数量遗传学与作物育种

合集下载

徐云碧-从分子数量遗传学到分子植物育种

徐云碧-从分子数量遗传学到分子植物育种

国际上最早的水稻QTL论文之一
博士论文的总结报告 Xu, Yun-Bi, Zong-Tan Shen, Ji-Chen Xu, Ying Chen and LiHuang Zhu. 1993. Mapping quantitative trait loci via restriction fragment length polymorphism markers in rice. Rice Genetics Newsletter 10:135-138.
1
Molecular Quantitative Genetics in China (1990-1994)
数量性状遗传改良的希望和曙光
Paterson, A. H., E. S. Lander, J. D. Hewitt, S. Peterson, S. E. Lincoln and S. D. Tanksley. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721-726. Received 8 July 1988 Accepted 9 September 1988 Google 被引用次数:1155 (8:25am, Aug 24, 2011) Lander, E. S. and D. Botstein. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185-199. Manuscript received August 2, 1988 Accepted for publication October 6, 1988 Google被引用次数:3614 (8:28am, Aug 24, 2011)

数量遗传学与作物育种

数量遗传学与作物育种

3 遗传率
• 遗传率 也称为遗传力,是遗传方差占总方差的比率,遗传 学上解释为性状变异的遗传传递能力,它是遗传方差占总方 差的比例,故又称为遗传率。遗传率分为狭义遗传率和广义 遗传率。广义遗传率为群体遗传方差VA+VD占表型方差的比 率。狭义遗传率定义为加性遗传方差VA占总方差VP的比率。 • 狭义遗传率: VA 2
• Hardy和Weiberg(1908)研究群体的基因型频率发 现了随机交配群体的遗传平衡定律,为群体遗传 学的发展提供了基础,依此人们进一步研究群体 的遗传演变、进化和适应。 • Fisher(1918)提出了表型方差可以分解为遗传 方差(包括加性方差、显性方差、上位性方差) 和环境方差的经典数量遗传学思路,为变异的遗 传学解析提供了基础。 • 二十世纪七十年代以前,还出现了许多遗传试验 设计及其分析方法,例如NC设计、三重测交设计、 基因型与环境互作的设计与分析、双列杂交与配 合力分析等。
• 对动物、植物和人类的许多数量性状遗传研究表明,生物 群体所处的宏观环境对群体表现也具有环境效应E,基因 在不同环境中的表达也可能不尽相同,会存在基因型与环 境互作效应GE。因此.生物体在不同环境下的表现型值 可以细分为P=E+G+GE+e,群体表现型变异也可作相 应的分解,VP=VE+VG+VGE+Ve。 • 对于加性—显性遗传体系,如果基因型效应可以分解为加 性效应和显性效应,GE互作效应也可相应地分解为加性 与环境互作效应AE和显性与环境互作效应DE,个体的表 现型值为P=E+A+D+AE+DE+e,表现型方差可分解为 VP=VE+VA+VD+VAE+VDE+Ve。 • 对于加性—显性—上位性遗传体系,个体表现型值为 P=E+A+D+I+AE+DE+IE+e,表现型方 差的分解为 VP=VE+VA+VD+VI+VAE+VDE+VIE+Ve,其中IE是上位性与 环境互作效应 ,VIE是上位性与环境互作方差。

遗传育种

遗传育种

浅谈遗传育种学遗传育种学,从内容上可以分为遗传学和育种学两部分。

遗传学主要是研究遗传与变异的科学,主要内容内容包括遗传的细胞学基础、分离规律、自由组合规律、连锁遗传规律、染色体结构变异、染色体的数目变异、遗传物质的分子基础、基因工程、数量性状的遗传、近亲繁殖和杂种优势、细胞质遗传、群体遗传等;而育种学是研究动植物在繁育过程中如何得到优良品种的后代的一门科学,其主要包括育种与农业生产、育种目标、种质资源、植物的繁殖方式、引种和训化、选择育种、杂交育种、回交育种、远缘杂交及倍性育种、杂种优势利用、诱变育种、生物技术等内容。

从研究对象上,遗传育种学可分为植物遗传育种学、动物遗传育种学以及微生物遗传育种学等,而作为生物学上的一个小分支,其运用范围和前景越来越广泛。

一、遗传学1、定义研究基因的结构、功能及其变异、传递和表达规律的学科及研究生物的遗传与变异的科学。

研究基因的结构、功能及其变异、传递和表达规律的学科。

2、学科分支从噬菌体到人,生物界有基本一致的遗传和变异规律,所以遗传学原则上不以研究的生物对象划分学科分支。

人类遗传学的划分是因为研究人的遗传学与人类的幸福密切相关,而系谱分析和双生儿法等又几乎只限于人类的遗传学研究。

微生物遗传学的划分是因为微生物与高等动植物的体制很不相同,因而必须采用特殊方法进行研究。

此外,还有因生产意义而出现的以某一类或某一种生物命名的分支学科,如家禽遗传学、棉花遗传学、水稻遗传学等。

更多的遗传学分支学科是按照所研究的问题来划分的。

例如,细胞遗传学是细胞学和遗传学的结合;发生遗传学所研究的是个体发育的遗传控制;行为遗传学研究的是行为的遗传基础;免疫遗传学研究的是免疫机制的遗传基础;辐射遗传学专门研究辐射的遗传学效应;药物遗传学则专门研究人对药物反应的遗传规律和物质基础,等等。

