( A + A ) 1 2
= 2[∫ 1 3 (1 + cosθ )2dθ 0 2
π
2
π
A2
o
yθ =
π
3
A1
x
1 (3acosθ )2dθ ] +∫ π 2 =∫ 9 2 3 (1+ 2cosθ + cos2 )dθ + θ θ π (1+ cos 2 )dθ 0 2 3
π
o x x +d x a x
= 4ab∫ 2 sin2 t dt
0
π
= 4ab ⋅ 1⋅ π = π ab 2 2
当 a = b 时得圆面积公式
一般地 , 当曲边梯形的曲边 ( f ( x) ≥ 0, x ∈[a,b]) 由参数方程 给出时, 给出时
y = f (x)
则曲边梯形面积为
3. 极坐标情形 及 求由曲线 围成的曲边扇形的面积 .
第七章 七
第二节 定积分的几何应用
一、 平面图形的面积
1. 直角坐标情形 2. 参数方程情形 3. 极坐标情形
1. 直角坐标情形 (1) 面积元素
d A = f ( x)d x
曲边梯形的面积
A = ∫ f ( x)d x
a
b
(2) 面积元素
d A = [ f ( x) − g( x)]d x
曲边梯形的面积 A = [ f ( x) − g( x)]d x ∫
0 3 2 3 2 3
说明:注意各积分区间上被积函数的形式. 说明:注意各积分区间上被积函数的形式.
例3 计 由 线y2 = 2x和 线y = x − 4所 成 算 曲 直 围
图 的 积 的 形 面 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

于是平面图形的面积为
S b[ f (x) g(x)]dx . a
7.2.1 平面图形的面积
类似地,由左右两条曲线 x (y) 与 x (y) 及上下两条直线 y d 与 y c 所围
成的平面图形(见下图)的面积为
S d [ ( y) ( y)]dy . c
7.2.1 平面图形的面积

V [ f (x)]2 dx ,
于是体积元素为
dV [ f (x)]2 dx ,
旋转体的体积为
V b[ f (x)]2 dx . a
7.2.2 立体的体积
同理,由连续曲线 x (y) ,直线 y c ,y d 以及 y 轴所围区域,绕 y 轴旋转
的旋转体(见下图)体积为
V d 2 ( y)dy . c
7.2.2 立体的体积
3
例 6 如图所示,求由曲线 y x2 与直线 x 4 , x 轴所围图形绕 x 轴旋转而成的
旋转体的体积.
解 所求旋转体的体积为
V
4
(
x
3 2
)
2
dx
0
1 4
4
x4
0
64 .
7.2.2 立体的体积
2
2
2
例 7 如图所示,求星形线 x3 y3 a3 所围成的图形绕 x 轴旋转所得旋转体的体积.
例 1 计算由抛物线 y x2 1 和 y x2 x 所围成的图形的面积.
解 (1)画图,如图所示;
(2)确定图形在
x
轴上的投影区间:
1 2
,1

(3)确定上下曲线, f上 (x) x2 1 ; f下 (x) x2 x ; (4)计算积分:
S
1 1
(
x2
2
1
x2
x)dx
2x3 3
(dx)2 (dy)2 1 y2 dx ,
7.2.3 平面曲线的弧长
从而得弧长元素(即弧微分)为 ds 1 y2 dx .
以 1 y2 dx 为被积表达式,在闭区间[a ,b] 上积分,可得所求的弧长为
S b 1 y2 dx . a
7.2.3 平面曲线的弧长
例 10 如图所示,求抛物线 y 1 x2 被圆 x2 y2 3 所截下的有限部分的弧长. 2
微元法求量 U,
即U b f (x)dx . a 显然,微元法是在特定条件下简化求解过程的表达,即将“大化小,常代变,
近似求和,取极限”四个步骤作进一步的“算式化”,从而更加实用便利.
7.2 定积分的几何应用
7.2.1 平面图形的面积
本节将利用微元法对几何图形的面积、立体的体积、平面曲线的弧长进行分析求解. 1.直角坐标情形 设平面图形由上下两条曲线 y f (x) 与 y g(x) 及左右两条直线 x a 与 x b 所围 成(见下图),则面积元素为 dS [ f (x) g(x)]dx ,
x2 y2 3,


y
1 2
x2
解得抛物线与圆的两个交点分别
为 ( 2 ,1) 和 ( 2 ,1) ,于是所求的弧长为
2
S 2 0
1
x2
dx
2
x 2
1 x2 1 ln(x 2
1
x2
)
0
2
6 ln( 2 3) .
7.2.3 平面曲线的弧长
2.参数方程情形


