高等数学极限习题100道
高等数学极限习题100道
设,求证:.lim ()lim ()x x x x f x A f x A →→==0)sin 1(sin lim n n n -+∞→求数列的极限[]Ax f Au f u x u x x x u u x x =ϕ=≠ϕ=ϕ→→→)(lim )(lim )()(lim 000试证:,又,且设设试确定实数,之值,使得:当时,为无穷小;当时,为无穷大。
f x x xa b x a f x x b f x ()ln ()()=-→→1设,问:当趋于何值时,为无穷小。
f x xx x f x ()tan ()=2.该邻域内 的某去心邻域,使得在证明:存在点,且,若)()()(lim )(lim 00x f x g x AB B x g A x f x x x x >>==→→设,试证明:对任意给定的,必存在正数,使得对适含不等式;的一切、,都有成立。
lim ()()()x x f x A x x x x x x f x f x →=><-<<-<-<000010201221εδδδε.,试用极限定义证明:已知:A x f A x f x x x x =>=→→)(lim0)(lim 0{}{}{}是否也必发散?同发散,试问数列与若数列n n n n y x y x +设 其中、为常数,,求的表达式;确定,之值,使,.f x x x a bx x a b a f x a b f x f f x f n n n x x ()limsincos()()()()()lim ()()lim ()()=+++<<==-→∞-→→-2121121021211ππ求的表达式f x x n n ()lim (ln )=+→∞+11221 的表达式.求n n n n n xx x x x f ---+∞→++=12lim )( .,求,设)(lim )()()()(1)(33)(22x f x f x x x x f x x x n n n n ∞→=ϕ++ϕ+ϕ+=+-=ϕ 求的表达式.f x x x x x x xx n n ()lim ()()=+++++++⎡⎣⎢⎤⎦⎥→∞-11122221 .,求,其中设n n k nk k n S k b b kS ∞→=+==∑lim )!1(1求的表达式。
极限练习(基础题)
极限练习(基础题) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第二章 极限与连续一、判断题1. 若)(lim )(lim 0x f x f x x x x -+→→=,则 )(x f 必在 0x 点连续; ( )2. 当0x →时,2sin x x +与 x 相比是高阶无穷小; ( )3. 设 )(x f 在点 0x 处连续,则 )(lim )(lim 00x f x f x x x x -+→→= ;( )4. 函数 21sin ,0()0,0x x f x xx ⎧≠⎪=⎨⎪=⎩ 在 0x = 点连续; ( ) 5. 1=x 是函数 122--=x x y 的间断点; ( ) 6.()sin f x x = 是一个无穷小量; ( )7. 当 0→x 时,x 与 )1ln(2x + 是等价的无穷小量; ( ) 8. 若 )(lim 0x f x x → 存在,则 )(x f 在 0x 处有定义; ( )9. 若x 与y 是同一过程下两个无穷大量,则x y -在该过程下是无穷小量;( )10. 21sin lim0=+→x x x x ; ( )11. 01lim sin 1x x x→= ; ( )12. 22lim(1)x x e x-→∞+= ;( )13. 11,0,,0,,0,481数列收敛2;( )14. 当0x +→x ;( )15. 函数 1()cos f x x x= ,当 x →∞ 时为无穷大;( )16. sin lim 1x xx→∞= ;( )17. 无穷大量与无穷小量的乘积是无穷小量;( )18. ln(1)x +~x ; ( ) 19. 1lim sin1x x x→∞= ;( ) 20. 0tan lim1x xx→= . ( )二、单项选择题1、=+-+-→45127lim 224x x x x x ( ) A .1 B .0 C .∞D .312、 hx h x 220h )(lim -+→ =( )。
高数极限复习题
高数极限复习题一、选择题1. 极限的概念是什么?A. 函数在某点的值B. 函数在某点附近的趋势C. 函数在某点的导数D. 函数在某点的积分2. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的极限是什么?A. 0B. 1C. 2D. 不存在3. 极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是多少?A. 0B. 1C. 2D. 无穷大4. 以下哪个选项不是无穷小量?A. \( \sin x - x \)B. \( \frac{1}{x} \)C. \( e^x - 1 \)D. \( x - \sin x \)5. 极限 \( \lim_{x \to \infty} \frac{1}{x} \) 的值是什么?A. 0B. 1C. 无穷大D. 无定义二、填空题6. 函数 \( f(x) = \frac{x^2 - 1}{x - 1} \) 在 \( x = 1 \) 处的极限是________。
7. 函数 \( g(x) = x^3 - 3x^2 + 2 \) 在 \( x = 2 \) 处的导数是________。
8. 函数 \( h(x) = \frac{\sin x}{x} \) 在 \( x = 0 \) 处的极限是________。
9. 函数 \( y = \ln x \) 的定义域是________。
10. 函数 \( F(x) = \frac{1}{x} \) 在 \( x = 0 \) 处的极限是________。
三、解答题11. 求函数 \( f(x) = \frac{\sin x}{x} \) 在 \( x = 0 \) 处的极限,并证明。
12. 证明 \( \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e \)。
13. 求函数 \( G(x) = \frac{x^2 - 1}{x - 1} \) 在 \( x = 1 \) 处的极限,并说明 \( x = 1 \) 时函数 \( G(x) \) 的性质。
高等数学极限习题500道汇总
.求证:存在,且,=时,设当βα=β+βα+αβαβ=βαα→→→→000lim lim lim)()(11110x x x x x x o o x x 答( ) .. . . .是等价无穷小,则与时,若当232123211cos )(1)1()(0312--=-=β-+=α→D C B A a x x ax x x( ) 答 阶的是时,下述无穷小中最高当x x D x C x B x A x sin 11cos 1022----→[]之值.求)12ln()12ln(lim --+∞→n n n n .求极限)2sin()1(lim 2+π-+∞→n n n n .求极限)11ln()21(lim nn n ++∞→ _____________sin 1lim 3202=--→的值xx x e x x .及求证:,,设有数列n n n n n n n n n n a a a y a a a a b b a a a ∞→+∞→∞→++-=+=≠==lim )(lim lim 2)( 11221.及,求记:, .,设n n n n nn n n n n n n x y x x y x x x x x a b b x a x ∞→∞→++++-=+=>>==lim lim 112)0(111221 求极限之值.lim ()cos sin x x x x x→+-0212设,;且试证明:.lim ()lim ()lim ()()x x x x x x v x B u x A A v x B u x A →→→=>==0000[] 答( ) . . . .2ln 01)1ln(lim 2)1(11D C B A x x x ∞=+-→ 答( ) . . . .21)21(lim 2sin 0D e C e B A x x x x =+→[]的结果.之值,并讨论及求:设1)(1)(lim )(lim 11)(lim )( .1sin1)(0012----=+=→→→x u x u f x u u u f u u f x x x u x x u_____________69lim 223的值等于---→x x x x.不存在 . . .D C B A e e e e x x x x x 1231234lim =++--∞→ 答:( )lim ()()()....x x x x A B C D →∞-+-=-⨯2361112335853 不存在 答:( )____________)61()31()21(lim 1522010=+++∞→x x x x ____________lim 0的值等于x x x e e x -→- .求极限123lim 2331+--+-→x x x x x x 求之值.lim ()x x x x x →+--+03416125 已知:,问?为什么?lim ()lim ()()lim ()x x x x x x u x u x v x A v x →→→=∞=≠=0000关于极限结论是: 不存在 答( )lim x x e A B C D →+015353054答( ) ,则极限式成立的是,设 )(lim .)()(lim .)()(lim .0)()(lim .)(lim )(lim )(000000∞=∞=∞==∞==→→→→→→x g x x x x x x x x x x x x x f D x g x f C x f x g B x g x f A x g A x f是不是无穷大量.