从群体角度进行遗传学研究的学科有群体遗传学、生态遗传学、数量遗传学、进化遗传学等。

这些学科之间关系紧密,界线较难划分。

《作物育种学总论》课件

《作物育种学总论》课件
分子辅助育种
利用分子生物学技术辅助传统育种,加速品 种的遗传改良。
作物品种改良的途径与方法
选择育种
通过选择优良个体,培 育新品种的方法。
杂交育种
利用不同品种间的杂交 优势,创造新品种的方
法。
诱变育种
利用物理、化学等因素 诱发基因突变,创造新
品种的方法。
基因工程育种
利用基因工程技术将外 源基因导入作物中,创
04
作物品种改良的目标与策略
作物品种改良的目标
01
02
03
04
提高作物产量
通过改良品种,提高单位面积 产量,满足日益增长的食物需
求。
增强抗逆性
提高品种对环境胁迫的抗性, 如抗旱、抗寒、抗病虫害等, 提高作物的适应性和稳定性。
改善品质
改良品种的品质特性,如营养 价值、口感、色泽等,满足消
费者多样化的需求。
诱变育种
利用物理、化学或生物诱变剂处理种子,诱发基因突 变,从中选择和培育具有优良性状的新品种。
选择育种
通过对自然变异或人工创造变异的选择,选育符合人 们需要的优良品种。
现代育种技术
基因工程育种
利用基因工程技术,将外源基因导入作物中,创 造具有优良性状的新品种。
细胞工程育种
通过细胞培养和细胞融合等技术,创造具有优良 性状的新品种。
作物育种实践案例分析
水稻育种
介绍我国在水稻育种方面取得的成就和典型案例,如超级稻的培 育及其在农业生产中的应用。
小麦育种
分析小麦育种的目标和方法,以及在提高产量、品质和抗逆性方面 的实践成果。
玉米育种
探讨玉米育种的发展历程、现状和未来趋势,以及在提高产量和抗 逆性方面的实践案例。

数量遗传学方法在优质育种中的应用

数量遗传学方法在优质育种中的应用

数量遗传学方法在优质育种中的应用随着人类生存环境的变化,粮食安全问题日趋严峻。

因此,如何高效地进行作物育种已成为全球粮食安全的重要问题之一。

数量遗传学是一种统计学及数学方法,被广泛应用于作物育种领域,并展现出强大的优势。

本文将介绍数量遗传学方法在优质育种中的应用以及其中的一些具体案例。

1. 数量遗传学方法简介数量遗传学研究的是影响数量特征(如身高、产量等)的基因遗传以及受到环境因素的影响程度。

具体来说,数量遗传学方法用于描述多基因遗传和基因与环境之间的复杂互动,为进一步研究繁殖系统和选择良种提供了理论支持。

2. 数量遗传学方法在作物育种中的应用数量遗传学方法已成为现代作物育种中不可或缺的一部分。

其中,最常用的方法是平衡选择法和群体遗传学方法。

平衡选择法用于确定对产量或其它作物特征的选择所需的理论增益,而群体遗传学方法则用于研究基因变异和群体遗传流动。

3. 优质育种是指以产品品质为重点的作物育种方法。

在作物育种中,产品品质可以包括味道和营养价值等要素。

由于产品品质的评估通常比较主观,因此需要一些特殊的方法支持。

3.1. 品质分析与品质评价品质分析可以根据不同的物理、化学和生物学属性来分析作物质量特征。

品质评价则是对品质分析结果进行评价和分级。

数量遗传学方法可以在品质分析中对相关性和差异进行建模,同时还可以帮助确定影响特定品质特征的基因。

3.2. 品质皮尔逊相关分析品质皮尔逊相关分析是一种基于相关性的分析。

它可以用于评估不同基因间以及基因与环境之间的关联关系。

这种方法可以帮助育种家们更好地理解和细化品质特征的关联关系,并针对不同品质进行更加精准的选择。

4. 数量遗传学方法在稻米育种中的应用稻米因其高度的食用价值而广受欢迎,也成为了许多地区的主食。

稻米品质对于消费者的健康至关重要,也因此被广泛研究。

下面将介绍数量遗传学方法在稻米育种中的应用。

4.1. 大孔率大孔率是影响稻米品质的一个非常重要的指标。

大孔率表示了米粒内部的空洞数量,这些空洞可能会影响稻米的口感和质量。

作物QTL分析的原理与方法

作物QTL分析的原理与方法

作物QTL定位方法与技术作物QTL定位的方法主要有传统连锁分析、基因芯片 技术和深度学习等。连锁分析通过群体遗传学手段,鉴定两个或多个基因位点 间的连锁关系,进而确定控制性状的QTL。基因芯片技术利用基因组wide的标 记分布,对大量基因位点进行同时检测,高效地定位QTL。深度学习则利用神 经网络等算法,自动化学习和识别数据中的特征,实现对QTL的精准定位。
四、自然群体
自然群体是指在没有人为干预下自然形成的群体,如野生种、地方品种、自然 变异群体等。这些群体通常具有丰富的遗传变异和复杂的遗传结构,对于研究 作物的适应性、抗逆性和产量等性状的遗传基础非常有用。此外,自然群体还 可以用于发现和克隆稀有或特殊的QTL。
五、基于基因组的作图群体
随着基因组学技术的发展,基于基因组的作图群体越来越受到重视。这种群体 可以通过重测序技术获得大量的SNP(单核苷酸多态性)标记,并利用这些标 记构建高密度的遗传图谱。这种图谱可以用于精细定位和克隆QTL,以及研究 基因组中的结构变异和非编码区基因组。
2、QTL分析的具体步骤
(1)数据采集:收集作物的基因型和表型数据。基因型数据可以通过高通量 测序技术获得,而表型数据则可以通过田间试验和室内分析等方法获得。
(2)作图:利用作图软件将基因型和表型数据组装成图,以展示它们之间的 关系。常用的作图软件包括QTL Cartographer、QTL IciMapping等。
原理
1、QTL的概念及定义
QTL是指作物基因组中控制数量性状的基因座位,它们可以通过影响表型变异 来影响作物的农艺性状。QTL通常分为两类:主效QTL和微效QTL。主效QTL是 指对表型变异起主要作用的QTL,而微效QTL则是指对表型变异起较小作用的 QTL。

