高考数学复习立体几何专题(公开课)(共6张PPT)
合集下载
《高中数学立体几何》课件
![《高中数学立体几何》课件](https://img.taocdn.com/s3/m/ad812a936e1aff00bed5b9f3f90f76c661374c8a.png)
立体几何在数学、工程、建筑等领域 有着广泛的应用,是理解和描述现实 世界空间关系的重要工具。
立体几何的重要性
01
02
03
培养空间思维能力
学习立体几何有助于培养 学生的空间想象力和逻辑 思维能力,提高解决实际 问题的能力。
数学学科基础
立体几何是数学学科体系 中的重要组成部分,对于 理解数学概念、掌握数学 方法具有重要意义。
《高中数学立体几何》ppt课 件
目 录
• 立体几何简介 • 立体几何基础知识 • 立体图形的性质与分类 • 立体几何的应用 • 解题技巧与思路 • 立体几何的未来发展
01
立体几何简介
什么是立体几何
立体几何是研究三维空间中图形和物 体性质的一门学科。它涉及到点、线 、面、体等基本元素,以及它们之间 的位置关系和度量关系。
角度的计算
角度是描述两条射线或线段之间夹角 的大小的量。在立体几何中,角度可 以通过使用三角函数或几何定理来计 算。
距离的计算
距离是描述两点之间或一点到一条线 段之间的最短路径的大小的量。在立 体几何中,距离可以通过使用勾股定 理或几何定理来计算。
03
立体图形的性质与分类
立体图形的性质
空间性
立体图形存在于三维空间 中,具有空间特性。
近现代发展
随着数学和科学技术的不断进步, 立体几何逐渐与代数学、分析学等 学科交叉融合,形成了更加丰富和 深入的研究领域。
02
立体几何基础知识
点、线、面的基本性质
点的基本性质
面的基本性质
Байду номын сангаас
点是几何学中最基本的元素,没有大 小和形状。在空间中,点的唯一特征 是它的位置。
面是由无数条线组成的,它只有面积 而没有厚度。面的形状和位置由其上 的点和其上的线的分布决定。
立体几何的重要性
01
02
03
培养空间思维能力
学习立体几何有助于培养 学生的空间想象力和逻辑 思维能力,提高解决实际 问题的能力。
数学学科基础
立体几何是数学学科体系 中的重要组成部分,对于 理解数学概念、掌握数学 方法具有重要意义。
《高中数学立体几何》ppt课 件
目 录
• 立体几何简介 • 立体几何基础知识 • 立体图形的性质与分类 • 立体几何的应用 • 解题技巧与思路 • 立体几何的未来发展
01
立体几何简介
什么是立体几何
立体几何是研究三维空间中图形和物 体性质的一门学科。它涉及到点、线 、面、体等基本元素,以及它们之间 的位置关系和度量关系。
角度的计算
角度是描述两条射线或线段之间夹角 的大小的量。在立体几何中,角度可 以通过使用三角函数或几何定理来计 算。
距离的计算
距离是描述两点之间或一点到一条线 段之间的最短路径的大小的量。在立 体几何中,距离可以通过使用勾股定 理或几何定理来计算。
03
立体图形的性质与分类
立体图形的性质
空间性
立体图形存在于三维空间 中,具有空间特性。
近现代发展
随着数学和科学技术的不断进步, 立体几何逐渐与代数学、分析学等 学科交叉融合,形成了更加丰富和 深入的研究领域。
02
立体几何基础知识
点、线、面的基本性质
点的基本性质
面的基本性质
Байду номын сангаас
点是几何学中最基本的元素,没有大 小和形状。在空间中,点的唯一特征 是它的位置。
面是由无数条线组成的,它只有面积 而没有厚度。面的形状和位置由其上 的点和其上的线的分布决定。
高考立体几何专题复习公开课获奖课件
![高考立体几何专题复习公开课获奖课件](https://img.taocdn.com/s3/m/4848a4506d85ec3a87c24028915f804d2b168787.png)
(7)假如一种平面与另一种平面垂线平行, 则这两个平面互相垂直
第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离
第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离
