2017北京101中学高一(下)期末数学
北京101高一下学期期末数学
北京101中学2016-2017学年下学期高一年级期中考试数学试卷(本试卷满分120分,考试时间100分钟)一、选择题共8小题.在每小题列出的四个选项中,选出符合题目要求的一项.1. 在中,,,,则边的值为().A. B. C. D.2. 已知等差数列的公差为,若,,成等比数列,则等于().A. B. C. D.3. 下列结论正确的是().A. 若,则B. 若,则C. 若,,则D. 若,则4. 已知,,则的取值范围是().A. B. C. D.5. 在中,角,,的对边分别为,,.若,且,则().A. B. C. D.6. 若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数.给出下列三个函数:,,,则().A. ,,为“同形”函数B. ,为“同形”函数,且它们与不为“同形”函数C. ,为“同形”函数,且它们与不为“同形”函数D. ,为“同形”函数,且它们与不为“同形”函数7. 已知函数,若且,则的值是().A. B. C. D.8. 已知,,且对任意,都有:①;②.以下三个结论:①;②;③.其中正确的个数为().A. B. C. D.二、填空题共6小题.9. 在等差数列中,,,则前项之和__________.10. 已知,函数的最小值是__________.11. 计算:__________.12. 在等比数列中,,,则数列的前项和__________.13. 在中,若,,成等差数列,且三个内角,,也成等差数列,则的形状为__________.14. 给出下列命题:①若,则;②若,,则;③若,则;④;⑤若,,则,;⑥正数,满足,则的最小值为.其中正确命题的序号是__________.三、解答题(共5小题,分值分别为8分、8分、10分、12分、12分,共50分)15. 在中,,,分别是角,,的对边,且,,.求:()的值.()的面积.16. 某工厂生产的某种产品,当年产量在吨至吨之间时,年生产总成本(万元)与年产量(吨)之间的关系可近似地表示成,问年产量为多少时,每吨的平均成本最低?并求出该最低成本.17. 已知函数(,为常数).()求函数的最小正周期.()求函数的单调递减区间.()当时,的最小值为,求的值.18. 设数列{a n}的前n项和为S n=2n2,{b n}为等比数列,且a1=b1,b2(a2-a1)=b1.()求数列和的通项公式.()设,求数列的前项和.19. 已知点在函数的图象上,数列的前项和为,数列的前项和为,且是与的等差中项.()求数列的通项公式.()设,数列满足,.求数列的前项和.()在()的条件下,设是定义在正整数集上的函数,对于任意的正整数,,恒有成立,且(为常数,),试判断数列是否为等差数列,并说明理由.。
北京101中学2016-2017学年高一上学期期末考试数学试卷 Word版含答案
北京101中学2016-2017学年高一上学期期末考试数学试卷一、 选择题:本大题共8小题,共40分.1. 设全集{}1,2,3,4,5,6U =,集合{}1,4M =,{}1,3,5N =,则()U N C M = ( )A. {}1B. {}3,5C. {}1,3,4,5D. {}1,2,3,5,62. 已知平面直角坐标系内的点()1,1A ,()2,4B ,()1,3C -,则AB AC -=( )A. 8 D.10 3. 已知1sin cos 5αα+=-,,22ππα⎛⎫∈- ⎪⎝⎭,则tan α的值是( ) A. 34-B. 43C. 34D.43- 4. 已知函数()()sin ,04f x x x R πωω⎛⎫=+∈> ⎪⎝⎭的最小正周期为π,为了得到函数()cos g x x ω=的图象,只要将()y f x =的图象( )A. 向左平移8π个单位长度 B. 向右平移8π个单位长度 C. 向左平移4π个单位长度 D. 向右平移4π个单位长度5. 已知a 与b 是非零向量且满足()3a b a -⊥ ,()4a b b -⊥,则a 与b 的夹角是( )A.6π B. 3π C. 23π D. 56π 6. 已知,,,E F G H 分别是四边形ABCD 的所在边的中点,若()()0AB BC BC CD +⋅+=,则四边形EFGH 是( )A.平行四边形但不是矩形 B.正方形 C. 菱形 D.矩形 7. 设偶函数()log a f x x b =-在(),0-∞是递增函数,则()1f a +与()2f b +的大小关系是( )A.()()12f a f b +=+ B.()()12f a f b +<+C.()()12f a f b +>+ D.不确定8. 已知O 为平面内一点,,,A B C 是平面内不共线的三点,且()12OP OB OC =++cos cos AB AC AB B AC C λ⎛⎫ ⎪+ ⎪⎝⎭,()0,λ∈+∞,则动点P 的轨迹一定过ABC ∆的( ) A.内心 B.垂心 C.重心 D.外心二、填空题:本大题共6小题,共30分9. 若()3f x x =,则满足()1f x <的x 的取值范围是___________.10. 若函数()234f x x x =-+在[]1,3x ∈-上的最大值和最小值分别为,a b ,则a b +=___11. 已知向量()2,1a = ,()1,2b =- ,若()9,8ma nb +=-,则m n -的值为_________.12. 若tan 3θ=,则222sin sin cos cos θθθθ--=_________.13. 如图,在平行四边形ABCD 中,AC 、BD 相交于点O ,E 为线段AO 的中点,若BE BA BD λμ=+(),R λμ∈,则________.λμ+=BD14. 已知点O 为三角形ABC 内一点,230OA OB OC ++= ,则ABC AOCSS ∆∆=__________.三、解答题:本大题共5小题,共50分.15. 设全集U R =,集合{}13A x x =-≤<,{}242B x x x =-≥-. (1)求()U C A B ;(2)若集合{}0C x x a =->,满足B C C = ,求实数a 的取值范围.16. 求值:()()()tan150cos 210sin 420sin1050cos 600︒-︒-︒︒-︒17. 已知()1,2a = ,()1,1b =,且a 与a b λ+ 的夹角为锐角,求实数λ的取值范围.18. 设函数()()sin f x A x ωϕ=+(其中0A >,0ω>,πϕπ-<≤)在6x π=处取得最大值2,其图象与x 轴的相邻两个交点的距离为2π. (1)求()f x 的解析式; (2)求函数()4226cos sin 1226x x g x x f π--=⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦的值域.19. 设函数()424xxf x =+ (1)用定义证明:函数()f x 是R 上的增函数; (2)证明:对任意的实数t 都有()()11f t f t +-=; (3)求值:1232015...2016201620162016f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.北京101中学2016-2017学年高一上学期期末考试数学试卷参考答案一、 选择题:本大题共8小题,共40分.二、填空题:本大题共6小题,共30分9. (),1-∞ 10.39411. 3- 12. 7513.34 14. 72三、解答题:本大题共5小题,共50分.15. 解:(1)依题意知:集合{}13A x x =-≤<,{}2B x x =≥(解不等式242x x -≥-可得:2x ≥) 故{}23A B x x =≤<又U R = 从而(){}23U C A B x x x ⋂=<≥或(2)易知集合{}{}0C x x a x x a =->=> 由B C C = 可得:B C ⊆ 故有2a <即所求实数a 的取值范围是(),2-∞16. 解:由诱导公式可得:()tan150tan 18030tan 303︒=︒-︒=-︒=-()()cos 210cos 210cos 18030cos30-︒=︒=︒+︒=-︒= ()()sin 420sin 420sin 36060sin 60-︒=-︒=-︒+︒=-︒= ()1sin1050sin 336030sin 302︒=⨯︒-︒=-︒=-()()1cos 600cos 600cos 318060cos 602-︒=︒=⨯︒+︒=-︒=-故原式4111422⎛ ⎝⎭⎝⎭===⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭17. 解:根据向量的坐标运算可得:()1,2a b λλλ+=++由a 与a b λ+ 的夹角为锐角可得:()0a a b λ⋅+>而()1,2a =,故有()()1++22+=3+50λλλ>从而可得:53λ>-即所求实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭18. 解:(1)由题意可得:()max 2f x A ==,22T T ππ=⇒= 于是222T ππωπ=== 故()()2sin 2f x x ϕ=+ 由()f x 在6x π=处取得最大值2可得:222626k k πππϕπϕπ⨯+=+⇒=+()k Z ∈又πϕπ-<< 故6πϕ=因此()f x 的解析式为()2sin 26f x x π⎛⎫=+⎪⎝⎭(2)由(1)可得:2sin 22sin 2cos 262662x x f x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=++=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故()()()4226cos 1cos 12cos 2x x g x x ---=-4226cos cos 24cos 2x x x +-=- ()()()2223cos 22cos 122cos 1x x x +-=-23cos 22x +=23cos 12x =+ 21cos 2x ⎛⎫≠ ⎪⎝⎭ 令2cos t x =,可知01t ≤≤且12t ≠ 即211cos 0,,122x ⎡⎫⎛⎤∈⎪⎢⎥⎣⎭⎝⎦从而()7751,,442g x ⎡⎫⎛⎤∈⎪⎢⎥⎣⎭⎝⎦因此,函数()g x 的值域为7751,,442⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦19. 解:(1)证明:在定义域R 上任取两个自变量值12,x x 且12x x <()()()()()()()()()122112121212121242442424444242424242424x x x x x x x x x x x x x x f x f x +-+--=-==++++++ 由12x x <可得:12440xx-<从而()()120f x f x -< 即()()12f x f x <根据函数单调性的定义可得:函数()f x 在R 上为增函数.(2)证明:因为()()114412424t tt tf t f t --+-=+++ ()()()()1114244242424t t t t tt---+++=++()()112448142444tt tt--++==+++ 故对任意的实数t 都有()()11f t f t +-= (3)由(2)可得:12015120162016f f ⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭,22014120162016f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭32013120162016f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,...... ,20151120162016f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭令1232015...2016201620162016f f f f M ⎛⎫⎛⎫⎛⎫⎛⎫++++=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 则2015201420131...2016201620162016f f f f M ⎛⎫⎛⎫⎛⎫⎛⎫++++=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭上下等式左右两边分别相加可得:201512M ⨯= 故可得:20152M = 因此,12320152015...20162016201620162f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭。
2016-2017年北京市101中学高一(下)期末数学试卷(解析版)
