分式的恒等变形(三)

合集下载

奥数-分式恒等变形师

奥数-分式恒等变形师

分式恒等变形方法一、通分:直接通分;逐步通分;移项通分;分组通分;分母因式分解再通分。

例1. 若22004a m +=,22003b m +=,22002c m +=且24abc =,求111a b c bc ca ab a b c++---的值。

(1/8) 例2. 若0abc ≠,0a b c ++=,求222a b c bc ac ab++的值。

(3)例3. 求证:2220()()()()()()a bcb ac c baa b a c a b b c c b a c ---++=++++++例4. 设正数x ,y ,z 满足不等式2222x y z xy +-+2222y z x yz +-+2222z x y xz+->1,求证x ,y ,z 是某个三角形的三边长【分析与证明】原不等式可变形为z(x^2+y^2-z^2)+x(y^2+z^2-x^2)+y(x^2+z^2-y^2)-2xyz>0 因式分解得(x+y-z)(y+z-x)(z+x-y)>0所以三个括号内的数全正或者1正2负,因为x ,y ,z 全正,所以不可能1正2负(证明略)所以三个括号内均为正数,所以x ,y ,z 是某个三角形的三边长例5. 求分式248161124816111111a a a a a a +++++-+++++,当2a =时的值. 【解析】 先化简再求值.直接通分较复杂,注意到平方差公式:()()22a b a b a b -=+-,可将分式分步通分,每一步只通分左边两项.原式()()()()248161124816111111a a a a a a a a ++-=++++-+++++22481622481611111a a a a a =++++-++++ ()()()()224816222121481611111a a a a a a a +++=++++++-+44816448161111a a a a =+++-+++1616161611a a =+-+32323232112a ==--例6. 若实数a ,b ,c 满足1111a b c a b c++=++,求证: 7777771111a b c a b c++=++.【证明】:由已知得到()()bc ac ab a b c abc ++++=,有()()()0a b b c a c +++=,则a ,b ,c 中一定有两个数互为相反数。

第1讲 分式的概念及性质 讲义 (知识精讲+典题精练)2023-2024学年人教八年级数学上册

 第1讲 分式的概念及性质 讲义 (知识精讲+典题精练)2023-2024学年人教八年级数学上册

第1讲分式的概念及性质【中考考纲】【知识框架】考点课标要求知识与技能目标了解理解掌握灵活应用分式的概念分式的概念√分式有意义的条件√分式值为零的条件√分式值的符号讨论√分式的基本性质分式的基本性质√分式的概念分式的基本性质分式有意义的条件分式值为零的条件分式值的符号讨论分式分式的概念1【知识精讲】一、分式的概念1.一般地,用A ,B 表示两个整式,A B 就可以表示成BA的形式.如果B 中含有字母,式子AB就叫做分式.2.分式有意义的条件:分式的分母不为零;3.分式的值为零的条件:分式的分子为零且分母不为零;4.分式值为正的条件:分式的分子分母符号相同(两种情况);5.分式值为负的条件:分式的分子分母符号不同(两种情况).【经典例题】【例1】下列各代数式:1x ,2x ,5xy ,()12a b +,x π,211x -,22a b a b --,13a-,1x y -中,整式有_____________,分式有_____________.【例2】若分式21x -有意义,则x 的取值范围是_____________.【例3】要使式子3234x x x x ++÷--有意义,则x 的取值是_____________.【例4】使分式2211a a -+有意义的a 的取值是__________.【例5】当3x =-时,下列分式中有意义的是().A.33x x +- B.33x x -+ C.()()()()3232x x x x +++- D.()()()()3232x x x x -++-【例6】x ,y 满足关系_____________时,分式x yx y-+ 无意义.【例7】当x =_________时,分式33x x -+的值是零.【例8】当x =_________时,分式293x x --的值为零.【例9】若分式223-1244x x x ++的值为0,则x 的值为_________.【例10】x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【例11】若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【例12】若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【例13】若分式1||x a+对任何数x 的都有意义,求a 的取值范围.【例14】要使分式11x x-有意义,则x 的取值范围是_________.【例15】当x 取何值时,分式226x x -+的值恒为负?【例16】当x 取什么值时,分式25xx -值为正?2【知识精讲】一、分式的基本性质1.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.2.注意:(1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式;(2)应用基本性质时要注意0C≠,以及隐含的0B≠;(3)注意“都”,分子分母要同时乘以或除以.3.分式的通分和约分:关键是先分解因式.【经典例题】【例17】把分式yx中的x 和y 都扩大3倍,则分式的值______.【例18】如果把分式10xyx y+中的x ,y 都扩大十倍,则分式的值().A .扩大100倍B .扩大10倍C .不变D .缩小到原来的110【例19】对于分式11x -,恒成立的是().A.1212x x =--B .21111x x x +=--C .()21111x x x -=--D .1111x x -=-+【例20】下列各式中,正确的是().A .a m ab m b+=+B .0a ba b+=+C .1111ab b ac c +-=--D .221x y x y x y+=--【例21】与分式a ba b-+--相等的是().A .a b a b+-B .a b a b-+C .a b a b+--D .a b a b--+【例22】将分式253x yx y -+的分子和分母中的各项系数都化为整数,得().A .235x y x y -+B .1515610x y x y -+C .1530610x y x y -+D .253x y x y-+【例23】已知23a b =,求a bb+的值?【例24】化简:2323812a b cab c =________________.【例25】化简:22442y xy x x y-+=-________________.【例26】已知一列数1a ,2a ,3a ,4a ,5a ,6a ,7a ,且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为().A .648B .832C .1168D .1944【例27】如果115x y +=,则2522x xy y x xy y-+=++____________.【例28】已知a b c d b c d a ===,则a b c da b c d-+-+-+的值是__________.【例29】化简:43211x x x x -+++.【例30】已知2215x x =+,求241x x +的值.【随堂练习】【习题1】若分式42121x x x --+的值为0,则x 的值是___________.【习题2】求证:无论x 取什么数,分式223458x x x x ---+一定有意义.【习题3】已知()1xf x x=+,求下列式子的值.111()()()(1)(0)(1)(2)(2011)(2012)201220112f f f f f f f f f ++++++++++ 【习题4】x 取______________值时,112122x +++有意义.【习题5】已知34y x =,求代数式2222352235x xy y x xy y -++-的值.【课后作业】【作业1】已知,,0a b c ≠,且0a b c ++=,则111111a b c b c c a a b ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是__________.【作业2】已知20y x -=,求代数式()()()()22222222xy x xy y xxy yxy+-+++-的值.【作业3】若实数x ,y 满足0xy ≠,则y xm x y=-的最大值是多少?【作业4】已知a ,b 为实数,且1ab =,设11a b P a b =---,1111Q a b =---,试比较P 和Q 的大小.【作业5】如果整数a (1a ≠)使得关于x 的一元一次方程:232ax a a x -=++的解是整数,则该方程所有整数解的和为__________.【作业6】已知分式()()811x x x -+-的值为零,则x 的值是__________.【作业7】要使分式241312a a a-++有意义,则a 的值满足__________.【作业8】已知210a a --=,且4232232932112a xa a xa a -+=-+-,求x 的值.。