线弧由

数方程
x
7.2.2 立体的体积
2.平行截面面积为已知的立体的体积 设有一立体 ,它介于过点 x a 与 x b (a b) 且垂直于 x 轴的两个平面之 间,过点 x 且垂直于 x 轴的平面与立体相截所得的截面面积 A(x) 为 x 的已知连续函 数.容易求得该立体的体积元素为 A(x)dx ,故立体的体积为
解 由对称性可得所求旋转体的体积为
V 2
a y2dx 2
a2
(a 3
2
x 3 )3dx
0
0
42
24
2 a (a2 3a 3 x 3 3a 3 x 3 x2 )dx . 0
2
a
2
x
9
a
4 3
x
5 3
5
9 7
27
a3x3
1 3
a
x3
0
32 a3 105
7.2.2 立体的体积
例8
y
(t) , (
(t)
剟t
) 给 出 , 其 中 x (t) ,y (t) 在
[ , ] 上具有连续导数,且(t) , (t) 不同时为零.因为 dy (t)dt ,dx (t)dt
所以弧长元素为
ds (dx)2 (dy)2 2 (t)(dt)2 2 (t)(dt)2 (2 t) 2 (t)dt ,
所求弧长为
S 2 (t) 2 (t)dt .
7.2.3 平面曲线的弧长
例 11
计算摆线
x y
a(t a(1
sin t) , (0
cos t )
剟t
2) 的一拱的长度.
解 由弧长元素的参数方程公式,有 ds a2 (1 cost)2 a2 sin2 tdt a 2(1 cost)dt 2asin t dt , 2
椭圆的参数方程为
x
y
a b
cos t sin t
, (0
剟t
2) ,
于是, S
4
a
ydx 4
0
0
bsin td(a cos t) 4ab
2
0
sin
2
tdt
2
2ab
2 (1 cos 2t)dt
0
2ab 2
ab .
7.2.1 平面图形的面积
3.极坐标情形
由曲线 ( ) 及射线 , 围成的图形称为曲边扇形,如图所示.
1.直角坐标情形 设曲线弧的直角坐标方程为 y f (x) (a 剟x f (x) 在区间[a ,b] 上具有一阶连续导数.
b) ,
现在来计算该曲线弧的长度.如图所示,取横坐标 x 为积分变量,它的变化区 间为[a ,b] .曲线 y f (x) 上相应于[a ,b] 上任一小区间[x ,x dx] 的一段弧的长度 为 s ,可以用该曲线在点( x ,f (x) )处的切线上相应的一小段长度来近似代替,切 线上相应的小段长度为
计算由摆线
x
y
a(t a(1
sin t) , (0
cos t)
剟t
2) 的一拱与直线 y 0 所围成的图形
(见下图)分别绕 x 轴、 y 轴旋转而成的旋转体的体积.
解 所给图形绕 x 轴旋转而成的旋转体的体积为
Vx
2a 0
y2dx
2 a2 (1 cost)2
0
a(1 cost)dt
a3 2 (1 3cost 3cos2 t cos3t)dt 0
7.2.2 立体的体积
利用定积分可以求一些特殊立体的体积,下面讨论如何求旋转体的体积和平行截 面面积为已知的立体的体积.
1.旋转体的体积 旋转体就是由一个平面图形绕这平面内某一条定直线旋转一周而成的立体.这条 定直线称为旋转轴. 常见的旋转体包括:圆柱、圆锥、圆台、球体及椭球体等,如图所示.
7.2.2 立体的体积
V b A(x)dx . a
7.2.2 立体的体积
例 9 如图所示,计算底面是半径为 R 的圆,且垂直于底面的所有截面都是等 边三角形的立体体积.
解 设过点 x 且垂直于 x 轴的截面面积为 A(x) .
由已知条件知,它是边长为 2 R 2 x 2 的等边三角形的面积,
其值为 A(x) 1 2 R 2x 2 3 2 R 2 x 2 3(R2 x 2) ,
下面用微元法来计算由连续曲线 y f (x) 、 直线 x a 与 x b 及 x 轴所围成的曲边梯形 绕 x 轴旋转一周而成的立体的体积,如图所示.
设过区间[a ,b] 内点 x 且垂直于 x 轴的平面左侧的旋转体的体积为V (x) ,当平面
左右平移 dx 时,体积的增量近似于以 f (x) 为底面半径、 dx 为高的扁圆柱体的体积,
7.1 定积分的微元法
一般情况下,为求某一量 U(与变量 x 有关的量),先确定变量 x 的变化区间 [a ,b] ,再求量 U 的元素 dU .若 dU f (x)x f (x)dx ,则量 U 就是以 f (x)dx 为 被积表达式,以[a ,b] 为积分区间的定积分,即
U b f (x)dx . a
x
x2 2
1
1
9 8

2
7.2.1 平面图形的面积
例 2 计算抛物线 y2 2x 与直线 y x 4 所围成的图形的面积.
解 (1)画图,如图所示;
(2)确定图形在 y 轴上的投影区间:[2,4] ;
(3)确定左右曲线, 左 ( x)
1 2
y2
, 右 (x)
y
4;
(4)计算积分:
S
取 为积分变量,在区间 [ , ] 上任取子区间[ , d ] ,相应的小曲边扇形的面积 可用半径为 ( ) 、中心角为 d 的圆扇形的面积来近似代替,即面积元素为
dS 1 ( )2 d .
2
因此,曲边扇形的面积为
S
1 ()2 d
2
1 2
(
)2
d

7.2.1 平面图形的面积
例 4 如图所示,求对数螺线 ae ( 剟 ) 及射线 和
A
3 2
, 3

B
3 2

3

由于对称性,所求面积为
S
2
1 2
3
(1
相关文档
最新文档