椭圆与双曲线知识点集合
圆椭圆双曲线抛物线知识点汇总
圆椭圆双曲线抛物线知识点汇总一、圆椭圆双曲线抛物线的定义1. 圆:圆是平面上到定点距离相等的所有点的集合。
圆由圆心和半径唯一确定。
2. 椭圆:椭圆是平面上到两个定点的距离之和为常数的所有点的集合。
椭圆由两个焦点和两个半轴唯一确定。
3. 双曲线:双曲线是平面上到两个定点的距离之差为常数的所有点的集合。
双曲线由两个焦点和两个实轴唯一确定。
4. 抛物线:抛物线是平面上到定点距离等于到定直线的距离的所有点的集合。
抛物线由焦点和直线唯一确定。
二、圆椭圆双曲线抛物线的方程1. 圆:圆的标准方程为(x-a)² + (y-b)² = r²,其中圆心为(a, b),半径为r。
2. 椭圆:椭圆的标准方程为x²/a² + y²/b² = 1,其中a和b分别为x轴和y轴上的半轴长。
3. 双曲线:双曲线的标准方程为x²/a² - y²/b² = 1或者y²/a² - x²/b² = 1,取决于焦点的位置。
4. 抛物线:抛物线的标准方程为y² = 4ax或者x² = 4ay,取决于抛物线开口的方向。
三、圆椭圆双曲线抛物线的性质1. 圆:圆的直径是圆上任意两点之间的最大距离,且所有直径相等。
2. 椭圆:椭圆的离心率介于0和1之间,离心率越接近0,椭圆越接近于圆。
3. 双曲线:双曲线分为两支,每一支的焦点到定点的距离之差相等。
4. 抛物线:抛物线的焦点在抛物线上方,开口方向取决于系数a的正负号。
四、圆椭圆双曲线抛物线的应用1. 圆:在几何中常常与角度和三角函数结合,用于描述正弦和余弦函数的周期性。
2. 椭圆:在天体力学中用于描述行星轨道的形状,以及通信中的极化椭圆。
3. 双曲线:在光学和电磁学中用于描述折射和反射现象。
4. 抛物线:在物理学中用于描述自由落体运动和抛物线运动。
高中数学【椭圆与双曲线】知识点总结
高中数学【椭圆与双曲线】知识点总结姓名:(一)椭圆1.椭圆的定义如果平面内一动点到两定点距离之和等于正的常数(大于两定点的距离),则动点的规迹是椭圆即|PF1|+|PF2|=2a其中P是动点,F1,F2是定点且|F1F2|=2C当a>c时表示当a=c时表示当a<c时第二定义:动点M与一个定点的距离和它到一条定直线的距离的比是常数e(0<e<1)时,这个点的规迹是椭圆。
定点是,定直是e是2.椭圆的标准方程参数方程(1)标准方程(2)参数方程3.椭圆的性质(1)焦点在x轴上的椭圆标准方程x,y的范围顶点焦点对称轴对称中心长半轴的长短半轴的长焦距离心率e=范围e越大椭圆越e越小椭圆越准线焦半径公式|PF1|=|PF2|=(F1,F2分别为椭圆的左右两焦点,P为椭圆上的一点)椭圆的通径(过椭圆的一个焦点F且垂直于它过焦点的对称轴的弦)|P1P2|=(2)焦点在y轴上的椭圆标准方程x,y的范围顶点焦点对称轴对称中心长半轴的长短半轴的长焦距离心率e=范围e越大椭圆越e越小椭圆越准线焦半径公式|PF1|=|PF2|=(F1,F2分别为椭圆的下上两焦点,P为椭圆上的一点)4.椭圆系(1)共焦点的椭圆系方程为2221x yk k c+=-(其中k>c2,c为半焦距)(2)具有相同离心率的标准椭圆系的方程2222(0) x ya bλλ+=>(二)双曲线1.双曲线的定义如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支F1,F2为两定点,P为一动点,(1)若||PF1|-|PF2||=2a①0<2a<|F1F2|则动点P的轨迹是②2a=|F1F2|则动点P的轨迹是③2a=0则动点P的轨迹是(2)若|P F1|-|PF2|=2a①0<2a<|F1F2|则动点P的轨迹是②2a=|F1F2|则动点P的轨迹是③2a=0则动点P的轨迹是2.双曲线的标准方程3.双曲线的性质(1)焦点在x轴上的双曲线标准方程x,y的范围顶点焦点对称轴对称中心实半轴的长虚半轴的长焦距离心率e=范围e越大双曲线的开口越e越小双曲线的开口越准线渐近线焦半径公式|PF1|=|PF2|= (F1,F2分别为双曲线的左右两焦点,P为椭圆上的一点)(3)焦点在y轴上的双曲线标准方程x,y的范围顶点焦点对称轴对称中心实半轴的长虚半轴的长焦距离心率e=范围e越大双曲线的开口越e越小双曲线的开口越准线渐近线焦半径公式|PF1|=|PF2|= (F1,F2分别为双曲线的下上两焦点,P为椭圆上的一点)4.等轴双曲线22(0)x yλλ=±③离心率为-=≠特点①实轴与虚轴长相等②渐近线互相垂直y x5.共轭双曲线以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原双曲线的共轭双曲线特点①有共同的渐近线②四焦点共圆双曲线22221x ya b+=的共轭双曲线是6.双曲线系(1)共焦点的双曲线的方程为2221x yk k c+=-(0<k<c2,c为半焦距)(2)共渐近线的双曲线的方程为2222(0) x ya bλλ-=≠。
椭圆双曲线抛物线知识点汇总
椭圆双曲线抛物线知识点汇总椭圆、双曲线、抛物线知识点汇总一、椭圆(Ellipse)1. 定义:椭圆是平面上所有到两个固定点(焦点)距离之和为常数的点的集合。
2. 标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)其中,\(a\) 是椭圆的长半轴,\(b\) 是短半轴。
3. 性质:- 焦点:椭圆上任意一点到两个焦点的距离之和是一个大于两焦点间距离的常数,即 \(2a\)。
- 椭圆的长轴和短轴互相垂直。
- 椭圆的面积 \(A = \pi a b\)。
4. 焦点性质:- 椭圆上任意一点 \(P\) 与两个焦点 \(F_1\) 和 \(F_2\) 构成的三角形中,\(PF_1 + PF_2 = 2a\)。