时,,问当)(cos )(x f x x e x f x +∞→= 答( ) 不存在 2.2...0.1arctan tan lim 0π-π=⋅→D C B A xx x答( ) 2.1..0.)arctan(lim 2π∞=∞→D C B A xx x 答( ) 不存在 .2.2.2.312lim 2D C B A x x x ±-=++∞→___________)0(23)(1=-+=f e x f x ,则设 答( ) 不存在 2....0.1cot arc lim 0ππ=→D C B A xx lim cos ln ....x a x xa A B C D →--==0100123,则其中 答( )π____________cos 13lim 20的值等于x x e e x x x ----→lim (cos ).....x x xA B C D →-=-0212220 不存在 答:( )设,其中、为常数.问:、各取何值时,; 、各取何值时,; 、各取何值时,.f x px qx x p q p q f x p q f x p q f x x x x ()()lim ()()lim ()()lim ()=++-===→∞→∞→2555112031求极限.lim ()()()()x n n n n x x x x →∞+--++-2222222211 求极限.lim ()()x x x →∞++32232332[]之值.、、试确定已知C B A x x c x B A x x 0)1()1()1(3lim 2241=--+-+-+→之值.,,,试确定常数.,,满足已知d c b a x f x f x x d cx bx ax x f x x 0)(lim )2(1)(lim )1(2)(1223==-++++=→∞→ 之值.,,试确定已知b a x x bx b a x 4313)(lim 1=+-+++→为什么?"上述说法是否正确?,则"若∞=α=α→→)(1lim 0)(lim 00x x x x x x当时,是无穷大,且,证明:当时,也为无穷大.x x f x g x A x x f x g x x x →=→+→000()lim ()()().用无穷大定义证明:+∞=-+→112lim 1x x x .用无穷大定义证明:-∞=+→x x ln lim 0 +∞=-π→x x tan lim 02用无穷大定义证明: .用无穷大定义证明:+∞=-+→11lim 01x x"当时,是无穷小"是""的:充分但非必要条件必要但非充分条件充分必要条件既非充分条件,亦非必要条件 答( )x x f x A f x A A B C D x x →-=→00()lim ()()()()()若,,但.证明:的充分必要条件是 .lim ()lim ()()lim ()()lim ()()()x x x x x x x x f x g x g x f x g x b f x b g x g x →→→→==≠=-⋅=00000000 .其中,:用数列极限的定义证明)10(0lim <<=∞→a a n n . :用数列极限的定义证明)10(1lim 1<<=∞→a a nn .:用数列极限的定义证明2152)2(lim 2=++∞→n n n n ___________)1ln(2)cos(sin 1lim 20的值等于x x x +-→[]之值.求极限3sin 01)(cos lim x x x x -→设,试证明:对任意给定的,必存在正数,使得对适含不等式;的一切、,都有成立。
极限练习题含答案
极限练习题含答案极限是数学分析中的一个重要概念,它描述了当自变量趋近于某个值时,函数值的行为。
下面是一些极限练习题及其答案,供同学们学习和练习。
练习题1:求极限\[ \lim_{x \to 0} \frac{\sin x}{x} \]答案1:根据洛必达法则或者直接使用三角函数的性质,我们可以知道:\[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \]练习题2:求极限\[ \lim_{x \to \infty} \frac{3x^2 + 2x + 1}{x^2 - 3x + 2} \]答案2:分子和分母同时除以\( x^2 \),得到:\[ \lim_{x \to \infty} \frac{3 + \frac{2}{x} +\frac{1}{x^2}}{1 - \frac{3}{x} + \frac{2}{x^2}} = 3 \]练习题3:求极限\[ \lim_{x \to 0} (1 + x)^{1/x} \]答案3:这是e的极限定义,即:\[ \lim_{x \to 0} (1 + x)^{1/x} = e \]练习题4:求极限\[ \lim_{x \to 1} \frac{1}{x - 1} \]答案4:这是一个无穷小量的倒数,当\( x \)趋近于1时,\( x - 1 \)趋近于0,所以:\[ \lim_{x \to 1} \frac{1}{x - 1} \text{ 不存在} \]练习题5:求极限\[ \lim_{x \to 0} \frac{\sin 2x}{\sin 3x} \]答案5:分子分母同时除以\( \sin x \),得到:\[ \lim_{x \to 0} \frac{2}{3} \cdot \frac{\sin x}{x} \cdot\frac{\sin 2x}{\sin 3x} = \frac{2}{3} \cdot 1 \cdot 1 =\frac{2}{3} \]练习题6:求极限\[ \lim_{x \to 0} x \cdot \tan x \]答案6:使用洛必达法则或者直接利用三角函数的性质,我们可以得到:\[ \lim_{x \to 0} x \cdot \tan x = \lim_{x \to 0} \frac{\sin x}{\cos x} = 0 \]练习题7:求极限\[ \lim_{x \to \infty} \frac{\sin x}{x} \]答案7:当\( x \)趋近于无穷大时,\( \sin x \)的值在-1和1之间波动,但相对于\( x \)来说,它趋近于0,所以:\[ \lim_{x \to \infty} \frac{\sin x}{x} = 0 \]练习题8:求极限\[ \lim_{x \to 0} \frac{e^x - 1}{x} \]答案8:这是e的导数的极限定义,即:\[ \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \]以上练习题和答案可以帮助同学们更好地理解和掌握极限的概念和求解方法。
(完整版)函数极限习题与解析
函数与极限习题与解析(同济大学第六版高等数学)一、填空题1、设x x x f lg lg 2)(+-=,其定义域为。
2、设)1ln()(+=x x f ,其定义域为。
3、设)3arcsin()(-=x x f ,其定义域为。
4、设)(x f 的定义域是的定义域是[0[0[0,,1]1],则,则)(sin x f 的定义域为。
5、设)(x f y =的定义域是的定义域是[0[0[0,,2] ,则)(2x f y =的定义域为。
6、432lim 23=-+-→x k x x x ,则k= 。
7、函数xx y sin =有间断点,其中为其可去间断点。
8、若当0≠x 时,xxx f 2sin )(=,且0)(=x x f 在处连续,则=)0(f 。
9、=++++++∞→)21(lim 222n n nn nn n n Λ。
1010、函数、函数)(x f 在0x 处连续是)(x f 在0x 连续的条件。
1111、、=++++∞→352352)23)(1(lim x x x x x x 。
1212、、3)21(lim -∞→=+e n kn n ,则k= 。
1313、函数、函数23122+--=x x x y 的间断点是。
1414、当、当+∞→x 时,x 1是比13+-+x x 的无穷小。
1515、当、当0→x 时,无穷小x --11与x 相比较是 无穷小。
1616、函数、函数x e y 1=在x=0处是第 类间断点。
1717、设、设113--=x x y,则x=1为y 的 间断点。
1818、已知、已知33=⎪⎭⎫ ⎝⎛πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。
1919、设、设⎪⎩⎪⎨⎧>+<=0)1(02sin )(1x ax x x x x f x 若)(lim 0x f x →存在 ,则a= 。
2020、曲线、曲线2sin 2-+=xx x y 水平渐近线方程是 。
高数极限习题及答案