分式的概念和性质+答案

分式的概念和性质+答案

分式的概念和性质(提高)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0 的条件. 2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算.【要点梳理】【高清课堂403986 分式的概念和性质知识要点】要点一、分式的概念A 一般地,如果A、B 表示两个整式,并且B 中含有字母,那么式子A叫做分式. 其中AB叫做分子,B 叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的. 分数是整式,不是分式,分式是两个整式相除的商式. 分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母” ,但π表示圆周率,是一个常数,不是字母,如a是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式2不能先化简,如x y是分式,与xy 有区别,xy 是整式,即只看形式,x不能看化简的结果.要点二、分式有意义,无意义或等于零的条件1. 分式有意义的条件:分母不等于零.2. 分式无意义的条件:分母等于零.3. 分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0 的整式,分式的值不变,这个性质叫做A A M A A M分式的基本性质,用式子表示是: A A M,A A M(其中M是不等于零的整式).B B M B B M要点诠释:(1)基本性质中的A、B、M表示的是整式. 其中B≠0 是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠ 0 是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0 这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化. 例如:,在变形后,字母x 的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变2 4解:整式有:23,2y 2, 2y 2;其中任何一个或三个,分式成为原分式的相反数 要点诠释: 根据分式的基本性质有 b a b bb. 分式a与 a 互为相反数a a ab b重要的作用 .要点五、分式的约分,最简分式 与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的 值,这样的分式变形叫做分式的约分 . 如果一个分式的分子与分母没有相同的因式 (1 除外), 那么这个分式叫做最简分式 .要点诠释: (1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分 母再没有公因式 .( 2)约分的关键是确定分式的分子与分母的公因式. 分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式 的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子 与分母是不能再分解的因式积的形式,然后再进行约分 .要点六、分式的通分与分数的通分类似, 利用分式的基本性质, 使分式的分子和分母同乘适当的整式, 不改 变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分 .要点诠释:(1)通分的关键是确定各分式的最简公分母: 一般取各分母所有因式的最高 次幂的积作为公分母 .2)如果各分母都是单项式, 那么最简公分母就是各系数的最小公倍数与相 同字母的最高次幂的乘积; 如果各分母都是多项式, 就要先把它们分解 因式,然后再找最简公分母 .3)约分和通分恰好是相反的两种变形, 约分是对一个分式而言, 而通分则 是针对多个分式而言 .典型例题】 类型一、分式的概念高清课堂 403986 分式的概念和性质 例 1】. 根据有理数除法的符号法则有分式的符号法则在以后关于分式的运算中起着1、指出下列各式中的整式与分式:1 ,1 ,a b ,x , 3 ,, , , ,2 ,x x y 2 x 12y 2,2 x ,思路点拨】 判断分式的依据是看分母中是否含有字母, 如果含有字母则是分式, 如果不含有字母则不是分式. 【答案与解析】∵ x 2 为非负数,不可能等于- 1, ∴ 对于任意实数 x ,分式都有意义; 当 x 0 时,分式的值为零.(2)当 x 2 0即 x 0时,分式有意义; 当 x 0, 即 x 5 时,分式的值为零x 5 0,(3)当 x 5 0,即 x 5 时,分式有意义; 当 x 5 0, ①时,分式的值为零,2x 10 0 ②由①得 x 5时,由②得 x 5 ,互相矛盾.2x 10∴ 不论 x 取什么值,分式 2x 10 的值都不等于零.x5【总结升华】 分母不为零时,分式有意义;分子的值为零,而分母的值不为零时,分式的值 为零. 举一反三:【变式 1】若分式的值为 0,则的值为 _________________________ . 【答案】 - 2;|x| 2 0 |x| 2 0 提示:由题意 2, ,所以 x 2.x 2 5x 6 0 x 3 x 2 0分式有:1,1 , 3 , x2 x x y x 2 1 x总结升华】 判断分式的依据是看分母中是否含有字母.此题判断容易出错的地方有两处: 一个是把 π 也看作字母来判断, 没有弄清 π 是一个常数; 另一个就是将分式化简成整式后2再判断,如 x 和 x x,前一个是整式,后一个是分式,它们表示的意义和取值范围是不相同的.类型二、分式有意义, 分式值为 0 高清课堂 403986当 x 取什么数时,下列分式有意义?当2、 分式的概念和性质 例 2】x 取什么数时,下列分式的值为零?( 1) 2x x 2 答案与解析】2)x52;x3) 2x 10 x5解:( 1)当 x 20,即 x21时,分式有意义.x2变式 2】当 x 取何值时,分式 的值恒为负数? 2x 6 答案】 x 2 0, 或 x 2 0, 2x 6 0, 2x 6 0. 解不等式组x 2 0,该不等式组无解.2x 6 0,解不等式组x 2 0,得 3 x 2. 2x 6 0.所以当 3x 2 时,分式x 2的值恒为负数. 2x 6类型三、分式的基本性质高清课堂 403986 分式的概念和性质 例 4】 3、不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数(1) ; (2) ; (3) . 答案与解析】解:(1) ;(3).【总结升华】 (1) 、根据分式的意义, 分数线代表除号, 又起括号的作用; (2) 、添括号法则: 当括号前添“+”号,括号内各项的符号不变;当括号前添“—”号,括号内各项都变号 举一反三:解: 由题意可知(2)a1 a 2 2a 1 ;2;a 22变式】 列分式变形正确的是(A .2 x2ymn(m n)2 (m n)(m n)(m n)2答案】C .x 21x 2x 11 x1ab 2 aD ;提示:条件.将分式变形时,注意将分子、分母同乘(或除以)同一个不为 其中A 项分子、分母乘的不是同一整式,B 项中 m n 0 的整式这一0这一条件不知是1x 否成立,故 A 、B 两项均是错的. C 项左边可化为: 1 x 2(1 x)21 1x11,故 C x1项亦错,只有 D 项的变形是正确的.类型四、分式的约分、通分如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,也就是分子、分母系数的最大公约数与相同字母的最低次幂. 通分的关键是确定几个分式的最简公分 母,若分母是多项式, 则要因式分解, 要防止遗漏只在一个分母中出现的字母以及符号的变 化情况. 类型五、分式条件求值225、若 x 2,求 x 22 2xy 3y 22 的值.y x 2 6xy 7 y 2【思路点拨】 本题可利用分式的基本性质, 采用整体代入法, 或把分式的分子与分母化成只 含同一字母的因式,使问题得到解决. 【答案与解析】x 解法一:因为 2 ,可知 y 0 ,y222(x 22xy3y 2) g12x2x g3所以x 22xy3y 2yyy所以2x 26xy7y 2(x 26xy 7y 2)g12 y2x6 x g7yy4、约分:(1)2;(2) 2n 2 m 3 ;2mn 4n通分:3)3 2a 2ba b ;ab 2c4)x 24x42 x2答案与解析】解:(1) a 2 2a 1a 21(a1)2 ( a 1)(a 1)1;a12) 2 n 2 m2mn 4n 32n 2 m2n (m 2n 2)(m2n 2) 2n (m 2n 2 )1 2n ;3)最简公分母是 222a 2b 2c . 3 g bc222a 2b 2a 2b g bc3bc22 2a b cb ab 2c(a b) g 2a ab 2c g 2a22a 22ab2a 2b 2c4)最简公分母是(x 2)(x 2) ,1 x2x2 (x 2)( x 2)x 2 ,4 xx 2 4 x 2 44x x 2 42(x 2)x 2 (x 2)( x 2)2x 4 x 2 4总结升华】( 2)2 2 ( 2) 3 5 ( 2)2 6 ( 2) 7 9解法二:因为 x 2 , y所以 x 2y ,且 y 0 ,22x 2 2xy 3y 2 (x 3y)(x y) x 3y x 2 6xy 7y 2 (x 7y)(x y) x 7y【总结升华】 本题的整体代入思想是数学中一种十分重要的思想. 一般情况下, 在条件中含 有不定量时,不需求其具体值,只需将其作为一个“整体”代入进行运算,就可以达到化简 的目的. 举一反三: 【变式】已知x 3 y4z(xyz 0) ,求xy 26x 2yz 2 y zx 2的值.z 2【答案】x解: 设yz k(k 0) ,则 x 3k,y4k , z 6k3 46∴xyyz zx3k g4k 4k g6k 6k g3k54k 2 54 ∴2x2 y2z22(3k)2 (4k)2(6k) 261k 2 61【巩固练习】 一. 选择题a 2 91.若分式 2a 9 的值为 0,则 a 的值为( )a 2 a 6A .3B .-3C .±3D . a ≠- 2中的 x 、y 都扩大 m 倍( m ≠ 0),则分式的值()2.把分式 2x2y 3y 5 2y 7y 9xy14. 已知 13. A .扩大 m 倍 5a b若分式 5a b 有意义,则 a 、 3a 2b B .缩小 m 倍C .不变 b 满足的关系是( 4. 5. 6.D .不能确定A . 3a 2b 1b 若分式 12 b 2b 2 A . b < 0 面四个等式: ④xy 2 0个 A . 化简B . a 15bC . b D.23b的值是负数,则 1 b 满足( B .b ≥1 C . b <1 D. b >1 ① x 2 y x 2y ;② xy 2 x 2y ;③ xy 2x y;2xy 2 b 22a a 2 2ab b 2 ab ab 二. 填空题 A .7. 使分式 (x 2x 其中正确的有( B . 1 个 的正确结果是( B . a a b b 2 有意义的条件为 3)2 C . 2个 D . 3个C .1 2abD .2a 1b8. 分式 (x 2x 51)2有意义的条件为 2 分式 |x| 4 x4 m n ( mn 11.填入适当的代数式,使等式成立.9.当 时, 的值为零.10.填空: (1) ) n m m n ;(2) mn 2a 2b2a)2b1) a 2 ab 2b 2 a 2 b 2 ( ) ( 2) ab1a1a b ( ba 2 m 12. 分式 2m 2 1 约分的结果是 m 2 三. 解答题 2 x 13. 若 2 x 23x1的值为零,求 2 的值.2 (x 1)21 x 2,求 3x 7xy 3y 的值.2x 3xy 2y7. 8.15. (1)阅读下面解题过程:已知 2,求 524x的值.x 4 11. 解:∵ 2xx 21 ∴1∴1xx2 5,2,即 5,即 2x 4x1 21 x2 x1 (x 1x )2 2 x2)请借鉴( 已知2 x 2 答案与解析】 . 选择题 答案】 B ; 解析】 由题意 2. 答案】 C ; 解析】 3. 答案】 解析】 4. 答案】 解析】 5. 6. 9. 1)x 3x 2mxmx my D;中的方法解答下面的题目: 2, 求 4 x 0且am 2x m(x y)由题意, 3a D;因为 2b 2 1 答案】 解析】①④正确 . 答案】 解析】. 填空题【答案】【答案】【解析】【答案】2b 0 , C;B; 22ab 22 a 2ab b2x 2x2x xy所以的值.0,所以 1 b aba2abx 3.x 为任意实数;x 为任意实数,分母都大于零x 4 ;1 (52)2 2 170 ,解得 a 3.23b .0,即 b >1.ab ab2,| x| 4 0 解析】 ,所以 x 4 . x40x 2 x 0 ,即 x(x 1) 0 x 2 3x 2 0 (x 1)(x 2) 0x 0 或 x 1 0x 1 0且 x 2 0 x 0或 x 1, x 1且 x 2, x 0 ,14. 【解析】 解:方法一:∵ 1 1 y x 2 ,x y xy等式两边同乘以 xy ,得 2xy y x .x y 2xy .3x 7xy 3y 3(x y) 7 xy 2x 3xy 2y 2( x y) 3xy11 xy【解析】2a ab 2b 2a b a 2b ;1 b ba 2b 2abab1 a bab b12. 【答案】 11m;;m【解析】2m 2m 1 2m 1 1 m10. 【答案】(1)-;(2)+;11. 【答案】(1) a 2b ;(2) b a ;a ab 21 m 1 m 1 m 1 m三. 解答题13. 【解析】ab ba解:由已知得: 将 x 0 代入得:1 ( x 1)2 1 (0 1)2 1 (0 1)21.3 2 xy 7xy xy 2 2 xy 3xy 7xy方法15. 【解析】解:∵ 2xx23x 1 ∴1x13x2x42x x 1121x 2 1x12 x1 21x3x7xy3y3 y72x3xy2y23y 3 x31x1 y73271 2x21 x1 y322372,2 ,∴ x1 4.72 45.12。