5. 椭圆的离心率 \(e\):\(e = \frac{c}{a}\)其中,\(c = \sqrt{a^2 - b^2}\) 是焦点到中心的距离。
二、双曲线(Hyperbola)1. 定义:双曲线是平面上所有到两个固定点(焦点)距离之差为常数的点的集合。
2. 标准方程:\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\) 为右开口双曲线;\(\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1\) 为上开口双曲线。
3. 性质:- 焦点:双曲线上任意一点到两个焦点的距离之差是一个小于两焦点间距离的常数,即 \(2a\)。
- 双曲线的两个分支分别位于中心点的两侧。
- 双曲线的面积无限大。
4. 焦点性质:- 双曲线上任意一点 \(P\) 与两个焦点 \(F_1\) 和 \(F_2\) 构成的三角形中,\(PF_1 - PF_2 = 2a\)。
5. 双曲线的离心率 \(e\):\(e = \frac{c}{a}\)其中,\(c = \sqrt{a^2 + b^2}\) 是焦点到中心的距离,且 \(e > 1\)。
高三数学知识点椭圆双曲线
高三数学知识点椭圆双曲线高三数学知识点:椭圆与双曲线椭圆与双曲线是高中数学中重要的几何概念之一,它们在代数几何中有着广泛的应用。
本文将重点介绍椭圆和双曲线的基本定义和性质,并讨论它们的图像、方程和几何意义。
一、椭圆的定义和性质椭圆是平面上一点到两个给定点的距离之和等于常数的点的集合。
这两个给定点称为椭圆的焦点,两个焦点之间的距离称为椭圆的焦距。
椭圆还有一个重要的性质,即椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度。
椭圆的标准方程为:(x-a)²/b² + (y-c)²/d² = 1,其中(a, c)为椭圆的中心坐标,b和d分别为短轴和长轴长度。
根据椭圆的方程,我们可以确定椭圆的图像和位置。
椭圆还有其他一些重要的性质,如离心率和焦半径等。
离心率是一个表示椭圆形状的重要指标,它的值介于0和1之间。
当离心率接近0时,椭圆形状趋近于圆形;当离心率接近1时,椭圆形状趋近于长条形。
二、双曲线的定义和性质双曲线是平面上满足一点到两个给定点的距离之差等于常数的点的集合。
这两个给定点称为双曲线的焦点,两个焦点之间的距离称为双曲线的焦距。
双曲线还有一个重要的性质,即双曲线上任意一点到两个焦点的距离之差等于双曲线的常数项。
双曲线的标准方程有两种形式:(x-a)²/b² - (y-c)²/d² = 1 和 (y-c)²/d² - (x-a)²/b² = 1,其中(a, c)是双曲线的中心坐标,b和d分别为短轴和长轴长度。
根据双曲线的方程,我们可以确定双曲线的图像和位置。
双曲线也有离心率和焦半径等重要性质。
与椭圆不同的是,双曲线的离心率大于1,表明双曲线的形状更加扁平。
双曲线还有两条渐近线,它们与双曲线的曲线趋势完全相同。
三、椭圆和双曲线的几何意义椭圆和双曲线有着重要的几何意义和应用。
在椭圆和双曲线的研究中,我们可以探索许多有趣的性质和结论。
双曲线和椭圆知识点汇总
椭圆知识点知识要点小结:知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
高中椭圆双曲线抛物线知识点汇总
高中椭圆双曲线抛物线知识点汇总一、椭圆的定义和基本特性1. 椭圆的定义:椭圆是平面上到两定点F1和F2的距离之和为常数2a (a>0)的点P的轨迹。
2. 椭圆的基本特性:椭圆有两条对称轴,长轴和短轴,焦点到中心的距离为c,满足c²=a²-b²,离心率e的定义为e=c/a。
3. 椭圆的标准方程:椭圆的标准方程为x²/a²+y²/b²=1(a>b>0),中心在原点,长轴与x轴平行。
二、双曲线的定义和基本特性1. 双曲线的定义:双曲线是平面上到两定点F1和F2的距离之差为常数2a的点P的轨迹。
2. 双曲线的基本特性:双曲线有两条对称轴,两个顶点,离心率e的定义为e=c/a。
3. 双曲线的标准方程:双曲线的标准方程为x²/a²-y²/b²=1(a>0,b>0),中心在原点,x²项系数为正。
三、抛物线的定义和基本特性1. 抛物线的定义:抛物线是平面上到定点F与直线l的距离相等的点P 的轨迹。
2. 抛物线的基本特性:抛物线有焦点F和直线l两个重要元素,焦点到顶点的距离为p,离心率e的定义为e=1。
3. 抛物线的标准方程:抛物线的标准方程为y²=2px(p>0),焦点在y轴上。
四、椭圆双曲线抛物线的性质比较1. 焦点、离心率和轴与方程的关系:椭圆的焦点在轴上,双曲线的焦点在中心轴的延长线上,抛物线的焦点在轴上。
2. 直线与曲线的关系:椭圆是对称轴与任意直线的交点个数有限,双曲线是对称轴与任意直线的交点有两个,抛物线是对称轴与任意直线的交点有且仅有一个。
3. 其他性质:椭圆和双曲线是封闭曲线,抛物线是开口向上或者向下的曲线。
五、高中数学中的应用1. 物理中的应用:椭圆、双曲线和抛物线在经典力学、电磁学等物理学科中有着重要的应用,比如行星轨道、抛物线运动等。
双曲线和椭圆的知识点
双曲线和椭圆的知识点一、双曲线的定义和基本性质双曲线是平面上的一种曲线,由两个相交的直线割成两个分支。
它的定义式为x^2/a^2-y^2/b^2=1或y^2/b^2-x^2/a^2=1,其中a和b为正实数。
双曲线有以下基本性质:1. 双曲线关于x轴、y轴对称;2. 双曲线有两条渐近线,即与x轴和y轴夹角趋近于0或π/2的直线;3. 双曲线在两条渐近线处无界;4. 双曲线分为左右两个分支,左分支开口向左,右分支开口向右;5. 双曲线在x=a和x=-a处有垂直渐近线。