练习题1. 极限xx x x x x x x xx x x x x x 1lim)4(11lim)3(15865lim )2(31lim )1(2312232---+-+-+++-∞→→→∞→(5) 已知011lim 2=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x , 求常数a , b .(6) x x x x sin 1sin lim 20→ (7) 211lim 22x x x x ⎪⎪⎭⎫⎝⎛+-∞→(8) xx x21lim 0-→ (9)x x x sin )31ln(lim 0-→(10)⎪⎪⎭⎫⎝⎛-∞→1lim 1xx e x2. 函数的连续性(1) 确定b 的值, 使函数⎩⎨⎧<≥+==-002)(1x e x b x x f y x 在x =0点连续.(2) 确定a , b 的值, 使函数1lim)(2212+-+==-∞→nn n x bxax xx f y 在整个实数轴上连续.(3) 讨论下列函数的连续性, 并判断其间断点的类型.①x xx f sin )(=② ⎪⎪⎩⎪⎪⎨⎧=≠+-=0001212)(11x x x f xx3. 连续函数的性质 (1) 设1)(1-+++=-x xx x f n n ,证明:)(x f 有一个不大于1的正根.(2) 若),()(∞+-∞∈C x f , 且A x f x =∞→)(lim , 证明: ),()(∞+-∞在x f 内有界.提高1º),()(∞+-∞在x f 内至少有一个最值存在. 2º 对于最值与A 间的任意值C , 存在21,ξξ, 使得C f f ==)()(21ξξ.2. 函数的连续性(1) 确定b 的值, 使函数⎩⎨⎧<≥+==-002)(1x ex b x x f y x在x =0点连续.解:1)(lim )(lim )0(-→→====-+e x f b x f f x x(2) 确定a , b 的值, 使函数1lim)(2212+-+==-∞→nn n x bxax xx f y 在整个实数轴上连续.解:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=++-=-+<->==121121111)(2x b a x ba x bx ax x x x f yb a x f x f b a f x x -====-+=-+→→)(lim 1)(lim 21)1(11 b a x f x f b a f x x +==-==++-=--→-→-)(lim 1)(lim 21)1(_111,0-==b a(3) 讨论下列函数的连续性, 并判断其间断点的类型.①x x x f sin )(=解: x =0为可去间断点.②⎪⎪⎩⎪⎪⎨⎧=≠+-=0001212)(11x x x f xx解:1)(lim 1)(lim 0-=≠=-+→→x f x f x x , x =0为跳跃间断点.3. 连续函数的性质 (1) 设1)(1-+++=-x xx x f n n ,证明:)(x f 有一个不大于1的正根.解: 若n=1, 则显然有解x =1. 若n>1, 则01)1(,01)0(>-=<-=n f f , 由零点定理可知在(0, 1)内至少有一个根..(2) 若),()(∞+-∞∈C x f , 且A x f x =∞→)(lim , 证明: ),()(∞+-∞在x f 内有界.解: 由A x f x =∞→)(lim 可知: 0>∃X , 当X x >时, 1)(<-A x f , 故1)(+<A x f由),()(∞+-∞∈C x f 可知]1,1[)(+--∈X X C x f , 故01>∃M ,当1+<X x 时, 1)(M x f <取}1,max{1+=A M M 即可.提高1º),()(∞+-∞在x f 内至少有一个最值存在. 2º 对于最值与A 间的任意值C , 存在21,ξξ, 使得C f f ==)()(21ξξ.证明: 若A x f ≡)(, 则显然结论成立.设存在A x f >)(0, 则存在X >0, 当X x ≥时, 有2)()(0Ax f A x f -<- 于是: )(2)()(00x f A x f x f <+< 由],[)(X X C x f -∈, 可知存在],[X X -∈ξ{})(],[:)(max )(0x f X X x x f f ≥-∈=ξ从而),()(∞+-∞在x f 内有最大值)(ξf .对于任意的C , )(ξf C A <<, 存在X 1>0, 当1X x ≥时, 有 C AC x f <+<2)( 于是有CAC X f <+<±2)(1. 分别在闭区间],[],,[11X X ξξ-上使用介值定理即可得结论2º.。
高等数学习题_第1章_函数与极限 - 副本
高等数学一、选择题(共 191 小题,100 分)22、为时,,则当设函数)(01sin )(x f x xx x f →=) 答( .无穷小量. .有界,但非无穷小量.无穷大量 .无界变量D C B A ;; ; 24、是时,,则当设函数)(1cos)(x f x xx x f ∞→= ) 答( .无穷大量..无穷小量; ;.无界,但非无穷大量.有界变量; D C B A33、的是时,当3)cos 1(sin 0x x x x -→答( ) .低阶无穷小..高阶无穷小;.等价无穷小;等价无穷小;.冈阶无穷小,但不是 D C B A34、比较是( )与时,当2)cos 1(sin 20x x x x -→ 答( ) .低阶无穷小..高阶无穷小;.等价无穷小;;.冈阶但不等价无穷小 D C B A36、是下列极限中,不正确的 答( ) ..;.;.;.0)1sin(lim 0)21(lim 0lim 4)1(lim 11013=-===+→→→→--x x D C e B x A x x x xx x 37、的值为存在,则,且,,设k x f x x x xkx x f x )(lim 030tan )(0→⎪⎩⎪⎨⎧≤+>= 答( ) ..; .; .; .4321D C B A38、,则,,设⎪⎪⎩⎪⎪⎨⎧<++>-=0110cos 1)(1x e x x x x x f x 答( ) 存在.不存在,.不存在;存在,.;.;.)(lim )(lim )(lim )(lim )(lim )(lim 0)(lim 000x f x f D x f x f C x f x f B x f A x x x x x x x -+-+-+→→→→→→→≠=39、 ) 答( .不存在.; .; .; .,则,,,设函数D C B A x f x x x x x e x f x x 011)(lim 0cos 0 10 2)(0-=⎪⎩⎪⎨⎧<-=>-=→40、 答( ) ..; . .; .的值为,则已知2277516lim 21--=-++→D C B A a x ax x x41、已知,则的值为.; .; .; .. 答( )lim x x x c x C A B C D →-+-=--12311112344、下列极限计算正确的是.; .;.; .. 答( )A x xB x xx xC x x xD n e n n n x x n nlim lim sin sin lim sin lim()→∞→→∞→→∞+=+-=-=+=22032111011245极限的值为.; .; .; .. 答( )lim x x x x x A B C D →-+-+2226881201122 48、已知,则的值为.; .; .; .. 答( )limsin ()x kxx x k A B C D →+=----0233326650、极限.; .; .; .. 答( )limsin x xx A B C D →-=-∞ππ10151、极限的值为.;. . .. 答( )limtan sin x x xxA B b C D →-∞03011253、极限的值是.; .; .; .. 答( )lim x x x x A B e C e D e →∞----+⎛⎝ ⎫⎭⎪212112112254、极限的值为( ).; .; .; .. 答( )lim()x x x x A e B e C e D e →∞+---+114224455、 答( ) ..; .; .; .极限22101)21(lim e D e C eB e A x xx -→=-56、下列等式成立的是.; .;.;.. 答( )A x eB x eC x eD xe x x x x x x x x lim()lim()lim()lim()→∞→∞→∞+→∞++=+=+=+=121111112222221257、极限的值为.; .; .; . 答( )lim()x xxA eB eC eD e→∞---1122141458、已知,则的值为.; .; .; .. 答( )lim()x xkx e k A B C D →+=-01111122 60、 ) 答( .低阶无穷小量..高阶无穷小量;量;.同阶但非等价无穷小.等价无穷小量;的是无穷小量-时,无穷小量当D C B A x xxx 12111-+→61、答( ) ..;.;.; .为等价无穷小量的是时,与当 )sin ( 11)1ln( 2sin 0x x x D x x C x B x A x x +--+-→62、极限.; .; .; .. 答( )lim(cos )x xx A B e C D e →-=112120164、下列极限中不正确的是.; .;.;.. 答( )A x xB xx C x x D xx x x x x lim tan sin lim coslim sin()lim arctan →→-→→∞=+=---==011232322121120ππ65、 答( ) ..; .; .; .的值为( )极限23326103sin 3cos 1lim0D C B A xx xx -→66、极限的值为( ).; .; .; .. 答( )lim ()x x xe e x x A B C D →--+021012367、极限.; . .; .. 答( )lim(cos )x x x A B C D e →-=1120170、 答( ) , ,, ,,则必有设.104)( ; 64)(; 104)( ; 52)(14lim 231=-=-==-=====-+--→A a D A a C A a B A a A A x x ax x x71、( ) 答 高阶的无穷小是比高阶的无穷小是比是等价无穷小与等价无穷小是同阶无穷小,但不是与时( ),则当,设.)()()(; )()()(; )()()(; )()()(133)(11)(3x x D x x C x x B x x A x x x xxx αββαβαβα→-=β+-=α72、答( ) 不存在,但不是无穷大为无穷大 等于 等于之值.)( ; )(;0)( ; 1)(11sin limD C B A xx x →73、答( ) 不存在,但不是无穷大为无穷大 等于 等于 .)( ;)(;2)( ; 0)(2coslim 2D C B A x x x +→75、若,当时为无穷小,则, ,, , 答( )f x x x ax b x A a b B a b C a b D a b ()()()()()=+--→∞==-===-=-=-=211111111176、f x x xx A x B x C x f x D x f x ()sin ()()()()()()()()=⋅<<+∞→+∞→+∈+∞→+110000 当时为无穷小当时为无穷大当,时有界当时不是无穷大,但无界. 