中国农业科学院2017年博士研究生入学考试部分参考书目

中国农业科学院2017年博士研究生入学考试部分参考书目
策略与方法科学出版社科学出版社科学出版社?1999?1999?1999食品化学食品化学食品化学中国农大出版社中国农大出版社中国农大出版社食品化学食品化学食品化学中国轻工业出版社中国轻工业出版社中国轻工业出版社动物遗传学动物遗传学动物遗传学农业出版社农业出版社农业出版社家畜育种学家畜育种学家畜育种学农业出版社农业出版社农业出版社张张数量遗传学数量遗传学数量遗传学农业出版社农业出版社农业出版社220622062206作物栽培学作物栽培学作物栽培学221222122212植物生理学植物生理学植物生理学221622162216昆虫生态与害虫治昆虫生态与害虫治昆虫生态与害虫治理理221722172217食品化学食品化学食品化学221822182218动物遗传育种学动物遗传育种学动物遗传育种学201720172017220122012201高级生物化学高级生物化学高级生物化学220222022202分子遗传学分子遗传学分子遗传学220422042204分子生物学分子生物学分子生物学220522052205信息管理学信息管理学信息管理学221922192219草地学草地学草地学草地学草地学草地学中国农业出版社中国农业出版社中国农业出版社韩建国韩建国韩建国222122212221分子病毒学分子病毒学分子病毒学动物病毒学动物病毒学动物病毒学科学出版社科学出版社科学出版社殷殷222222222222分子免疫学分子免疫学分子免疫学现代细胞与分子免疫学现代细胞与分子免疫学现代细胞与分子免疫学科学出版社科学出版社科学出版社林雪颜林雪颜林雪颜张张植物病原真菌学植物病原真菌学植物病原真菌学中国农业出版社中国农业出版社中国农业出版社200120012001植物病原细菌学植物病原细菌学植物病原细菌学中国农业出版社中国农业出版社中国农业出版社200020002000植物病毒学植物病毒学植物病毒学中国农业出版社中国农业出版社中国农业出版社200420042004植物线虫学植物线虫学植物线虫学科学出版社科学出版社科学出版社201120112011段玉玺段玉玺段玉玺动物生物化学第五版动物生物化学第五版动物生物化学第五版中国农大出版社中国农大出版社中国农大出版社生物化学生物化学生物化学高等教育出版社高等教育出版社高等教育出版社222822282228食品微生物学食品微生物学食品微生物学现代食品微生物学第七版现代食品微生物学第七版现代食品微生物学第七版中国农

遗传生物总结报告范文(3篇)

遗传生物总结报告范文(3篇)