2016-2017学年北京市101中学高一(下)期末数学试卷一、选择题共8小题.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合M={x|x2﹣4x+3<0},N={x|3﹣x>1},则M∩N=()A.{x|1<x<3}B.{x|1<x<2}C.∅D.{x|x<3}2.(5分)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()A.90B.100C.180D.3003.(5分)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.9B.18C.20D.354.(5分)重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19B.20C.21.5D.235.(5分)在区间[0,2]上随机取一个实数x,若事件“3x﹣m<0”发生的概率为,则实数m=()A.1B.C.D.6.(5分)已知实数x,y满足则2x+y的最小值为()A.11B.3C.4D.27.(5分)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.B.ln(x2+1)>ln(y2+1)C.sin x>sin y D.x3>y38.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=.则下列结论中正确的个数为()①AC⊥BE;②EF∥平面ABCD;③三棱锥A﹣BEF的体积为定值;④△AEF的面积与△BEF的面积相等.A.1B.2C.3D.4二、填空题共6小题.9.(5分)已知函数f(x)=x+﹣3(x>0),则f(x)的最小值是.10.(5分)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为.11.(5分)把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人,事件“甲分得红牌”与“乙分得红牌”是.(填序号)①对立事件;②不可能事件;③互斥但不对立事件;④对立不互斥事件.12.(5分)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是.13.(5分)已知直线l⊥平面α,直线m⊆平面β,则下列四个命题:其中正确命题的序号是①若α∥β,则l⊥m;②若α⊥β,则l∥m;③若l∥m,则α⊥β;④若l⊥m,则α∥β.14.(5分)在平面上,过点P作直线l的垂线所得的垂足称为点P的直线上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=.三、解答题共5小题.解答应写出文字说明、演算步骤或证明过程.15.(10分)游乐场推出了一项趣味活动,参加活动者需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数,设两次记录的数分别为x,y,奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶,假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.16.(10分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC ⊥BC且AC=BC,O,M分别为AB,VA的中点.求证:(1)VB∥平面MOC;(2)OC⊥平面VAB.17.(10分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.18.(10分)如图所示,在正方体ABCD﹣A1B1C1D1中,M,N,E分别是AA1,AC,AB的中点,求证:(1)平面MEN∥平面A1BC;(2)A1C⊥C1D;(3)平面A1EC⊥平面A1CD.19.(10分)已知a∈R,函数f(x)=log2(+a).(1)当a=5时,解不等式f(x)>0;(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.(3)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.2016-2017学年北京市101中学高一(下)期末数学试卷参考答案与试题解析一、选择题共8小题.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合M={x|x2﹣4x+3<0},N={x|3﹣x>1},则M∩N=()A.{x|1<x<3}B.{x|1<x<2}C.∅D.{x|x<3}【解答】解:M={x|1<x<3},N={x|x<2};∴M∩N={x|1<x<2}.故选:B.2.(5分)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()A.90B.100C.180D.300【解答】解:由题意,老年和青年教师的人数比为900:1600=9:16,因为青年教师有320人,所以老年教师有180人,故选:C.3.(5分)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.9B.18C.20D.35【解答】解:初始值n=3,x=2,程序运行过程如下表所示:v=1i=2 v=1×2+2=4i=1 v=4×2+1=9i=0 v=9×2+0=18i=﹣1 跳出循环,输出v的值为18.故选:B.4.(5分)重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19B.20C.21.5D.23【解答】解:样本数据有12个,位于中间的两个数为20,20,则中位数为,故选:B.5.(5分)在区间[0,2]上随机取一个实数x,若事件“3x﹣m<0”发生的概率为,则实数m=()A.1B.C.D.【解答】解:解不等式3x﹣m<0,可得x<,以长度为测度,则区间长度为,又在区间[0,2]上,∴区间长度为2,在区间[0,2]上随机取一个实数x,若事件“3x﹣m<0”发生的概率为,可得:,则m=1.故选:A.6.(5分)已知实数x,y满足则2x+y的最小值为()A.11B.3C.4D.2【解答】解:由已知得到平面区域如图:设z=2x+y,则y=﹣2x+z,由它在y轴的截距最小,得到z最小,解得A(2,1)由图可知当直线过A(2,1)时,z最小,所以最小值为5;故选:B.7.(5分)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.B.ln(x2+1)>ln(y2+1)C.sin x>sin y D.x3>y3【解答】解:∵实数x,y满足a x<a y(0<a<1),∴x>y,A.取x=2,y=﹣1,不成立;B.取x=0,y=﹣1,不成立C.取x=π,y=﹣π,不成立;D.由于y=x3在R上单调递增,因此正确故选:D.8.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=.则下列结论中正确的个数为()①AC⊥BE;②EF∥平面ABCD;③三棱锥A﹣BEF的体积为定值;④△AEF的面积与△BEF的面积相等.A.1B.2C.3D.4【解答】解:连结BD,则AC⊥平面BB1D1D,BD∥B1D1,∴AC⊥BE,EF∥平面ABCD,三棱锥A﹣BEF的体积为定值,从而A,B,C正确.∵点A、B到直线B1D1的距离不相等,∴△AEF的面积与△BEF的面积不相等,故D错误.故选:C.二、填空题共6小题.9.(5分)已知函数f(x)=x+﹣3(x>0),则f(x)的最小值是4﹣3.【解答】解:函数f(x)=x+﹣3(x>0)≥2﹣3=4﹣3,当且仅当x=2时,上式取得等号,则f(x)的最小值为4﹣3.故答案为:4﹣3.10.(5分)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为2.【解答】解:由图表得到甲乙两位射击运动员的数据分别为:甲:87,91,90,89,93;乙:89,90,91,88,92;,.方差=4.=2.所以乙运动员的成绩较稳定,方差为2.故答案为2.11.(5分)把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人,事件“甲分得红牌”与“乙分得红牌”是③.(填序号)①对立事件;②不可能事件;③互斥但不对立事件;④对立不互斥事件.【解答】解:根据题意,把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”由互斥事件和对立事件的概念可判断两者不可能同时发生,故它们是互斥事件,又事件“乙取得红牌”与事件“丙取得红牌”也是可能发生的,事件“甲分得红牌”与事件“乙分得红牌”不是对立事件,故两事件之间的关系是互斥而不对立,故答案为:③12.(5分)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是.【解答】解:从1,2,3,4这四个数中一次随机取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况;其中其中一个数是另一个的两倍的有两种,即(1,2),(2,4);则其概率为=;故答案为:.13.(5分)已知直线l⊥平面α,直线m⊆平面β,则下列四个命题:其中正确命题的序号是①③①若α∥β,则l⊥m;②若α⊥β,则l∥m;③若l∥m,则α⊥β;④若l⊥m,则α∥β.【解答】解:直线l⊥平面α,直线m⊂平面β,当α∥β,l⊥β,∴l⊥m,故①正确;当α⊥β,l∥β或l⊂β,∴l与m位置关系不确定,故②不正确;当l∥m,则m⊥α,∴α⊥β,故③正确;当l⊥m,则α∥β或α∩β,故④不正确,综上可知①③正确,故答案为:①③14.(5分)在平面上,过点P作直线l的垂线所得的垂足称为点P的直线上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=3.【解答】解:作出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线x+y﹣2=0上的投影构成线段R′Q′,即SAB,而R′Q′=RQ,由得Q(﹣1,1)由即R(2,﹣2),则|AB|=|QR|==3,故答案为:3.三、解答题共5小题.解答应写出文字说明、演算步骤或证明过程.15.(10分)游乐场推出了一项趣味活动,参加活动者需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数,设两次记录的数分别为x,y,奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶,假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【解答】解:(Ⅰ)两次记录的数为:(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(3,3),(4,2),(4,3),(4,4),共16个,满足xy≤3,有(1,1),(1,2),(1,3),(2,1),(3,1),共5个,∴小亮获得玩具的概率为;(Ⅱ)满足xy≥8,(2,4),(3,4),(4,2),(4,3),(3,3),(4,4)共6个,∴小亮获得水杯的概率为;小亮获得饮料的概率为1﹣﹣=,∴小亮获得水杯大于获得饮料的概率.16.(10分)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC ⊥BC且AC=BC,O,M分别为AB,VA的中点.求证:(1)VB∥平面MOC;(2)OC⊥平面VAB.【解答】证明:(1)因为O,M分别为AB,VA的中点,所以OM∥VB.又因为OM⊂平面MOC,VB⊄平面MOC,所以VB∥平面MOC.(2)因为AC=BC,O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,且OC⊂平面ABC,平面ABC∩平面VAB=AB,所以OC⊥平面VAB.17.(10分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.【解答】解:(Ⅰ)∵0.5×(0.08+0.16+0.4+0.52+0.12+0.08+0.04+2a)=1,∴a=0.3;(Ⅱ)由图可得月均用水量不低于3吨的频率为:0.5×(0.12+0.08+0.04)=0.12,由30×0.12=3.6得:全市居民中月均用水量不低于3吨的人数约为3.6万;(Ⅲ)由图可得月均用水量低于2.5吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52)=0.73<85%;月均用水量低于3吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52+0.3)=0.88>85%;则x=2.5+0.5×=2.9吨18.(10分)如图所示,在正方体ABCD﹣A1B1C1D1中,M,N,E分别是AA1,AC,AB的中点,求证:(1)平面MEN∥平面A1BC;(2)A1C⊥C1D;(3)平面A1EC⊥平面A1CD.【解答】证明:(1)因为M,N,E分别是AA1,AC,AB的中点,所以MN∥A1C,ME∥A1B.又因为MN∩ME=M,所以平面MEN∥平面A1BC.(2)因为BC⊥平面CDD1C1,C1D⊂平面CDD1∁l,所以BC⊥C1D.又在平面CDD l∁l中,C1D⊥CD1,BC∩CD1=C,所以C1D⊥平面BCD1A l,又因为A1C⊂平面BCD l A l,所以A1C⊥C1D.(3)连结A1D,取A1D中点F,取A1C中点O,连结AF,OF,OE,则AF⊥A1D.因为CD⊥平面A1AD,AF⊂平面A1AD,所以AF⊥CD,又C1D∩A1D=D,所以AF⊥平面A1CD,因为OF CD,EA CD,所以OF EA,所以四边形OF AE为平行四边形,所以EO∥AF,所以EO⊥平面A1CD,又EO⊂平面A1EC,所以平面A1EC⊥平面A1CD.19.(10分)已知a∈R,函数f(x)=log2(+a).(1)当a=5时,解不等式f(x)>0;(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a 的取值范围.(3)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.【解答】解:(1)当a=5时,f(x)=log2(+5),由f(x)>0;得log2(+5)>0,即+5>1,则>﹣4,则+4=>0,即x>0或x<﹣,即不等式的解集为{x|x>0或x<﹣}.(2)由f(x)﹣log2[(a﹣4)x+2a﹣5]=0得log2(+a)﹣log2[(a﹣4)x+2a﹣5]=0.即log2(+a)=log2[(a﹣4)x+2a﹣5],即+a=(a﹣4)x+2a﹣5>0,①则(a﹣4)x2+(a﹣5)x﹣1=0,即(x+1)[(a﹣4)x﹣1]=0,②,当a=4时,方程②的解为x=﹣1,代入①,成立当a=3时,方程②的解为x=﹣1,代入①,成立当a≠4且a≠3时,方程②的解为x=﹣1或x=,若x=﹣1是方程①的解,则+a=a﹣1>0,即a>1,若x=是方程①的解,则+a=2a﹣4>0,即a>2,则要使方程①有且仅有一个解,则1<a≤2.综上,若方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,则a的取值范围是1<a≤2,或a=3或a=4.(3)函数f(x)在区间[t,t+1]上单调递减,由题意得f(t)﹣f(t+1)≤1,即log2(+a)﹣log2(+a)≤1,即+a≤2(+a),即a≥﹣=设1﹣t=r,则0≤r≤,==,当r=0时,=0,当0<r≤时,=,∵y=r+在(0,)上递减,∴r+≥=,∴==,∴实数a的取值范围是a≥.。
【精准解析】北京市101中学2017-2018学年高一下学期期末考试数学试题
卷
一、选择题共 10 小题.在每小题列出的四个选项中,选出符合题目要求的一项.
1.不等式
x x
1 2
0
的解集是(
)
A. x 1 x 2
B. x 1 x 2
C. x x 2 或 x 1 D.
x x 2
【答案】B
【解析】
故选:C. 【点睛】本题考查空间中线面关系有关命题的判断,面面关系有关命题的判断,属于简单题.
7.如图是正方体的平面展开图,在这个正方体中,有以下四个命题:① BM 平面 ADNE; ② CN / / 平面 ABFE;③平面 BDM P 平面 AFN;④平面 BDE 平面 NCF.其中正确命题的
2.设等差数列 an 的前 n 项和 Sn ,若 a4 a10 4 ,则 S13 ( )
A. 13
B. 14
C. 26
Hale Waihona Puke D. 52【答案】C【解析】
【分析】
由已知结合等差数列的性质求得 a7,再由等差数列的前 n 项和得答案.
【详解】解:在等差数列{an}中,由 a4+a10=4,得 2a7=4,即 a7=2.
正确;
由 BD∥FN,BE∥CN,且 BD∩BE=B,证明平面 BDE∥平面 NCF,判断④错误.