二、椭圆的定义和基本性质椭圆是平面上一条封闭弧形,其所有点到两个定点之距离之和等于定长(即椭圆长轴),定义式为(x-h)^2/a^2+(y-k)^2/b^2=1或(x-h)^2/b^2+(y-k)^2/a^2=1,其中(h,k)为椭圆中心坐标,a和b为长短半轴长度。
椭圆有以下基本性质:1. 椭圆关于x轴、y轴对称;2. 椭圆有两条主轴,即长轴和短轴,交于椭圆中心;3. 椭圆的离心率为e=c/a,其中c为焦点到中心的距离;4. 椭圆上任意一点P(x,y)到焦点F1和F2的距离之和等于椭圆长轴长度;5. 椭圆在x=h处有垂直渐近线。
三、双曲线和椭圆的参数方程双曲线的参数方程为x=acosht,y=bsinht或x=asect,y=btant,其中t为参数。
这两种参数方程对应左右两个分支。
椭圆的参数方程为x=h+acosθ,y=k+bsinθ或x=h+bsinθ,y=k+acosθ,其中θ为参数。
四、双曲线和椭圆的焦点双曲线有两个焦点F1(ae,0)和F2(-ae,0),其中e为离心率。
椭圆也有两个焦点F1(h+ae,k)和F2(h-ae,k),其中a、b、h、k、e均已定义。
五、双曲线和椭圆的面积双曲线面积公式为S=abπ,其中a和b分别为左右两个分支的半轴长度。
椭圆面积公式为S=abπ,其中a和b分别为长轴和短轴长度。
六、双曲线和椭圆的应用1. 双曲线在物理学中有许多应用,如描述电磁波传播、天体运动等。
椭圆与双曲线知识点总结
椭圆与双曲线知识点总结(一)椭圆1.椭圆的定义如果平面内一动点到两定点距离之和等于正的常数(大于两定点的距离),则动点的规迹是椭圆即|PF1|+|PF2|=2a 其中P是动点,F1,F2是定点且|F1F2|=2C当a>c时表示当a=c时表示当a<c时第二定义:动点M与一个定点的距离和它到一条定直线的距离的比是常数e(0<e<1)时,这个点的规迹是椭圆。
定点是,定直是e是2.椭圆的标准方程参数方程(1)标准方程(2)参数方程3.椭圆的性质(1)焦点在x标准方程x,y的范围顶点焦点对称轴对称中心长半轴的长短半轴的长焦距离心率e= 范围e越大椭圆越e越小椭圆越准线焦半径公式|PF1|= |PF2|= (F1,F2分别为椭圆的左右两焦点,P为椭圆上的一点) 椭圆的通径(过椭圆的一个焦点F(2)焦点在y轴上的椭圆标准方程x,y的范围顶点焦点对称轴对称中心长半轴的长短半轴的长焦距离心率e= 范围e越大椭圆越e越小椭圆越准线焦半径公式|PF1|= |PF2|= (F1,F2分别为椭圆的下上两焦点,P为椭圆上的一点)4.椭圆系(1)共焦点的椭圆系方程为2221x yk k c+=-(其中k>c2,c为半焦距)(2 )具有相同离心率的标准椭圆系的方程2222(0) x ya bλλ+=>(二) 双曲线1.双曲线的定义如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支F1,F2为两定点,P为一动点,(1)若||PF1|-|PF2||=2a①0<2a<|F1F2|则动点P的轨迹是②2a=|F1F2|则动点P的轨迹是③2a=0则动点P的轨迹是(2) 若|P F1|-|PF2|=2a①0<2a<|F1F2|则动点P的轨迹是②2a=|F1F2|则动点P的轨迹是③2a=0则动点P的轨迹是2.双曲线的标准方程3.双曲线的性质(1)焦点在x轴上的双曲线标准方程x,y的范围顶点焦点对称轴对称中心实半轴的长虚半轴的长焦距离心率e= 范围e越大双曲线的开口越e越小双曲线的开口越准线渐近线焦半径公式|PF1|= |PF2|= (F1,F2分别为双曲线的左右两焦点,P为椭圆上的一点)(3) 焦点在y 轴上的双曲线标准方程x,y 的范围顶点 焦点 对称轴 心实半轴的长 虚半轴的长 焦距 离心率e= 范围 e 越大双曲线的开口越 e 越小双曲线的开口越准线 渐近线 焦半径公式|PF 1|= |PF 2|= (F 1,F 2分别为双曲线的下上两焦点,P 为椭圆上的一点)4. 等轴双曲线22(0)x y λλ-=≠特点①实轴与虚轴长相等②渐近线互相垂直y x=±③离心率为5. 共轭双曲线以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原双曲线的共轭双曲线特点①有共同的渐近线②四焦点共圆双曲线22221x y a b+=的共轭双曲线是 6.双曲线系(1) 共焦点的双曲线的方程为2221x y k k c+=-(0<k<c 2,c 为半焦距) (2) 共渐近线的双曲线的方程为2222(0)x y a bλλ-=≠。
高中数学中的椭圆与双曲线知识点总结
高中数学中的椭圆与双曲线知识点总结在高中数学中,椭圆与双曲线是解析几何部分的重要内容,它们具有独特的性质和广泛的应用。
下面让我们一起来详细了解一下这两个重要的数学概念。
一、椭圆椭圆是平面内到定点 F1、F2 的距离之和等于常数(大于|F1F2|)的动点轨迹。
1、椭圆的标准方程当焦点在 x 轴上时,椭圆的标准方程为:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为椭圆的长半轴长,\(b\)为椭圆的短半轴长,\(c\)满足\(c^2 = a^2 b^2\),\(c\)为半焦距,焦点坐标为\((\pm c, 0)\)。
当焦点在 y 轴上时,椭圆的标准方程为:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\)),焦点坐标为\((0, \pm c)\)。
2、椭圆的性质(1)对称性:椭圆关于 x 轴、y 轴和原点对称。