第1篇一、引言遗传学是研究生物遗传现象和遗传规律的科学,它是生物学的一个重要分支。

随着分子生物学和现代生物技术的飞速发展,遗传学的研究领域不断拓展,为我们揭示了生物遗传的奥秘。

本报告将对遗传生物学的起源、发展、研究内容以及应用等方面进行总结。

二、遗传生物学的起源与发展1. 遗传生物学的起源遗传生物学的研究起源于19世纪。

当时,科学家们通过观察生物的繁殖现象,开始探讨遗传规律。

1859年,英国生物学家达尔文发表了《物种起源》,提出了自然选择和遗传变异的观点,为遗传生物学的研究奠定了基础。

2. 遗传生物学的发展20世纪初,孟德尔发现了遗传规律,为遗传生物学的研究提供了重要依据。

20世纪50年代,DNA双螺旋结构的发现,使得遗传生物学进入了分子生物学时代。

此后,随着基因工程、蛋白质工程等技术的出现,遗传生物学的研究取得了举世瞩目的成果。

三、遗传生物学的研究内容1. 遗传物质的研究遗传物质的研究主要包括DNA、RNA和蛋白质等。

其中,DNA是生物体内携带遗传信息的分子,是遗传生物学研究的核心。

近年来,人类基因组计划的实施,使得我们对遗传物质有了更深入的了解。

2. 遗传规律的研究遗传规律的研究包括基因分离定律、基因自由组合定律、基因突变、基因重组等。

这些规律揭示了生物遗传的本质,为遗传育种、疾病诊断和治疗提供了理论依据。

3. 遗传多样性的研究遗传多样性的研究主要包括基因多样性、种群多样性和生态系统多样性。

研究遗传多样性有助于保护生物多样性,维护生态平衡。

4. 遗传疾病的研究遗传疾病的研究主要包括遗传病的分类、发病机制、诊断、治疗和预防等方面。

研究遗传疾病有助于提高人类健康水平,降低遗传疾病对社会的危害。

四、遗传生物学的研究方法1. 实验法实验法是遗传生物学研究的重要方法,包括杂交实验、自交实验、突变实验等。

通过实验,科学家们揭示了遗传规律,验证了遗传学理论。

2. 分子生物学技术分子生物学技术是遗传生物学研究的重要手段,包括PCR、DNA测序、基因克隆、基因编辑等。

遗传学第八章数量遗传课件.ppt

遗传学第八章数量遗传课件.ppt

F3的表现型方差:
33 VF3 4VA16VDVE
F4代的表现型方差:
77 VFr 8VA64VDVE
随着自交代数的增加,群体基因型方差中的可固
定遗传变异加性效应方差比重逐渐加大,而 不可固定的显性效应方差比重逐渐减小。
4. 回交世代的方差
B1群体: F1P 1 A aAA
其群体遗传组成: 1 AA 1 Aa 22
15
6
1
红粒有效基 6R 5R 4R 3R 2R 1R 0R 因数
红粒:白粒
63:1
小麦籽粒颜色生化基础:红粒基因R编码一种红色素合成 酶。R基因份数越多,酶和色素的量也就越多,籽粒的颜 色就越深。
当某性状由1对基因决定时,由于F1能够产生 具有等数R和等数r的雌配子和雄配子,所以
F1产生的雌配子与雄配子都各为,
两个方差加在一起 1 a 2 1 d 2 1 a 1 d a 2 1 d 2 1 a 1 d a 2 1 d 2 44 244 222
11 VB 1VB22VA2VD2VE
第四节 遗传率的估算及其应用
一、遗传率的概念
1、广义遗传率 遗传方差占总方差(表型方差)的比值
hB2
遗传方差 总方差
100 %
VG 100% VG VE
2、狭义遗传率:基因加性方差占总方差的比值
V P V A V D V I V E
h
2 N
基因加性方差 总方差
100 %
V A 100% VP
V A
VA VD VI
VE
100 %
二、遗传率的估算
•广义遗传率的估算
VE1 4VP11 2VF11 4VP2
第一节 数量性状的特征

《遗传学》1-20套试卷问答题(大题及计算)答案汇总

《遗传学》1-20套试卷问答题(大题及计算)答案汇总

1-20套 问答题【P107】4.某个体的某一对同源染色体的区段顺序有所不同,一个是12·34567,另一个是12·36547("· "代表着丝粒)。

试解释以下三个问题:⑴.这一对染色体在减数分裂时是怎样联会的?⑵.倘若在减数分裂时,5与6之间发生一次非姐妹染色单体的交换,图解说明二分体和四分体的染色体结构,并指出产生的孢子的育性。

⑶.倘若在减数分裂时,着丝粒与3之间和5与6之间各发生一次交换,但两次交换涉及的非姐妹染色单体不同,试图解说明二分体和四分体的染色体结构,并指出产生的孢子的育性。

答:如下图说示。

*为败育孢子。

【主要是卷20的问答题P141】5. 噬菌体三基因杂交产生以下种类和数目的后代:+++235 pqr 270 pq+ 62 p++7试问:(1)这一杂交中亲本噬菌体的基因型是什么?(2)基因次序如何?(3)基因之间的图距如何?答:(1)这一杂交中亲本基因型是+++和pqr;(2)根据杂交后代中双交换类型和亲本基因型,便可推断出基因次序为:qpr或rpq;(3)基因之间的图距:之间的遗传距离为:28.9+2×1.5=31.9遗传单位。

3. 有一个三式杂合体(AAAa),基因距着丝点较远,由于非姐妹染色单体的交换,基因的分离表现为染色单体随机分离。

试回答:该个体可能产生的配子基因型、自交后代的基因型种类和比例以及表现型种类和比例。

答:AAAa的8个染色单体上有6个载有A基因,另外2个载有a基因,由于每个配子只能得到2个染色单体,则配子中:同时得到2个载有A基因的染色单体的组合数为: 6C2= 6!/ (6-2)!2!= 15(AA配子)得到分别载有A基因和a基因的2个染色单体组合数为: (6C1)(2C1)=(6!/ 5!)(2C1) = 12(Aa配子)同时得到2个载有a 基因染色单体的组合数为: 2C2=1(aa配子)则①配子基因型种类和比例为:AA:Aa:aa=15:12:1,存在1/28 aa ;②. 自交后代的基因型种类和比例:(15AA:12Aa:1aa)2=A4:A3a:A2a2:Aa3:a4=225:360:174:24:1③. 表现型种类和比例:A:a=783:14.理论综合题:在某一种植物中发现一株具有异常性状的个体,请设计一个对该异常性状进行遗传分析的实验方案(包括方法、过程和可能取得的结果)。

三正态分布——数量性状遗传理论新解

三正态分布——数量性状遗传理论新解

三正态分布——数量性状遗传理论新解张廷桢【摘要】用与生产关系密切且广泛存在的孟德尔群体,讨论数量遗传理论.首先,对Nilsson-Ehle小麦粒色实验的原始资料进行分析,得知小麦种皮的深红色受3对基因控制,进而作X2检验,说明数量性状受多基因控制.用Lyapunov中心极限定理证明,基因型值G呈正态分布,小生境环境效应E呈正态分布.从概率角度,阐述G与E 的独立,用正态分布的可加性合成G与E,使P=G+E呈正态分布,并且绘制出三正态曲线图.这说明在随机交配下,不论是否连锁,不论基因效应是否相等,不论等位基因是否存在显性和什么样的显性,表现型值P均服从正态分布.吸收微效多基因假说的合理内核,引入环境效应,其应用范围突破微效多基因假说,更加全面和科学.【期刊名称】《安徽农业科学》【年(卷),期】2015(000)003【总页数】3页(P4-6)【关键词】数量性状遗传;孟德尔群体;中心极限定理;基因型值G;环境效应E;表现型值P;正态分布【作者】张廷桢【作者单位】西北农林科技大学林学院,陕西杨凌712100【正文语种】中文【中图分类】S188+.1;Q348数量性状遗传是遗传学的重要内容之一。