初二数学网课优选例习题--分式与分式的基本性质

初二数学网课优选例习题--分式与分式的基本性质

初二数学网课优选例习题--分式与分式的基本性质【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算.【基础知识】一、分式的概念一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.注意:(1)分式和分数的区别:分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.注意:分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).注意:(1)基本性质中的A、B、M表示的是整式.其中B≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x的取值范围变大了.四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.注意:根据分式的基本性质有b ba a-=-,b ba a-=-.根据有理数除法的符号法则有b b ba a a-==--.分式ab与ab-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用. 五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式. 注意:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式. (2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分. 六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.注意:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母. (2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.【考点剖析】 考点一:分式的判断例1.(2022·四川·广安中学八年级月考)下列式子:22222123,,,,,x y a ax a a xy y aπ--+--,其中是分式的有( ) A .2个B .3个C .4个D .5个考点二:分式有意义的条件例2.(2022·湖南益阳·八年级期末)分式13x -有意义,则x 的取值范围是( ) A .3x >B .3x <C .3x ≠D .3x ≠-考点三:分式的值为正为负为零的条件例3.(2022·重庆市育才中学八年级月考)若分式22x x -+的值为0,则( )A .2x =B .2x =-C .2x =±D .12x =考点四:判断分式变形是否正确例4.(2022·河南·扶沟县第一初级中学八年级月考)下列化简中正确的是( )A .0.220.55a b a b a b a b ++=--B .a aa b a b=----C .22b b a a=D .22a b a b a b-=+-考点五:利用分式的基本性质判断分式值的变化例5.(2022·北京二中八年级月考)把分式a bab+中的a 、b 都扩大2倍,则分式的值( ) A .不变B .扩大2倍C .缩小2倍D .扩大4倍考点六:分式的约分例6.(2022·湖南·桂阳县第二中学八年级期中)下列分式中,不是最简分式的是( )A .22x y x y++B .243y xC .2ab aab- D .361xx + 考点七:分式的通分例7.下列各式计算正确的是( )A .623x x x=B .21221x x-=-- C .2933m m m-=+-D .11111x x x x +⋅=++ 【真题演练】1.(2021·江苏苏州·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b aa b+等于( )A .2-B .1-C .1D .22.(2021·江苏扬州·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x +B .21x -C .11x + D .()21x +3.(2022·江苏南通·中考真题)分式22x -有意义,则x 应满足的条件是___________. 4.(2021·江苏泰州·中考真题)函数:1y x 1=+中,自变量x 的取值范围是_____. 【过关检测】 一、单选题1.(2022·黑龙江·哈尔滨德强学校八年级期中)在式子3a,7a b +,5,11x -,8x ,2212x y +中,分式的个数为( ) A .2个B .3个C .4个D .5个2.(2022·重庆实验外国语学校八年级月考)若代数式3xx-无意义,则实数x 的取值范围是( ) A .3x =B .3x ≠C .0x ≠D .0x =3.(2022·广西贵港·八年级期中)若分式12x +有意义,则( ) A .2x =-B .2x ≠C .2x =±D .2x ≠-4.(2022·河南·扶沟县第一初级中学八年级月考)已知分式a bab+(a ,b 均为正数),若分式中每个字母的值都扩大为原来的3倍,则分式的值( )A .扩大为原来3倍B .缩小为原来的13C .不变D .缩小为原来的195.(2022·重庆实验外国语学校八年级月考)下列各式从左到右的变形正确的是( )A .22a ax b bx=B .(1)(1)y a yx a x +=+ C .y m yx m x +=+ D .2111x x x -=--6.(2022·广西贵港·八年级期中)下列各式从左边到右边的变形正确的是( ) A .22x y y xx y x y--=++ B .a b a bc c-+-=- C .0.220.22a b a ba b a b++=++ D .1x y x y --=+ 二、填空题7.(2022·吉林省实验中学八年级期中)约分:25abab=___________. 8.三个分式3x,21x x -,31x +的最简公分母是___________.9.(2022·湖南·芷江侗族自治县第一中学八年级期中)分式22222,,121x x xx x x x x----++-的最简公分母是___________.10.(2022·山东烟台·八年级期中)若分式2x yx y-=+中的x ,y 的值都变为原来的3倍.则此分式的值为______. 11.(2022·江苏·张家港市梁丰初级中学八年级月考)如果分式21628x x -+的值为零,那么x =________.12.(2022·江苏·张家港市梁丰初级中学八年级月考)已知:45x y =,则32x y x y+-的值为______. 三、解答题13.(2022·湖南·新化县东方文武学校八年级期末)当x 为何值时,分式2256x x x -++的值为零?14.(2022·山东·龙口市龙矿学校八年级月考)化简下列分式(1)524371218x y z x z -(2)2239m m m --(3)2222a ab a ab b +++ (4)2()2()b a a b -- 15.将下列各分式通分: (1)212,3x x ax -;(2)31,22a a b b a---;(3)2212,969a a a -++;(4)21,442x x x --. 16.(2022·湖南永州·八年级期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①2222a b a b +-; ②22121x x x --+;③222)m n m n -+(;④3322a b a b ++其中不是“和谐分式”的是(填写序号即可);(2)若a 为整数,且2216x x ax +++为“和谐分式”请求出a 的值.考点一:分式的判断例1.(2022·四川·广安中学八年级月考)下列式子:22222123,,,,,x y a ax a a xy y aπ--+--,其中是分式的有( ) A .2个 B .3个 C .4个 D .5个【答案】C【分析】根据分式的定义逐个判断即可.【详解】解:根据分式定义得:222212,,,-+-x y aa a xy ay 是分式,共4个 故选:C考点二:分式有意义的条件例2.(2022·湖南益阳·八年级期末)分式13x -有意义,则x 的取值范围是( ) A .3x >B .3x <C .3x ≠D .3x ≠-【答案】C【分析】根据分式有意义的条件:分母不能为0,得出30x -≠,解得x 的取值范围. 【详解】解:分式13x -有意义, 30x ∴-≠, 3x ∴≠.故选:C考点三:分式的值为正为负为零的条件例3.(2022·重庆市育才中学八年级月考)若分式22x x -+的值为0,则( )A .2x =B .2x =-C .2x =±D .12x =【答案】A【分析】根据分式值为0的条件求解即可. 【详解】解:由题意,得20x -=,20x +≠, 解得2x =. 故选:A .考点四:判断分式变形是否正确例4.(2022·河南·扶沟县第一初级中学八年级月考)下列化简中正确的是( )A .0.220.55a b a b a b a b ++=--B .a aa b a b=----C .22b b a a=D .22a b a b a b-=+-【答案】D【分析】根据分式的性质一一判断即可.【详解】解:A 、0.22100.5510a b a ba b a b++=--,原式化简错误,不符合题意;B 、a aa b a b=---+,原式化简错误,不符合题意; C 、22b b a a≠,原式化简错误,不符合题意;D 、22()()a b a b a b a b a b a b -+-==+--,原式化简正确,符合题意;故选:D .考点五:利用分式的基本性质判断分式值的变化例5.(2022·北京二中八年级月考)把分式a bab+中的a 、b 都扩大2倍,则分式的值( ) A .不变 B .扩大2倍 C .缩小2倍 D .扩大4倍【答案】C【分析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【详解】解:分式a bab+中的a 和b 都扩大2倍,得 分式的值缩小2倍, 故选:C .考点六:分式的约分例6.(2022·湖南·桂阳县第二中学八年级期中)下列分式中,不是最简分式的是( )A .22x y x y++B .243y xC .2ab aab- D .361xx + 【答案】C【分析】根据将每个选项的分子和分母分别进行因式分解,然后进行约分化简,如果无法继续进行化简则选项是最简分式,如果可以继续化简,则选项是最简分式.【详解】解:A 、22x y x y++无法继续化简,故是最简分式,不符合题意;B 、243y x无法继续化简,故是最简分式,不符合题意;C 、()11222a b ab a b ab ab b---==,可以继续化简,故不是最简分式,符合题意; D 、361xx +无法继续化简,故是最简分式,不符合题意; 故选:C .考点七:分式的通分例7.下列各式计算正确的是( )A .623x x x =B .21221x x-=-- C .2933m m m-=+-D .11111x x x x +⋅=++ 【答案】B【分析】根据分式的性质以及分式的混合运算法则进行计算即可.【详解】解:A 、633x x x =,原式计算错误,不符合题意;B 、221222(1)1x x x--==----,原式计算正确,符合题意; C 、29(3)(3)333m m x m m m -+-==----,原式计算错误,不符合题意;D 、11121111x x x x x x ++=+=+++,原式计算错误,不符合题意; 故选:B .【真题演练】1.(2021·江苏苏州·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b a a b+等于( )A .2-B .1-C .1D .2【答案】A【分析】先化简式子,再利用配方法变形即可得出结果.【详解】解:∵22=b a b a a b ab++,∴()2222==a b ab b a b a a b ab ab+-++,∵两个不等于0的实数a 、b 满足0a b +=, ∴()22-2===-2a b ab b a ab a b ab ab+-+, 故选:A .2.(2021·江苏扬州·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x + B .21x - C .11x + D .()21x +【答案】C【分析】分别找到各式为0时的x 值,即可判断. 【详解】解:A 、当x =-1时,x +1=0,故不合题意; B 、当x =±1时,x 2-1=0,故不合题意; C 、分子是1,而1≠0,则11x +≠0,故符合题意;D 、当x =-1时,()210x +=,故不合题意; 故选C .3.(2022·江苏南通·中考真题)分式22x -有意义,则x 应满足的条件是___________. 【答案】2x ≠【分析】根据分式有意义的条件是分母不为0得出不等式,求解即可. 【详解】解:分式22x -有意义,即20x -≠, ∴2x ≠, 故答案为:2x ≠.4.(2021·江苏泰州·中考真题)函数:1y x 1=+中,自变量x 的取值范围是_____. 【答案】x 1≠-【详解】解:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使1x 1+在实数范围内有意义,必须x 10+≠,即x 1≠-. 故答案为:x 1≠-. 【过关检测】 一、单选题1.(2022·黑龙江·哈尔滨德强学校八年级期中)在式子3a,7a b +,5,11x -,8x ,2212x y +中,分式的个数为( ) A .2个 B .3个 C .4个 D .5个【答案】A【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 【详解】解:在式子3a,7a b +,5,11x -,8x ,2212x y +中,分式有:3a,11x -,共有2个.故选:A .2.(2022·重庆实验外国语学校八年级月考)若代数式3xx-无意义,则实数x 的取值范围是( ) A .3x = B .3x ≠ C .0x ≠ D .0x =【答案】A【分析】直接利用分式有意义的条件分析得出答案.分式有意义的条件是分母不等于零. 【详解】解:代数式3xx-在实数范围内无意义, 30x ∴-=,解得3x =. 故选:A .3.(2022·广西贵港·八年级期中)若分式12x +有意义,则( ) A .2x =- B .2x ≠ C .2x =± D .2x ≠-【答案】D【分析】分式有意义的条件是分母不为零,据此解题即可. 【详解】解:由分式12x +有意义可得:20x +≠, 解得:2x ≠-. 故选:D .4.(2022·河南·扶沟县第一初级中学八年级月考)已知分式a bab+(a ,b 均为正数),若分式中每个字母的值都扩大为原来的3倍,则分式的值( ) A .扩大为原来3倍 B .缩小为原来的13C .不变D .缩小为原来的19【答案】B【分析】根据分式的基本性质进行计算即可解答. 【详解】解:由题意可得:333()13393a b a b a ba b ab ab+++==⨯⨯,∴分式的值缩小为原来的13,故选:B .5.(2022·重庆实验外国语学校八年级月考)下列各式从左到右的变形正确的是( )A .22a ax b bx=B .(1)(1)y a yx a x +=+ C .y m yx m x +=+ D .2111x x x -=--【答案】B【分析】根据分式的基本性质对各个选项进行判断.【详解】解:A .分式的分子和分母同时乘上一个不为0的数时,分式的值不改变,2x 可能等于0,故A 错,不符合题意; B .(1)(1)y a yx a x+=+正确,分式的分子和分母同时除一个不为0的数时值不变,故B 正确,符合题意;C .分式的分子和分母同时加减一个相同的数,值可能会改变,故C 错,不符合题意;D .2111x x x -=+-,故D 错,不符合题意;故选:B .6.(2022·广西贵港·八年级期中)下列各式从左边到右边的变形正确的是( ) A .22x y y xx y x y--=++ B .a b a bc c-+-=- C .0.220.22a b a ba b a b++=++ D .1x y x y --=+ 【答案】B【分析】根据分式的基本性质作答.【详解】解:A 、22x y y x x y x y --=-++,此选项变形错误; B 、a b a b c c -+-=-,此选项变形正确; C 、0.22100.2102a b a b a b a b ++=++,此选项变形错误; D 、1x y x y--=-+,此选项变形错误; 故选B .二、填空题7.(2022·吉林省实验中学八年级期中)约分:25ab ab=___________. 【答案】25 【分析】先找出分式的分子和分母的公因式,再根据分式的基本性质进行计算即可. 【详解】解:2255ab ab =, 故答案为:25. 8.三个分式3x ,21x x -,31x +的最简公分母是___________. 【答案】2(1)x x -【分析】根据最简公分母的定义求解即可.【详解】解:∵()()2111x x x -=+-, ∴三个分式3x ,21x x -,31x +的最简公分母是()()11x x x +-,即2(1)x x -. 故答案为:2(1)x x -.9.(2022·湖南·芷江侗族自治县第一中学八年级期中)分式22222,,121x x x x x x x x ----++-的最简公分母是___________.【答案】()()211x x x -+【分析】先对每个分母进行因式分解,再根据最简公分母的含义进行求解即可.【详解】()()222211,1x x x x x x x ++=+-=-,∴最简公分母是()()211x x x -+,故答案为:()()211x x x -+.10.(2022·山东烟台·八年级期中)若分式2x y x y-=+中的x ,y 的值都变为原来的3倍.则此分式的值为______.【答案】2【分析】根据分式基本性质解答即可.【详解】解:由题意可知:当x ,y 的值都变为原来的3倍时, 分式变为33233--==++x y x y x y x y. 故答案为:211.(2022·江苏·张家港市梁丰初级中学八年级月考)如果分式21628x x -+的值为零,那么x =________. 【答案】4【分析】先将分式化简,再根据分式的值为0,可知分式分子的值为0,分母的值不为0,据此作答即可. 【详解】()()()24416428242x x x x x x +---==++, 根据题意,有:40280x x -=⎧⎨+≠⎩, 解得:4x =,故答案为:4.12.(2022·江苏·张家港市梁丰初级中学八年级月考)已知:45x y =,则32x y x y+-的值为______. 【答案】193 【分析】根据45x y =,设4x k =,则:5y k =,代入分式求值即可. 【详解】解:∵45x y =,设4x k =, 则:5y k =, 把4x k =,5y k =代入,得:34351919224533x y k k k x y k k k ++⨯===-⨯-; 故答案为:193. 三、解答题13.(2022·湖南·新化县东方文武学校八年级期末)当x 为何值时,分式2256x x x -++的值为零? 【答案】2【分析】分式值为零,按照分子为零且分母不为零求解即可 【详解】解:∵2256x x x -++的值为零 ∴20x -=且2560x x ++≠解得:2x =±,当x =2时,256200x x ++=≠当x =-2时,2560x x ++=,故舍去综上:x =214.(2022·山东·龙口市龙矿学校八年级月考)化简下列分式 (1)524371218x y z x z - (2)2239m m m -- (3)2222a ab a ab b +++ (4)2()2()b a a b -- 【答案】(1)22332x y z - (2)3m m -+ (3)a ab + (4)2a b - 【分析】(1)将分子和分母的公因式约去即可;(2)先将分子和分母分解因式,然后约分即可;(3)先将分子和分母分解因式,然后约分即可;(4)先将分子和分母分解因式,然后约分即可.【详解】(1)解:524371218x y z x z -=34223432663x z x y x z z ⋅-⋅=22332x y z -; (2)解:2239m m m --=(333))()(m m m m -+--=3m m -+; (3)解:2222a ab a ab b +++=2(())a a a b b ++=a a b +; (4)解:2()2()b a a b --=2()2()a b a b --=2a b -. 15.将下列各分式通分:(1)212,3x x ax -;(2)31,22a a b b a---;(3)2212,969a a a -++;(4)21,442x x x --. 【答案】(1)()213a x ax -,263x ax ;(2)32a a b -,12a b -;(3)()()2333a a a ++-,()()()22333a a a +--;(4)()()2222x x +-,()()()2222x x x x ++-.【分析】将分母两式取各式的最小公倍式,相同因式的次数取最高次幂,分子分母同乘分母的最小公倍式即可得出答案.【详解】解:(1)221(1)33x a x x ax --=,2263x ax ax =; (2)32a a b -,1122b a a b -=--; (3)22139(3)(3)a a a a +=-+-,2222(3)69(3)(3)a a a a a -=+++-; (4)21124(2)(2)2(2)(2)x x x x x ==-+-+-,(2)422(2)2(2)(2)x x x x x x x x +=-=---+-. 16.(2022·湖南永州·八年级期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①2222a b a b +-; ②22121x x x --+;③222)m n m n -+(;④3322a b a b ++其中不是“和谐分式”的是(填写序号即可); (2)若a 为整数,且2216x x ax +++为“和谐分式”请求出a 的值. 【答案】(1)②③④(2)17a =±或10a =-或8a =±【分析】(1)根据“和谐分式”的定义,进行判断即可;(2)根据“和谐分式”的定义,可知216x ax ++可以进行因式分解,且不能有因式2x +,进行求解即可.【详解】(1)解:由题意,得: ①()()222222a b a b a b a b a b ++=--+,是“和谐分式”; ②()()()22211112111x x x x x x x x -+-+==-+--,分式可以约分,不是“和谐分式”; ③()()2222()()m n m n m n m n m n m n m n-+--==+++,分式可以约分,不是“和谐分式”; ④()()()3322222222a b a b a b a ab b a b a ab b ++==+-++-+,分式可以约分,不是“和谐分式”; 综上,不是“和谐分式”的是②③④;故答案为:②③④;(2)解:∵2216x x ax +++为“和谐分式”, ∴216x ax ++可以进行因式分解,且不能有因式2x +,∴()()216116x ax x x ++=++或()()216116x ax x x ++=--或()()21628x ax x x ++=--或()22164x ax x ++=±, ∴17a =±或10a =-或8a =±.。