【详解】解:把正方体的平面展开图还原成正方体 ABCD﹣EFMN,如图 1 所示;
对于①,平面 BCMF∥平面 ADNE,BM⊂平面 BCMF, ∴BM∥平面 ADNE,①错误;
对于②,平面 DCMN∥平面 ABFE,CN⊂平面 DCMN, ∴CN∥平面 ABFE,②正确;
【分析】
由正弦定理得 a2
北京市海淀区101中学2017-2018学年高一下学期期末考试数学试题(解析版)
北京市海淀区101中学2017-2018学年高一下学期期末考试数学试题一、选择题共10小题.在每小题列出的四个选项中,选出符合题目要求的一项.1.不等式102x x +≤-解集是( )A. {}12x x -≤≤B. {}12x x -≤<C. {2x x >或}1x ≤-D. {}2x x <『答案』B『解析』根据题意,102x x +≤-可以变形为(x +1)(x ﹣2)≤0且x ﹣2≠0, 解得﹣1≤x <2,即不等式的解集为{x |﹣1≤x <2}, 故选:B2.设等差数列{}n a 的前n 项和n S ,若4104a a +=,则13S =( ) A. 13B. 14C. 26D. 52『答案』C『解析』在等差数列{a n }中,由a 4+a 10=4,得2a 7=4,即a 7=2.∴S 13=()11371313262a a a+⨯==.故选:C.3.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是( ) A. 钝角三角形 B. 直角三角形 C. 锐角三角形D. 不能确定『答案』A『解析』因为在ABC ∆中,满足222sin sin sin A B C +<,由正弦定理知sin ,sin ,sin 222a b c A B C R R R===,代入上式得222a b c +<, 的又由余弦定理可得222cos 02a b c C ab+-=<,因为C 是三角形的内角,所以π(,π)2∈C ,所以ABC ∆为钝角三角形,故选A.4.已知直线1l 的方程为3470x y +-=,直线2l 的方程为3410x y ++=,则直线1l 和2l 的距离为( ) A.85B.95C.45D.910『答案』A『解析』∵已知直线l 1的方程为3x +4y ﹣7=0,直线l 2的方程为3x +4y +1=0,则直线l1和l 2的距离为d =85, 故选:A.5.设某直线的斜率为k ,且k ⎛∈ ⎝⎭,则该直线的倾斜角α的取值范围是( )A. π5π,36⎛⎫⎪⎝⎭ B. π2π,63⎛⎫⎪⎝⎭C. 50ππ,,36π⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭D. 20ππ,,63π⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭『答案』D『解析』直线l 的斜率为k ,倾斜角为α,若k ,tan α20,,6ππ3πα⎡⎫⎛⎫∈⎪ ⎪⎢⎣⎭⎝⎭. 故选:D6.对于直线,m n 和平面,αβ,能得出αβ⊥的一组条件是( ) A. m n ⊥,m α,n β B. m n ⊥,m αβ=,n β⊂C. m n ,n β⊥,m α⊂D. m n ,m α⊥,n β⊥『答案』C『解析』A 选项中,根据m n ⊥,m α,n β,得到αβ⊥或αβ∥,所以A 错误;B 选项中,m n ⊥,m αβ=,n β⊂,不一定得到αβ⊥,所以B 错误;C 选项中,因为m n ,n β⊥,所以m β⊥. 又m α⊂,从而得到αβ⊥,所以C 正确;D 选项中,根据m n ,m α⊥,所以n α⊥,而n β⊥,所以得到αβ∥,所以D 错误. 故选:C.7.如图是正方体的平面展开图,在这个正方体中,有以下四个命题:①BM ⊥平面ADNE ;②//CN 平面ABFE ;③平面BDM 平面AFN ;④平面BDE ⊥平面NCF .其中正确命题的序号是( )A. ②③B. ①②③C. ②③④D. ①②③④『答案』A『解析』把正方体的平面展开图还原成正方体ABCD ﹣EFMN ,如图1所示;对于①,平面BCMF ∥平面ADNE ,BM ⊂平面BCMF , ∴BM ∥平面ADNE ,①错误;对于②,平面DCMN ∥平面ABFE ,CN ⊂平面DCMN , ∴CN ∥平面ABFE ,②正确; 对于③,如图2所示,BD ∥FN ,BD ⊄平面AFN ,FN ⊂平面AFN , ∴BD ∥平面AFN ;同理BM ∥平面AFN ,且BD ∩BM =B , ∴平面BDM ∥平面AFN ,③正确;对于④,如图3所示,同③可得平面BDE ∥平面NCF ,④错误. 综上,正确的命题序号是②③.故选:A8.某几何体的三视图如图所示,则该几何体的体积是( )A. 83B.23C. 2D. 4『答案』B『解析』由几何体的三视图得该几何体是三棱锥P﹣ABC,如图是长方体的一部分,由三视图的数据,AB=BC=2,P到底面的距离为1,∴该几何体的体积:V=1122132⨯⨯⨯⨯=23.故选:B.9.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设1AA是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以1AA为底面矩形的一边,则这样的阳马的个数是( )A. 8B. 12C. 16D. 18『答案』C『解析』根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选:D.10.如图,四棱锥S ABCD-的正方形ABCD,AC与BD的交点为O,SO⊥平面ABCD且SO=E是边BC的中点,动点P在四棱锥表面上运动,并且总保⊥,则动点P的轨迹的周长为( )持PE ACA. B. C. 1+ D. 1+『答案』D『解析』分别取CD、SC的中点F、G,连接EF、FG和EG,如图所示;则EF ∥BD ,EF ⊄平面BDS ,BD ⊂平面BDS ∴EF ∥平面BDS 同理FG ∥平面BDS又EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG ,, ∴平面EFG ∥平面BDS ,由AC ⊥BD ,AC ⊥SO ,且AC ∩SO =O , 则AC ⊥平面BDS , ∴AC ⊥平面EFG ,∴点P 在△EFG 的三条边上;又EF =12BD =12=1,FG =EG =12SB =122,∴△EFG 的周长为EF +2FG =故选:D.二、填空题共6小题.11.直线:cos106π-+=l x y 的斜率为________.『答案』2『解析』直线l :x cos6π﹣y +1=0,即为直线l ﹣y +1=0,即为y +1,故『答案』.12.设等比数列{}n a 满足24a =,34128a a =,则6a =________.『答案』64『解析』设公比为q ,∵a 2=4,a 3a 4=128,∴4q ×4q 2=128, ∴q 3=8, ∴q =2,∴a 6=a 2q 4=4×24=64, 故『答案』为:64.13.若0a >,0b >,1a b +=,一定有1144ab ab +≥,()22221144ab ab ⎛⎫+≥+ ⎪⎝⎭成立,请将猜想结果填空:1n nn na b a b+≥________. 『答案』144nn +『解析』由a >0,b >0,a +b =1,一定有ab +1ab ≥4+14,(ab )2+(1ab )2≥42+214成立, 可以猜想:1144n n nn n n a b a b +≥+,故『答案』为:144nn +.14.如图,在长方体ABCD A B C D ''''-中,1BC =,2AB =,3BB '=,M 为AB 的中点,点P 在线段C M '上,点P 到直线BB '的距离的最小值为________.『答案』2『解析』连接MC ,由BB '∥CC ',BB '⊄平面MCC ',CC '⊂平面MCC ',可得BB '∥平面MCC ',由点P 到直线BB '的距离的最小值为异面直线BB '和直线C 'M 的距离, 即有直线BB '和平面MCC '的距离即为异面直线BB '和MC '的距离, 也即B 到平面MCC '的距离, 过B 在底面AC 内作BH ⊥MC , 由CC '⊥底面AC ,可得CC '⊥BH , 即有BH ⊥平面MCC ',由BC =BM =1,且BC ⊥BA ,可得BH =2.故『答案』为:2. 15.已知ABC 中,点()1,1A ,()4,2B ,()4,6C -.则ABC 的面积为________.『答案』10『解析』由两点式的直线BC 的方程为262y --=444x ---,即为x +2y ﹣8=0,由点A 到直线的距离公式得BC 边上的高dBC =∴△ABC 的面积为1210, 故『答案』为:10.16.已知()11,A x y ,()22,B x y 两点,满足:22111x y +=,22221x y +=,121212x x y y +=,+的最大值为________.『解析』设A (x 1,y 1),B (x 2,y 2),OA =(x 1,y 1),OB =(x 2,y 2), 由x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2=12, 可得A ,B 两点在圆x 2+y 2=1上, 且OA OB ⋅=1×1×cos ∠AOB =12, 即有∠AOB =60°,即三角形OAB 为等边三角形,AB =1,的几何意义为点A ,B 两点到直线x +y ﹣1=0的距离d 1与d 2之和,显然A ,B 在第三象限,AB 所在直线与直线x +y =1平行, 可设AB :x +y +t =0,(t >0), 由圆心O 到直线AB 的距离d, 可得1,解得t=2,1+,+故『答案』三、解答题共4小题.解答应写出文字说明、演算步骤或证明过程.17.等比数列{}n a 中,22a =,748a a =.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 解:(1)∵等比数列{a n }中,a 2=2,a 7=8a 4. ∴2×q 5=8×(2×q 2), 解得q =2,当q =2时,a n =2n ﹣1,∴{a n }的通项公式为,a n =2n ﹣1,(2)记S n 为{a n }的前n 项和,a 2=2,q =2, 则a 1=1,则S n =1212n--=2n ﹣1,由S m =63,得S m =2m ﹣1=63,m ∈N , 解得m =6.18.设ABC ∆的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos 45B =,3b =. (1)当6A π∠=时,求a 的值;(2)当ABC ∆的面积为3时,求a c +的值. 解:(1)∵cos 45B =,∴3sin 5B =, 由正弦定理可知:sin sin a bA B=, ∵A =30°,∴sin A =sin30°=12, ∴sin 5sin 2b A a B ==; (2)∵1sin 2ABC S ac B =△,△ABC 的面积为3, ∴3310ac =,∴ac =10, 由余弦定理得:b 2=a 2+c 2﹣2ac cos B ,∴222249210165a c a c =+-⨯⨯=+-,即a 2+c 2=25, 则(a +c )2=a 2+c 2+2ac =25+20=45,故a c +=19.如图,在四棱锥P ABCD -中,平面PAC ⊥平面ABCD ,且PA AC ⊥,2PA AD ==.四边形ABCD 满足//BC AD ,AB AD ⊥,1AB BC ==.E 为侧棱PB 的中点,F 为侧棱PC 上的任意一点.(1)若F 为PC 的中点,求证://EF 平面P AD ;(2)求证:平面AFD ⊥平面P AB ;(3)是否存在点F ,使得直线AF 与平面PCD 垂直?若存在,写出证明过程并求出线段PF 的长;若不存在,请说明理由.解:(1)因为E ,F 分别为侧棱PB ,PC 的中点,所以//EF BC ,因为//BC AD ,所以//EF AD ,而EF ⊄平面P AD ,AD ⊂平面P AD ,所以//EF 平面P AD ;(2)因为平面ABCD ⊥平面P AC ,平面ABCD平面PAC AC =, 且PA AC ⊥,PA ⊂平面P AC ,所以PA ⊥平面ABCD ,又AD ⊂平面ABCD ,所以PA AD ⊥.又因为AB AD ⊥,PA AB A =,所以AD ⊥平面P AB ,而AD ⊂平面AFD ,所以平面AFD ⊥平面P AB ;(3)在棱PC 上显然存在点F 使得AF PC ⊥.由已知,AB AD ⊥,//BC AD ,1AB BC ==,2AD =.由平面几何知识可得CD AC ⊥.由(2)知,PA ⊥平面ABCD ,所以PA CD ⊥,因为PA AC A =,所以CD ⊥平面P AC .而AF ⊂平面P AC ,所以CD AF ⊥.又因为CD PC C =,所以AF ⊥平面PCD .在PAC ∆中,2PA =,AC =90PAC ∠=︒,可求得,PC =PF =可见直线AF 与平面PCD 能够垂直,此时线段PF 的长为3. 20.如图,Rt OAB ∆的直角边OA 在x 轴上,顶点B 的坐标为()6,8,直线CD 交AB 于点()6,3D ,交x 轴于点()12,0C .(1)求直线CD 的方程;(2)动点P 在x 轴上从点()10,0-出发,以每秒1个单位的速度向x 轴正方向运动,过点P 作直线l 垂直于x 轴,设运动时间为t .①点P 在运动过程中,是否存在某个位置,使得PDA B ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由;②请探索当t 为何值时,在直线l 上存在点M ,在直线CD 上存在点Q ,使得以OB 为一边,O ,B ,M ,Q 为顶点的四边形为菱形,并求出此时t 的值.解:(1)直线CD 过点C (12,0),D (6,3),直线方程为030y --=12612x --, 化为一般形式是x +2y ﹣12=0;(2)①如图1中,作DP ∥OB ,则∠PDA =∠B ,由DP ∥OB 得,PA AO =AD AB ,即6PA =38,∴P A =94;∴OP=6﹣94=154,∴点P(154,0);根据对称性知,当AP=AP′时,P′(334,0),∴满足条件的点P坐标为(154,0)或(334,0);②如图2中,当OP=OB=10时,作PQ∥OB交CD于Q,则直线OB的『解析』式为y=43 x,直线PQ的『解析』式为y=43x+403,由440332120y xx y⎧=+⎪⎨⎪+-=⎩,解得48xy=-⎧⎨=⎩,∴Q(﹣4,8);∴PQ10,∴PQ=OB,∴四边形OPQB是平行四边形,又OP=OB,∴平行四边形OPQB是菱形;此时点M与点P重合,且t=0;如图3,当OQ=OB时,设Q(m,﹣12m+6),则有m2+2162m⎛⎫-+⎪⎝⎭=102,解得m;∴点Q;设M的横坐标为a,则62a+=652+或62a+=652+,解得a或a;又点P是从点(﹣10,0)开始运动,则满足条件的t ; 如图4,当Q 点与C 点重合时,M 点的横坐标为6,此时t =16;综上,满足条件的t 值为0,或16,或925+或925-.。
北京101中2017-2018学年高一下学期期末数学试卷Word版含解析.pdf
位置; ( II )求平面 α把该长方体分成的两部分体积的比值.