高考复习立体几何ppt课件
![高考复习立体几何ppt课件](https://img.taocdn.com/s3/m/1ef82e05d15abe23492f4d53.png)
(A) 有无数个 (B) 不能作出 (C) 只能作出一个 (D) 以上都有可能
BA
l
情况三
15
返回
例: 有以下四个命题: ① 若一条直线与另一条直线平行,则它就
与经过另一条直线的平面平行; ② 若一条直线垂直于一个平面的一条垂线,
则此直线平行于这个平面; ③ 若一条直线和一个平面内的两条直线都
垂直,则此直线必垂直于这个平面; ④ 平面内两条平行直线,若其中一条直线
求证:AC⊥面D1B1BD
D1
C1
பைடு நூலகம்A1
B1
D
C
O
A
B
40
返回
在正方体AC1中,O为下底面的中 心,B1H ⊥D1O, 求证:B1H⊥面D1AC
D1
C1
A1
H
B1
D
C
O
A
B
41
三垂线定理(逆) 复习:重要定理
如图,PA⊥平面,AO是平面的
P
斜线PO在平面内的射影, a
(1)若a⊥PO,则a⊥AO;
EH
∴ MN//CH
∴ MN //面BCE 22
返回
在正方体AC1中,O为平面ADD1A1的 中心,求证:CO // 面A1C1B
D1
C1
A1
B1
O
F
D
C
A
B
23
线面平行的性质
返回
(1)如果一条直线与一个平面平行, 则这条直线与这个平面无公共点
(2)如果一条直线与一个平面平行, 则这条直线与这个平面内的直线成 异面直线或平行直线
直线与平面 所成的角
定义
直线a、b是异面直线,经过空间任意 一点o,作直线a’、b’,并使a’//a, b’//b,我们把直线a’和b’所成的锐角 (或直角)叫做异面直线a和b所成的 角。
高考数学复习10立体几何.ppt
![高考数学复习10立体几何.ppt](https://img.taocdn.com/s3/m/a4fbc82edd3383c4ba4cd21c.png)
例3 如图所示,ABCD是边长为3的正 方形,EF∥AB,EF=32,EF 与
面ABCD的距离为2,则该多面体的体 积为( )
课堂互动讲练
9 A.2 C.6 【思路点拨】
B.5 15
D. 2
或依据提供选项,利用所求体积大于 VE-ABCD,可得答案.
课堂互动讲练
【解析】 法一:可利用排除法来解 决.棱锥 E-ABCD 的体积 V1=13×32×2 =6,而此多面体的体积 V>V1.故选 D.
三基能力强化
1.(教材习题改编)表面积为3π的
圆锥,它的侧面展开图是一个半圆, 则该圆锥的底面直径为( )
A.1
B.2
15 C. 5
2 15 D. 5
答案:B
三基能力强化
2.母线长为1的圆锥的侧面展开图的
圆心角等于43π,则该圆锥的体积为(
)
22 A. 81 π
8 B.81π
C.4815π
D.1801π
1.球的组合体 与球有关的组合体问题,一种 是内切,一种是外接.解题时要认 真分析图形,明确切点和接点的位 置,确定有关元素间的数量关系, 并作出合适的截面图.
课堂互动讲练
2.几何体的展开与折叠 几何体的表面积,除球以外,都是 利用展开图求得的.利用了空间问题平 面化的思想.把一个平面图形折叠成一 个几何体,再研究其性质,是考查空间 想象能力的常用方法,所以几何体的展 开与折叠是高考的一个热点.
三基能力强化
5.已知一个几何体的三视图如图所 示,则此几何体的表面积是__________.
答案:(5+ 2)πa2
三基能力强化
课堂互动讲练
考点一 多面体的表面积
求解有关多面体表面积的问 题,关键是找到其特征几何图形, 如棱柱中的矩形,棱台中的直角梯 形,棱锥中的直角三角形,它们是 联系高与斜高、边长等几何元素间 的桥梁,从而架起求侧面积公式中 的未知量与条件中已知几何元素间 的联系.
面ABCD的距离为2,则该多面体的体 积为( )
课堂互动讲练
9 A.2 C.6 【思路点拨】
B.5 15
D. 2
或依据提供选项,利用所求体积大于 VE-ABCD,可得答案.
课堂互动讲练
【解析】 法一:可利用排除法来解 决.棱锥 E-ABCD 的体积 V1=13×32×2 =6,而此多面体的体积 V>V1.故选 D.