分式恒等变形

分式恒等变形

分式恒等变形分式恒等变形是数学中的一种重要的概念,它通过对分式进行一系列的等式变形,从而得到与原分式等价的新的分式。

在进行分式恒等变形时,我们需要遵循一定的规则和方法,以确保变形过程的准确性和合理性。

首先,我们来了解一下分式的基本结构。

一个分式通常由一个分子和一个分母组成,分子表示分式的上部,而分母则表示分式的下部。

例如,分式"1/2"中,1是分子,2是分母。

分式恒等变形的目的是通过对分式的分子和分母进行等式变形,得到与原分式等价的新的分式。

在进行变形时,我们可以使用一系列的代数运算和性质,如乘法、除法、加法、减法、分配律等。

下面,我们将介绍一些常见的分式恒等变形方法。

1.乘法法则:对分式的分子和分母同时乘以同一个数,可以得到一个与原分式等价的新的分式。

例如,对于分式"1/2",我们可以将其乘以2,得到"2/4",这两个分式是等价的。

2.除法法则:对分式的分子和分母同时除以同一个数,可以得到一个与原分式等价的新的分式。

例如,对于分式"2/4",我们可以将其除以2,得到"1/2",这两个分式是等价的。

3.加法法则:对分式的分子和分母同时加上同一个数,可以得到一个与原分式等价的新的分式。

例如,对于分式"1/2",我们可以将其分子和分母都加上1,得到"2/3",这两个分式是等价的。

4.减法法则:对分式的分子和分母同时减去同一个数,可以得到一个与原分式等价的新的分式。

例如,对于分式"2/3",我们可以将其分子和分母都减去1,得到"1/2",这两个分式是等价的。

在进行分式恒等变形时,我们需要确保变形过程的准确性和合理性。

我们可以使用代数运算和性质来推导和验证变形结果,以确保其正确性。

总结起来,分式恒等变形是数学中一种重要的概念,通过对分式的分子和分母进行等式变形,可以得到与原分式等价的新的分式。

分式的恒等变形精讲精练

分式的恒等变形精讲精练

一、化分式为部分分式的和【例1】 (4级)(第10届华罗庚金杯决赛)下面的等式成立:22465()()x y x y x y A x y B -+--=--++,求A 、B .【例2】 (4级)若代数式(1)(2)(3)x x x x p ++++恰好能分解为两个二次整式的乘积(其中二次项系数均为1,且一次项系数相同),则p 的最大值是 .【例3】 (5级)若213111a M Na a a -=+--+,求M 、N 的值.【例4】 (3级)(06年宁波市重点中学提前考试招生试题)已知2a x +与2b x -的和等于244xx -,求a ,b .【例5】 (4级)(2004年第15届培训题)已知正整数,a b 满足1114a b +=,则a b +的最大值是 .【例6】 (4级)若对于3±以外的一切数,28339m n xx x x -=+--均成立,求mn .【例7】 (5级)若关于x 的恒等式222Mx N c x x x a x b +=-+-++中,22Mx Nx x ++-为最简分式,且有a b >,a b c +=, 求N .【例8】 (4级)将269x -化为部分分式.分式恒等变形(竞赛部分)【例9】 (4级)化21(1)(2)x x x ---为部分分式.【例10】 (4级)将下列分式写成部分分式的和的形式:2342x x x +--.【例11】 (4级)将下列分式写成部分分式的和的形式:32222361(1)(3)x x x x x -++++.【例12】 (5级)将下列分式写成部分分式的和的形式:32241338(1)(2)(1)x x x x x x -+++--.【例13】 (4级)计算:2132x x x -++262x x ---2104x x ---.【例14】 (4级)将下列分式写成部分分式的和的形式:4322231(1)(1)x x x x x ++-+-.二、分式的恒等证明【例15】 (4级)(1994广东潮州市初中数学竞赛)求证:()()332222222222a a a ab b a ab b a ab b a ab b a b a b ⎛⎫⎛⎫++--+-=++-+ ⎪⎪-+⎝⎭⎝⎭【例16】 (5级)已知x 、y 、z 为三个不相等的实数,且111x y z y z x+=+=+,求证:2221x y z =.【例17】 (5级)已知:a c b d=,求证:22222222a b c d a b c d abcd ----++++++=.【例18】 (5级)若a b x a b -=+,b c y b c -=+,c az c a-=+,求证:(1)(1)(1)(1)(1)(1)x y z x y z +++=---【例19】 (5级)若1abc =,求证:1111a b ca ab b bc c ca++=++++++.【例20】 (5级)(2003年第1届“创新杯”数学邀请赛初中二年级第二试试题)已知1111a b ca ab b bc c ca++=++++++,求证:1abc =.【例21】 (6级)(1986年中国数学奥林匹克竞赛赛前培训试题) 已知2220a b cbc a ca b ab c ++=---,求证:()()()2222220a b cbc a ca b ab c ++=---.【例22】 (6级)已知0a b cb c c a a b++=---,求证:2220()()()a b c b c c a a b ++=---.【例23】 (5级)(2002年北京市中学生数学竞赛初二复赛题二)已知0abc ≠,证明:下列四个数3333()()()(),,,a b c b c a c a b a b c abc abc abc abc++------中至少有一个不小于6.【例24】 (5级)已知223344371642a b a b a b a b x y x y x x x y +=+=+=+=,,,,求证:5520a bx y+=。

2022中考真题分类6——分式(参考答案)

2022中考真题分类6——分式(参考答案)