17.已知函数 f( x )= sinxcosx﹣ cos2x + ,△ ABC 三个内角 A , B,C 的对边分别为 a, b,
c 且 f( A) =1 . ( I) 求角 A 的大小; (Ⅱ)若 a=7, b=5,求 c 的值. 18.某超市随机选取 1000 位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成 如下统计表,其中 “√表”示购买, “×”表示未购买.
6.在梯形 ABCD 中,∠ ABC= , AD ∥ BC,BC=2AD=2AB=2 ,将梯形 ABCD 绕 AD 所在
的直线旋转一周而形成的曲面所围成的几何体的体积为(
)
A.
B.
C.
D .2π
7.某三棱锥的三视图如图所示,则该三棱锥的表面积是(
)
A .2+
B. 4+
C. 2+2
D.5
8.对于集合 { a1, a2, …, an} 和常数 a0,定义
14.已知函数 f( x)=
.
( 1)若 f ( x)> k 的解集为 { x| x<﹣ 3 或 x>﹣ 2} ,则 k 的值等于 ______; ( 2)对任意 x>0, f( x)≤ t 恒成立,则 t 的取值范围是 ______ .
三、解答题:本大题共 5 小题,共 50 分 .
15.海关对同时从 A , B, C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此商
w=
为集合 { a1, a2, …, an} 相对
a0 的 “正弦方差 ”,则集合 { ,
,
} 相对 a0 的 “正弦方差 ”为(
)
北京101中学2017-2018学年高一上学期期末考试数学试题(解析版)
北京101中学2017-2018学年上学期高一年级期末考试数学试卷一、选择题共10小题。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.计算:sin23π=( )A. B.C.12D. 12-【答案】B 【解析】因为sin23π=sin 32π=,故选B . 2.若0<a<1,b >0则函数f (x )=a x +b 的图象一定经过( ) A. 第一、二象限 B. 第二、四象限 C. 第一、二、四象限 D. 第二、三、四象限【答案】A 【解析】因为0<a<1,则函数f (x )=a x 单调递减,过一、二象限,又因为b >0,把图像向上平移,即函数图象一定过第二象限,故选A.3.下列函数是奇函数且在定义域内是增函数的是( ) A. y=e x B. y=tanxC. y=lnxD. y=x 3+x【答案】D 【解析】选项A,y=e x 是非奇非偶函数,不合题意;选项B, y=tanx 在每个单调区间上分别递增,但是在定义域内不是增函数,不合题意; 选项C, y=lnx 是非奇非偶函数,不合题意; 故选D.4.已知函数()()g x f x x =-,若()f x 是偶函数,且()f 21=,则()g 2(-= ) A. 1 B. 2C. 3D. 4【答案】C【解析】f (x )是偶函数,且f (2)=1,则()21f -=,所以g (-2)= ()()223f ---=,故选C.5.设向量a b v v ,满足a b a b m +=-=v v vv ,则a b ⋅v v =( )A. 0B. mC. -mD.2m【答案】A 【解析】【详解】由a b m a b m⎧+=⎪⎨-=⎪⎩v v v v ,两式分别平方得:222222a a b b m a a b b m ⎧+⋅+=⎨-⋅+=⎩v v v v v v v v ,作差得0a b ⋅=r r ,故选A . 6.不等式2633xx -+>的解集是( )A. (-3,2)B. (-2,3)C. (-∞,-3)U (2,+∞)D. (-∞,-2)U (3,+∞)【答案】A 【解析】函数3xy =单调递增,原不等式等价于26x x -+>,即260x x +-<,解得-3<x<2,故选A. 7.函数y=ln (-x 2+2x+3)的减区间是( ) A. (-1,1] B. [1,3)C. (-∞,1)D. (1,+∞)【答案】B 【解析】令2230x x -++>,即()()310x x -+<,解得()1,3x ∈-,ln y u =Q 单调递增, 223u x x =-++在(-1,1)上单调递增,在[1,3)上单调递减,所以函数y=ln (-x 2+2x+3)的减区间是[1,3),故选B. 8.已知函数y=A sin (ωx+φ)+B (A>0,ω>0,|φ|<2π)的周期为T ,如图为该函数的部分图象,则正确的结论是( )A. A=3,T=2πB. B=-1,ω=2C. A=3,φ=6π D. T=4π,φ=6π-【答案】D 【解析】 由图知, ()()2424423,1,222233T A B πππ--+-⎛⎫====-=--= ⎪⎝⎭,4T π∴=,把点4,23π⎛⎫ ⎪⎝⎭代入13sin 12y x ϕ⎛⎫=+- ⎪⎝⎭得22sin 1,332k πππϕϕπ⎛⎫+=∴+=+ ⎪⎝⎭,即()6k k ϕπ=π-∈Z ,又|φ|<2π,0k ∴=时,φ=6π-,故选D. 9.某学生在期中考试中,数学成绩较好,英语成绩较差,为了在后半学期的月考和期末这两次考试中提高英语成绩,他决定重点加强英语学习,结果两次考试中英语成绩每次都比上次提高了10%,但数学成绩每次都比上次降低了10%,期末时这两科分值恰好均为m 分,则这名学生这两科的期末总成绩和期中比,结果( ) A. 提高了B. 降低了C. 不提不降(相同)D. 是否提高与m 值有关系【答案】B 【解析】设期中考试数学和英语成绩为a和b,则()()22110%110%a b m -=+=,,, 2.0620.81 1.210.81 1.21m m m m a b a b m m ∴==+=+≈>,所以总成绩比期中降低了,故选B. 10.已知菱形ABCD 的边长为2,∠BAD=120°,点E ,F 分别在边BC ,DC 上,BE BC =λ,DF DC=μ.若AE AF⋅u u u v u u u v =l ,CE CF ⋅u u u v u u u v =23-,则λ+ μ =( ) A. 12 B. 23 C. 34 D. 56【答案】D 【解析】()()······AE AF AB BE AD DF AB AD AB DF BE AD BE DF =++=+++u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v =22cos120?··AB DC AD BC AD AB u u u v u u u v u u u v u u u v u u u v u u u v μλλμ⨯⨯︒+++=24422cos12044221μλλμμλλμ-+++⨯⨯⨯︒=+--=, 4423μλλμ∴+-= (1),()()()()··1?11?1CE CF EC FC BC DC AD AB u u u vu u u v u u u vu u u v u u u v u u u v u u u v u u u v λμλμ==--=-- ()()1122cos120λμ=--⨯⨯⨯︒=()()2123λμλμ--+-=-,即23λμλμ--+=- (2),由(1)(2)可得56λμ+=,故选D. 点睛:与平面向量数量积有关的题目的类型及求法:(1)求平面向量数量积有三种方法:一是夹角公式a ·b =|a ||b |cos θ;二是坐标公式a ·b =x 1x 2+y 1y 2;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.二、填空题共6小题。
2017年7月海淀高一下学期期末数学答案
海淀区高一年级第二学期期末练习参考答案数学 2017.7一、选择题(本大题共8小题,每小题4分,共32分)二、填空题(本大题共6小题,每小题4分, 共24分.有两空的小题,每空2分)说明:第11题,只要填的数大于4即可,此外,如果学生填写4m >,给2分第13题,第一个空,填三个序号中的任何一个都对 三、解答题(本大题共4小题,共44分) 15.解:(Ⅰ) 因为点(,)n n a 在直线210xy -+=上所以21n a n =+ …………………2分 所以143,9,21m a a a m ===+ …………………4分 因为1a ,4a ,m a 成等比数列 所以241ma a a = …………………6分所以3(21)81m +=…………………7分解得13m= …………………8分(Ⅱ)因为21n a n =+,所以241n a n =+ …………………9分记2n n b a =,所以14n n b b +-=所以{}n b 首项为15b =,公差为4的等差数列 …………………10分 所以2124212232nn n n b b T a a a b b b n n n+=++⋅⋅⋅+=++⋅⋅⋅+==+ …………………12分16. 解:(Ⅰ)设“从年龄在20到40岁之间的被调查者中任选一人,其每个月网上消费金额在5001000-元为事件A”…………………1分因为年龄在20到40岁之间的被调查者一共有20人,其中有4个人每个月网上消费金额在5001000-元…………………3分所以41()P A==…………………4分205说明:这里必须要有设事件,如果没有,则扣1分,此外这里只要出现分子4,分母20,(Ⅱ)每个月网上消费金额在1000至2000元的被调查者中共4人,设这4个人为甲、乙、丙、丁,其中丙、丁的年龄在在30到40岁之间设选出的2人中至少1人年龄在30到40岁为事件B…………………5分基本事件空间{{},{},{},{},{},{}}Ω=甲乙甲丙甲丁乙丙乙丁丙丁…………………7分,,,,,,事件B中含有5个基本事件…………………8分所以5P B=…………………9分()6说明:这里必须要有设事件,如果没有,则扣1分,此外这里基本事件空间Ω可以不把所有的基本事件列出,但是要有必要的说明,即基本事件空间个数或者事件B含有的基(Ⅲ)年龄在[)30,40的数据方差较小…………………12分17.解:(Ⅰ)在A B C ∆中,根据余弦定理222c o s 2a c bB a c+-=…………………1分代入数值,得到2225871c o s 2582B +-==⨯⨯ …………………2分又(0,π)B ∈,所以π3B =…………………4分所以1sin 2A B CS a c B ∆=1π58sin123=⨯= …………………6分(Ⅱ)法一: 因为5B C C D ==,π3B=,所以B C D ∆是等边三角形 …………………7分所以π2π3π33A DA D C =∠=-=, …………………8分在A C D ∆中,由正弦定理得sin sin A C DA D CA DA C∠∠=…………………9分所以sin 237A C D∠=,所以sin 14A C D∠=…………………10分法二: 因为5B C C D ==,π3B=,所以B C D ∆是等边三角形 …………………7分 所以5B D=,所以3A D=…………………8分所以384A C DA B C S S ∆∆==…………………9分所以1175sin 24A C DS A C D ∆=⨯⨯⨯∠=所以s in 14A C D ∠=…………………10分18.解:(Ⅰ)若1,a=则212a =…………………1分所以3114362a == …………………3分(Ⅱ)若数列{}n a 是常数列,则211nn nn a a a a +==+ …………………4分所以22n n na a a =+ …………………5分所以0n a =,所以0a = …………………6分经检验0a=时,0n a =,所以{}n a 是常数列(Ⅲ)若数列{}n a 是单调递减数列 则10n n a a +-<对*n ∈N成立 …………………7分所以22111n n nn n n n n a a a a a a a a +----==<++ …………………8分所以(1)0n n a a +>,所以0n a >或1n a <- …………………9分 所以0a>或1a <-.设函数2()1xf x x =+ 当0x >时,()0f x >当1x <-时,则221111()1121111xx f x x x x x x x -+===-+=++-++++所以1()1241f x x x =++-<-+所以,当0a>时,可以得到10a >,以此类推得到0n a >当1a<-时,可以得到11a <-,以此类推得到1n a <- …………………10分综上,可以得到数列{}n a 是单调递减数列时,0a >或1a <-.附加题: 解:(Ⅰ)8的一个可分数列为125,, …………………2分 (此处答案不唯一,例如116,,,或134,,,或112,4,,)8的可分峰值为4 …………………4分(Ⅱ)S 的最小值为54设128a a a ⋅⋅⋅,,,为S 的可分数列, 则1281a a a ≤≤≤⋅⋅⋅≤所以11a ≤,21a ≤根据条件,从128a a a ⋅⋅⋅,,,中任取三项i j k a a a ,,,其中i j k<<因为i j k a a a ,,不能同时作为三角形的三条边,所以有+i j ka a a ≤…………………6分所以有312112a a a ≥+≥+=4321113a a a ≥+≥++=5435a a a ≥+= 6548a a a ≥+= 76513a a a ≥+= 87621a a a ≥+=所以1281+1+2+3+5+8+13+21=54Sa a a =++⋅⋅⋅+≥ …………………8分又1, 1, 2, 3, 5, 8, 13, 21为54的一个项数为8的可分数列,所以S 的最小值为54 …………………10分。
北京市101中学2017_2018学年高一数学下学期期中试题
如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快! 北京101中学2017-2018学年下学期高一年级期中考试数学试卷一、选择题共10小题。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 在等差数列{a n }中,如果a 1+a 2=25,a 3+a 4=45,则a 1=( ) A. 5B. 7C. 9D. 102. tan (α-4π)=31,则tan α=( )A. 2B. -2C.21D. -21 3. 在△ABC 中,若bcosA=a sinB ,则∠A 等于( ) A. 30°B. 45°C. 60°D. 90°4. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c. 己知a=5,c=3,cosA=63,则b=( )A. 1B. 2C.25D. 65. 设a ,b ∈R ,下列不等式中一定成立的是( ) A. a 2+3>2aB. a 2+b 2>0 C. a 3+b 3≥a 2b+ab 2D. a+a1≥2 6. 数列{a n }为公比为q (q ≠1)的等比数列,设b 1=a 1+a 2+a 3+a 4,b 2=a 5+a 6+a 7+a 8,…,b n =a 4n-3+a 4n -2+a 4n -1+a 4n ,则数列b n ( ) A. 是等差数列B. 是公比为q 的等比数列C. 是公比为q 4的等比数列D. 既非等差数列也非等比数列7. 在超市中购买一个卷筒纸,其内圆直径为4cm ,外圆直径为12cm ,一共卷60层,若把各层都视为一个同心圆,令π=3.14,则这个卷筒纸的长度(精确到个位)为( )A. 17mB. 16mC. 15mD. 14m8. 已知数列{a n }是等差数列,S n 为其前n 项和. 若6193=S S ,则126S S=( ) A.101B.103C.105D.107 9. 下列函数中,最小值为4的函数是( )A. y=x 3+34xB. y=sinx+xsin 4 C. y=log 3 x+log x 81D. y=e x+4e -x10. 某商品的价格在近4年中价格不断波动,前两年每年递增20%,后两年每年递减20%,最后一年的价格与原来的价格比较,变化情况是( )A. 不增不减B. 约增1.4%C. 约减9.2%D. 约减7.8%二、填空题共6小题。