三基能力强化
1.(教材习题改编)表面积为3π的
圆锥,它的侧面展开图是一个半圆, 则该圆锥的底面直径为( )
A.1
B.2
15 C. 5
2 15 D. 5
答案:B
三基能力强化
2.母线长为1的圆锥的侧面展开图的
圆心角等于43π,则该圆锥的体积为(
)
22 A. 81 π
8 B.81π
C.4815π
D.1801π
1.球的组合体 与球有关的组合体问题,一种 是内切,一种是外接.解题时要认 真分析图形,明确切点和接点的位 置,确定有关元素间的数量关系, 并作出合适的截面图.
课堂互动讲练
2.几何体的展开与折叠 几何体的表面积,除球以外,都是 利用展开图求得的.利用了空间问题平 面化的思想.把一个平面图形折叠成一 个几何体,再研究其性质,是考查空间 想象能力的常用方法,所以几何体的展 开与折叠是高考的一个热点.
三基能力强化
5.已知一个几何体的三视图如图所 示,则此几何体的表面积是__________.
答案:(5+ 2)πa2
三基能力强化
课堂互动讲练
考点一 多面体的表面积
求解有关多面体表面积的问 题,关键是找到其特征几何图形, 如棱柱中的矩形,棱台中的直角梯 形,棱锥中的直角三角形,它们是 联系高与斜高、边长等几何元素间 的桥梁,从而架起求侧面积公式中 的未知量与条件中已知几何元素间 的联系.
高考数学一轮复习 第六讲 立体几何课件
![高考数学一轮复习 第六讲 立体几何课件](https://img.taocdn.com/s3/m/a780a7703169a4517623a33e.png)
四、利用空间向量解决立体几何问题 1.抓住两个关键的向量:直线的方向向量与平面的法向量. 2.掌握向量的运算:线性运算与数量积运算. 3.正确进行转化,即将所求角转化为向量的夹角,将所求距离转化 为向量的模. 4.用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系; (2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值; (4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.
二、球与其他几何体的外接与内切 1.空间几何体与球接、切问题的求解方法 (1)求解球与棱柱、棱锥的接、切问题时,一般先过球心及接、切 点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用 平面几何知识寻找几何中元素间的关系求解. (2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂 直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成一个球的内接长 方体,利用4R2=a2+b2+c2求解.
一、几何体的结构特征 1.三视图问题的常见类型及解题策略 (1)由几何体的直观图求三视图.注意观察方向,能看到的部分用 实线表示,不能看到的部分用虚线表示. (2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球 的三视图,明确三视图的形成原理,结合空间想象将三视图还原为 直观图. (3)由几何体的部分视图画出剩余的部分视图.先根据已知的视图, 还原、推测直观图的可能形状,再推测剩下部分视图的可能形状. 当然若为选择题,也可将选项逐项代入,再看看给出的部分视图是 否符合.
2.几个与球有关的切、接常用结论 (1)已知正方体的棱长为a,球的半径为R,则 ①若球为正方体的外接球,则2R= 3 a; ②若球为正方体的内切球,则2R=a; ③若球与正方体的各棱相切,则2R= 2 a. (2)若长方体的同一顶点处的三条棱长分别为a,b,c,外接球的半径 为R,则2R= ������2 + ������2 + ������2 .
高中数学立体几何知识点PPT课件
![高中数学立体几何知识点PPT课件](https://img.taocdn.com/s3/m/90ce891704a1b0717ed5dd09.png)
创设情境 兴趣导入
观察平静的湖面、窗户的玻璃面、黑板面、课桌面、
9.
墙面等,发现它们都有一个共同的特征:平坦、光滑,
1
给我们以平面的形象,但是它们都是有限的.
平
面
的
基
本
性
质
第1页/共144页
动脑思考 探索新知
平面的概念就是从这些场景中抽象出来的.数学中的平面是指光滑
并且可以无限延展的图形.
9. 平静的湖面、窗户的玻璃面、黑板面、课桌面、墙面等,都是平面
面
有其他公共. 点,并且所有公共点的集合是过这个点的 一条直线.
的
性质3:不在同一条直线上的三个点,可以确定一 个平面.
基
本
性
质
第17页/共144页
自我反思 目标检测
学习方法
学习行为
学习效果
9.
1
平 面 的 基 本 性 质
第18页/共144页
第九章 立体几何
9.2 直线与直线、直线与平面、平面与平面平行的判定与性质
内且m ∥ 则 m ∥ l .
