中职数学基础模块下册《点到直线的距离》ppt课件1
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d
23 70 8 2 ( 7 )
2 2
14 14 53 53 53
❋直线到直线的距离转化为点到直线的距离
y P
l1 思考:任意两条平行线的距离是多少呢?
Q
l2
x
O
任意两条平行直线都可以写 成如下形式: l1 :Ax+By+C1=0 l2 :Ax+By+C2=0
在直线 l1上任取一点P x0 , y0 ,过点P作直线 l2的垂线,垂足为Q Ax0 By0 C2 则点P到直线l2的距离为: PQ A2 B2 点P在直线l1上, Ax0 By0 C1 0
A. 3
( D)
B. 3
3 C. 3
3 D. 3或 3
2.若点P(x,y)在直线x y 4 0上,O是原点, 则 OP的最小值是
A. 10
B.2 2
(B )
C. 6
D.2
3.若点(4,a)到直线 4 x 3 y 1的距离不大于 3, 则a的取值范围
A.0,10
5、求直线x-4y+6=0和8x+y-18=0与两坐 标轴围成的四边形的面积.
y
8x+y-18=0
3 9 3 13 MN (提示:M( 4 ,0),N(0, 2 ), 4
x-4y+6=0
N
P M
直线MN方程:4x+6y-9=0,
11 P(2,2)到直线MN的距离d= 2 13 ,
o
x
∴S四边形OMPN = S△OMN+S△PMN 15 = . 4
PR 2 PS 2 A2 B 2 Ax0 By0 C AB
l 过p作x轴的平行线, 交l与点R x1 , y0 ; R
AB 0, 这时l与x轴, y轴都相交,
y
P
RS
由三角形面积公式可得:
d RS PR PS
d A2 B 2 Ax0 By0 C AB
l
P
M
l1
T
(提示:由 MN 3 2 及两平行线 间的距离 MT =3 知,l 与 l1的夹 角为450,利用夹角公式求得l 的 斜率,进一步得 l 的方程。) (KEY:7x+y-17=0 或x-7y+19=0.)
Ө N
反馈练习:
1.点(3,m)到直线 l:x 3 y 4 0的距离等于1, 则m等于
B.0,10
D. ,0 10,
1 3 C. , 3 13
(A )
4.已知两直线3x 2 y 3 0与6 x my 1 0互相 平行,则它们之间的距 离等于
A.4
2 3 B.Fra Baidu bibliotek13 5 3 C. 26 7 13 D. 26
(D )
l R
y
P d Q
O
Ax0 By0 C Ax0 By0 C . A B
S
x
d
Ax0 By0 C A2 B 2
A=0或B=0,此公式也成立, 但当A=0或B=0时一般不用此 公式计算距离.
注: 在使用该公式前,须将 直线方程化为一般式.
例1:求点P(-1,2)到直线①2x+y-10=0; ②3x=2的距离。 解: ①根据点到直线的距离公式,得
Ax0 By0 C1 PQ C2 C1 2 2
A B
(两平行线间 的距离公式)
注:用两平行线间距离公式须将方程中x、y的系数化为 对应相同的形式。
例3:一直线经过点P(2,3),且和两平行线3x+4y+8=0与 3x+4y-7=0都相交,且交点间距离为 3 2 ,求直线方程. l2
d
y
P(-1,2) O
2 1 1 2 10 2 1
2 2
2 5
②如图,直线3x=2平行于y轴,
2 5 d ( 1) 3 3 x 用公式验证,结果怎样? l:3x=2
例2: 求平行线2x-7y+8=0与2x-7y-6=0的距离。 y 两平行线间的 l1:2x-7y+8=0 距离处处相等 l2: 2x-7y-6=0 x O P(3,0) 在l2上任取一点,例如P(3,0) P到l1的距离等于l1与l2的距离
法二:P(x0,y0), l:Ax+By+C=0, 设AB≠0,
d 作y轴的平行线, 交l与点S x0 , y2 Q Ax1 By0 C 0, Ax0 By2 C 0 By0 C Ax0 C x x1 , y2 S O A B Ax0 By0 C Ax0 By0 C PR x0 x1 , PS y0 y2 A B
小结:
(1)点到直线距离公式:
d
Ax0 By0 C A B
2 2
,
注意用该公式时应先将直线方程化为一般式;
(2)两平行直线间的距离:
d
C2 C1 A2 B 2
,
注意用该公式时应先将两平行线的x,y的系数整理 为对应相等的形式。
点到直线的距离
点到直线的距离
l
.P
点到直线的距离
y
l : Ax+By+C=0 Q
. P(x0,y0)
o x
问题:求点P(x0 ,y 0)到直线l:Ax+By+C=0的距离。
P
y l Q P(x0,y0) x l:Ax+By+C=0
O
法一:写出直线PQ的方程,与l 联立求出点Q的坐标, 然后用两点间的距离公式求得 PQ .