2017-2018年北京市101中学高一(下)期末数学试卷(解析版)
2017-2018学年北京市101中学高一(下)期末数学试卷一、选择题共10小题.在每小题列出的四个选项中,选出符合题目要求的一项.1.(3分)不等式≤0的解集是()A.{x|﹣1≤X≤2}B.{x|﹣1≤X<2}C.{x|x>2或x≤﹣1}D.{x|x<2} 2.(3分)设等差数列{a n}的前n项和S n,若a4+a10=4,则S13=()A.13B.14C.26D.523.(3分)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定4.(3分)已知直线l1的方程为3x+4y﹣7=0,直线l2的方程为3x+4y+1=0,则直线l1和l2的距离为()A.B.C.D.5.(3分)设某直线的斜率为k,且k∈(﹣,),则该直线的倾斜角α的取值范围是()A.(,)B.(,)C.[0,)∪(,π)D.[0,)∪(,π)6.(3分)对于直线m,n和平面α,β,能得出α⊥β的一个条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β7.(3分)如图是正方体的平面展开图,在这个正方体中,有以下四个命题:①BM⊥平面ADNE;②CN∥平面ABFE;③平面BDM∥平面AFN;④平面BDE⊥平面NCF.其中正确命题的序号是()A.②③B.①②③C.②③④D.①②③④8.(3分)某几何体的三视图如图所示,则该几何体的体积是()A.B.C.2D.49.(3分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.1610.(3分)如图,四棱锥S﹣ABCD中,底面是边长为的正方形ABCD,AC与BD的交点为O,SO⊥平面ABCD,且SO=,E是边BC的中点,动点P在四棱锥表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为()A.2B.2C.1+D.1+二、填空题共6小题.11.(3分)直线l:x cos﹣y+1=0的斜率为.12.(3分)设等比数列{a n}满足a2=4,a3a4=128,则a6=.13.(3分)若a>0,b>0,a+b=1,一定有ab+≥4,(ab)2+()2≥42+成立,请将猜想结果填空:a n b n+≥.14.(3分)如图,在长方体ABCD﹣A'B'C'D'中,BC=1,AB=2,BB'=3,M为AB的中点,点P在线段C'M上,点P到直线BB'的距离的最小值为.15.(3分)已知△ABC中,点A(1,1),B(4,2),C(﹣4,6).则△ABC的面积为.16.(3分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为.三、解答题共4小题.解答应写出文字说明、演算步骤或证明过程.17.等比数列{a n}中,a2=2,a7=8a4.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.18.设△ABC的内角A,B,C所对应的边长分别是a,b,c,且.(1)当A=30°时,求a的值;(2)当△ABC的面积为3时,求a+c的值.19.如图,在四棱锥P﹣ABCD中,平面P AC⊥平面ABCD,且P A⊥AC,P A=AD=2.四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1.E为侧棱PB的中点,F为侧棱PC 上的任意一点.(1)若F为PC的中点,求证:EF∥平面P AD;(2)求证:平面AFD⊥平面P AB;(3)是否存在点F,使得直线AF与平面PCD垂直?若存在,写出证明过程并求出线段PF 的长;若不存在,请说明理由.20.如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0).(1)求直线CD的方程;(2)动点P在x轴上从点(﹣10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B?若存在,请求出点P的坐标;若不存在,请说明理由;②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.2017-2018学年北京市101中学高一(下)期末数学试卷参考答案与试题解析一、选择题共10小题.在每小题列出的四个选项中,选出符合题目要求的一项.1.(3分)不等式≤0的解集是()A.{x|﹣1≤X≤2}B.{x|﹣1≤X<2}C.{x|x>2或x≤﹣1}D.{x|x<2}【解答】解:根据题意,≤0可以变形为(x+1)(x﹣2)≤0且x﹣2≠0,解可得﹣1≤x<2,即不等式的解集为{x|﹣1≤x<2},故选:B.2.(3分)设等差数列{a n}的前n项和S n,若a4+a10=4,则S13=()A.13B.14C.26D.52【解答】解:在等差数列{a n}中,由a4+a10=4,得2a7=4,即a7=2.∴S13=.故选:C.3.(3分)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【解答】解:∵sin2A+sin2B<sin2C,由正弦定理可得,a2+b2<c2由余弦定理可得cos C=∴∴△ABC是钝角三角形故选:C.4.(3分)已知直线l1的方程为3x+4y﹣7=0,直线l2的方程为3x+4y+1=0,则直线l1和l2的距离为()A.B.C.D.【解答】解:∵已知直线l1的方程为3x+4y﹣7=0,直线l2的方程为3x+4y+1=0,则直线l1和l2的距离为d==,故选:A.5.(3分)设某直线的斜率为k,且k∈(﹣,),则该直线的倾斜角α的取值范围是()A.(,)B.(,)C.[0,)∪(,π)D.[0,)∪(,π)【解答】解:直线l的斜率为k,倾斜角为α,若k∈(﹣,),所以﹣<tanα≤所以α∈[0,)∪(,π).故选:D.6.(3分)对于直线m,n和平面α,β,能得出α⊥β的一个条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β【解答】解:在A中,m⊥n,m∥α,n∥β,则α与β相交或相行,故A错误;在B中,m⊥n,α∩β=m,n⊂α,则α与β不一定垂直,故B错误;在C中,m∥n,n⊥β,m⊂α,由由面面垂直的判定定理得α⊥β,故C正确;在D中,m∥n,m⊥α,n⊥β,则由面面平行的判定定理得α∥β,故D错误.故选:C.7.(3分)如图是正方体的平面展开图,在这个正方体中,有以下四个命题:①BM⊥平面ADNE;②CN∥平面ABFE;③平面BDM∥平面AFN;④平面BDE⊥平面NCF.其中正确命题的序号是()A.②③B.①②③C.②③④D.①②③④【解答】解:把正方体的平面展开图还原成正方体ABCA﹣EFMN,如图1所示;对于①,平面BCMF∥平面ADNE,BM⊂平面BCMF,∴BM∥平面ADNE,①错误;对于②,平面DCMN∥平面ABFE,CN⊂平面DCMN,∴CN∥平面ABFE,②正确;对于③,如图2所示,BD∥FN,BD⊄平面AFN,FN⊂平面AFN,∴BD∥平面AFN;同理BM∥平面AFN,且BD∩BM=B,∴平面BDM∥平面AFN,③正确;对于④,如图3所示,BD∥FN,BE∥CN,BD∩BE=B,且BD、BE⊂平面BDE,∴平面BDE∥平面NCF,∴④错误.综上,正确的命题序号是②③.故选:A.8.(3分)某几何体的三视图如图所示,则该几何体的体积是()A.B.C.2D.4【解答】解:由几何体的三视图得该几何体是三棱锥P﹣ABC,如图是长方体的一部分,由三视图的数据,AB=BC=2P到底面的距离为1,∴该几何体的体积:V==.故选:B.9.(3分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.16【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选:D.10.(3分)如图,四棱锥S﹣ABCD中,底面是边长为的正方形ABCD,AC与BD的交点为O,SO⊥平面ABCD,且SO=,E是边BC的中点,动点P在四棱锥表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为()A.2B.2C.1+D.1+【解答】解:分别取CD、SC的中点F、G,连接EF、FG和EG,如图所示;则EF∥BD,FG∥DS,且EF∩FG=F,BD∩DS=D,∴平面EFG∥平面BDS,由AC⊥BD,AC⊥SO,且AC∩SO=O,则AC⊥平面BDS,∴AC⊥平面EFG,∴点P在△EFG的三条边上;又EF=BD=××=1,FG=EG=SB=×=,∴△EFG的周长为EF+2FG=1+.故选:D.二、填空题共6小题.11.(3分)直线l:x cos﹣y+1=0的斜率为.【解答】解:直线l:x cos﹣y+1=0,即为直线l:x﹣y+1=0,即为y=x+1,故直线的斜率为,故答案为:.12.(3分)设等比数列{a n}满足a2=4,a3a4=128,则a6=64.【解答】解:设公比为q,∵a2=4,a3a4=128,∴4q×4q2=128,∴q3=8,∴q=2,∴a6=a2q4=4×24=64,故答案为:6413.(3分)若a>0,b>0,a+b=1,一定有ab+≥4,(ab)2+()2≥42+成立,请将猜想结果填空:a n b n+≥.【解答】解:由a>0,b>0,a+b=1,一定有ab+≥4+,(ab)2+()2≥42+成立,可以猜想:a n b n+≥4n+,故答案为:4n+14.(3分)如图,在长方体ABCD﹣A'B'C'D'中,BC=1,AB=2,BB'=3,M为AB的中点,点P在线段C'M上,点P到直线BB'的距离的最小值为.【解答】解:连接MC,由BB'∥CC',BB'⊄平面MCC',CC'⊂平面MCC',可得BB'∥平面MCC',由点P到直线BB'的距离的最小值为异面直线BB'和直线C'M的距离,即有直线BB'和平面MCC'的距离即为异面直线BB'和MC'的距离,也即B到平面MCC'的距离,过B在底面AC内作BH⊥MC,由CC'⊥底面AC,可得CC'⊥BH,即有BH⊥平面MCC',由BC=BM=1,且BC⊥BA,可得BH=.故答案为:.15.(3分)已知△ABC中,点A(1,1),B(4,2),C(﹣4,6).则△ABC的面积为10.【解答】解:由两点式的直线BC的方程为=,即为x+2y﹣8=0,由点A到直线的距离公式得BC边上的高d==,BC两点之间的距离为=4,∴△ABC的面积为×4×=10,故答案为:10.16.(3分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.三、解答题共4小题.解答应写出文字说明、演算步骤或证明过程.17.等比数列{a n}中,a2=2,a7=8a4.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【解答】解:(1)∵等比数列{a n}中,a2=2,a7=8a4.∴2×q5=8×(2×q2),解得q=2,当q=2时,a n=2n﹣1,∴{a n}的通项公式为,a n=2n﹣1,(2)记S n为{a n}的前n项和,a2=2,q=2,则a1=1,则S n==2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.18.设△ABC的内角A,B,C所对应的边长分别是a,b,c,且.(1)当A=30°时,求a的值;(2)当△ABC的面积为3时,求a+c的值.【解答】解:(1)∵,∴,…(2分)由正弦定理可知:,∵A=30°,∴sin A=sin30°=,∴…(6分)(2)∵,△ABC的面积为3,…(7分)∴,∴ac=10…8分由余弦定理得:b2=a2+c2﹣2ac cos B…(9分)∴,即a2+c2=25…(10分)则:(a+c)2=a2+c2+2ac=25+20=45…(11分)故:…(12分)19.如图,在四棱锥P﹣ABCD中,平面P AC⊥平面ABCD,且P A⊥AC,P A=AD=2.四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1.E为侧棱PB的中点,F为侧棱PC 上的任意一点.(1)若F为PC的中点,求证:EF∥平面P AD;(2)求证:平面AFD⊥平面P AB;(3)是否存在点F,使得直线AF与平面PCD垂直?若存在,写出证明过程并求出线段PF 的长;若不存在,请说明理由.【解答】解(1)因为E,F分别为侧棱PB,PC的中点,所以EF∥BC.因为BC∥AD,所以EF∥AD.而EF⊄平面P AD,AD⊂平面P AD,所以EF∥平面P AD.(2)因为平面ABCD⊥平面P AC,平面ABCD∩平面P AC=AC,且P A⊥AC,P A⊂平面P AC,所以P A⊥平面ABCD,又AD⊂平面ABCD,所以P A⊥AD.又因为AB⊥AD,P A∩AB=A,所以AD⊥平面P AB,而AD⊂平面AFD,所以平面AFD⊥平面P AB.(3)在棱PC上显然存在点F使得AF⊥PC.由已知,AB⊥AD,BC∥AD,AB=BC=1,AD=2.由平面几何知识可得CD⊥AC.由(2)知,P A⊥平面ABCD,所以P A⊥CD,因为P A∩AC=A,所以CD⊥平面P AC.而AF⊂平面P AC,所以CD⊥AF.又因为CD∩PC=C,所以AF⊥平面PCD.在△P AC中,P A=2,AC=,∠P AC=90°,可求得,PC=,PF=.可见直线AF与平面PCD能够垂直,此时线段PF的长为.20.如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0).(1)求直线CD的方程;(2)动点P在x轴上从点(﹣10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B?若存在,请求出点P的坐标;若不存在,请说明理由;②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.【解答】解:(1)直线CD过点C(12,0),D(6,3),直线方程为=,化为一般形式是x+2y﹣12=0;(2)①如图1中,作DP∥OB,则∠PDA=∠B,由DP∥OB得,=,即=,∴P A=;∴OP=6﹣=,∴点P(,0);根据对称性知,当AP=AP′时,P′(,0),∴满足条件的点P坐标为(,0)或(,0);②如图2中,当OP=OB=10时,作PQ∥OB交CD于Q,则直线OB的解析式为y=x,直线PQ的解析式为y=x+,由,解得,∴Q(﹣4,8);∴PQ==10,∴PQ=OB,∴四边形OPQB是平行四边形,又OP=OB,∴平行四边形OPQB是菱形;此时点M与点P重合,且t=0;如图3,当OQ=OB时,设Q(m,﹣m+6),则有m2+=102,解得m=;∴点Q的横坐标为或;设M的横坐标为a,则=或=,解得a=或a=;又点P是从点(﹣10,0)开始运动,则满足条件的t的值为或;如图4,当Q点与C点重合时,M点的横坐标为6,此时t=16;综上,满足条件的t值为0,或16,或或.。
2017-2018学年北京市101中学高一(上)期末数学试卷(解析版)
⃗⋅⃗=0
.