答( )77、设,,则当时 与是同阶无穷小,但不是等价无穷小是比高阶的无穷小与不全是无穷小αβαβαβαβαβ=+=→+∞ln()~()()()x xarcctgx x A B C D 1答:( )78、答( ) 小量的是时,下列变量中为无穷当1)1)((ln 1)()1ln()(1sin 1)(0122-+-+→x D x C x B x x A x79、 ) 答( 穷大的是时,下列变量中,为无当x D x C x B xx A x 1cotarc )(1arctan )(ln )(sin )(0+→ 80、当时,下列无穷小量中,最高阶的无穷小是 答( )x A x x B x C x x D e exx→++---+--0111222()ln()()()tan sin ()81、当时,在下列无穷小中与不等价的是 答( )x x A x B x C x x D e exx→-++--+--01211122222()cos ()ln ()()82、设 当 当 且,则,,,可取任意实数,可取任意实数 答( )f x bx x x a x f x A b a B b a C b a D b a x ()lim ()()()()()=+-≠=⎧⎨⎪⎩⎪=======→11003336336083、设,当, 当 适合则以下结果正确的是仅当,,仅当,,可取任意实数,,可取任意实数,,都可能取任意实数 答( )f x x x bx x a x f x AA a b AB a A bC b A aD a b A x ()lim ()()()()()=++-≠=⎧⎨⎪⎩⎪===-====-=→212111434443484、 答( ) 可取任意实数可取任意实数可取任意实数,可取任意实数,间正确的关系是,,则,且当, ,当设2)(2)(2)(2)()(lim 0 0cos 1)(222a Ab a D aA b a C a A b aB aA b a A A b a A x f x b x x ax x f x =======⎪⎩⎪⎨⎧=≠-=→85、aA A b a D Ab a a C b A b a B a A b a A A b a A x f x b x xax d x f x ln )()()()()(lim 0 0)1ln()(0======⎪⎩⎪⎨⎧=≠+=→仅取可取任意实数,而,可取任意实数且可取任意实数,,可取任意实数,,之间的关系为,,则,,且当 , ,当设答:()86、ab A a D a A b a C b A b a B A b a A A b a Ax f x b x x e x f x ax ======⎪⎩⎪⎨⎧=≠-=→可取任意实数且可取任意实数,,可取任意实数,,可取任意实数,,之间的关系为,,则,且, 当,当设)()()(1)()(lim 001)(0答:()88、以下极限式正确的是 答( )()lim()()lim()()lim()()lim()A x e B x e C x e D xx x x x x x x x →+→+-→∞-→∞-+=-=-=+=00111111111191、lim sin ()()()()x x xA B C D →∞===∞110之值 不存在但不是无穷大 答( )99、lim(cos ).....x x xA B C D →-=-0212220 不存在 答:()102、 答( ) 不存在 .2.2.2.312lim2D C B A x x x ±-=++∞→ 答( ) . . . .21)21(lim 2sin 0D e C e B A x xx =+→111、( ) 答 阶的是时,下述无穷小中最高当xx D x C x B x A x sin 11cos 1022----→112、 答( ) .. . . .是等价无穷小,则与时,若当232123211cos )(1)1()(0312--=-=β-+=α→D C B A a x x ax x x 114、lim ()lim ()()x x x x f x f x a f x x x A B C D →→--===0000,是函数在处连续的( ).充分条件 .必要条件.充分必要条件 .既非充分又非必要条件 答( )115、函数,, ,在点的连续性是( ).连续; .左连续,右不连续;.右连续,左不连续;.左右都不连续. 答( )f x e x x x A B C D x ()=-≠=⎧⎨⎪⎩⎪=-101001116、) 答( . . . .( ).处连续,则 ,在, ,设函数2420111132)(2D C B A a x x a x x x x x f --=-=⎪⎩⎪⎨⎧-=-≠+--= 117、) 答( . . . .的值等于( )处连续,则在若, ,设函数2121120)(020cos )( 2-=⎪⎩⎪⎨⎧≥+<+=D C B A a x x f x x a x x e x f x118、 ) 答( . . . .( )点连续,则 ,在, ,设eD e C e B e A k x x ke x xxx f x 21222000cos 1)(1==⎪⎩⎪⎨⎧≤>-=-119、 ) 答( . . . .的最大的取值范围是点连续,则 ,在 , ,若函数100100001sin )(>>≥≥=⎪⎩⎪⎨⎧=≠=K D k C k B k A k x x x x x x f k 120、 答( ) . . . .( )处连续,则在 ,如果,,设函数43210)(020cos 3)(D C B A b x x f x b x x x x f ==⎩⎨⎧≥+<= 123、 答( ) . . . .的值是( )处连续,则在 ,则,,设21210)(020tan )(--=⎪⎩⎪⎨⎧≤+>=D C B A k x x f x x x x kxx f 124、( ) 答 ,,. , ,., ,. , ,.处不连续的是( )下列函数在⎪⎩⎪⎨⎧<-+≥--=⎩⎨⎧<-≥+=⎪⎩⎪⎨⎧=≠=⎪⎩⎪⎨⎧====-01)1(2012)(00)1ln()(0001sin )(000)(0221x x x x x x f D x x x x x f C x x xx x f B x x e x f A x x设, , , ,则在处( ).连续; .右连续,但左不连续;.右不连续,而左连续;.左、右都不连续; 答( )f x x x x x e x x f x x A B C D ()sin ()=>=+<⎧⎨⎪⎪⎪⎩⎪⎪⎪=0101110126、设, , , ,则在处( ).连续; .右连续,但左不连续;.右不连续,而左连续;.左、右都不连续. 答( )f x xxx x x e x f x x A B C D x ()cos ()=->=--<⎧⎨⎪⎪⎪⎩⎪⎪⎪=1012011200 127、[]下列函数在点连续的是( ).; .,, .,, .. 答( )x A f x x x B f x xxx x C f x x xx x D f x x x ==≠=⎧⎨⎪⎩⎪=≠=⎧⎨⎪⎩⎪=001010001()()()sin ()sin128、下列函数在处不连续的为( ). .,, .,, .,, 答( )x A f x x B f x xxx x C f x x x x x D f x xxx x x ===≠=⎧⎨⎪⎩⎪=≠=⎧⎨⎪⎩⎪=><⎧⎨⎪⎩⎪001001000()()sin ()sin ()sin cos函数的不连续点( ).仅有一点; .仅有一点;.仅有一点; .有两点和. 答( )f x x x A x B x C x D x x ()()ln()=-+===-==111101012130、 答( ) 是第一类.是第二类,.是第一类;是第二类,.都是第二类;,.都是第一类;,.型为( ),则此函数间断点的题、的间断点为函数212121212123122=======+--=x x D x x C x B x A x x x x y131、 答( ) .,,.有三点;,.只有两点;,.只有两点; ,.只有两点的间断点是( )函数11011101011111-=-=-==-+-=x D x C x B x A xx x y132、 答( ) 处连续.处间断,在在.处间断;处连续,在在.处都连续;,在.处都间断;,在.则有( ), , ,设函数21)(21)(21)(21)(22221132)(2========⎪⎩⎪⎨⎧>-≤<≤-+=x x x f D x x x f C x x x f B x x x f A x x x x x x x x f133、( ) 答 都是第二类间断点.,.为第一类间断点;为第二类间断点,.为第二类间断点;为第一类间断点,.都是第一类间断点;,.点的类型为( )的二个间断点,则间断为,,且设10101010)(10)1(2cos)(-=====-==-π=x x D x x C x x B x x A x f x x x x x f141、) 答( . . . . 点连续,则 ,在, ,设422141)(0120)1ln(1sin 1)(2D C B A k x x x kx x x x f ==⎪⎩⎪⎨⎧=≠+-+=142、极限的值为( ). . . . 答( )limsin x x x x eA B C D →+--0111012122144、) 答( . . . .的值是( )极限619131313cos ln cos ln lim0D C B A x xx -→ 145、极限的值为( ). . . . 答( )limln x e x x eA B e C e D →---1101147、极限的值是. . . . 答( )lim ln()ln()x x x A B C D →+---02212132132349设函数, , 在,上连续,则,的值,用数组,可表示为 ., .,., ., 答( )f x x x x ax b x x x a b a b A B C D (),()()()()()()()=+-<+≤≤+>⎧⎨⎪⎪⎪⎩⎪⎪⎪-∞+∞1100111123232121120 155、 答( ) 任意,. ,.,. ,.