2022中考真题分类——分式(参考答案)一、分式概念1.(2022·湖南怀化)代数式25x ,1π,224x +,x 2−23,1x ,12x x ++中,属于分式的有( ) A .2个B .3个C .4个D .5个2.(2022·黑龙江哈尔滨)在函数53x y x =+中,自变量x 的取值范围是___________.3.(2022·内蒙古包头)1x在实数范围内有意义,则x 的取值范围是___________.【答案】1x ≥−且0x ≠【分析】根据二次根式与分式有意义的条件求解即可.【详解】解:由题意得:x +1≥0,且x ≠0,解得:1x ≥−且0x ≠,故答案为:1x ≥−且0x ≠.【点睛】本题考查二次根式与分式有意义的条件,熟练掌握二次根式有意义的条件:被开方数为非负数;分式有意义的条件:分母不等于零是解题的关键.4.(2022·湖南娄底)函数y =的自变量x 的取值范围是_______. 10,10x x 即x 解得: 1.x >故答案为:1x >二、分式计算(选填题)5.(2022·四川眉山)化简422a a +−+的结果是( ) A .1B .22a a +C .224a a −D .2a a +6.(2022·浙江杭州)照相机成像应用了一个重要原理,用公式()111v f f u v=+≠表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,v ,则u =( )A .fv f v −B .f v fv −C .fv v f −D .v f fv−7.(2022·湖北襄阳)化简分式:ma mb a b a b +++=_____.8.(2022·辽宁沈阳)化简:21111x x x −⎛⎫−⋅= ⎪+⎝⎭______. 【答案】1x −##1x −+9.(2022·江苏苏州)化简2222x xx x−−−的结果是______.10.(2022·四川自贡)化简:223423244a aa aa a−−⋅+−+++=____________.11.(2022·广西玉林)若x是非负整数,则表示22242(2)x xx x−−++的值的对应点落在下图数轴上的范围是()A.①B.②C.③D.①或②12.(2022·山东济南)若m-n=2,则代数式222m n mm m n−⋅+的值是()A.-2B.2C.-4D.413.(2022·湖南郴州)若23a bb−=,则ab=________.【详解】解:23 a bb−=b,,14.(2022·河北)若x和y互为倒数,则112x yy x⎛⎫⎛⎫+−⎪⎪⎝⎭⎝⎭的值是()A.1B.2C.3D.415.(2022·四川成都)已知2272a a −=,则代数式2211a a a a a−−⎛⎫−÷ ⎪⎝⎭的值为_________. 【答案】72##3.5##312 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变16.(2022·四川南充)已知a >b >0,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷− ⎪ ⎪⎝⎭⎝⎭的值是( )A B .C D .17.(2022·山东菏泽)若22150a a−−=,则代数式2442a aaa a−⎛⎫−⋅⎪−⎝⎭的值是________.【答案】15【分析】先按分式混合运算法则化简分式,再把已知变形为a2−2a=15,整体代入即可.18.(2022·湖北鄂州)若实数a 、b 分别满足a 2−4a +3=0,b 2−4b +3=0,且a ≠b ,则11a b+的值为 _____.19.(2022·湖南)有一组数据:13123a =⨯⨯,25234a =⨯⨯,37345a =⨯⨯,⋯,21(1)(2)n n a n n n +=++.记123n n S a a a a =+++⋯+,则12S =____________.20.(2022·四川达州)0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =,b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b =+++,则12100S S S +++=_______. 【详解】解:a 111a S =+2221S a =+…,1001001S a =+100S ++=1故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab=,找出的规律是本题的关键.21.(2022·湖北随州)已知m是整数,则根据==可知m有最小值3721⨯=.设n于1的整数,则n的最小值为______,最大值为______.22.(2022·湖北恩施)观察下列一组数:2,12,27,…,它们按一定规律排列,第n个数记为na,且满足21112n n na a a+++=.则4a=________,2022a=________.,三、分式计算(解答题)23.(2022·内蒙古·)先化简,再求值:2344111x x x x x −+⎛⎫−−÷ ⎪−−⎝⎭,其中3x =.24.(2022·辽宁阜新)先化简,再求值:2691122a a a a a −+⎛⎫÷− ⎪−−,其中4a =.25.(2022·山东东营)先化简,再求值:221122y x y x y x xy y⎛⎫−÷⎪−+++⎝⎭,其中3,2x y ==. )()22x y y+ )()22x y y+ 时,原式=+−x x 26.(2022·辽宁朝阳)先化简,简求值:22234+4243x x x x x x x x −÷−−+++,其中212x −⎛⎫= ⎪⎝⎭. 2222332x x x x x x x x2233x x x x x 33x x x x =2142x −⎛⎫== ⎪⎭,27.(2022·辽宁丹东)先化简,再求值:224+−x x ÷24x x −−1x ,其中x =sin 45°.28.(2022·山东枣庄)先化简,再求值:(2x x −−1)÷22444x x x −−+,其中x =−4. 22)(2)(2)(x x x −−+222x x −+ 22x =−4时,原式=242−+=−1.【点睛】本题主要考查了分式的混合运算,熟练地掌握分式的运算法则将分式进行约分化简是解题的关键29.(2022·内蒙古鄂尔多斯)先化简,再求值:(22969a a a −−++1)÷226a a −,其中a =4sin 30°−(π−3)0.30.(2022·四川绵阳)先化简,再求值:3x y x y x yx x y x y⎛⎫−−+−÷⎪−−⎝⎭,其中1x=,100y=31.(2022·辽宁大连)计算2224214424x x x x x x x−+÷−−+−. 22222122x x x x x x x 211.x xx 【点睛】本题考查的是分式的混合运算,掌握键.32.(2022·广东深圳)先化简,再求值:2222441,x x x x x x −−+⎛⎫−÷ ⎪−⎝⎭其中 4.x =33.(2022·山东聊城)先化简,再求值:44422a a a a a a −−⎛⎫÷−− ⎪−⎝⎭,其中112sin 452a −⎛⎫=︒+ ⎪⎝⎭.34.(2022·湖南郴州)先化简,再求值:22a b a b a b ⎛⎫÷+ ⎪−+−⎝⎭,其中1a ,1b =.35.(2022·辽宁锦州·)先化简,再求值:2211211x x x x ⎛⎫÷−+ ⎪−++−⎝⎭,其中|1x =+.x 36.(2022·黑龙江)先化简,再求值:22221111a a a a a ⎛⎫−−−÷ ⎪−+⎝⎭,其中2cos301a =︒+.37.(2022·贵州毕节)先化简,再求值:2241442a a a a −⎛⎫÷− ⎪+++,其中2a =.38.(2022·湖北荆州)先化简,再求值:222212a b a b a b a ab b ⎛⎫−÷ ⎪−+−+⎝⎭,其中113a −⎛⎫= ⎪⎝⎭,()02022b =−.39.(2022·湖南湘潭)先化简,再求值:22211391x x x x x x x +÷−⋅−−+,其中2x =. 【答案】x +2,4【分析】先运用分式除法法则和乘法法则计算,再合并同类项.40.(2022·新疆)先化简,再求值:22931121112a aa a a a a⎛⎫−−÷−⋅⎪−+−−+⎝⎭,其中2a=.41.(2022·四川达州)化简求值:222112111a a aa a a a⎛⎫−+÷+⎪−+−−⎝⎭,其中31a.31a 时,原式=【点睛】本题考查了分式的化简求值,分母有理化,熟练掌握分式的运算法则以及正确的计算是解题的关键.42.(2022·山东滨州)先化简,再求值:344111a a a a a ++⎛⎫+−÷ ⎪−−⎝⎭,其中10(1tan 45π2)a −=︒+−。

分式的恒等变形习题

分式的恒等变形习题

一、化分式为部分分式的和【例1】 若213111a M N a a a -=+--+,求M 、N 的值.【巩固】已知正整数,a b 满足1114a b +=,则a b +的最小值是 .【例2】 已知2a x +与2b x -的和等于244x x -,求a ,b .【例3】 若关于x 的恒等式222Mx N c x x x a x b +=-+-++中,22Mx N x x ++-为最简分式,且有a b >,a b c +=, 求N .【例4】 将269x -化为部分分式.【例5】 化21(1)(2)x x x ---为部分分式.【例6】 将下列分式写成部分分式的和的形式:2342x x x +--. 例题精讲分式恒等变形(竞赛部分)【巩固】将下列分式写成部分分式的和的形式:32222361(1)(3)x x x x x -++++.【例7】 将下列分式写成部分分式的和的形式:4322231(1)(1)x x x x x ++-+-.二、分式的恒等证明 【例8】 求证:()()332222222222a a a ab b a ab b a ab b a ab b a b a b ⎛⎫⎛⎫++--+-=++-+ ⎪⎪-+⎝⎭⎝⎭【例9】 已知:a c b d=,求证:22222222a b c d a b c d abcd ----++++++=.【例10】 若a b x a b -=+,b c y b c -=+,c a z c a-=+,求证:(1)(1)(1)(1)(1)(1)x y z x y z +++=---【例11】 若1abc =,求证:1111a b c a ab b bc c ca++=++++++.【巩固】已知1111a b c a ab b bc c ca++=++++++,求证:1abc =.【例12】 已知0a b c b c c a a b++=---,求证:2220()()()a b c b c c a a b ++=---.【例13】 已知3142a b ab c d cd +==+==,,,,且a b c d B b c d c d a d a b a b c+++=++++++++。

苏科版八年级数学下_10.2分式的基本性质

苏科版八年级数学下_10.2分式的基本性质

别除以它们的公因式,叫做分式的约分.
2. 找公因式的方法
(1)当分子、分母都是单项式时,先找分子、分母系数的最
大公约数,再找相同字母的最低次幂,它们的积就是公
因式;
(2)当分子、分母都是多项式时,先把多项式分解因式,再
按(1)中的方法找公因式.
感悟新知
3. 约分的方法
知2-讲
(1)若分式的分子、分母都是单项式,就直接约去分子、分
(1) 1255xx2yy2=
(
3x 5y
);(2)a+ab22b=(a2a+22ba2b );
(3)
x23-x xy=
3
(x-y
).
知1-讲
解题秘方:观察等号两边已知的分子或分母发生了
什么样的变化,再根据分式的基本性质
用相同的变化确定所要填的式子.
感悟新知
知1-讲
解法提醒: 解决与分式的恒等变形有关的填空题时,一般从分子
常取最简公分母.
感悟新知
3. 通分的一般步骤 (1)确定最简公分母;
知3-讲
(2)用最简公分母分别除以各分母求商;
(3)用所得的商分别乘各分式的分子、分母得出同分母分式.
4. 约分与通分的关系
感悟新知
例 7 把下列各组分式通分:
(1) 6x52yz3和 4x33y2z;
(2)
x-a y,
3x-b 3y,
式,再按照分母都是单项式时求最简公分母的方法,
从系数、相同因式、不同因式三个方面去确定.
感悟新知
知2-讲
解:(1)分母 6x2yz3、4x3y2z 的的最简公分母是 12x3y2z3, 6x52yz3= 6x52·yz32·xy2xy= 1120xx3yy2z3, 4x33y2z= 4x33·y2z3·z23z2= 129xz32y2z3;