C. ������ = 4������, D. ������ = 3,
������ =‒ 6
������
������
本题考查向量的数量积的求法,考查向量的数量积公式等基础知识,考查推理论证能力、运算求解能力, 考查化归与转化思想,是基础题.
������ = 6
6.
‒ ������ 不等式3
C. ������ = ������������������
3 D. ������ = ������ + ������
∴⃗⋅⃗=0
������ ������
.
故选:A.
推导出
| ⃗ + ⃗ |2 = | ⃗ ‒ ⃗ |2
������ ������ ������ ������
,由此能求出������ ������
,
������ ������ ������ ������
3.
下列函数是奇函数且在定义域内是增函数的是( )
������ A. ������ = ������
∴ ⃗2 + 2⃗ ⋅ ⃗ + ⃗2 = ⃗2 ‒ 2⃗ ⋅ ⃗ + ⃗2
������ ������ ������ ������
,
B. ������ = ������������������������
2.
������ 若0 < ������ < 1,则函数������(������) = ������ + 6的图象一定经过( )
A. 第一、二象限
【答案】A
B. 第二、四象限
C. 第一、二、四象限
D. 第二、三、四象限
5.
⃗ ⃗ ⃗⋅⃗=( | ⃗ + ⃗| = | ⃗ ‒ ⃗| = ������ ������ ������ 若向量������,������满足 ������ ������ ,则������ ������ )
【全国名校】2017-2018学年北京市101中学高一(上)期末数学试题(解析版)
2017-2018学年北京市101中学 高一(上)期末数学试题数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单选题 1.计算:A .B .C .D .2.若0<a<1,则函数f (x )=a x +6的图象一定经过 A .第一、二象限 B .第二、四象限 C .第一、二、四象限 D .第二、三、四象限 3.下列函数是奇函数且在定义域内是增函数的是 A .y=e x B .y=tanx C .y=lnx D .y=x 3+x4.已知函数 ,若 是偶函数,且 ,则 A .1 B .2 C .3 D .45.若向量 , 满足 ,则 A .0 B .m C . D .6.不等式2633x x -+>的解集是A .(-3,2)B .(-2,3)C .(-∞,-3)⋃(2,+∞)D .(-∞,-2)⋃(3,+∞) 7.函数 的减区间是A .B .C .D .8.已知函数的周期为T ,在一个周期内的图像如图所示,则正确的结论是A .B .C .D .9.某学生在期中考试中,数学成绩较好,英语成绩较差,为了在后半学期的月考和期末这两次考试中提高英语成绩,他决定重点加强英语学习,结果两次考试中英语成绩每次都比上次提高了10%,但数学成绩每次都比上次降低了10%,期末时这两科分值恰好均为m 分,则这名学生这两科的期末总成绩和期中比,结果A .提高了B .降低了C .不提不降(相同)D .是否提高与m 值有关系10.已知菱形ABCD 的边长为2,∠BAD=120°,点E ,F 分别在边BC ,DC 上,BEBC= λ, DFDC= μ。
北京市海淀区北京一零一中学2018-2019学年高一下学期期末考试数学试题含解析
北京101中学2018-2019学年下学期高一年级期末考试数学试卷一、选择题:在每小题列出的四个选项中,选出符合题目要求的一项。
1.不等式1 xx->0的解集是()A. (-∞,0)U(1,+∞)B. (-∞,0)C. (1,+∞)D. (0,1)【答案】A【解析】【分析】由题意可得,()1010xx xx->⇔->,求解即可.【详解】()1010xx xx->⇔->,解得1x>或0x<,故解集为(-∞,0)U(1,+∞),故选A.【点睛】本题考查了分式不等式的解法,考查了计算能力,属于基础题.2.如图,长方体1111ABCD A B C D-的体积为1V,E为棱1CC上的点,且113CE CC=,三棱锥E-BCD的体积为2V,则21VV=()A.13B.16C.19D.118【答案】D【解析】【分析】分别求出长方体1111ABCD A B C D -和三棱锥E -BCD 的体积,即可求出答案. 【详解】由题意,11ABCD V S CC =⋅,21111113321318BCD ABCD ABCD V S CE S CC S CC ⎛⎫⎛⎫=⋅==⋅ ⎪⎪⎝⎭⎝⎭V ,则21118V V =. 故选D.【点睛】本题考查了长方体与三棱锥的体积的计算,考查了学生的计算能力,属于基础题.3.如图,在平行六面体1111ABCD A B C D -中,M ,N 分别是所在棱的中点,则MN 与平面1BB D 的位置关系是( )A. MN ⊂平面1BB DB. MN 与平面1BB D 相交C. MN //平面1BB DD. 无法确定MN 与平面1BB D 的位置关系 【答案】C 【解析】 【分析】取CD 的中点E ,连结,ME EN ,可证明平面//EMN 平面1BB D ,由于MN ⊂平面EMN ,可知//MN 平面1BB D .【详解】取CD 的中点E ,连结,ME EN ,显然11//,////EM BD EN CC BB , 因为EM ⊄平面1BB D ,EN ⊄平面1BB D , 所以//EM 平面1BB D ,//EN 平面1BB D , 又EM EN E =I ,故平面//EMN 平面1BB D ,又因为MN ⊂平面EMN ,所以//MN 平面1BB D . 故选C.【点睛】本题考查了直线与平面的位置关系,考查了线面平行、面面平行的证明,属于基础题.4.已知x ,y ∈R ,且x >y >0,则( ) A. 11x y x y->- B. cos cos 0x y -<C.110x y-> D. ln x +ln y >0【答案】A 【解析】 【分析】结合选项逐个分析,可选出答案.【详解】结合x ,y ∈R ,且x >y >0,对选项逐个分析:对于选项A ,0x y ->,110y xx y xy--=<,故A 正确; 对于选项B ,取2πx =,3π2y =,则3cos cos cos 2cos 1002x y -=π-π=->,故B 不正确; 对于选项C ,110y x x y xy--=<,故C 错误; 对于选项D ,ln ln ln x y xy +=,当1xy <时,ln 0xy <,故D 不正确. 故选A.【点睛】本题考查了不等式的性质,属于基础题.5.等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则( ) A. a 1=1 B. a 3=1 C. a 4=1 D. a 5=1【答案】B 【解析】分析:由题意知25511T a q ()==,由此可知211a q =,所以一定有31a =. 详解2342551111111T a a q a q a q a q a q =⋅⋅⋅⋅==:(), 211a q ∴= ,31a ∴= .故选:B .点睛:本题考查数列的性质和应用,解题时要认真审题,仔细解答.6.设α,β为两个平面,则能断定α∥β的条件是( ) A. α内有无数条直线与β平行 B. α,β平行于同一条直线 C. α,β垂直于同一条直线 D. α,β垂直于同一平面【答案】C 【解析】 【分析】对四个选项逐个分析,可得出答案.【详解】对于选项A ,当α,β相交于直线l 时,α内有无数条直线与β平行,即A 错误; 对于选项B ,当α,β相交于直线l 时,存在直线满足:既与l 平行又不在两平面内,该直线平行于α,β,故B 错误;对于选项C ,设直线AB 垂直于α,β平面,垂足分别A,B ,假设α与β不平行,设其中一个交点为C ,则三角形ABC 中,90ABC BAC ︒∠=∠=,显然不可能成立,即假设不成立,故α与β平行,故C 正确;对于选项D ,α,β垂直于同一平面,α与β可能平行也可能相交,故D 错误. 【点睛】本题考查了面面平行的判断,考查了学生的空间想象能力,属于中档题.7.如图,A ,B 是半径为1的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β.图中△P AB 的面积的最大值为( )A.1sin 2β+sin2β B. sin β+12sin2β C.β+sin βD.β+cos β【答案】B 【解析】 【分析】 由正弦定理可得,22sin AB R APB==∠,则2sin AB β=,12ABC S AB h =⋅V ,当点P 在AB的中垂线上时,h 取得最大值,此时ABP △的面积最大,求解即可. 【详解】在ABP △中,由正弦定理可得,22sin ABR APB==∠,则2sin AB β=.12ABC S AB h =⋅V ,当点P 在AB 的中垂线上时,h 取得最大值,此时ABP △的面积最大. 取AB 的中点C ,过点C 作AB 的垂线,交圆于点D ,取圆心为O ,则2221sin cos OC OB BC ββ=-=-=(β为锐角),1cos CD DO OC β=+=+.所以ABP △的面积最大为()()1112sin 1cos sin sin cos sin sin 2222S AB DC βββββββ=⋅=⋅+=+=+. 故选B.【点睛】本题考查了三角形的面积的计算、正弦定理的应用,考查了三角函数的化简,考查了计算能力,属于基础题.8.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A=PB=PC ,△ABC 2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°.则球O 的体积为( ) A. 86π B. 43πC.6πD.3π2【答案】D 【解析】 【分析】计算可知三棱锥P -ABC 的三条侧棱互相垂直,可得球O 是以P A 为棱的正方体的外接球,球的直径23d PA O 的体积.【详解】在△P AC 中,设PAC θ∠=,2PA PB PC x ===,,0EC y x =>,0y >, 因为点E ,F 分别是P A ,AB 的中点,所以1,2EF PB x AE x ===, 在△P AC 中,22cos 222x θ=⨯⨯,在△EAC 中,22cos 22x θ=⨯⨯整理得221x y -=-,因为△ABC 是边长为2的正三角形,所以6CF =, 又因为∠CEF =90°,所以2232x y +=, 所以12x =, 所以21PA PB PC x ====.又因为△ABC 是边长为2的正三角形, 所以P A,PB,PC 两两垂直,则球O 是以P A 为棱的正方体的外接球, 则球的直径233d PA ==,所以外接球O 的体积为33443πππ3322d V r ⎛⎫==⨯= ⎪⎝⎭.故选D.【点睛】本题考查了三棱锥的外接球,考查了学生的空间想象能力,属于中档题.二、填空题。
北京101中学2017-2018学年高一上学期期末考试数学试题(解析版)
北京101中学2017-2018学年上学期高一年级期末考试数学试卷一、选择题共10小题。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 计算:sin=()A. B. C. D.【答案】B【解析】因为sin=sin,故选B.2. 若0<a<1,b>0则函数f(x)=a x+b的图象一定经过()A. 第一、二象限B. 第二、四象限C. 第一、二、四象限D. 第二、三、四象限【答案】A【解析】因为0<a<1,则函数f(x)=a x+b单调递减,且当时, ,即函数图象一定过第二象限,故选A.3. 下列函数是奇函数且在定义域内是增函数的是()A. y=e xB. y=tanxC. y=lnxD. y=x3+x【答案】D【解析】选项A,y=e x是非奇非偶函数,不合题意;选项B, y=tanx在每个单调区间上分别递增,但是在定义域内不是增函数,不合题意;选项C, y=lnx是非奇非偶函数,不合题意;故选D.4. 已知函数g(x)=f(x)-x,若f(x)是偶函数,且f(2)=1,则g(-2)=()A. 1B. 2C. 3D. -1【答案】C【解析】f(x)是偶函数,且f(2)=1,则,所以g(-2)= ,故选C.5. 设向量a,b满足|a+b|=|a-b|=,则a·b=()A. 0B. mC. -mD.【答案】A【解析】由,两式分别平方得:,作差得,故选A.6. 不等式的解集是()A. (-3,2)B. (-2,3)C. (-,-3)(2,+)D. (-,-2)(3,+)【答案】A............7. 函数y=ln(-x2+2x+3)的减区间是()A. (-1,1]B. [1,3)C. (-,1)D. (1,+)【答案】B【解析】令,即,解得,单调递增, 在(-1,1)上单调递增,在[1,3)上单调递减,所以函数y=ln(-x2+2x+3)的减区间是[1,3),故选B.8. 已知函数y=A sin(x+)+B(A>0,>0,||<)的周期为T,如图为该函数的部分图象,则正确的结论是()A. A=3,T=2B. B=-1,=2C. A=3,=D. T=4,=【答案】D【解析】由图知,,,把点代入得,即,又||<, 时,=,故选D.9. 某学生在期中考试中,数学成绩较好,英语成绩较差,为了在后半学期的月考和期末这两次考试中提高英语成绩,他决定重点加强英语学习,结果两次考试中英语成绩每次都比上次提高了10%,但数学成绩每次都比上次降低了10%,期末时这两科分值恰好均为m分,则这名学生这两科的期末总成绩和期中比,结果()A. 提高了B. 降低了C. 不提不降(相同)D. 是否提高与m值有关系【答案】B【解析】设期中考试数学和英语成绩为a和b,则,,所以总成绩比期中降低了,故选B.10. 已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上,=,=。