表示为( ),用数组,连续,则常数上, ,在, ,, 设函数)1()01()10()11()()(11102cos 210sin )(b D C B A b a b a x x bx x x x x x axx f ∞+-∞⎪⎪⎪⎩⎪⎪⎪⎨⎧>--≤≤+<=π164、 答( ) 振荡间断点. 无穷间断点; 可去间断点; 连续点; 的是,则点设)()()()()(02cos)(2C C B A x f x x xx x f =+=f x x x xf x A x B x C x x D x x x ()ln ()()=++==-==-==-=2210101011,则的可去间断点为 .仅有一点.仅有一点.有两点及.有三点,及 答( ) ) 答( . .为任意实数,., ,.处连续则有( ) 在,当,当2)(2)(0)(20)(002sin 0)(2bb a D b a C b a B b a A x x xbx x bx a x f =+=====⎪⎩⎪⎨⎧>≤+= 180、f x eex f x A B C D x x()()()()()()=-+=11011,点是的.可去间断点 .跳跃间断点.无穷间断点 .连续点 答( )181、 答( ) .连续.仅是右连续 .仅是左连续.有可去间断点 处,则在设)()()()()(1)11()(D C B A x f x x x x f =-+=182、f x x x xx x xx f x A x B x C x x D ()sin ()=-+-≤>⎧⎨⎪⎪⎩⎪⎪====44202002022,当,当则关于的连续性的正确结论是( ).仅有一个间断点.仅有一个间断点.有两个间断点及.处处连续 答( )187、要使在处连续,应补充定义的值为. . . . 答( )f x x x f A B e C e D ex ()()()()()()()=+=----2000222412188、 答( ) 的取值应为:处连续,在,要使 设1)(21)(0)(1)()0(0)()0(sin sin )(-=≠+-=D C B A f x x f x xx xx x f189、设,当, 当 则 .处处连续.有一个间断点.有一个间断点.有及两个间断点 答( )f x x x x x f x A B x C x D x x ()ln ()()()()()()=-<≥⎧⎨⎪⎩⎪====13113003、二、填空题(共 39 小题,100 分)21、.____________)31(lim sin 20=+→xx x22、.,则设____________8)2(lim ==-+∞→a ax a x xx 24、__________1)sin 1(lim 0=-+→xx x x25、_____________1)21(lim 230=-+→xx x x 27、___________)1ln(2)cos(sin 1lim20的值等于x x x +-→30、____________lim的值等于xx x e e x-→-32、_____________69lim 223的值等于---→x x x x34、_____________000)(sin 2sin ==⎪⎩⎪⎨⎧=≠-=a x x a x xe e xf xx 处连续则 在, ,设 35、. ___________0 , 001sin )(2==⎪⎩⎪⎨⎧=≠-+=a x x a x xe x xf ax 处连续,则在 ,当,当 37、_________)0(0)()0(2cot )(==≠=f x x f x x x x f 点处连续,则在,要使设 三、计算题(共 200 小题,100 分)1)63(lim -∞→++x x xx 求 132、研究极限.lim x x x x →∞++-2231计算极限lim x x x x x x →-+---23223322154、计算极限limx x x x →+-++-021111155、求极限 ,为非零常数limtan sin ()x mxnx m n →0171、求极限.limln cos x xx →02179、求极限.lim()x xx x →∞+-21213 180、求极限lim()x xx →-0112188、求极限.limx x e x →-051189、求极限.limx x x e e x →-+-022191、求极限 ,.lim()x x a xa a →->≠03101。
高数 上 习题及答案 极限
x +1
⎞ ⎟ ⎟ ⎟
⎝ 2x ⎠
3
=
lim
x→∞
⎛⎜1 ⎝ ⎛⎜⎝1
+ +
3 2x 1 2x
x +1
⎞ ⎟ ⎠
x +1
⎞ ⎟⎠
3
⎡
⎤ 2x 2
=
lim
⎢⎢⎢⎣⎛⎜⎝ 1 +
3 2x
⎞ ⎟ ⎠
3
⎥
⎥ ⎥⎦
⎛⎜ 1 + ⎝
3 2x
⎞ ⎟ ⎠
x→∞
1
⎡⎢⎢⎣⎛⎜⎝1
+
1 2x
2
⎞ ⎟ ⎠
x
⎤ ⎥ ⎥⎦
ln lim y = ln e0 , lim y = 1
x→π
x→π
2
2
5
解: lim sin xln x
lim xsin x = lim esin xln x = ex→0+
x→0+
x→0+
ln x
lim sin xln x = lim
x→0+
1 x→0+
sin x
1
= lim
x→0+
x⋅
−cos x sin2 x
⎛⎜1
+
⎠⎝
3 n
⎞ ⎟ ⎠
=1
(18) lim sin 5x = ( )
x→π sin 3x
(a) − 4 (b)-1 (c)1
3 分析:lim sin 5x = lim 5cos5x = 5
x→π sin 3x x→π 3cos 3x 3
(d) 5
3
(22) lim x2 +1 − 3x = ( )
高等数学极限习题500道(完整资料).doc
【最新整理,下载后即可编辑】.求证:存在,且,=时,设当βα=β+βα+αβαβ=βαα→→→→000lim lim lim )()(11110x x x x x x o o x x 答( ) .. . . .是等价无穷小,则与时,若当232123211cos )(1)1()(0312--=-=β-+=α→D C B A a x x ax x x( ) 答 阶的是时,下述无穷小中最高当xx D x C x B x A x sin 11cos 1022----→[]之值.求)12ln()12ln(lim --+∞→n n n n .求极限)2sin()1(lim 2+π-+∞→n n n n .求极限)11ln()21(lim nn n ++∞→ _____________sin 1lim 3202=--→的值xx x e x x.及求证:,,设有数列n n n n n n n nn n a a a y a a a a b b a a a ∞→+∞→∞→++-=+=≠==lim )(lim lim 2)( 11221.及,求记:, .,设n n n n nn n n n n n n x y x x y x x x x x a b b x a x ∞→∞→++++-=+=>>==lim lim 112)0(111221求极限之值.lim ()cos sin x x x xx→+-0212设,;且试证明:.lim ()lim ()lim ()()x x x x x x v x Bu x A A v x Bu x A →→→=>==0[] 答( ) . . . .2ln 01)1ln(lim 2)1(11D C B A x x x ∞=+-→ 答( ) . . . .21)21(lim 2sin 0D e C e B A x xxx =+→[]的结果.之值,并讨论及求:设1)(1)(lim )(lim 11)(lim )( .1sin1)(0012----=+=→→→x u x u f x u u u f u u f xx x u x x u_____________69lim 223的值等于---→x x x x.不存在 . . .D C B A e e e e xx xx x 1231234lim =++--∞→答:( )lim ()()()....x x x x A B C D →∞-+-=-⨯2361112335853 不存在答:( )____________)61()31()21(lim 1522010=+++∞→x x x x ____________lim 0的值等于x x x e e x -→- .求极限123lim 2331+--+-→x x x x x x 求之值.lim ()x x xx x →+--+03416125已知:,问?为什么?lim ()lim ()()lim ()x x x x x x u x u x v x A v x →→→=∞=≠=0关于极限结论是: 不存在 答( )limx xeA B C D →+015353054答( ) ,则极限式成立的是,设 )(lim .)()(lim .)()(lim .0)()(lim.)(lim )(lim )(0000∞=∞=∞==∞==→→→→→→x g x x x x x x x x x x x x x f D x g x f C x f x g B x g x f A x g A x f是不是无穷大量.时,,问当)(cos )(x f x x e x f x +∞→= 答( ) 不存在 2.2...0.1arctantan lim 0π-π=⋅→D C B A xx x答( ) 2.1..0.)arctan(lim 2π∞=∞→D C B A xx x 答( ) 不存在 .2.2.2.312lim2D C B A x x x ±-=++∞→___________)0(23)(1=-+=f e x f x,则设 答( ) 不存在 2....0.1cotarc lim 0ππ=→D C B A xxlim cos ln ....x a x xa A B C D →--==0100123,则其中 答( )π____________cos 13lim 20的值等于xxe e x x x ----→lim(cos ).....x x xA B C D →-=-0212220 不存在 答:()设,其中、为常数.