利用待定系数法因式分解和分式的拆分等

利用待定系数法因式分解和分式的拆分等

第2讲利用待定系数法因式分解.分式的拆分等一、方法技巧1.待定系数法运用于因式分解、分式的拆分等问题中,其理论依据是多项式恒等,也就是利用了多项式/(x) = g (x)的充要条件是:对于一个任意的值,都有/(X)= g(x):或者两个多项式各关于X的同类项的系数对应相等.2.使用待定系数法解题的一般步骤是:(1)确定所求问题含待定系数的一般解析式;(2)根据恒等条件,列出一组含待定系数的方程(组):(3)解方程(组),从而使问题得到解决.例如:"已知x2-5=(2-6/)-X2 +Z?x+c,求d, b, c 的值."解答此题,并不困难.只需将右式与左式的多项式中的对应项的系数加以比较后,就可得到b, c的值.这里的a, b f c是有待于确定的系数,这种解决问题的方法就是待定系数法.3.格式与步骤:(1)确定所求问题含待定系数的解析式.上面例题中,解析式就是:(2 —a)/+bx+c(2)根据恒等条件,列出一组含待定系数的方程.在这一题中,恒等条件是:(3)解方程或消去待定系数,从而使问题得到解决.a = l/• < b = 0c = -5二、应用举例类型一利用待定系数法解决因式分解问题【例题1】已知多项式2x4-3x3 +股‘ + 7x+b能被F + x—2整除(1)求o, b(2)分解因式:2x4-3x34-ax2 + 7x+b【答案】(1)a=一12和/?= 6 (2)2兀“-3x‘一12亍+ 7x+6 =(兀'+x-2)(2x‘一5兀一3)【解析】试题分析:(1)由条件可知疋+ /-2是该多项式的一个二次因式,而该多项式次数为巾,故可设2疋一3疋+ +7x+b = (x‘+兀一2)(2亍+肌¥+川),可解出〃7、m最后代入即可求出a、b的值.(2)由(1)可得结果试题解析:解:(1) T 多项式2x° —3x‘ + QX7 + 7x+ b 能被AT +x— 2 整除•••设2x4 -3x‘ + + 7x+b = (x,+兀一2)(2亍 + 〃?x + 〃),整理,得2x4一3x3 + ax2 +7x+b = 2x4 + (〃?+2)牙‘ + 伽+n-4)x2 + (/?-2m)x一2n m + 2 = -3 m+n-4=a n一2m = 7 b = -2/?b = 6•••a、b的值分别为-12和6.(2) 2疋-3屮-12亍 + 7兀+6 =(x2 +x-2)(2x z-5x-3)考点:1.待定系数法因式分解2.整式乘法3.解方程组.点评:用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘枳,这些因式中的系数可先用字母表示,它们的值是待定的,由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值.【难度】一般【例题2】分解因式:2x2 + 5xy-3y2-3x+5y-2【答案】2x2 + 5.巧-3y‘ - 3x + 5y-2 = (2x-y + l) (x+3y-2)【解析】试题分析:方法一因为2x2 + 5xy^-3y2=C2x-y)(x+3y),因此加果多项式能分解成两个关于x、y的一次因式的乘枳,那么设原式的分解式是(2x-y+加)(x + 3y切),其中加、n为待定系数•然后展开,利用多项式的恒等,求出〃7、〃的值.试题解析:解:•: 2亍+ 5厂一3尸=(2x_y) (x+3y),:.设2亍+5xy-3y2 -3x+5y-2 = (2x-y + m)(x + 3y + “)即2x2 + 5号一3才一3x+5y - 2 = (2x - y) (x+3y)+(m+2n )x4-(3/tt-n)y + nm"2 m =—3 n = -3m + In = -3 ①对比系数,得:3/n -n = 5 ②mn = -2③ = 1n = -2代入③式也成立.••• 2x 2 + 5xy^-3y 2-3x + 5y-2 = C2x-y + l) (x+3y-2)试题分析:方法二前面同思路1,因为2x 2 + 5心-3)F_3x+5y-2 =(2x-y)(x+3y)+(〃7+2“)x+(一幵)y + mn 是恒等式,所以对 任意的值,等式都成立,所以给取特殊值,即可求出〃7屮的值.试题解析:解:V 2x 2 + 5xy-3y 2 =(2x-y) (x+3y),/•设+ 5卩一3)F -3x+5y-2 = (2x —(x+3y+〃)即 2x 2 + 5A)?-3y 2 -3x+5y - 2 = (2x-y)(x+3y)+(加+2M )X +(3 加-/7)y+/wf?•・•该式是恒等式,・••它对所有使式子有意义的X, y 都成立,那么令x = 0, y = 0得:nm = -2®令 x = 0, y = 1得:3加一〃 +肋一3 = 0 ② m = l解①、②组成的方程组,得{ 或 n = -2m — 1把它们分别代入恒等式检验,得彳n = -2/• 2x 2 + 5xy-3y 2 -3x + 5y-2 = (2x- y+ 1) (x+3y-2)考点:1.待定系数法分解因式2.解方程组.点评:本题解法中方程的个数多于未知数的个数,必须把求得的值代入多余的方程逐一检验.若有的 解对某个方程或所设的等式不成立,则需将此解舍去:若得方程组无解,则说明原式不能分解成所 设形成的因式.【难度】较难类型二利用待定系数法解决分式拆分问题【例题3】将分式---------------- 拆分成两个分式的和的形式.(r + l)(x + l)1-x + 1解: 【例题【答案】 ------------------- = ---------------- + --------------(x2 +1)(% +1)2(%2 +1) 2(x +1)【解析】试题分析:[ax + b c设 ------- ------- =—+ —,将等式右边通分,再利用分子恒等求出a、b、c的值即可. (X" + l)(x+ 1) JT + 1 X+ 1试题解析:ax+b c x2 +1 x+1ax+b c 而「+ i ~ (a + c)x2 + (a + b)x+b + c(亍 + 1)(兀+1)即r 1=(•L + l)(X + l)(a + c)x2 + (a + b)x + b + c(x2 +l)(x+l)解得“弓"冷.1 -x+1 1——; ------------- = ; H ----------------------------(x2 + l)(x +1) 2(亍 +1) 2(x +1)考点:分式的恒等变形点评:拆分有理真分式的时候,分母含二次项,则设分子为Ax+B形式,分母只含一次项,则设分子为常数【难度】较难1 1 1 1------------- + -----------------------+ ----------------------- +・・・+ -----------------------a(a + l) (a + l)(a + 2) (a + 2)(a + 3) (a + 9)(a + 10)■ “ 小10[答案]— ------ ——a(a + 10)【解析】试题分析:本题的10个分式相加,无法通分,而式子的特点是:每个分式的分母都是两个连续整数的积(若d是整数),所以我们探究其中一个分式,找到相通的规律,从而解题.试题解析:1 A R解:我们设=- + —a(a + l) ci a + l1.A B A(a + l) + Ba (A + B)a + AIIIJ —— + ------ = ----------------------- =--------- - ------ - --a a + 1 a(a + l) a(a + l)所以]a(a +比较分子得:+ B = 解得:= lIA = 1 15 = —1卄〜1 1 1 1 1 1 1 1a a + l67 + 1 a + 2 a + 2 a + 3 a + 9 a + 10考点:分式计算.点评:在做题的时候见到式子的特点是:每个分式的分母都是两个连续整数的枳,可直接用公式1 1 1 jr/,— ----- -=---------- 拆分.n(n + l) n n + 1【难度】较难类型三利用待定系数法解决多项式中不含某项问题【例题5】已知(干一〃泾+3)(3兀一2)的积中不含x的二次项,则〃?的值是()2 2 3A. 0B. —C. 一一D. —3 3 2【答案】C【解析】试题分析:将多项式(亍-加+3)(3x-2)展开、合并,按x的降幕排列,根据积中不含x的二次项等价于F项的系数为零列方程即可求得加的值.试题解析:解:•・•(x2 - mx+3)(3x - 2) = 3x3 - 3mx2 +9x-2x2 + 2mx一6=—(3〃7+2)亍+(9+2〃7)X-6•・•积中不含x的二次项,•°・ 3/77 4-2 = 0»2解得/;/ = — .3故选C.考点:多项式乘以多项式.点评:多项式不含某项则某项的系数为零,根据这一条件列方程或方程组,从而求出待定系数的值.【难度】一般三、实战演练1•若多项式3F + 5JQ,—2于+兀+9>,+ ”能被3x—y + 4整除,则〃 = ________ .【答案】-4【解析】试题分析:此题可通过因式分解得到:被除式=商乂除式(余式为0),其除式为3x-y + 4即可试题解析:解:设原式=(3x — y + 4)(x+2y + 也)=3x2 + 5xy- 2y2+(3〃?+4)x+(8—〃7)y+3/w + 4 = 1 ①比较系数,得:老一加=9 ②n = 4加③由①,②解得〃7 = —1,代入③得n = -4考点:因式分解的应用点评:此题考查知识点是因式分解的应用,运用公式被除式二商x除式(余式为0)是解题关键.【难度】容易2.分解因式:h + x' + F + x + l【答案】x4 + x3+x2+x+l =(X2 + 1-耳Y+l)(〒 + ^\ + 1)2【解析】试题分析:这个多项式各项之间没有公因式也不符合乘法公式,又因为不是二次三项式所以不适用十字相乘法; 虽多于三项,但分组之后分解不能继续.因此,我们应采用其他的办法一待定系数法.这是一个四次五项式,首项系数为1,尾项也是1,所以它可以写成两个二次三项式的枳,再利用恒等式的性质列方程组求解即可.试题解析:解:设X1 + X3 + 妒 + 兀+1 = (x2 + mx+V)(x2 + nx +1)而(X2 + mx + l)(x2 + nx +1)m + n = lmn + 2 = 1/. x4 + x5 + x2 +x + l = (x2 + ] + l)(x2 + 上逅x +1)2 2考点:待定系数法因式分解.点评:本题考查了待定系数法因式分解解高次多项式,恰当设待定系数是关键.【难度】容易3.分解因式:ler + 3ab- 9b2 +146/- 3Z? + 20【答案】2亍+3”-松+14。

分式恒等变形公式

分式恒等变形公式

分式恒等变形公式分式恒等变形公式可是数学里的一个重要“武器”,它就像是一把神奇的钥匙,能帮咱们打开很多数学难题的大门。

咱先来说说啥是分式恒等变形。

简单来讲,就是把一个分式通过各种操作,变成跟它完全等价,但形式不同的另一个分式。

这就好比你有一块橡皮泥,你可以把它捏成各种形状,但本质上还是那块橡皮泥。

就拿一个简单的例子来说,比如说分式$\frac{a}{b}$,给分子分母同时乘以一个数 c ,就变成了$\frac{ac}{bc}$,这就是一种恒等变形。

在分式恒等变形中,有几个特别重要的公式。

比如说,通分,这可是个常用的手段。

假设咱们有两个分式,$\frac{a}{b}$和$\frac{c}{d}$,要把它们相加,就得先通分,通分后的结果就是$\frac{ad}{bd} +\frac{bc}{bd} = \frac{ad + bc}{bd}$。