自1909年Nilsson-Ehle发表小麦杂交实验100年以来,国内外在数量遗传理论上都延用着他的研究,但许多人将F2(种子)的表现型隐去真像,指出由白粒到深红粒有多种级别。

实际上,小麦F2胚外包被的是母体F12n组织,种子应是同一红色。

这里所谈的是一种假象。

这是其一。

第二,没有引入组成数量遗传的另一重要组分——环境效应。

Nilsson-Ehle认为没有环境影响。

Ayala等认为,环境对小麦粒色变异的影响极小。

在Nilsson-Ehle实验中,环境的影响可忽略不计。

确切地说,他研究的是数量性状遗传的基因型部分,就基因的积加作用来说,只是比两对基因的遗传多了一对,不能产生数量性状遗传的完整理论。

第三,现行的多基因假说设立很多不切实际的禁区,如要求无连锁、各基因效应相等、等位基因只能是不完全显性或无显性等,难以解释自然界生物普遍存在的数量性状遗传的许多问题。

作物育种学

作物育种学

《作物育种学》课程学习总结姓名:谢桂兰班级:农学201302 学号:201366151.课程内容综述经过本学期的学习,让我对作物育种学这门学科有了初步的接触与了解,使我初步掌握了作物新品种选育的基本方法和原理的理论知识,为今后进行作物品种选育工作奠定了一定基础。

本书全面的介绍了作物育种目标,种质资源,育种方法(包括引种与选择育种,杂交育种,回交育种,诱变育种,远缘杂交育种,倍性育种,杂种优势利用,生物技术在育种中的应用等),主要目标性状(包括抗病虫,抗逆性)的育种方法和原理和种子生产等作物新品种选育全过程中涉及的主要工作内容。

本文将从以下几个方面来对这门课程进行介绍。

1.1作物育种学的性质和任务作物育种学是以遗传学理论为基础,综合运用其他学科的知识,研究选育和繁育农作物优良品种的理论和方法的科学,是人们在长期生产活动和科学实验中总结和发展起来的一门理论和实践紧密结合的科学。

其基本任务是在研究掌握作物性状遗传变异规律的基础上,发掘、研究和利用各有关作物资源;并根据各地区的育种目标和原有品种基础,采取适当的育种途径和方法,选育适于该地区生产发展需要的高产、稳产、优质、抗病虫害及环境胁迫、生育期适当、适应性较广的优良品种或杂种以及新作物;此外在其繁殖、推广过程中,保持和提高其种性,提供数量多、质量好、成本低的生产用种,促进高产、优质、高效农业的发展。

1.2作物育种学的主要内容和特点作物育种学的主要内容有:育种目标的制定及实现目标的相应策略;种质资源的搜集、保存、研究评价、利用及创新;选择的理论与方法;人工创造变异的途径、方法及技术;杂种优势利用的途径与方法;目标性状的遗传、鉴定及选育方法;作物育种各阶段的田间实验技术;新品种的鉴定、推广和种子生产。

主要特点有:1.以作物育种原理,育种方法和重要目标性状选育为核心,体现“一个基础(作物育种的基本理论和方法为基础),三个结合(传统育种理论,分子遗传学,数量遗传学和细胞遗传学理论与现代育种实践的有机结合;传统育种经验与现代育种技术的结合:教学内容与科研发展的结合)”的特点。

玉米杂种优势的研究进展

玉米杂种优势的研究进展

玉米杂种优势的研究进展王娜,马强甘肃农业大学, (730070)E-mail:Wanan_henan@摘要:根据有关文献资料,从玉米作物杂种优势群与杂种优势模式的研究进展重点介绍了我国在这一领域所取得的进展,并进一步提出了划分我国草坪草杂种优势群的必要性。

关键词:玉米杂种优势群杂种优势模式杂种优势利用是作物育种研究的重要内容,其理论基础是杂种优势群和杂种优势模式。

合理准确地划分杂种优势群,建立相应的杂种优势模式,才能有效地选配杂交组合。

同时,作物种质的扩增、改良与创新也必须遵循杂种优势群和杂种优势模式的原理,才能避免资源浪费,提高育种效率[1]。

杂种优势群和杂种优势模式的构建是近年来国内外育种家研究的热点。

这一研究对拓宽种质资源,克服杂交配组的盲目性,提高育种效率具有重要的意义[2]。

玉米是杂种优势利用最早,并在世界范围内普及推广取得最有成效的作物[3]。

自1908年G.H.shull和E1M.East研究了玉米自交导致衰退,杂交产生优势的遗传现象后,揭示了杂种优势的奥秘,从而奠定了近代玉米杂交育种方法的基础。

美国30年代开始应用双交种,60年代应用单交种,玉米杂种优势的利用及生产上应用杂交种,使得玉米生产水平发生了巨大变化。

美国推广应用玉米杂交种是玉米单产大幅度提高的重要原因之一,专家们认为近30年来美国玉米产量的提高,40%-50%应归因于杂交种的推广应用;我国通常则以30%-40%作为诸种增产因素中杂交种的所占比重;可见玉米杂交种的应用在玉米生产的发展中起到了巨大作用。