北京海淀101中学2016-2017学年高一下学期期中考试数学试题(含精品解析)
)2=
<
=1,故④正确;
⑤若 a>b, > ⇔ ﹣ >0⇔ >0⇔ <0,则 ab<0,所以 a>0,b<0,故⑤正确;
⑥正数 x,y 满足 + =1,则 x+2y=(x+2y)( + )=1+2+ + ≥3+2 ,故其最小值为 3+2 ,故⑥错 误.
综上所述,正确命题的序号是:②③④⑤,
故答案为:②③④⑤.
点睛:本题考查了等差数列的性质,考查了三角函数的化简与求值,训练了对数的运算性质,是中低档 题.
14. 给出下列命题:①若
,则 ;②若 , ,则
;③若
,则
;④
;⑤若 , ,则 , ;⑥正数 , 满足
为 .其中正确命题的序号是__________.
,则
【答案】②③④⑤
【解析】分析:利用不等式的性质与基本不等式对①②③④⑤⑥逐项判断即可.
∴
.
点睛:(I)当已知条件中含有 sn 时,一般会用结论
来求通项,一般有两种类型:
①所给的 sn=f(n),则利用此结论可直接求得 n>1 时数列{an}的通项,但要注意检验 n=1 是否适合②所给
的 sn 是含有 an 的关系式时,则利用此结论得到的是一个关于 an 的递推关系,再用求通项的方法进行求
∴数列{an}的前 9 项之和 故答案为 99. 点睛:本题考查等差数列的性质,掌握等差数列的性质与前 n 项和公式是解决问题的关键,属于中档题.
10. 已知 ,函数 【答案】5
的最小值是__________.
【解析】分析:由 ,函数
=
-1+1,然后由基本不等式即可求得最小值.
详解:由题可得:
北京市海淀101中学2016-2017学年高一数学下学期期中试卷及答案【word版】.doc
北京101中学2016-2017学年下学期高一年级期中考试数学试卷(本试卷满分120分,考试时间100分钟)一、选择题共8小题.在每小题列出的四个选项中,选出符合题目要求的一项. 1.在ABC △中,4a =,60A =︒,45B =︒,则边b 的值为().A .364 B .2+ C . D .1【答案】A【解析】根据正弦定理sin sin a b A B =,可得4sin60sin 45b=︒︒,∴4sin 45sin 60b ︒==︒, ∴A 项正确.2.已知等差数列{}n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于().A .9B .3C .3-D .6-【答案】D【解析】∵1a ,3a ,4a 成等比数列, 所以有214b a a a =⋅,21(2)a d ⇒+,11(3)a a d =+, 1a d ⇒⋅,24d =-,又∵2d =,∴18a =-, ∴2826a =-+=-, 故选D .3.下列结论正确的是().A .若ac bc <,则a b <B .若22a b <,则a b <C .若a b >,0c <,则ac bc <D ,则a b >【答案】C【解析】对于A ,若0c <,不成立, 对于B ,若a ,b 均小于0或0b <,不成立,对于D ,其中0a ≥,0b >,平方后有a b <,不成立, 故选C .4.已知13a -≤≤,24b ≤≤,则2a b -的取值范围是().A .[]6,4-B .[]0,10C .[]4,2-D .[]5,1-【答案】A【解析】∵[1,3]a ∈-,∴2[2,6]a ∈-, ∵[2,4]b ∈,∴[4,2]b -∈--, 则2[6,4]a b -∈-, 故选A .5.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若2b ac =,且2c a =,则cos B =().A .41B .43C .42 D .32 【答案】B【解析】将2c a =代入得:222b ac a ==,即b =,∴2222222423cos 244a cb a a a B ac a +-+-===, 故选B .6.若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数.给出下列三个函数:1si c )s (n o f x x x =+,2()f x x =3()sin f x x =,则().A .1()f x ,2()f x ,3()f x 为“同形”函数B .1()f x ,2()f x 为“同形”函数,且它们与3()f x 不为“同形”函数C .1()f x ,3()f x 为“同形”函数,且它们与2()f x 不为“同形”函数D .2()f x ,3()f x 为“同形”函数,且它们与1()f x 不为“同形”函数 【答案】B【解析】∵1()sin cos f x x x =+,π4x ⎛⎫=+ ⎪⎝⎭,2()f x x =+ 3()sin f x x =,则1()f x ,2()f x 为“同形”函数,且它们与3()f x 不为“同形”函数, 选B .7.已知函数21()(2cos 1)sin2cos42f x x x x =-+,若π,π2α⎛⎫∈ ⎪⎝⎭且()f α=α的值是().A .5π8B .11π16C .9π16D .7π8【答案】C【解析】1()cos2sin 2cos42f x x x x =+,11sin 4cos422x x =+, 1(sin 4cos4)2x x =+,π44x ⎛⎫=+ ⎪⎝⎭, ∴π,π2α⎛⎫∈ ⎪⎝⎭,∴π9174π,π444α⎛⎫+∈ ⎪⎝⎭,若()f α=ππ42π()42x k k +=+∈Z ,ππ162kα=+,当1k =时,9π16α=, 故选C .8.已知(1,1)1f =,(,)(,)f m n m n ∈∈N N **,且对任意m ,n ∈N *都有: ①(,1)(,)2f m n f m n +=+;②(1,1)2(,1)f m f m +=.以下三个结论:①(1,5)9f =;②(5,1)16f =;③(5,6)26f =. 其中正确的个数为().A .0B .1C .2D .3【答案】D【解析】∵(,1)(,)2f m n f m n +=+,(1,1)1f =, ∴{}(,)f m n 是以1为首项,2为公差的等差数列, ∴(1,)21f n n =-. 又∵(1,1)2(,1)f m f m +=,∴{}(,1)f m 是以1为首项2为公比的等比数列, ∴(,1)21f n n =-,∴(,1)2?12f m n m n +=-+. 由(1,5)2519f =⨯-=,故(1)正确. 由(5,1)2416f ==,故(2)正确. 由(5,6)242626f =+⨯=,故(3)正确. 故答案为3.二、填空题共6小题.9.在等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则前9项之和9S =__________.【答案】99【解析】在等差数列中,14739a a a ++=,36927a a a ++=,∴413a =,69a =,∴4622a a +=,又4619a a a a +=+, ∴数列{}n a 的前9项之和199()92a a S +⨯=, 2292⨯=, 99=.10.已知1x >,函数41y x x =+-的最小值是__________. 【答案】5 【解析】∵1x >, ∴41y x x =+-,411151x x =+-+=-≥, 当且仅当3x =时,“=”成立,故最小值为5.11.计算:1111133557(21)(21)n n ++++=⨯⨯⨯-+L __________. 【答案】21n n + 【解析】原式111111123352121n n ⎛⎫=-+-++- ⎪-+⎝⎭L 111221n ⎛⎫=- ⎪+⎝⎭21nn =+.12.在等比数列{}n a 中,12a =-,454a =-,则数列{}n a 的前n 项和n S =__________. 【答案】13n -【解析】∵14254a a =-⎧⎨=-⎩,∴327q =+,即3q =+, ∴12(3)n n a -=⨯+,∵1(1)1n n a q S q-=-,2(13)13n --=-,13n =-.13.在ABC △中,若lgsin A ,lgsin B ,lgsin C 成等差数列,且三个内角A ,B ,C 也成等差数列,则ABC △的形状为__________. 【答案】等边三角形【解析】∵lgsin A ,lgsin B ,lgsin C 成等差数列, 得lgsin lgsin 2lgsin A C B +=,即2sin sin sin B A B =①, 又三内角A 、B 、C 也成等差数列, ∴60B =︒,代入①得3sin sin 4A B =②, 设60A α=︒-,60B α=︒+, 代入②得3sin(60)sin(60)4αα︒+︒-=,22313cos sin 444αα⇒-=, 即2cos 1α=, ∴0α=︒, ∴60A B C ===︒, ∴为等边三角形.14.给出下列命题:①若0a b <<,则11ab<;②若0a >,0b >,则2a b aba b++;③若0a b <<,则22a ab b >>;④lg9lg111⋅<;⑤若a b >,11ab>,则0a >,0b <;⑥正数x ,y 满足111x y +=,则2x y +的最小值为6.其中正确命题的序号是__________.【答案】②③④⑤【解析】①令2a =-,1b =-,112a=-,11b=-,11a b>,不符合. ②若0a >,0b >,则2a b+(当且仅当a b =时,取等号),11ab a b =-+⎭,00=>≥, ∴aba b+,综上,2a b aba b ++. ③若0a b <<,则20a ab >>,20ab b >>, 因此,22a ab b >>,故③正确.④2lg9lg11lg9lg112+⎛⎫⋅< ⎪⎝⎭, 22lg99lg100122⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭, 故④正确.⑤若a b >,111100b aababab->⇔->⇔>, ∴0a bab-<,则0ab <, ∴0a >,0b <, ⑤正确.⑥正数x ,y 满足111x y +=,则112(2)x y x y x y⎛⎫+=++ ⎪⎝⎭,2123y xx y=++++≥, ⑥错,∴②③④⑤正确.三、解答题(共5小题,分值分别为8分、8分、10分、12分、12分,共50分)15.在ABC △中,a ,b ,c 分别是角A ,B ,C 的对边,且c 105A =︒,30C =︒.求:(1)b 的值. (2)ABC △的面积. 【答案】(1)2(2【解析】(1)∵105A =︒,30C =︒,∴45B =︒,又C =1sin 2C =,∴由正弦定理sin sin b c B C =得:sin 221sin 2C Bb C===.(2)2b =,c =sin sin105A =︒,sin(6045)=︒+︒,sin60cos45cos60sin45=︒︒+︒︒,=∴1sin 2ABC S bc A =△,122=⨯,16.某工厂生产的某种产品,当年产量在150吨至250吨之间时,年生产总成本y (万元)与年产量x (吨)之间的关系可近似地表示成230400010x x y +=-,问年产量为多少时,每吨的平均成本最低?并求出该最低成本.【答案】年产量为200吨时,每吨的平均成本最低,最低为10万元. 【解析】设每吨的平均成本W (万元/t ),则400030301010y x W x x ==+-=≥, 当且仅当400010x x=,200x =(t )的每吨平均成本最低,且最低成本为10万元.17.已知函数ππ()sin 2sin 2cos 266f x x x x a ⎛⎫⎛⎫=++-++ ⎪ ⎪⎝⎭⎝⎭(a ∈R ,a 为常数).(1)求函数的最小正周期. (2)求函数的单调递减区间.(3)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为2-,求a 的值.【答案】见解析【解析】(1)ππ()2sin 2cos cos 22cos 22sin 266f x x x a x x a x a ⎛⎫=++=++=++ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==. (2)单调递减区间为2ππ,π()63k k k π⎡⎤++∈⎢⎥⎣⎦Z . (3)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,所以当π7π266x +=即π2x =时,()f x 取得最小值.所以ππ2sin 2226a ⎛⎫⋅++=- ⎪⎝⎭,所以1a =-.18.设数列{}n a 的前n 项和为n S ,22n S n =,数列{}n b 为等比数列,且11a b =,2211()b a a b -=.(1)求数列{}n a 和{}n b 的通项公式.(2)设nn nac b =,求数列{}n c 的前n 项和n T .