问:、各取何值时,; 、各取何值时,; 、各取何值时,.f x px qx x p q p q f x p q f x p q f x x x x ()()lim ()()lim ()()lim ()=++-===→∞→∞→2555112031求极限.lim ()()()()x n nn n x x x x →∞+--++-2222222211 求极限.lim ()()x x x →∞++32232332[]之值.、、试确定已知C B A x x c x B A x x 0)1()1()1(3lim2241=--+-+-+→之值.,,,试确定常数.,,满足已知d c b a x f x f x x dcx bx ax x f x x 0)(lim )2(1)(lim )1(2)(1223==-++++=→∞→ 之值.,,试确定已知b a x x bx b a x 4313)(lim 1=+-+++→为什么?"上述说法是否正确?,则"若∞=α=α→→)(1lim 0)(lim 00x x x x x x当时,是无穷大,且,证明:当时,也为无穷大.x x f x g x A x x f x g x x x →=→+→000()lim ()()().用无穷大定义证明:+∞=-+→112lim 1x x x .用无穷大定义证明:-∞=+→x x ln lim 0 +∞=-π→x x tan lim 02用无穷大定义证明: .用无穷大定义证明:+∞=-+→11lim 01x x"当时,是无穷小"是""的:充分但非必要条件必要但非充分条件充分必要条件既非充分条件,亦非必要条件 答( )x x f x A f x A A B C D x x →-=→00()lim ()()()()()若,,但.证明:的充分必要条件是 .lim ()lim ()()lim()()lim ()()()x x x x x x x x f x g x g x f x g x b f x b g x g x →→→→==≠=-⋅=0000000.其中,:用数列极限的定义证明)10(0lim <<=∞→a a nn . :用数列极限的定义证明)10(1lim 1<<=∞→a a nn .:用数列极限的定义证明2152)2(lim 2=++∞→n n n n ___________)1ln(2)cos(sin 1lim 20的值等于x x x +-→[]之值.求极限3sin 01)(cos limx x xx -→设,试证明:对任意给定的,必存在正数,使得对适含不等式;的一切、,都有成立。
高数极限基础练习题
高数极限基础练习题一、数列极限1. 计算下列数列的极限:(1) $\lim_{n \to \infty} \frac{1}{n}$(2) $\lim_{n \to \infty} \frac{n+1}{2n+3}$(3) $\lim_{n \to \infty} \frac{n^2 1}{n^2 + 1}$(4) $\lim_{n \to \infty} \frac{\sqrt{n^2 + n}}{n + 1}$ 2. 判断下列数列极限是否存在,若存在,求出其极限值:(1) $\lim_{n \to \infty} (1)^n$(2) $\lim_{n \to \infty} \sin(n\pi)$(3) $\lim_{n \to \infty} \frac{n!}{n^n}$二、函数极限1. 计算下列函数的极限:(1) $\lim_{x \to 0} \frac{\sin x}{x}$(2) $\lim_{x \to 1} \frac{x^2 1}{x 1}$(3) $\lim_{x \to \infty} \frac{1}{x}$(4) $\lim_{x \to 0} \frac{e^x 1}{x}$2. 判断下列函数极限是否存在,若存在,求出其极限值:(1) $\lim_{x \to 0} \frac{\sin 3x}{x}$(2) $\lim_{x \to \infty} \frac{\ln x}{x}$(3) $\lim_{x \to \infty} (1 + \frac{1}{x})^x$三、无穷小与无穷大1. 判断下列表达式是否为无穷小:(1) $\frac{1}{x^2}$ 当 $x \to \infty$(2) $\sin \frac{1}{x}$ 当 $x \to \infty$(3) $e^{x}$ 当 $x \to \infty$2. 判断下列表达式是否为无穷大:(1) $x^3$ 当 $x \to \infty$(2) $\ln x$ 当 $x \to \infty$(3) $\frac{1}{\sqrt{x}}$ 当 $x \to 0^+$四、极限运算法则1. 利用极限运算法则计算下列极限:(1) $\lim_{x \to 0} (3x^2 + 2x 1)$(2) $\lim_{x \to 1} \frac{x^3 3x^2 + 2x}{x^2 2x + 1}$(3) $\lim_{x \to \infty} (x^3 2x^2 + 3)$2. 利用极限的性质,计算下列极限:(1) $\lim_{x \to 0} \frac{\sin x}{x} \cdot\frac{1}{\cos x}$(2) $\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x + 1}$(3) $\lim_{x \to 0} \frac{e^x e^{x}}{2x}$五、复合函数极限1. 计算下列复合函数的极限:(1) $\lim_{x \to 0} \frac{\sin(\sqrt{x^2 + 1})}{x}$(2) $\lim_{x \to \infty} \frac{\ln(x^2 + 1)}{x}$(3) $\lim_{x \to 0} \frac{e^{x^2} 1}{x^2}$2. 判断下列复合函数极限是否存在,若存在,求出其极限值:(1) $\lim_{x \to 0} \frac{\sin(\tan x)}{x}$(2) $\lim_{x \to \infty} \frac{\ln(e^x + 1)}{x}$(3) $\lim_{x \to 0} \frac{1 \cos(\sqrt{x})}{x}$六、极限的应用1. 计算下列极限问题:(1) 设 $f(x)2. 已知函数 $f(x) = \frac{x^2 1}{x 1}$,求 $\lim_{x \to 1} f(x)$。
(完整word版)高等数学极限习题100道
设,求证:.lim ()lim ()x x x x f x A f x A →→==00 求极限lim sinsin x x x x →021[]求极限lim cosln()cosln x x x →+∞+-1 求极限.lim sin x x x→+011求极限.limarctan x xxx →∞+2112 求极限lim ()x x x e →∞+11 求极限limarctan arcsin x x x →∞⋅1 求极限.lim x x x →-+012122 )sin 1(sin lim n n n -+∞→求数列的极限[]Ax f Au f u x u x x x u u x x =ϕ=≠ϕ=ϕ→→→)(lim )(lim )()(lim 000试证:,又,且设设试确定实数,之值,使得:当时,为无穷小;当时,为无穷大。
f x x xa b x a f x x b f x ()ln ()()=-→→1设,问:当趋于何值时,为无穷小。
f x xx x f x ()tan ()=2.该邻域内 的某去心邻域,使得在证明:存在点,且,若)()()(lim )(lim 00x f x g x AB B x g A x f x x x x >>==→→设,试证明:对任意给定的,必存在正数,使得对适含不等式;的一切、,都有成立。
lim ()()()x x f x A x x x x x x f x f x →=><-<<-<-<000010201221εδδδε.,试用极限定义证明:已知:A x f A x f x x x x =>=→→)(lim0)(lim 0{}{}{}是否也必发散?同发散,试问数列与若数列n n n n y x y x +求的表达式f x x x x n n n ()lim =-+→∞+2121设 其中、为常数,,求的表达式;确定,之值,使,.f x x x a bx x a b a f x a b f x f f x f n n n x x ()lim sincos()()()()()lim ()()lim ()()=+++<<==-→∞-→→-2121121021211ππ求的表达式f x x n n ()lim(ln )=+→∞+11221 的表达式.求n n n n n xx x x x f ---+∞→++=12lim )( .,求,设)(lim )()()()(1)(33)(22x f x f x x x x f x x x n n n n ∞→=ϕ++ϕ+ϕ+=+-=ϕ 求的表达式.f x x x xx x xx n n ()lim ()()=+++++++⎡⎣⎢⎤⎦⎥→∞-11122221 求的表达式.f x x x n nn ()lim =+→∞1 .,求,其中设n n k nk k n S k b b k S ∞→=+==∑lim )!1(1求的表达式。
(完整版)高等数学函数的极限与连续习题精选及答案
1、函数与函数相同.()12++=x x x f ()113--=x x x g 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴与函数关系相同,但定义域不同,所以与()12++=x x x f ()113--=x x x g ()x f 是不同的函数。
()x g 2、如果(为一个常数),则为无穷大.()M x f >M ()x f 错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在. 错误 如:数列是有界数列,但极限不存在()nn x 1-=4、,.a a n n =∞→lim a a n n =∞→lim 错误 如:数列,,但不存在。