1. 我国的玉米杂种优势模式王懿波(1997)[4]将中国玉米种质杂交优势利用划分为10种主体模式和16种子模式。

其中玉米种质主体杂优模式有:改良Reid×Lancaster群、改良Reid×塘四平头群、改良Reid×旅大红骨群、改良Reid×旅大红骨杂优群、Lancaster群×塘四平头群、Lancaster群×旅大红骨群、Lancaster群×其它类群、塘四平头群×其它类群、Mo17×自330亚群、外杂选亚群×综合种选亚群;玉米杂优子模式有:改良Reid×Mo17亚群、改良Reid×自330亚群、改良Reid×塘四平头杂优群、改良Reid×旅大红骨杂优群、改良Reid×外杂选亚群、改良Reid×综合种选亚群、改良Reid×Suwan亚群、Mo17亚群×塘四平头杂优群、Mo17亚群×旅大红骨群、Mo17亚群×其它类群、Mo17亚群×旅大红骨群、Mo17亚群×其它类群、塘四平头群×外杂选亚群、塘四平头群×综合种选亚群、Mo17亚群×自330亚群、外杂选亚群×综合种选亚群。

(完整版)作物育种学总论

(完整版)作物育种学总论
(3)在繁育、推广过程中,保持和提高其种性,提供数 量多、质量好、成本低的生产用种,促进高产、优质、高 效农业的发展。
ห้องสมุดไป่ตู้
3.与其它学科的关系:
作物育种学是作物人工进化的科学,是以 遗传学、进化论为主要基础的综合性应用科学。
涉及 植物学、植物生态学、植物生理学、生物化 学、植物病理学、农业昆虫学、农业气象学、生 物统计和试验设计、生物技术、农产品加工学等。
3. 鉴定分析方法微量、精确、快速。 在目标性状的鉴定、分析、选择中,广泛采
用现代技术和仪器,进行快速、精确、微量和非 破坏性的鉴定分析,以提高育种效率。
4. 开拓育种新途径和新技术。 除应用传统的育种技术外,还大力开拓人
工诱变育种、倍性育种、远缘杂交育种、细胞工 程、染色体工程、基因工程等生物技术。
遗传改良的作用:
1 提高作物品种的适应性,扩大其种植区域 2 改良其农艺性状,更利于栽培管理 3 提高单位面积产量水平,以提高总产 4 改进产品品质,适应人类生活不断提高的需要 5 增强对病虫害和环境胁迫的抗耐性,达到稳产
第二节 作物育种学的意义和发展
一、作物育种学的性质和任务
1. 性质: 作物育种学是研究选育和繁殖作物优良品 种的理论和方法的科学。
作物育种学研究的重点是对作物进行遗传改 良,使得有利性状得到重组,达到高产、优质、 适应性强的目的。
作物栽培学研究的重点是改善作物生长发育 的环境条件,达到高产、优质的目的。
第一节 作物进化与遗传改良
一、自然进化与人工进化 各种生物都是从原始生物演变而产生的。这 种演变发展的过程称为进化过程。 决定进化的三大基本要素:遗传、变异和选择。 遗传和变异是进化的内在因素,选择决定着 进化的方向。 自然进化是自然变异和自然选择的进化,进 化速度相对缓慢。

作物分子设计育种

作物分子设计育种
水稻作为模式植物和世界ห้องสมุดไป่ตู้最重要的粮食作物 之一 ,其基因组学研究一直走在其他作物的前列 ,是 第一个完成测序的重要农作物 。我国在 2002 年完 成了世界首张籼稻基因组草图[5] ,与 Syngenta 公司 完成的粳稻基因组草图同时发表在 Science[6] 。随后 完成了粳稻 (日本晴) 4 号染色体的精确测序[7] ,是 世界上首先完成的 2 条精确测序水稻染色体之一 。 同时还完成了籼稻 (广陆矮 4 号) 4 号染色体 80 %的 精确测 序 以 及 水 稻 4 号 染 色 体 着 丝 粒 的 序 列 分 析[829] 。上述工作的完成使我国水稻基因组测序研 究处于世界领先水平 。
摘 要 : 优质 、多抗 、抗逆与高产作物新品种的选育和推广是实现我国粮食安全的重要途径 。目前大多数育种工作仍然 建立在表型选择和育种家的经验之上 ,育种效率低下 ;另一方面 ,生物信息数据库积累的数据量极其庞大 ,由于缺乏必要 的数据整合技术 ,可资育种工作者利用的信息却非常有限 。作物分子设计育种将在多层次水平上研究植物体所有成分 的网络互作行为和在生长发育过程中对环境反应的动力学行为 ;继而使用各种“组学”数据 ,在计算机平台上对植物体的 生长 、发育和对外界反应行为进行预测 ;然后根据具体育种目标 ,构建品种设计的蓝图 ;最终结合育种实践培育出符合设 计要求的农作物新品种 。设计育种的核心是建立以分子设计为目标的育种理论和技术体系 ,通过各种技术的集成与整 合 ,对生物体从基因 (分子) 到整体 (系统) 不同层次进行设计和操作 ,在实验室对育种程序中的各种因素进行模拟 、筛选 和优化 ,提出最佳的亲本选配和后代选择策略 ,实现从传统的“经验育种”到定向 、高效的“精确育种”的转化 ,以大幅度提 高育种效率 。

作物数量遗传学基础一、数t性状的遗传方式与分析

作物数量遗传学基础一、数t性状的遗传方式与分析
2 4
基 因型平均 效应 值 ( ) 牙
基因 型效应值() x
基因型频率 <) f
B,


一召
在多基因情况下, 如有m对杂合基因 (l, 2鸡、 Aa Aa , 2l ..A a .. m .. 矽,并假设这些基因不相互连锁,而且各对 基因间无相互作用时,则 ,a 提供的基因型方差为 4: ,
1 )所谓基因型效应值是指在这个模式中, 该基因型的性 状值与两个 纯合亲本的性状值平均数的 差值。
. 43 .
型在群体 中具有不 同的频 率,因此计算 平均效应应将 各基因型效应 值按不 同的 频率作加权平 均。 从 表 11 - 得知 F ,代基 因型 频率 ( 体中某基 因型 的个体 数与 群 总个体数之比 )基 因型 效应值及 其平均值 。 、