(2)范围:对于\(\frac{x^2}{a^2} +\frac{y^2}{b^2} =1\),\(a \leq x \leq a\),\(b \leq y \leq b\)。
(3)离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e < 1\)),离心率反映了椭圆的扁平程度,\(e\)越接近 0,椭圆越接近圆;\(e\)越接近 1,椭圆越扁。
3、椭圆的焦半径设椭圆上一点\(P(x_0, y_0)\),焦点为\(F_1\)、\(F_2\),则\(|PF_1| = a + ex_0\),\(|PF_2| = a ex_0\)。
4、椭圆的切线方程若点\(P(x_0, y_0)\)在椭圆\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)上,则过点\(P\)的切线方程为\(\frac{x_0x}{a^2} +\frac{y_0y}{b^2} = 1\)。
椭圆双曲线知识点的总结
椭圆知识点【知识点1】椭圆的概念:椭圆的第一定义 在平面内到两定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.当动点设为M 时,椭圆即为点集P ={}12|2M MF MF a += 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形。
椭圆的第二定义:在平面内,满足到定点的距离与到定直线的距离之比是等于一个常数的动点的轨迹叫做椭圆。
其中这个定点叫做椭圆的焦点,这条定直线叫做相应于该焦点的准线。
注:定义中的定点不在定直线上。
如果将椭圆的中心与坐标原点重合,焦点放在X 轴上,准线方程是: 焦点放在Y 轴上,准线方程是:【知识点2】椭圆的标准方程焦点在x 轴上椭圆的标准方程: ()222210x y a b a b += >>,焦点坐标为(c ,0),(-c ,0)焦点在y 轴上的椭圆的标准方程为:()222210x y a b b a+= >>焦点坐标为(0,c ,)(o ,-c )【知识点3】椭圆的几何性质:规律:(1)椭圆焦点位置与x 2,y 2系数间的关系:焦点在分母大的那个轴上.(2)椭圆上任意一点M 到焦点F 的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离标准方程()222210x y a b a b += >> ()222210x y a b b a += >> 图形性质范围 a x a -≤≤b y b -≤≤对称性 对称轴:坐标轴 对称中心:原点顶点A 1(-a,0), A 2(a,0)B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b,0),B 2(b,0)轴 长轴A 1A 2的长为2a ;短轴B 1B 2的长为2b焦距 ∣F 1F 2 |=2c离心率 e=ca∈(0,1) a ,b ,c 的关系c 2=a 2-b 2为a +c ,最小距离为a -c .(3)在椭圆中,离心率22222221a b a b a a c a c e -=-===(4)椭圆的离心率e 越接近1椭圆越扁;e 越接近于0,椭圆就接近于圆;椭圆典型例题一、已知椭圆焦点的位置,求椭圆的标准方程。
椭圆与双曲线知识点总结
椭圆与双曲线知识点总结(一)椭圆1.椭圆的定义如果平面内一动点到两定点距离之和等于正的常数(大于两定点的距离),则动点的规迹是椭圆即|PF1|+|PF2|=2a 其中P是动点,F1,F2是定点且|F1F2|=2C当a>c时表示当a=c时表示当a<c时第二定义:动点M与一个定点的距离和它到一条定直线的距离的比是常数e(0<e<1)时,这个点的规迹是椭圆。
定点是,定直是e是2.椭圆的标准方程参数方程(1)标准方程(2)参数方程3.椭圆的性质(1)焦点在x标准方程x,y的范围顶点焦点对称轴对称中心长半轴的长短半轴的长焦距离心率e= 范围e越大椭圆越e越小椭圆越准线焦半径公式|PF1|= |PF2|= (F1,F2分别为椭圆的左右两焦点,P为椭圆上的一点) 椭圆的通径(过椭圆的一个焦点F且垂直于它过焦点的对称轴的弦)|P1P(2)焦点在y轴上的椭圆标准方程x,y的范围顶点焦点对称轴对称中心长半轴的长短半轴的长焦距离心率e= 范围e越大椭圆越e越小椭圆越准线焦半径公式|PF1|= |PF2|= (F1,F2分别为椭圆的下上两焦点,P为椭圆上的一点)4.椭圆系(1)共焦点的椭圆系方程为2221x yk k c+=-(其中k>c2,c为半焦距)(2 )具有相同离心率的标准椭圆系的方程2222(0) x ya bλλ+=>(二) 双曲线1.双曲线的定义如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支F1,F2为两定点,P为一动点,(1)若||PF1|-|PF2||=2a①0<2a<|F1F2|则动点P的轨迹是②2a=|F1F2|则动点P的轨迹是③2a=0则动点P的轨迹是(2) 若|P F1|-|PF2|=2a①0<2a<|F1F2|则动点P的轨迹是②2a=|F1F2|则动点P的轨迹是③2a=0则动点P的轨迹是2.双曲线的标准方程3.双曲线的性质(1)焦点在x轴上的双曲线标准方程x,y的范围顶点焦点对称轴对称中心实半轴的长虚半轴的长焦距离心率e= 范围e越大双曲线的开口越e越小双曲线的开口越准线渐近线焦半径公式|PF1|= |PF2|= (F1,F2分别为双曲线的左右两焦点,P为椭圆上的一点)(3)焦点在y轴上的双曲线标准方程x,y的范围顶点焦点对称轴对称中心实半轴的长虚半轴的长焦距离心率e= 范围e越大双曲线的开口越e越小双曲线的开口越准线渐近线焦半径公式|PF1|= |PF2|= (F1,F2分别为双曲线的下上两焦点,P为椭圆上的一点)4.等轴双曲线22(0)x yλλ-=≠特点①实轴与虚轴长相等②渐近线互相垂直y x=±③离心率为5.共轭双曲线以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原双曲线的共轭双曲线特点①有共同的渐近线②四焦点共圆双曲线22221x ya b+=的共轭双曲线是6.双曲线系(1)共焦点的双曲线的方程为2221x yk k c+=-(0<k<c2,c为半焦距)(2)共渐近线的双曲线的方程为2222(0) x ya bλλ-=≠。