9.2 直线与直线、直线与平面、平面与平面平行的判定与性质
第36页/共144页
巩固知识 典型例题
例3 在如图所示的一块木料中,已知 BC∥平面 A1C1,BC∥ B1C1 , 要经过平面 A1C1内的一点P与棱BC将木料锯开,应当怎样画线? 解 画线的方法是: 在平面A1B1C1D1内, 过点P作直线B1C1的平行线EF, 分别交直线A1B1及直线D1C1与点E、F, 连接EB和FC.
面
公共点的集合就是这两个墙面的交线.
的
基
本
性
质
第8页/共144页
动脑思考 探索新知
观察平静的湖面、窗户的玻璃面、黑板面、课桌面、
9.
墙面等,发现它们都有一个共同的特征:平坦、光滑,
1
给我们以平面的形象,但是它们都是有限的.
平
面
的
基
本
性
质
第1页/共144页
动脑思考 探索新知
平面的概念就是从这些场景中抽象出来的.数学中的平面是指光滑
并且可以无限延展的图形.
9. 平静的湖面、窗户的玻璃面、黑板面、课桌面、墙面等,都是平面
面
有其他公共. 点,并且所有公共点的集合是过这个点的 一条直线.
的
性质3:不在同一条直线上的三个点,可以确定一 个平面.
基
本
性
质
第17页/共144页
自我反思 目标检测
学习方法
学习行为
学习效果
9.
1
平 面 的 基 本 性 质
第18页/共144页
第九章 立体几何
9.2 直线与直线、直线与平面、平面与平面平行的判定与性质
内且m ∥ 则 m ∥ l .
9.2 直线与直线、直线与平面、平面与平面平行的判定与性质
第36页/共144页
巩固知识 典型例题
例3 在如图所示的一块木料中,已知 BC∥平面 A1C1,BC∥ B1C1 , 要经过平面 A1C1内的一点P与棱BC将木料锯开,应当怎样画线? 解 画线的方法是: 在平面A1B1C1D1内, 过点P作直线B1C1的平行线EF, 分别交直线A1B1及直线D1C1与点E、F, 连接EB和FC.
面
公共点的集合就是这两个墙面的交线.
的
基
本
性
质
第8页/共144页
动脑思考 探索新知
人教版高中数学高考一轮复习--高考中的立体几何(课件 共47张PPT)
![人教版高中数学高考一轮复习--高考中的立体几何(课件 共47张PPT)](https://img.taocdn.com/s3/m/ee5f79cadc3383c4bb4cf7ec4afe04a1b071b0f3.png)
∴CA,CB,CC1两两垂直.
以点C为坐标原点, , , 1 分别为x轴、y轴、z轴正方向,建立空间直
角坐标系,如图所示,
则 C(0,0,0),C1(0,0,2),A1(2 3,0,4),E(0,2,4λ).
设平面 A1EC1 的法向量为 n1=(x1,y1,z1),
1 ·1 1 = 0,
3.用向量方法证明面面平行或垂直的方法:α∥β⇔e1∥e2⇔存在实数λ,使
2 ⊥ ,
e2=λe1(e1≠0);α⊥β⇔e1⊥e2⇔e1·e2=0;α∥β⇔
其中α,β为不重合的
2 ⊥ .
两个平面,e1,e2为α,β的法向量,A,B,C为α内不共线的三个点.
例2 如图,CC1⊥平面ABC,平面ABB1A1⊥平面ABC,四边形ABB1A1为正
2
2 2
2 2 2
设平面 PDC 的法向量为 n=(x,y,z),=(-1,0,1), =(-1,1,1),
- + = 0,
· = 0,
则
即
取 n=(1,0,1).
- + + = 0,
· = 0,
1 1
∵n· = 2 − 2=0,∴ ⊥n.
又 EF⊄平面 DCP,∴EF∥平面 DCP.
2 31 + 21 = 0,
则
即
21 + (4-2)1 = 0,
1 ·1 = 0,
3
令 z1=1,则 x1=- ,y1=1-2λ,
3
3
可取 n1= - 3 ,1-2,1 .
设平面 A1EC 的法向量为 n2=(x2,y2,z2),
2 ·1 = 0,
2 32 + 42 = 0,