RRRr R R rr Rr 22 Rr z ,,2 , ,22 ,R r 2 , ,r2 lr 深 红 中 红 中 红 浅 红
只 rR R RrR r r , ,, I 2 ,,22 , 凡凡 r rrRr ,, z¥ 浅 红
r R , 2
因多,单个基因对某性状表现的效应小,故称微效基 因。这些微效基因对某性状的影响具有累加作用,即 性状表现的程度与控制它的基因数目相对应,控制数
1 R 0 R

弓 1
极 深红 : 深红 : 中红 : 浅红 :白色
1 42 : 4 : 6 : 4
由此可见,理论推出的结果与实验所得的结果是一致 的, 这就说明数量性状的遗传是受微效多基因( 此例是 两对) 控制的。至于基因间的关系, 如等位羞因 R 和 : ,间一般无显、 , 隐性之别。这里, 豆基因 (, , 的 R 或R) 效应使小麦籽粒颇色变红,其变红的程度随合子内R 基因的累积量而定, 这种微效基因就称为加性墓因; 不 仅加性等位基因的效应是可加的,非等位基因间加性 基因的效应亦是可加的,随合子内 R x基因累积 R f的增加, 其籽粒的红色深度也相应增加。 一般来说, F 分离世代( 在 , 群体里具有多种基因 型的世代) 表现型的类型和比例与二项式 ( 十b0 中, 。 ) 展开时各项系数相当。这里二 代表基因的个数,a b , 分别代表各对基因中每个基因在一个个体内出现的机 率, a 即 二b.12 /,上述例子, 由二对 ( 个) 4 基因控 制的数量性状, 应用二项式展开, 它们的 F 代的表现 = 型类别及其出现的频率如下; (/+124 16 16 16 41+11 12 1)_11+41+61+ 16 16 (R (R (R (R (幻 4 ) ) 2 ) 1) 0 3 因此,傲效多墓因假说的要点可归结如下:数量 性状的遗传基础是一系列基因, 其基因数目越多,2 F代 的变异幅度就越广泛,并且这类基因大多无显隐性区 别,各个基因对表现型影响大多很小,其作用是累加 的。此外, 参与控制某一个数量性状的基因越多, 这个 性状的表现越易受环境条件的千扰,因而使表现型出 现了在一定范围内的连续变异。

《数量性状遗传》课件

《数量性状遗传》课件

遗传模型构建方法
遗传力模型
通过构建遗传力模型,分 析数量性状的遗传变异程 度,并估计遗传力和相关 参数。
遗传相关模型
通过构建遗传相关模型, 分析不同数量性状之间的 遗传相关控制的群体遗传现象, 通过混合模型进行基因型 和环境交互作用的分析。
数量性状遗传在自然界中广泛存在,如人的身高、 体重、智力等都属于数量性状。
数量性状遗传的特点
数量性状遗传具有连续变异的 特点,即在一个群体中,个体 的表现型值可以连续变化。
数量性状遗传受多个基因位点 的影响,这些基因位点通常具 有微效作用,即每个基因位点 对表现型的影响较小。
数量性状遗传还受到环境因素 的影响,环境因素可以影响个 体表现型值的变异范围和分布 。
数量性状遗传在动物育种中的应用
生长速度
通过研究动物生长速度的数量性 状遗传,育种家可以培育出生长 快速的动物品种,提高养殖效益