这就像是把两条不同粗细的绳子,搓成一股更粗的绳子。

还有约分,这就像是把一个复杂的图形简化,只留下最关键的部分。

比如$\frac{ac}{bc}$,分子分母同时除以 c ,就变成了$\frac{a}{b}$。

我记得有一次给学生讲这个知识点的时候,有个学生特别迷糊,怎么都搞不明白为啥要通分约分。

我就拿分蛋糕来给他打比方。

我说,假如有一块大蛋糕要分给 b 个人,每个人能分到的就是$\frac{1}{b}$。

现在有 a 块这样的蛋糕,那总共不就是$\frac{a}{b}$嘛。

然后又来 c 块小一点的蛋糕,要分给 d 个人,每个人能分到$\frac{1}{d}$,那这 c 块蛋糕总共就是$\frac{c}{d}$。

现在要把这两种蛋糕合在一起分给大家,那不得先把它们变成一样大小的份额,才能好分嘛,这就是通分的道理。

这孩子一听,恍然大悟,眼睛都亮了。

再说说分式的乘法和除法。

分式相乘,就是分子乘分子,分母乘分母。

比如$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$。

整式乘除与因式分解(竞赛)

整式乘除与因式分解(竞赛)

11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 1代数补充公式:① 三项完全平方公式:2222()222a b c a b c ab bc ca ++=+++++② 立方和与立方差:{3322()()x y x y x xy y +=+-+3322()()x y x y x xy y -=-++③ 完全立方公式:{33223()33x y x x y xy y +=+++33223()33x y x x y xy y-=-+- 杨辉三角 0()1x y += (0)x y +≠1()x y x y +=+ 222()2x y x xy y +=++33223()33x y x x y xy y +=+++4432234()464x y x x y x y xy y +=++++ 554322345()510105x y x x y x y x y xy y +=+++++66542332456()61520156x y x x y x y x y x y xy y +=++++++………………一、因式定理和待定系数法1.多项式x 2+mx +5因式分解得(x +5)(x +n ),则m = ,n = .2.若关于x 的多项式x 2﹣px ﹣6含有因式x ﹣3,则实数p 的值为 .3.已知x 4+mx 3+nx ﹣16有因式(x ﹣1)和(x ﹣2),则m = ,n = .4.已知多项式ax 3+bx 2﹣47x ﹣15可被3x +1和2x ﹣3整除.试求a ,b 的值及另外的因式.5.如果x4﹣x3+kx2﹣2kx﹣2能分解为两个整系数的二次因式,试求k的值.6.已知x2﹣xy﹣2y2+mx+7y﹣3能够分解成两个整系数的一次因式的乘积,求m的值.7.对x5﹣1进行因式分解8.观察下列式子的因式分解做法:21(1)(1)-=-+x x xx3﹣1=x3﹣x+x﹣1=x(x2﹣1)+x﹣1=x(x﹣1)(x+1)+(x﹣1)=(x﹣1)[x(x+1)+1]=(x﹣1)(x2+x+1)x4﹣1=x4﹣x+x﹣1=x(x3﹣1)+x﹣1=x(x﹣1)(x2+x+1)+(x﹣1)=(x﹣1)[x(x2+x+1)+1]=(x﹣1)(x3+x2+x+1)…(1)模仿以上做法,尝试;x5﹣1(2)观察以上结果,猜想x n﹣1=;(n为正整数,直接写结果,不用验证)(3)根据以上结论,试求45+44+43+42+4+1的值.9.①(x﹣1)()=x6﹣1;②(x﹣1)(x6+x5+x4+x3+x2+x+1)=;③1+4+42+43+…+42013=.10.设多项式2x2+5x+3的一个因式为x+a,另一个因式为2x+b则(x+a)(2x+b)=2x2+5x+3则2x2+(2a+b)x+ab=2x2+5x+3则ab=3①,2a+b=5②若a,b都取整数,由①知有a=1,b=3;a=﹣1.b=﹣3;a=3,b=1;a=﹣3,b=﹣1只有a=1,b=3满足②则多项式2x2+5x+3分解因式为(x+1)(2x+3)仿照以上(1)的解题过程,分解因式3x2﹣5x﹣2.11.分解因式3244+--4376 x x x+--+x x x x 3223++-5192624x x y xy y++x x12.分解因式32x a b c x ab bc ca x abc-+++++-()()32+++-+---+()(32)(23)2()a b x a b c x a b c x b c13.试证明:(1)1x -是的91x -因式。

分式(三)分式恒等变形

分式(三)分式恒等变形

分式(三)分式恒等变形【学习目标】1.学习分式恒等变形常用的各类技巧方法.2.锻炼代数计算能力.3.增强轮换对称式的认识和理解.【专题简介】分式恒等变形可以包括各类代数技巧,课内大型考试不涉及,但是小型周练和老师平时的拓展会大量涉及.分式恒等变形为联赛考察热点之一,变形复杂,难度较大,学习的关键在于基本计算能力和轮换对称式的理解,同学们在学习的时候应注意多练习自己的代数计算能力,不要怕算,更不能不算,大多数题目的技巧都是计算过后才能发现和总结的.【专题分类】1、整体代入:2、连等式:3、配项法:4、乘法公式与因式分解:题型1 整体代入基础夯实【例1】已知a2-3b2=2ab,求2a ba b+-的值.【练1】(1)若x+y=-4,xy=-3,求11x++11y+的值.(2)已知1x+1y=5,求2522x xy yx xy y-+++的值.强化挑战【例2】当x分别取值12007,12006,12005,…,12,1,2,…,2005,2006,2007时,计算代数式2211xx-+的值,将所得的结果相加,其和等于( )A.-1B.1C.0D.2007【练2】对于正数x ,规定f (x )=1x x +,例如f (3)=313+=34,f (13)=13113+=14,计算:f (12013)+f (12012)+f (12011)+…+f (13)+f (12)+f (1)+…+f (2011)+f (2012)+f (2013)=题型2 连等 基础夯实【引例】若2x =3y =4z,求222234xy yz zx x y z ++++的值.【例3】(第20届“希望杯”全国数学邀请赛初2第1试)若a b c +=b c a +=c a b +,则223a b ca b c+++-= .【练3】(“希望杯”邀请赛试题)若a b =b c =c d =d a ,则a b c da b c d-+-+-+的值为 .强化挑战 【拓3.1】已知x y z u ++=y z u x ++=z u x y ++=u x y z ++,求x y z u +++y zu x+++z u x y +++u x y z ++的值.【拓3.2】已知x b c a +-=y c a b +-=za b c+-,求(b -c )x +(c -a )y +(a -b )z 的值.【拓3.3】(第20届“希望杯”全国数学邀请赛初2第2试)已知实数x ,y ,z 满足1x x +=2y y +=3z z +=3x y z++,则x +y +z = .【拓3.4】已知y z x x y z +-++=z x y y z x +-+-=x y zz x y+-+-=p .求p 3+p 2+p 的值.【拓3.5】已知p +q +r =9,且2p x yz -=2q y zx -=2r z xy -,求px qy rz x y z++++的值.【拓3.6】已知x ,y ,z 互不相等,x +1y =y +1z =z +1x=k ,求 (1)xyz 的值; (2)k 的值.题型3 配项法(拆添) 强化挑战【例4】已知实数a 、b 、c 满足a +b +c =11与1a b ++1b c ++1c a +=1317,求a b c ++b c a ++ca b+的值.【练4】(2012年全国初中数学竞赛)如果a ,b ,c 是正数,且满足a +b +c =9,(不完整)【例5】若x y z ++yz x++z x y +=1,求2x y z ++2y z x ++2z x y +的值.【练5】若2x y z ++2y z x ++2z x y +=0,求x y z ++yz x++z x y +的值.巅峰突破 【例6】已知a b c -+b c a -+ca b -=0,求证:()2a b c -+()2b c a -+()2c a b -=0.【练6】(2015年联赛初二组)已知()2ab c -+()2bc a -+()2ca b -=0,求证:a b c -+b c a -+ca b-=0【例7】已知a 、b 、c 满足a 2+b 2+c 2=1,a (1b +1c )+b (1a +1c)+c (1a +1b )=-3,那么a +b +c 的值为多少?【练7】已知非零实数a ,b ,c 满足a +b +c =0,求证:(a b c -+b c a -+c a b -)(c a b -+a b c -+bc a-)=9.题型4 乘法公式与因式分解 强化挑战【例8】已知xyz =1,x +y +z =2,x 2+y 2+z 2=16,求代数式12xy z ++12yz x ++12zx y+的值.【练8】(2012年全国初中数学联赛1试)已知实数a ,b ,c 满足abc =-1,a +b +c =4,231a a a --+231bb b --+231cc c --=49,求a 2+b 2+c 2的值.【拓8】a ,b ,c 是实数,若2222b c a bc +-,2222c a b ac +-,2222a b c ab+-之和恰等于1,求证:这三个分式的值有两个为1,一个为-1.第6讲 七年级尖端班课后作业分式(三)分式恒等变形【习1】实数a 、b 满足ab =1,记M =11a ++11b +,N =1a a ++1b b +,则M 与N 的关系是:( ) A .M >NB .M =NC .M <ND .不确定【习2】若1a +1b =5a b+,则22b a +22a b = .【习3】当x 分别取值2013,2012,2011,…,3,2,1,…,12011,12012,12013;计算代数式2211x x -+的值,将所得的结果相加,其和等于( ) A .-1 B .1 C .0 D .2009 【习4】如果a +b +c =1,11a ++12b ++13c +=0,那么(a +1)2+(b +2)2+(c +3)2的值为( ) A .36B .16C .49D .0【习5】有这样一组数据a 1,a 2,a 3,…,a n ,满足以下规律,a 1=12,a 2=111a -,a 3=211a -,…,a n=111n a --(n ≥2且n 为正整数),则a 2013的值为 .(结果用数字作答)【习6】设有理数a 、b 、c 都不为零,且a +b +c =0,则2221b c a +-+2221c a b +-+2221a b c +-的值是( )A .正数B .负数C .零D .不能确定【习7】设1x -1y =14,求2322y xy x y x xy +---的值.【习8】已知x y =12,求2222x x xy y -+·22x y x y -++2y x y -的值.【习9】已知2m +n =0,求分式222m nm n +-·(m +n )的值.【习10】已知2x +y =0,求22x y x xy -+·(x 2-y 2)÷2244x xy y x-+的值.【习11】(全国数学竞赛)若4x -3y -6z =0,x +2y -7z =0(xyz ≠0),求222222522310x y z x y z +---的值.【习12】若x y z z +-=x y z y -+=x y z x-++,求()()()x y y z z x xyz +++的值.【习13】若x +y +z =3,则()()()()()()333111111x y z x y z ----+-+-的值是 .【习14】已知x+y+z=3a(a≠0),那么()()()()()()()()()222x a y a y a z a z a x ax a y a z a--+--+---+-+-的值是.【习15】已知有理数a、b、c满足1a+1b+1c=1a b c++,求证:a=-b,或b=-c,或c=-a.【习16】已知3x y+=4y z+=5z x+,则222x y zxy yz zx++++=.【习17】设a+b+c=0,求222aa bc++222bb ac++222cc ab+的值.【习18】已知xyz=-6,x+y+z=2,x2+y2+z2=14,求代数式12xy z++12yz x++12zx y+的值.【习19】已知abc=1,a+b+c=2,a2+b2+c2=3,求11ab c+-+11bc a+-+11ca b+-的值.【习20】设x,y,z为互不相等的非零实数,且x+1y=y+1z=z+1x,求证:x2y2z2=1。