椭圆双曲线知识点总结
椭圆双曲线知识点总结一、椭圆的定义椭圆是指平面上到两个定点F1和F2的距离之和为常数2a(a>0)的动点P的轨迹。
F1和F2分别称为椭圆的焦点,2a称为椭圆的长轴。
如果椭圆的长轴在x轴上,则称为横轴椭圆;如果长轴在y轴上,则称为纵轴椭圆。
椭圆的离心率e的定义为e=c/a,其中c为椭圆的焦距。
椭圆的标准方程为x^2/a^2+y^2/b^2=1,其中a为椭圆长轴的长度,b为椭圆短轴的长度。
二、椭圆的性质1. 椭圆的离心率e满足0<e<1.2. 椭圆的焦点到椭圆上任意一点的距离之和等于常数2a.3. 椭圆的对称轴是椭圆的长轴和短轴。
4. 椭圆的离心角性质:对任意一点P(x,y)在椭圆上,有PF1+PF2=2a,其中F1和F2为椭圆的焦点。
三、椭圆的参数方程椭圆的参数方程为x=a*cos(t),y=b*sin(t),其中t为参数,a为椭圆长轴的长度,b为椭圆短轴的长度。
四、椭圆的极坐标方程椭圆的极坐标方程为r=a*(1-e^2)/(1+e*cosθ),其中e为椭圆的离心率,a为椭圆的长轴的长度,θ为极角。
五、椭圆的焦点椭圆的焦点是椭圆上离心率所确定的点,满足焦点到椭圆上任意一点的距离之和等于常数2a。
椭圆的焦点为F1(-c,0)和F2(c,0),其中c为椭圆的焦距,满足c^2=a^2-b^2。
六、椭圆的直线椭圆的长轴及短轴分别称为主轴和次轴。
椭圆的直线包括主轴、次轴、对称轴和四条渐近线。
主轴通过椭圆的两个焦点,次轴是与主轴垂直的直线。
对称轴是过长轴中点的直线,与次轴垂直。
椭圆有四条渐近线,它们的交点是椭圆的中心,方程为y=±(b/a)*x。
七、双曲线的定义双曲线是指平面上到两个定点F1和F2的距离之差为常数2a(a>0)的动点P的轨迹。
F1和F2分别称为双曲线的焦点,2a称为双曲线的实轴。
如果双曲线的实轴在x轴上,则称为右开口双曲线;如果实轴在y轴上,则称为左开口双曲线。
椭圆_双曲线_知识点
椭圆_双曲线_知识点
椭圆与双曲线是以二次曲线为基础的曲线,这两种曲线同属于双曲线族。
椭圆曲线的
二次方程如下:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
其中,a,b代表椭圆的两个半径;同时,双曲线的标准二次方程为:
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
可以看出,两者只有被除数和方向不同,同是都为常数。
从表面上看,椭圆是左右对称,而双曲线则形式各不相同,收放自如,具有左右对称性以及上下对称性。
这两种曲线均为二次曲线,但两者间仍有明显区别:对于同一点,椭圆曲线的切线是
弧形的,而双曲线的切线是折线的。
而且,椭圆的极点的横纵坐标都有实数值,而双曲线
的极点的横坐标为实数,纵坐标都是无穷小。
另外,椭圆、双曲线等二次曲线的性质有共同之处,比如可以到达任一点的过渡性、
经过原点的轨迹是完美的圆周、经过任一点的二阶导数值为0 。
椭圆曲线在数学中被广泛用于实际应用,比如加密技术中的椭圆曲线加密,常用于方
便快捷的现代加密算法;双曲线方程式是高等数学中重要的内容,可用于证明费马小定理。
椭圆双曲线知识点梳理
c 离心率 e=a,e∈(1,+∞),其中 c= a2+b2 线段 A1A2 叫做双曲线的实轴,它的长 A1A2=2a; 实虚轴 线段 B1B2 叫做双曲线的虚轴,它的长 B1B2=2b;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长 a、b、的关系 c c2=a2+b2 (c>a>0,c>b>0)
(2)2a<F1F2. 这两点与椭圆的定义有本质的不同: ①当 MF1-MF2=2a 时,曲线仅表示焦点 F2 所对应的 一支; ②当 MF1-MF2=-2a 时,曲线仅表示焦点 F1 所对应 的一支; ③当 2a=F1F2 时,轨迹是一直线上以 F1、F2 为端点向 外的两条射线; ④当 2a>|F1F2|时,动点轨迹不存在.
图形
要点梳理
范围 对称性 顶点 渐近线 准线
忆一忆知识要点
x≥a 或 x≤-a,y∈R x∈R, y≤-a 或 y≥a 对称轴:坐标轴 对称中心:原点 A1(-a,0),A2(a,0) A1(0,-a),A2(0, a) b y=± x a a2 x=±c a y=± x b a2 y=±c
性 质
e c a
O
y
x
②e的含义: e是表示双曲线开口大小的一个量, e越大开口越大!
2 2 c a b 1 ( b )2 , e a a a
b e 2 1. a b 当e (1, )时, (0, ), 且e增大, b 也增大 a a e增大时,渐近线与实轴的夹角增大.
方法与技巧
1.椭圆上任意一点 M 到焦点 F 的所有距离中,长轴端点到 焦点的距离分别为最大距离和最小距离, 且最大距离为 a +c,最小距离为 a-c. 2.求椭圆离心率 e 时,只要求出 a,b,c 的一个齐次方程, 再结合 b2=a2-c2 就可求得 e (0<e<1). 3.求椭圆方程时,常用待定系数法,但首先要判断是否为 标准方程,判断的依据是:(1)中心是否在原点,(2)对称 轴是否为坐标轴.