【答案】(1)42n a n =-,1124n n b -⎛⎫= ⎪⎝⎭(2)565499nn n T -=+【解析】19.已知点(,)()n n a n ∈N *在函数()22f x x =--的图象上,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,且n T 是6n S 与8n 的等差中项.(1)求数列{}n b 的通项公式.(2)设83n n c b n =++,数列{}n d 满足11d c =,()nn l d c n d +∈=N *.求数列{}n d 的前n 项和n D .(3)在(2)的条件下,设()g x 是定义在正整数集上的函数,对于任意的正整数1x ,2x ,恒有121221()()()g x x x g x x g x =+成立,且(2)g a =(a 为常数,0a ≠),试判断数列121n n d g d ⎧+⎫⎛⎫ ⎪⎪⎪⎪⎪⎝⎭⎨⎬+⎪⎪⎪⎪⎩⎭是否为等差数列,并说明理由. 【答案】见解析【解析】(1)依题意得22n a n =--,故14a =-. 又268n n T S n =+,即34n n T S n =+,所以,当2n ≥时,113()43462n n n n n n b T T S S a n --=-=-+=+=--. 又111134348b T S a ==+=+=-也适合上式, 故62n b n =--.(2)因为83628321n n c b n n n n =++=--++=+,121n n d n d c d +==+,因此112(1)(*)n n d d n ++=+∈N .由于113d c ==,所以{}1n d +是首项为114d +=,公比为2的等比数列. 所以111422n n n d -++=⨯=,所以121n n d +=-.所以23124(21)2222421n n n n D n n n ++-=++⋯+-=-=---(). (3)方法一:111(2)2(2)2(2)2n n n n d g g g g --+⎛⎫==+ ⎪⎝⎭, 则111111111(2)2(2)2(2)(2)221224241n n n n n n n n n n n d d g g g g g a g a d d ----++-++⎛⎫⎛⎫ ⎪ ⎪+⎝⎭⎝⎭===+=+++.所以111122114n n n n d d g g a d d --++⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭-=++.因为已知a为常数,则数列121nndgd⎧+⎫⎛⎫⎪⎪⎪⎪⎪⎝⎭⎨⎬+⎪⎪⎪⎪⎩⎭是等差数列.方法二:因为121221()()()g x x x g x x g x=+成立,且(2)g a=,所以111(2)2(2)2(2)2n n nndg g g g--+⎛⎫==+⎪⎝⎭,1221222(2)22(2)2(2)22(2)2(2)n n n n ng g g g g-----⎡⎤=++=⨯+⎣⎦,123313322(2)22(2)2(2)32(2)2(2) n n n n ng g g g g-----⎡⎤⎣⎦=⨯++=⨯+,1111(1)2(2)2(2)2(2)2n n n nn g g n g an----==-⨯+=⋅=⋅L,所以11122124nnnndgan and-++⎛⎫⎪⋅⎝⎭==+.所以数列121nndgd⎧+⎫⎛⎫⎪⎪⎪⎪⎪⎝⎭⎨⎬+⎪⎪⎪⎪⎩⎭是等差数列.。
北京市101中学高一数学下学期期末考试试题
北京一零一中2015-2016学年度第二学期期末考试高一数学一、选择题:1. 某市2013年各月的平均气温()数据的茎叶图如下:则这组数据的中位数是A. 19B. 20C. 21.5D. 232.等差数列中,则数列的公差为A. 4B. 3C. 2D. 13.在区间上随机选取一个数,则的概率为A. B. C. D.4.执行如图所示的程序框图,输出的值为A.3B. 4C. 5D. 65.已知满足约束条件,则的最大值为A. B. C. D.6.在梯形中,将梯形绕所在的直线旋转一周而形成的曲面所围成的几何体的体积为A. B. C. D.7.某三棱锥的三视图如图所示,该三棱锥的表面积是A. B.C. D.58.对于集合和常数,定义:为集合相对的“正弦方差”,则集合相对的“正弦方差”为A. B. C. D.与有关的一个值二、填空题:9. 某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间内,其频率分布直方图如图所示. 在这些购物者中,消费金额在区间内的购物者的人数为_________.10.在中,则_________.11.等比数列的前项和为,公比不为1,若,且对任意的都有,则_________.12.已知,则的取值范围是______.13.如图,在正三棱柱中,,分别是棱的中点,为棱上的动点,则周长的最小值为_________.14.已知函数(1)若的解集为,则的值等于_________;(2)对任意,恒成立,则的取值范围是_________.北京一零一中2015-2016学年度第二学期期末考试高一数学答题卷一、选择题:本大题共8小题,共40分.二、填空题:本大题共6小题,共30分.9. __________________________. 10. __________________________.11. __________________________. 12. __________________________.13. __________________________. 14. ____________, ___________.三、解答题:本大题共5小题,共50分.15. 海关对同时从三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示. 工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(I)求这6件样品中来自各地区商品的数量;(II)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.16.如图,长方体中,点分别在上,,过点的平面与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说明画法和理由),并说明在棱上的具体位置;(Ⅱ)求平面把该长方体分成的两部分体积的比值.17.已知,三个内角的对边分别为且.(I)求角的大小;(Ⅱ)若,,求的值.18.某超市随机选取位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.5×中,同时购买乙和丙的频率;(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买种商品的概率;(Ⅲ)用样本估计总体,如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?说明理由.19.已知数列和满足,若为等比数列,且(I)求与;(Ⅱ)设,记数列的前项和为(i)求;(ii)求正整数,使得对任意,均有.北京一零一中2015-2016学年度第二学期期末考试高一数学答题卷一、选择题:本大题共8小题,共40分.二、填空题:本大题共6小题,共30分.9. __________6000____________. 10. _____________1____________.11. __________11______________. 12. ____________(7,14)____ _____.13. ____________________. 14. _________, ____.三、解答题:本大题共5小题,共50分.15. 海关对同时从三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示. 工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(I)求这6件样品中来自各地区商品的数量;(II)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.(1)共进口300件商品,其中来自A地区的商品占的比例为;其中来自B地区的商品占的比例为;其中来自C地区的商品占的比例为;根据分层抽样的原则,6件样品中来自A地区1件,自B地区3件,自C地区2件.(2)共有15个基本事件,其中2件商品来自相同地区对应的基本事件有4个,设事件A=“6件样品中随机抽取2件,这2件商品来自相同地区”,则P(A)=16.如图,长方体中,点分别在上,,过点的平面与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说明画法和理由),并说明在棱上的具体位置;(Ⅱ)求平面把该长方体分成的两部分体积的比值.(Ⅰ)如图,(Ⅱ)平面把该长方体分成的两部分是两个棱柱,高相同,体积比等于底面积的比;两个棱柱的底面均为直角梯形,所以体积比=17.已知,三个内角的对边分别为且.(I)求角的大小;(Ⅱ)若,,求的值.解:(I)因为又,,所以,(Ⅱ)由余弦定理得到,所以解得(舍)或18.某超市随机选取位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.√(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买种商品的概率;(Ⅲ)用样本估计总体,如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?说明理由.【答案】(1)0.2;(2)0.3;(3)同时购买丙的可能性最大.(Ⅰ)从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的频率为.(Ⅱ)从统计表可以看出,在在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为.(Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为,顾客同时购买甲和丙的概率可以估计为,顾客同时购买甲和丁的概率可以估计为,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.19.已知数列和满足,若为等比数列,且(I)求与;(Ⅱ)设,记数列的前项和为(i)求;(ii)求正整数,使得对任意,均有.解答:(I)由题意,,,知,又有,得公比(舍去),所以数列的通项公式为,所以,故数列的通项公式为,;(II)(i)由(I)知,,所以;(ii)因为;当时,,而,得,所以当时,,综上对任意恒有,故.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017北京101中学高一(下)期末数学
本试卷满分120分,考试时间100分钟
一、选择题共8小题。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合M={x|x2-4x+3<0},N={x|3-x>1},则M N=()
A. {x| 1<x<3}
B. {x| 1<x<2}
C.
D. {x| x<3}
2. 某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青
年教师有320人,则该样本中的老年教师人数为()
类别人数
老年教师900
中年教师1800
青年教师1600
合计4300
A. 90
B. 100
C. 180
D. 300
3. 秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求
值的秦九韶算法,至今仍是比较先进的算法。
如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()
A. 9
B. 18
C. 20
D. 35
4. 重庆市2016年各月的平均气温(℃)数据的茎叶图如图,则这组数据的中位数是()
A. 19
B. 20
C. 21.5
D. 23
5. 在区间[0,2]上随机取一个实数x ,若事件“3x-m<0”发生的概率为6
1,则实数m 的值为()A. l B. 21 C. 31
D. 6
1
6. 已知实数x ,y 满足,
3,03,
01y y x y x 则2x+y 的最小值为()
A. 11
B. 5
C. 4
D. 2
7. 已知实数x ,y 满足a x <a y (0<a<1),则下列关系式恒成立的是()
A. 111122y x
B. ln (x 2
+1)>ln (y 2+1)
C. sinx>siny
D. x 3>y 3
8. 如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF=21
,有下列结论:
①AC ⊥BE ;②EF ∥平面ABCD ;③平面ACC 1A 1⊥平面BEF ;④△AEF 的面积与△BEF 的面积相等。
正确的个数为(
)A. 1 B. 2 C. 3 D. 4
二、填空题共6小题。
9. 已知函数f (x )=x+x 8
-3(x>0),则f (x )的最小值是__________。
10. 抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:
运动员第一次第二次第三次第四次第五次
甲87 9l 90 89 93
乙89 90 91 88 92。