分式分式的基本性质

分式分式的基本性质

2023-11-04CATALOGUE目录•分式的定义与概念•分式的基本性质•分式的运算•分式方程•分式的简化与化简•分式在实际生活中的应用01分式的定义与概念分式的定义分子在分式$\frac{A}{B}$中,A叫做分式的分子。

分母在分式$\frac{A}{B}$中,B叫做分式的分母。

定义如果A、B表示两个整式,并且B中含有字母,那么式子$\frac{A}{B}$叫做分式。

分式值为0的条件当分母为0,而分子不为0时,分式的值无意义。

分式通分将异分母的分式化为同分母的分式的过程。

分式约分将分子和分母同时除以它们的公因式,将分式化简。

分式的基本概念分式的重要性分式是数学中一个重要的概念,是连接整式与分数的桥梁。

分式的运算是数学中的基本运算之一,掌握好分式的性质和运算法则是学习数学的基础。

02分式的基本性质03约分后结果约分后的结果是分子、分母没有公因式的分式或整式。

分式的约分01约分定义约分是分式的一种恒等变形,其目的是将一个分式化简成最简分式或整式。

02约分步骤首先将分子、分母的公因式提取出来,然后约去分子、分母的公因式。

分式的通分通分定义通分是将几个异分母的分式化为同分母的分式的一种恒等变形。

通分步骤首先确定每个分式的最简公分母,然后将每个分式的分子、分母同时乘以同一个不等于零的整式,化为同分母的分式。

通分后结果通分后的结果是同分母的分式。

分式的相等与不相等分式相等如果两个分式的值相等,那么这两个分式是相等的。

分式不相等如果两个分式的值不相等,那么这两个分式是不相等的。

03分式的运算1分式的加减法23将异分母分式转化为同分母分式,然后进行加减运算。

异分母分式相加减通过通分,将异分母分式转化为同分母分式。

通分分母不变,分子相加减得到结果。

分母不变,分子相加减将分子和分母进行因式分解,找到公因式并约分。

约分将分子和分母同时乘以一个不为零的数或式子,使得分母相同。

通分按照分数的乘除法规则进行计算。

分式的乘除法分式的乘除法按照运算顺序进行先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的。

沪教版(五四制)七年级数学上册 第九章整式: 整式的恒等变形讲义(无答案)

沪教版(五四制)七年级数学上册 第九章整式: 整式的恒等变形讲义(无答案)

第2讲 等式的恒等变形一、代数式的恒等变形:把一个代数式变换成另一个和它恒等的代数式,叫做代数式的恒等变形.代数式的恒等变形是数学的基础知识,它在化简、求值、证明恒等式等问题中,有着广泛的应用.整式的恒等变形是是代数式恒等变形的基础,涉及的主要内容有:整式的各种运算性质和法则、各种乘法公式的正逆与变形应用、因式分解的有关知识等.分式的恒等变形以整式的恒等变形为基础,并结合分式自身的特点,因此更具有独特的复杂性和技巧性,涉及的主要内容有:分式的性质与概念的灵活应用、四则运算、化简求值及恒等证明.二、等式的分类:(1)恒等式:无论用什么数值代替等式中的字母,等式总成立.如:123+=,23x x x +=,()()22a b a b a b +-=-(2)条件等式:只有用某些数值代替等式中的字母时,等式才成立.如:23x +=只有在1x =时才成立.(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不成立.如:125+=,23x x +=+三、等式的证明:等式的证明分为恒等式的证明和条件等式的证明.恒等式的证明主要是通过恒等变形,从等式的一边 证到另一边,或者证两边等于同一结果.;条件等式的证明要认真分析条件和所证等式之间的关系.(1)等式的证明一般是通过恒等变形把比较复杂的形式转化为比较简单的形式,即“从繁到简”.(2)等式证明的常用方法有:①左右法(即从左端推出右端,或从右端推出左端);②同一法(左右两端分别变形得到同一结果);③比较法(即证左右两端的差为零,或左右两端的比为1).【例题1】 (1)若335,50a b a b +=+=,求22a b +的值。

(2)已知()()2216,9a b a b +=-=,求33a b ab +的值。

(3)已知()()2216,9a b a b +=-=,求44a b ab +的值。

【例题2】(1)已知210,a a +-=求32243a a ++的值。

初中数学分式的概念、运算及分式方程培优(含解析)

初中数学分式的概念、运算及分式方程培优(含解析)

初中数学分式的概念、运算及分式方程培优考试要求:例题精讲:模块一分式的概念【例1】x为何值时,分式29113xx-++有意义?【解析】根据题意可得:110330xx⎧+≠⎪+⎨⎪+≠⎩,解得3x≠-且4x≠-;如果问:x为何值时,分式29113xx-++值为零,答案为3x=.【答案】3x=【巩固】⑴若分式216(3)(4)xx x--+有意义,则x;⑵若分式216(3)(4)xx x--+无意义,则x;【解析】⑴若分式216(3)(4)xx x--+有意义,则3x≠且3x≠-且4x≠-;⑵若分式216(3)(4)xx x--+无意义,则3x=或3x=-或4x=-;【答案】⑴3x≠且3x≠-且4x≠-;⑵3x=或3x=-或4x=-【例2】解下列不等式:①53xx-<-;②523xx->-【解析】①由题意可知5030xx->⎧⎨-<⎩或者5030xx-<⎧⎨->⎩,解得3x<;5x>,所以原不等式的解集为3x<或5x>;②5203x x -->-,即11303xx ->-,由题意可知113030x x ->⎧⎨->⎩或者113030x x -<⎧⎨-<⎩, 解得1133x <<;无解,所以原不等式的解集为1133x <<. 【答案】3x <或5x >;1133x <<.【巩固】⑴解不等式304x x +<- ;⑵解不等式334x x +>- .【解析】 ⑴由题意可知3040x x +>⎧⎨-<⎩或者3040x x +<⎧⎨->⎩,由得34x -<<;无解集,所以原不等式的解集为34x -<<;⑵由题意可知3304x x +->-,15204xx ->-,可得:152040x x ->⎧⎨->⎩或者152040x x -<⎧⎨-<⎩得1542x <<;无解集,所以原不等式的解集为1542x <<. 【答案】34x -<<;1542x <<.模块二 分式的运算☞分式的化简求值裂项【例3】 设为正整数,求证:. 【解析】,故【答案】【巩固】化简:. 【解析】 【答案】2100100x x+n 1111...1335(21)(21)2n n +++<⋅⋅-+1111()(21)(21)22121n n n n =--+-+111111111(1.....)(1)233521212212n n n -+-++-=-<-++1111...1335(21)(21)2n n +++<⋅⋅-+111.....(1)(1)(2)(99)(100)x x x x x x ++++++++111111111.........(1)(1)(2)(99)(100)11299100x x x x x x x x x x x x +++=-+-+-++++++++++211100100100x x x x =-=++【巩固】化简: 【解析】 原式 【答案】255x x+【例4】 化简:. 【解析】同理,,故.【答案】0【巩固】(第11届希望杯试题)已知,,为实数,且,,,求. 【解析】 由已知可知 ,三式相加得,,故. 【答案】16【巩固】化简:. 【解析】同理,, 故 【答案】022222111113256712920x x x x x x x x x x +++++++++++++11111(1)(1)(2)(2)(3)(3)(4)(4)(5)x x x x x x x x x x =+++++++++++++211555x x x x =-=++222()()()()()()a bc b ac c aba b a c b c b a c a c b ---++++++++22()()()()a bc a ac ac bc a ca b a c a b a c a b a c-+--==-++++++2()()b ac b a b c b a b c b a -=-++++2()()c ab c bc a c b c a c b-=-++++2220()()()()()()a bcb ac c aba b a c b c b a c a c b ---++=++++++a b c 13ab a b =+14bc b c =+15ca c a =+abc ab bc ca++113114115a b b cc a ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩1116a b c ++=1111116abc ab bc ca ab bc ca abc a b c===++++++222222a b c b c a c a ba ab ac bc b ab bc ac c ac bc ab ------++--+--+--+221111()()a b c a b a c a ab ac bc a b a c a b a c a b c a---+-==+=---+------2211b c a b ab bc ac b c a b --=---+--2211c a b c ac bc ab c a b c --=---+--2222220a b c b c a c a ba ab ac bc b ab bc ac c ac bc ab ------++=--+--+--+☞分式的恒等变形部分分式【例5】 下面的等式成立:22465()()x y x y x y A x y B -+--=--++,求A 、B . 【解析】2222465()()()()x y x y x y A x y B x y B A x A B y AB -+--=--++=-+--+-, 故有4B A -=,6A B +=,所以1A =,5B =.【答案】1A =5B =【巩固】若代数式(1)(2)(3)x x x x p ++++恰好能分解为两个二次整式的乘积(其中二次项系数均为1,且一次项系数相同),则p 的最大值是 . 【解析】设原式可分解为22()()x ax m x ax n ++++,展开可得:224322()()2()()x ax m x ax n x ax a m n x a m n x mn ++++=+++++++. 比较等号两边的系数可得:32a m n mn p =⎧⎪+=⎨⎪=⎩,,故22(2)21(1)1p m m m m m =-=-=--≤,最大值为1.【答案】1【例8】 若213111a M Na a a -=+--+,求M 、N 的值. 【解析】 2213()()1111a M N M N a M N a a a a -++-=+=--+-,所以31M N M N +=-⎧⎨-=⎩,所以12M N =-⎧⎨=-⎩ 【答案】1,2M N =-=-【巩固】(06年宁波市重点中学提前考试招生试题)已知2a x +与2b x -的和等于244xx -,求a ,b .【解析】 22()2()42244a b a b x a b x x x x x +--+==+--- 所以40a b a b +=⎧⎨-=⎩,解得22a b =⎧⎨=⎩【答案】2,2a b ==分式恒等证明【例9】 求证:()()332222222222a a a ab b a ab b a ab b a ab b a b a b ⎛⎫⎛⎫++--+-=++-+ ⎪⎪-+⎝⎭⎝⎭【解析】 左边()()333333333322a b a b a b a a b a a b a b a b a b a b a b -+--⎛⎫⎛⎫-+=--=⋅ ⎪⎪--++-+⎝⎭⎝⎭ ()()33332222a b a b a ab b a ab b a b a b -+=⋅=++-+=-+右边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档