繁殖性能
通过选育具有优良繁殖性能的数 量性状基因,可以提高动物的繁
殖效率,加速品种改良进程。
抗病性
通过研究动物抗病性的数量性状 遗传,育种家可以培育出具有较 强抗病能力的动物品种,降低养
利用新一代测序技术和遗传资源发掘,精细定位和克隆控制数量性状的基因或基因组区域 。
解析数量性状基因的互作网络
研究基因之间的相互作用关系,解析数量性状形成的复杂网络调控机制。
探索表观遗传修饰对数量性状的影响
研究DNA甲基化、组蛋白修饰等表观遗传修饰对数量性状表达的调控作用。
加强数量性状遗传与其他学科的交叉研究
03
数量性状遗传分析方法
统计分析方法
01
02
03
方差分析
通过比较不同群体或处理 组之间的变异程度,确定 数量性状是否受遗传控制 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、数量性状遗传研究的基本统计方法
1、基本统计参数
• 数量性状在自然群体或杂种后代群体, 很难对不同个体 的性状进行明确的分组,求出不同级之间的比例,所以不 能采用质量性状的分析方法,一般要用度量单位进行测量, 通过对表现型变异的分析推断群体的遗传变异。借助于数 理统计的分析方法,估算遗传群体的统计参数,如均值μ、 方差V、协方差C和相关系数r。可以有效地分析数量性状 的遗传规律, • 对于任何一个群体,人们往往无法观测、分析所有可能的 个体产量表现。只能对一些样本个体进行观测, 用样本 参数对总体进行估计。 • 样本均值
汇报提纲
• • • • • • 数量遗传学的概念 数量性状遗传的发展 数量遗传学的意义 数量性状遗传研究的基本统计方法 植物数量遗传学在育种中的应用 农作物QTL定位研究的现状和进展
一、数量遗传学的概念
• 狭义地看,数量遗传学是研究数量性状遗传变异 规律的一门学问; • 广义地看,数量遗传学的概念应该是指从量的角 度研究遗传变异规律的一门学问。 • 过去认为,数量性状是由微效多基因控制的、分 离世代呈连续性正态分布的性状,例如产量、品 质等。随着遗传学的发展,对于数量性状的认识 有所变化,现在认为数量性状不一定是由多基因 控制、其分离世代也不一定是正态分布,因此数 量性状的概念也应该有所变化,目前认为,数量 性状应该是指以定量指标进行观察和记录的生物 体表现(性状),由此形成了现代数量遗传学。
二、数量性状遗传的发展
• 数量性状的遗传学研究始于1900年孟德尔遗传的再发现之 前,例如发明了生物的杂交技术、发现了花粉等。达尔文 的进化论强调了物种的变异性,提出了自然选择和进化等 概念。F.Galton(1889)的《自然遗传》一书研究了亲子 间身高的相似性,本身就是与数量遗传学中的遗传率相近 的概念。 • 1909年H.Johannsen提出了纯系学说,由此提出变异可分 为遗传的变异和非遗传的变异,纯系间的变异是遗传的, 而纯系内的变异是不遗传的,为环境误差。 • 小麦粒色(Nilson-ehle,1909)、烟草花冠长度 (East,1915)等遗传试验证明数量性状受多基因控制,多基 因间在效应上是相似的、彼此独立遗传,后来有证实多基 因也是存在于染色体上,它为经典数量遗传学的发展奠定 了理论基础。
三、数量遗传学的意义
• 数量性状往往是重要的农艺性状,例如农作物产 量、品质,人类的身高、体重,动物的生产速率, 等等。研究数量性状的遗传变异规律,对于品种 改良与利用具有十分重要的意义。 • 数量性状的遗传规律向来不如质量性状那样容易 搞清楚。根源是数量性状的表现型易受环境的干 扰,试验误差造成了研究QTL的困难。纵观过去 遗传学在应用上的贡献,还是以数量性状的遗传 研究成果的贡献最大,这无论从绿色革命、还是 动物的改良,都可以找到有力佐证。因此,数量 遗传性状的研究与应用的意义极大。
• 为了克服协方差值受成对性状度量单位的影响, 相关性遗传分析常采用不受度量单位影响的相关 系数 r
r
VY

2、遗传方差和环境方差
• 生物群体的变异包括表现型变异和遗传变异。遗传变异由群体 内各个体间遗传组成的差异所产生的。如果基因的表达不因环 境的不同而异,个体的表现型值P是基因型值G和非遗传的随 机误差e的总和,P=G+e。 • 在数理统计分析中.通常采用方差度量某个性状的变异程度。 因此.遗传群体的表现型方差VP是基因型方差VG和机误方差 Ve的总和,V=VG+Ve。 • 控制数量性状的基因,具有各种效应.主要包括加性效应A和 显性效应D。 • 对于加性-显性模型G=A+D。表现型值也可相应分解为 P=A+D+e。群体的表现型方差可进一步分解为加性方差、显 性方差和机误方差VP=VA+VD+Ve。对于某些性状,不同基因 位点的非等位基因之间还可能存在相互作用,即上位性效应I。 此时,基型值和表现型可以分别分解为G=A+D+I和P= A+D+I+e,群体表型变异也可作进一步的分解 VP=VA+VD+VI+Ve
1 n xi n i 1

• 样本方差
n 1 2 V ( xi n 2 ) n 1 i 1
• 由于存在基因的连锁或基因的一因多效,同一遗 传群体的不同数量性状之间常会存在不同程度的 相互关联,可用协方差度量这种共同变异的程度。 如果某遗传群体有两个相互关联的数量性状,即 性状x和性状y,这两个性状的协方差可用样本协 方差来估算: 1 n C XY ( xi yi n x y ) n 1 i 1
• 1989年,以分子标记为手段的标记区间的QTL区 间作图方法的问世和应用,极大地推进了数量性 状的研究。 • 进入二十世纪九十年代,数量性状的复合区间作 图、全区间作图、以及标记辅助选择的理论和方 法进一步得到了扩展和完善。 • 以分子标记为手段的数量遗传学方法被称为分子 数量遗传学,其研究目标是为QTL克隆和选择提 供有效的方法学基础。
• 二十世纪七十年代,人们对数量性状基因的认识已有所深 化,研究表明数量性状不仅是一种多基因遗传模式,还存 在主基因模式和主基因加多基因模式。研究的重点不再仅 是多基因,而是开始深化主基因+多基因模式研究。 • Elston(1971)等首先提出“一个主基因+多基因”的遗传模 式。Morton等(1974)进一步发展了主基因—多基因混 合遗传模型。此后还有许多学者在动物遗传育种中研究了 主基因+多基因问题。 • 在植物的主基因和多基因问题上,莫惠栋、盖钧镒等作了 有益的探索,发展了一套比较适合植物遗传研究的主基因 +多基因遗传分析方法,盖钧镒等将QTL模型混合模型扩 展至2对主基因加多基因进行多世代联合分析。
• Hardy和Weiberg(1908)研究群体的基因型频率发 现了随机交配群体的遗传平衡定律,为群体遗传 学的发展提供了基础,依此人们进一步研究群体 的遗传演变、进化和适应。 • Fisher(1918)提出了表型方差可以分解为遗传 方差(包括加性方差、显性方差、上位性方差) 和环境方差的经典数量遗传学思路,为变异的遗 传学解析提供了基础。 • 二十世纪七十年代以前,还出现了许多遗传试验 设计及其分析方法,例如NC设计、三重测交设计、 基因型与环境互作的设计与分析、双列杂交与配 合力分析等。
相关文档
最新文档