()nn a 1-=1)1(lim =-∞→nn n n )1(lim -∞→5、如果,则(当时,为无穷小).()A x f x =∞→lim ()α+=A x f ∞→x α正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果~,则.αβ()α=β-αo 正确 ∵,是1lim=αβ∴,即是的高阶无穷小量。
01lim lim =⎪⎭⎫⎝⎛-=-αβαβαβα-α7、当时,与是同阶无穷小.0→x x cos 1-2x 正确 ∵ 2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 .01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x 错误 ∵不存在,∴不可利用两个函数乘积求极限的法则计算。
xx 1sin lim 0→9、 .e x xx =⎪⎭⎫⎝⎛+→11lim 0错误 ∵ex xx =⎪⎭⎫⎝⎛+∞→11lim 10、点是函数的无穷间断点.0=x xxy =错误 ,=-→x x x 00lim1lim 00-=--→x x x =+→x x x 00lim 1lim 00=+→xx x ∴点是函数的第一类间断点.0=x xxy =11、函数必在闭区间内取得最大值、最小值.()x f x1=[]b a ,错误 ∵根据连续函数在闭区间上的性质,在处不连续()x f x1=0=x ∴函数在闭区间内不一定取得最大值、最小值()x f x1=[]b a ,二、填空题:1、设的定义域是,则()x f y =()1,0(1)的定义域是( );()xef (,0)-∞ (2)的定义域是( );()x f 2sin 1-,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭(3)的定义域是( ).()x f lg (1,10)答案:(1)∵ 10<<xe(2)∵ 1sin 102<-<x (3)∵1lg 0<<x 2、函数的定义域是( ).()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f (]4,2-3、设,,则( ).()2sin x x f =()12+=ϕx x ()[]=ϕx f ()221sin +x 4、=( ).nxn n sinlim ∞→x ∵x x n n x n n x n x n n n n =⋅==∞→∞→∞→sinlim sin limsin lim 5、设,则( 2 ),( 0 ).()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩()10lim x f x →--=()=+→x f x 01lim ∵,()1010lim lim (1)2x x f x x →--→--=-=()()01lim lim 0101=-=+→+→x x f x x 6、设,如果在处连续,则( ).()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ()x f 0=x =a 21∵,如果在处连续,则21cos 1lim 20=-→x x x ()x f 0=x ()a f x x x ===-→021cos 1lim 207、设是初等函数定义区间内的点,则( ).0x ()x f ()=→x f x x 0lim ()0x f ∵初等函数在定义区间内连续,∴()x f ()=→x f x x 0lim ()0x f 8、函数当( 1 )时为无穷大,当( )时为无穷小.()211-=x y x →x →∞ ∵,()∞=-→2111limx x ()11lim2=-∞→x x 9、若,则( 1 ),( ).()01lim2=--+-+∞→b ax x xx =a =b 21-∵()bax x xx --+-+∞→1lim2()()()bax x x bax x x b ax x x x +++-+++---+-=+∞→111lim222()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令,∴,012=-a 1a =±上式化简为∴()22112lim lim lim1x x x bab x a →+∞→+∞→+∞--+==+,,1a =021=+ab 12b =-10、函数的间断点是( ).()x x f 111+=1,0-==x x 11、的连续区间是( ).()34222+--+=x x x x x f ()()()+∞∞-,3,3,1,1,12、若,则( 2 ).2sin 2lim =+∞→x xax x =a ∴()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x 2=a13、( 0 ),( 1 ),=∞→x x x sin lim=∞→xx x 1sin lim ( ),( ).()=-→xx x 11lim 1-e =⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ke ∵0sin 1lim sin lim=⋅=∞→∞→x x x x x x 111sinlim 1sinlim ==∞→∞→xx x x x x()[]1)1(101)(1lim 1lim ---→→=-+=-e x x xx xx k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim 14、(不存在 ),( 0)lim sin(arctan )x x →∞=lim sin(arc cot )x x →+∞=三、选择填空:1、如果,则数列是( b )a x n n =∞→lim n x a.单调递增数列 b .有界数列 c .发散数列2、函数是( a )()()1log 2++=x x x f a a .奇函数 b .偶函数 c .非奇非偶函数∵()()11log 1)(log 22++=+-+-=-x x x x x f aa ()()x f x x a -=++-=1log 23、当时,是的( c )0→x 1-xe x a .高阶无穷小 b .低阶无穷小 c .等价无穷小4、如果函数在点的某个邻域内恒有(是正数),则函数在该邻域内( c ()x f 0x ()M x f ≤M ()x f )a .极限存在b .连续c .有界5、函数在( c )条件下趋于.()x f x-=11∞+a . b . c .1→x 01+→x 01-→x 6、设函数,则( c )()x f xxsin =()=→x f x 0lim a .1 b .-1 c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x 1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:不存在。
高等数学函数极限导数习题
赠给导航亲们的小小礼,一切为了您!导航考研《函数的极限导数100题》特训题1、 设2(1)xxx f e ee x +=++,求f (x ).解 令1xe u +=,ln(1)x u =-22()(1)(1)ln(1)ln(1)f u u u u u u u =-+-+-=-+-于是 2()ln(1)f x x x x =-+-特训题2、 求极限()40sin sin sin sin lim x x x x x →-⎡⎤⎣⎦ 解: 4300(sin sin sin )sin sin sin sin limlim x x x x x x x x x →→--=20cos cos(sin )cos lim 3x x x xx→-⋅= 200cos (1cos(sin ))sin(sin )cos lim lim 36x x x x x xx x→→-⋅== 0sin 1lim 66x x x →== 特训题3、 求1132lim 23n nn nn ++→∞-+.解 分子、分母用3n除之,原式=233lim 32213nn n →∞⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭(注:主要用当1r <时,lim 0nn r →∞=)特训题4、 求下列各极限(1)011lim x x x x →+-- (2)33011lim x x xx→+--解 (1)解一 原式=()()()112lim1211x x x xx x →+--==++- 解二 原式=()()01111lim x x x x→+----0122lim 1x x x x→⎛⎫-- ⎪⎝⎭=等价无穷小量代换 解三 用洛必达法则1原式=()0112121lim11x x x →-⎛⎫- ⎪+-⎝⎭= (2)解一 原式=()()()()()()223333112lim31111x x x x xxx x →+--=⎡⎤+++-+-⎢⎥⎣⎦解二 类似(1)中解二用等价无穷小量代换 解三 类似(1)中解三用洛必达法则 (2)222111lim 11123n n →∞⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭解 原式=111111lim 1111112233n n n →∞⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+ ⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=13241111lim lim 223322n n n n n n n n →∞→∞-++==特训题5、 求下列极限 (1)102lim 1x x x +→∞⎛⎫-⎪⎝⎭(2)101lim 1xx x x →-⎛⎫⎪+⎝⎭解 (1)2(10)10222lim 1lim 