椭圆和双曲线知识点
椭圆和双曲线知识点一、什么是椭圆?椭圆是一种在平面上的几何图形,其形状像一个拉伸的圆,有两个轴,其中一个轴比另一个轴长。
其中,长轴和短轴分别被称为椭圆的主轴和次轴。
椭圆的数学公式为:x²/a² + y²/b² = 1,其中a是椭圆的半长轴,b是椭圆的半短轴。
椭圆的中心坐标为(x0,y0)。
椭圆有很多应用,比如地球和行星的轨道、钟表中的椭圆摆线、椭圆体积区域计算等。
二、什么是双曲线?双曲线是一种平面几何图形,与椭圆相似,但有两个轴,其中一个轴比另一个轴长。
与椭圆不同的是,两个轴之间的距离是负的。
两个轴之间的距离称为双曲线的焦距。
双曲线的数学公式为:x²/a² - y²/b² = 1,其中a是双曲线的半横轴,b是双曲线的半纵轴。
双曲线的中心坐标为(x0,y0)。
双曲线有很多应用,比如电磁场中的场线、广角透镜成像等。
三、椭圆与双曲线的区别椭圆和双曲线的区别主要在于两者的焦距。
椭圆的焦距是正的,而双曲线的焦距是负的。
此外,在椭圆中,两个轴之间的距离是小于等于椭圆的直径,而在双曲线中,两个轴之间的距离是大于椭圆的直径。
四、椭圆和双曲线的性质1. 椭圆和双曲线都是闭合的图形,椭圆的周长和面积可以通过椭圆的半长轴和半短轴计算得出,而双曲线的面积无限大。
2. 直线可以与椭圆或双曲线相交,其中与椭圆相交的直线不会超过4条,而与双曲线相交的直线可以无限多。
3. 椭圆和双曲线的对称轴分别与主轴和次轴对称,对称轴上的点到椭圆或双曲线的距离相等。
4. 椭圆和双曲线上的任意一点到焦点的距离和到直线的距离之和是常数(椭圆和双曲线的离心率),这个性质被称为焦点定理。
五、结语椭圆和双曲线是数学中的基础概念,也是自然界中广泛存在的几何形状。
无论是在科学研究中还是在生活中,我们都可以看到它们的身影。
在理解这两个图形的性质和应用的同时,也可以锻炼自己的几何思维能力。
椭圆双曲线抛物线知识点汇总
椭圆双曲线抛物线知识点汇总一、椭圆1、定义平面内与两个定点$F_1$,$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
2、标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$为长半轴长,$b$为短半轴长,$c$为半焦距,满足$c^2 = a^2 b^2$。
(2)焦点在$y$轴上:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$)。
3、椭圆的性质(1)对称性:椭圆关于$x$轴、$y$轴和原点对称。
(2)范围:对于焦点在$x$轴上的椭圆,$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆,$b \leq x \leq b$,$a \leq y \leq a$。
(3)顶点:焦点在$x$轴上时,顶点坐标为$(\pm a, 0)$,$(0, \pm b)$;焦点在$y$轴上时,顶点坐标为$(0, \pm a)$,$(\pm b, 0)$。
(4)离心率:$e =\frac{c}{a}$($0 < e < 1$),反映了椭圆的扁平程度。
4、椭圆中的重要结论(1)过椭圆焦点的弦长:若弦过焦点$F_1$,则弦长$|AB| = 2a e(x_1 + x_2)$。
(2)椭圆上一点到焦点的距离:设椭圆上一点$P(x_0, y_0)$,两焦点为$F_1$,$F_2$,则$|PF_1| = a + ex_0$,$|PF_2| = aex_0$。
二、双曲线1、定义平面内与两个定点$F_1$,$F_2$的距离之差的绝对值等于常数(小于$|F_1F_2|$)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。
2、标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} \frac{y^2}{b^2} =1$($a > 0$,$b > 0$),其中$c^2 = a^2 + b^2$。
椭圆_双曲线_知识点
双曲线(1) 若焦点在x轴上的椭圆2212x ym+=的离心率为12,则m= ( )B32C83D23(2) 若方程x2+ky2=2表示焦点在y轴上的椭圆, 那么实数k的取值范围是 ( )A (0, +∞)B (0, 2)C (1, +∞)D (0, 1)(3) 设P是双曲线19222=-yax上一点,双曲线的一条渐近线方程为023=-yx,F1、F2分别是双曲线的左、右焦点,若3||1=PF,则=||2PF ( )A 1或5B 6C 7D 9(4) 已知双曲线1222=-yx的焦点为F1、F2,点M在双曲线上且120,MF MF⋅=则点M到x轴的距离为 ( ) A43B53(5) 设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是( )C 216若双曲线的渐近线方程为xy3±=,它的一个焦点是()0,10,则双曲线的方程是__________.8、过双曲线22221x ya b-=(a>0,b>0)的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.9、点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.求点P 的坐标;10 .设1F ,2F 是椭圆E :2222x y a b +=1(a >b >0)的左、右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为 ( )A .12B .23C .34D .4511.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A,B,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为 ( )A .14B C .12D12、已知双曲线C :22x a -22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为( )A .220x -25y =1B .25x -220y =1C .280x -220y =1D .220x -280y =113、已知双曲线22x a-25y =1的右焦点为(3,0),则该双曲线的离心率等于A14B .4C .32D .4314已知12,F F 为双曲线222x y -=的左,右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=( )A .14 B .35C .34 D .4515、椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为( )A .2211612x y += B .221128x y += C .22184x y += D .221124x y += 16设P 为直线3by x a=与双曲线22221(0,0)x y a b a b -=>> 左支的交点,1F 是左焦点,1PF 垂直于x 轴,则双曲线的离心率e =___17已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C 的右焦点为F ,则a =______,b =_______.18、设双曲线以椭圆192522=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( ) A .2± B .34±C .21± D .43±19椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( )A .23B .3C .27D .420.中心在原点,准线方程是4±=x ,离心率是21的椭圆方程为 ( )A .1422=+y xB .14322=+y xC .13422=+y xD .1422=+y x 21、双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是( )(A)0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩ (B)0003x y x y x -≥⎧⎪+≤⎨⎪≤≤⎩ (C) 0003x y x y x -≤⎧⎪+≤⎨⎪≤≤⎩ (D) 0003x y x y x -≤⎧⎪+≥⎨⎪≤≤⎩22双曲线与椭圆1522=+y x 共焦点,且一条渐近线方程是03=-y x ,则此双曲线方程为 ( )A .1322=-x yB .1322=-x yC .1322=-y xD .1322=-y x23若椭圆x k y e 2289112++==的离心率,则实数k 的值是;24、双曲线的一个顶点把焦点之间的线段分成长短两段比是3 :1,则双曲线的离心率e=( )(A )2 (B ) 3 (C )4 (D )525、双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m =( ) (A )14-(B )14(C )4 (D )4-26、已知双曲线ny n x --1222=1的离心率为3,则n =( ) (A )2 (B ) 3 (C )4 (D )527、双曲线1366422=-y x上一点M 到它的右焦点的距离是8,则点M 到右准线的距离为( )(A ) 10 (B )7732 (C )27(D )53228、双曲线191622=-y x 上一点P 对两焦点F 1、F 2的视角为60°,则△F 1PF 2的面积为( ) (A ) 23(B )33(C )63(D )93。
椭圆双曲线知识点总结
椭圆知识点【知识点1】椭圆的概念:在平面内到两定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.当动点设为M 时,椭圆即为点集P ={}12|2M MF MF a +=【知识点2】椭圆的标准方程焦点在x 轴上椭圆的标准方程:()222210x ya b a b+= >>,焦点坐标为(c ,0),(-c ,0) 焦点在y 轴上的椭圆的标准方程为:()222210x y a b b a+= >>焦点坐标为(0,c ,)(o ,-c )【知识点3】椭圆的几何性质:规律:(1)椭圆焦点位置与x 2,y 2系数间的关系:焦点在分母大的那个轴上.(2)椭圆上任意一点M 到焦点F 的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a +c ,最小距离为a -c .(3)在椭圆中,离心率22222221a b a b a a c a c e -=-===(4)椭圆的离心率e 越接近1椭圆越扁;e 越接近于0,椭圆就接近于圆;【知识点4】椭圆中的焦点三角形:定 义:∣PF 1∣+∣PF 2∣=2a ∣F 1F 2∣=2c余弦定理:∣F 1F 2∣2=∣PF 1∣2+∣PF 2∣2-2∣PF 1∣∣PF 2∣cosθ(∠F 1PF 2=θ)面积公式:在椭圆12222=+by a x (a >b >0)中,焦点分别为1F 、2F ,点P 是椭圆上任意一点,θ=∠21PF F ,则2tan 221θb S PF F =∆【知识点5】点(x 0,y 0)与椭圆22221x y a b+=(a >b >0)的位置关系:点P 在椭圆上⇔2200221x y a b+=点P 在椭圆内部⇔2200221x y a b +< 点P 在椭圆外部⇔2200221x y a b+>【知识点6】直线与椭圆位置关系的判断:① 直线斜率存在时221y kx bmx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-=直线与椭圆相交0>∆⇔ 直线与椭圆相切0=∆⇔ 直线与椭圆相离0<∆⇔② 直线斜率不存在时22221x m x y ab =⎧⎪⎨+=⎪⎩判断y 有几个解标准方程()222210x y a b a b += >> ()222210x y a b b a+= >> 图形性质范围 a x a -≤≤b y b -≤≤对称性 对称轴:坐标轴 对称中心:原点顶点A 1(-a,0), A 2(a,0)B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b,0),B 2(b,0)轴 长轴A 1A 2的长为2a ;短轴B 1B 2的长为2b焦距 ∣F 1F 2 |=2c离心率 e=ca∈(0,1) a ,b ,c 的关系c 2=a 2-b 2双曲线知识点【知识点1】双曲线的概念:在平面内到两定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫双曲线.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.当动点设为M 时,椭圆即为点集P ={}12|2M MF MF a -=【知识点2】双曲线的标准方程焦点在x 轴上双曲线的标准方程: ()222210,0x y a b a b-= >>,焦点坐标为(c ,0),(-c ,0)焦点在y 轴上的双曲线的标准方程为:()222210,0y x a b b a-= >>焦点坐标为(0,c ,)(o ,-c )【知识点3】双曲线的几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图 形性 质范 围 x ≥a 或x ≤-a ,y ∈Rx ∈R ,y ≤-a 或y ≥a对称性 对称轴:坐标轴 对称中心:原点顶点A 1(-a,0),A 2(a,0) A 1(0,-a ),A 2(0,a )渐近线y =±b a x y =±a b x离心率e =ca,e ∈(1,+∞),其中c =a 2+b 2 实虚轴 线段A 1A 2叫做双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫做双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长a 、b 、c 的关系 c 2=a 2+b 2(c >a >0,c >b >0)规律:1.双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直(位置关系).2.区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.(2)双曲线的离心率大于1,而椭圆的离心率e ∈(0,1). (3)在双曲线中,离心率22222221c c a b be a a a a+====+ (4)双曲线的离心率e 越接近大,开口越阔.【知识点4】双曲线中的焦点三角形:定 义:∣PF 1∣-∣PF 2∣=±2a ∣F 1F 2∣=2c余弦定理:∣F 1F 2∣2=∣PF 1∣2+∣PF 2∣2-2∣PF 1∣∣PF 2∣cosθ(∠F 1PF 2=θ)面积公式:在双曲线12222=+by a x (a >b >0)中,焦点分别为1F 、2F ,点P 是双曲线上任意一点,θ=∠21PF F ,则122tan2F PF b S θ∆=【知识点5】直线与双曲线的位置关系的判断:设直线)0(:≠+=m m kx y l ,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b(1)若0222=-k a b 即a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点; (2)若0222≠-k a b 即ab k ±≠时,))((4)2(222222222b a m a k a b mk a -----=∆①0>∆⇒直线与双曲线相交,有两个交点; ②0=∆⇒直线与双曲线相切,有一个交点; ③0<∆⇒直线与双曲线相离,无交点;【知识点6】弦长公式:│AB │=2221212121||1()4k x x k x x x x +⋅-=+⋅+-⋅21ka∆=+, 12211AB y y k ==+-211k a∆=+ (其中k 为直线斜率) 【知识点7】中点弦问题(点差法):遇到弦中点,两式减一减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焦点在x轴上
焦点在y轴上
焦点在x轴上
焦点在y轴上
椭圆的准线在两侧;双曲线的准线在两支之间
准线方程
焦半径公式
焦点弦公式
焦点三角形
与点的
位置关系
与直线
位置关系
弦长公式
切线方程
椭圆与双曲线知识点
椭圆
双曲线
备注
第一定义
文字语言
注意定义中对于参数2a的范围限制
符号语言
图形
焦点在x轴上
焦点在y轴上
焦点在x轴上
焦点在y轴上
标准方程
求标准方程时一定要考虑焦点位置
焦点坐标
注意
几何含义
范围
顶点和
渐近线
椭圆4个;双曲线2个;椭圆无渐近线
渐近线
渐近线
轴
离心率
求离心率时应注意取值范围
第二定义