1x x x x n x x x +⎛⎫⎛⎫-+ ⎪⎪-⎝⎭⎝⎭→∞→∞⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=()1021222lim 1x x x e x ⎛⎫-+⎪⎛⎫⎝⎭- ⎪⎝⎭-→∞⎧⎫⎡⎤⎪⎪⎛⎫+-=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎪⎪⎩⎭(2)解一 ()()[]111(1)1200100lim 1lim 1()1lim 1lim 1x xxx x x xx x x x e e x e ex ⎛⎫-- ⎪-⎝⎭-→→→→-+--⎛⎫==== ⎪+⎝⎭+ 解二 12112120001122lim lim lim 1111x x x x x x x x x x x x e x x x +-⎛⎫⎛⎫ ⎪⎪-+⎝⎭⎝⎭-→→→-+-⎡-⎤⎛⎫⎛⎫⎛⎫==+=⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎣⎦特训题6、 求下列极限 (1)cot 0lim(1tan )xx x →+ (2)411lim x x x-→(3)2cot 0lim(cos )xx x →解 (1)令 tan x t =则1cot x t=,当0x →时0t → 于是 1cot 0lim(1tan )lim(1)xtx t x t e →→+=+=(2)令1x t -=则1x t =+,当1x →时,0t → 于是 ()444141100lim lim(1)lim 1x tt x t t xt t e -→→→⎡⎤=+=+=⎢⎥⎣⎦(3)()()22222cos 1cos cot 222sin2sin 0lim(cos )lim(1sin )lim 1(sin )xxxxx x x x x x x --→→→⎡⎤=-=+-⎣⎦=12e-特训题7、 求下列极限 (1)211limnn k n k→∞=+∑(2)21limnn k kn n k →∞=++∑ 解 (1)∵222111nk n n n nn kn =≤≤+++∑而 21limlim111n n n n nn→∞→∞==++221limlim1111n n n n n →∞→∞==++由夹逼定理可知 211lim1nn k n k→∞==+∑(2)∵222112121n k n k nn n n n n kn n =++++++≤≤++++++∑ 而 21(1)1212lim lim 2(2)2n n n n n n n n n →∞→∞++++==++ 221(1)1212lim lim 112n n n n n n n n n →∞→∞++++==++++ 则夹逼定理可知 211lim2nn k k n n k →∞==++∑ 特训题8、 求221limnn k nn k→∞=+∑. 分析 如果还想用夹逼定理中方法来考虑2222222211nk n n n n n n kn =≤≤+++∑ 而2221lim 2n n n n →∞=+,222lim 11n n n →∞=+ 由此可见,无法再用夹逼定理,因此我们改用定积分定义来考虑.解 2221111lim lim 1nnn n k k n n k n k n →∞→∞===+⎛⎫+ ⎪⎝⎭∑∑=11200arctan 14dx x x π==+⎰ 特训题9、 求311sinlim 1sin n nn n→∞-. 解 离散型不能直接用洛必达法则,故考虑33sin sin limlimsin x x x x x xxx →→--等价无穷小代换=2001cos sin 1limlim 366x x x x x x →→-==∴原式=16.特训题10、 求21100limx x ex -→.解 若直接用“00”型洛必达法则1,则得22113912002lim lim 105x x x x e e x xx --→→⎛⎫ ⎪⎝⎭=(不好办了,分母x 的次数反而增加),为了避免分子求导数的复杂性,我们先用变量替换,令21t x=, 于是 2151050lim lim lim t x t x t t e e t x t e ---→→+∞→+∞== (“∞∞”型)=455!lim lim 0t t t t t e e→+∞→+∞=== 特训题11、求011lim 1x x x e →⎛⎫-⎪-⎝⎭. 解 0011(1)lim lim 1(1)x x x x x e x x e x e →→--⎛⎫-= ⎪--⎝⎭ (“00”型) =001lim lim (1)x xx x x x xx x e e e xe e e xe →→-=-+++=011lim22x x →=+特训题12、 求22201cos lim()sin x xx x →-. 解 原式=222220sin cos lim sin x x x xx x→-=22401sin 24lim x x xx →-=3042sin 2cos 24lim 4x x x xx →-=301sin 44lim 2x x x x →- =2001cos 44sin 44lim lim 6123x x x x x x →→-== 特训题13、设函数21,()2,x x cf x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = .解:1分析:由()()22lim lim 11x cx cf x f x c c c+-→→=⇒+=⇒= 特训题14、 求2sin 0lim xx x +→.解 令2sin xy x=,2ln sin ln y x x =200lim ln lim sin ln 0x x y x x ++→→==(见2中例3) ∴0lim 1x y e +→== 特训题15、 求()2cot 0lim cos xx x →(前面已用重要公式的方法).解 令()2cot cos xy x =,2ln cot ln cos y x x =222000ln cos ln cos limln limcot ln cos limlim tan x x x x x xy x x x x→→→→=== (“00”型)=0tan 1lim 22x x x →-=-,∴120lim x y e -→=特训题16、 求11lim sin cos xx x x →∞⎛⎫+ ⎪⎝⎭.解 令11sin cos xy x x ⎛⎫=+ ⎪⎝⎭,11ln ln sin cos y x x x ⎛⎫=+ ⎪⎝⎭011ln sin cos ln(sin cos )lim ln lim lim1x x t t t x x y tx→∞→∞→⎛⎫+ ⎪+⎝⎭== =0cos sin lim1sin cos t t tt t→-=+∴lim x y e →∞=特训题17、 求极限21sin limln x xx x→.解:22001sin 1sin limln lim ln 11x x x x x x x x →→⎛⎫=+- ⎪⎝⎭32000sin cos 1sin 1limlim lim 366x x x x x x x x x x →→→--===-=-特训题18、 求0(1cos 2)arctan 3lim(1)ln(12)sin 5x x x xe x x→--+.解 用等价无穷小量代换原式=201(2)(3)32lim (2)(5)5x x x x x x →=特训题19、 求2013sin coslim(1cos )ln(1)x x x x x x →+++. 解 这个极限虽是“”型,但分子、分母分别求导数后的极限不存在,因此不能用洛必达法则. 原式=0sin 13cos 13lim ln(1)1cos 2x xx x x x x x →⎡⎤+⎢⎥=⎢⎥++⎢⎥⎣⎦特训题20、 求3501sin 6lim x x x x x→-+. 解 ∵355sin ()3!5!x x x x o x =-++ (当0x →时) ∴原式=5550()115!lim 5!120x x o x x →+==特训题21、 设0()2f x '=,求000(3)(2)lim x f x x f x x x ∆→+∆--∆∆.解 原式=[][]00000(3)()(2)()limx f x x f x f x x f x x∆→+∆---∆-∆=()000000(3)()(2)()3lim2lim 32x x f x x f x f x x f x x x ∆→∆→+∆--∆-+∆-∆=0003()2()5()10f x f x f x '''+==特训题22、 设曲线()y f x =与sin y x =在原点相切,求2lim ()n nf n→∞.解 由题设可知(0)0f =,0(0)(sin )1x f x =''==于是 2(0)2lim lim 22(0)220n n f f n nf f n n→∞→∞⎛⎫- ⎪⎛⎫⎝⎭'=== ⎪⎝⎭-特训题23、 设0>a ,10x b =>,21112a x x x ⎛⎫=+ ⎪⎝⎭,…1112n n n a x x x --⎛⎫=+ ⎪⎝⎭求lim n n x →∞. 解 ∵110n n n ax x a x --≥=> (算术平均值≥几何平均值)又211022n n n n n n na x a x x x x x x +⎛⎫--=+-=≤ ⎪⎝⎭,则1n n x x +≤ 因此{}n x 单调减少,又有下界,根据准则1,lim n n x A →∞= 存在把1112n n n a x x x --⎛⎫=+ ⎪⎝⎭两边取极限,得12a A A A ⎛⎫=+ ⎪⎝⎭2A a =,∵A >0,∴取A a =,于是lim n n x a →∞=特训题24、 求下列函数在分段点处的极限2sin 2 <0() >01cos xx xf x x x x ⎧⎪⎪=⎨⎪⎪-⎩ 解 00sin 2sin 2(00)lim lim 222x x x xf x x--→→-=== 22002(00)lim lim 211cos 2x x x x f x x ++→→+===-∴0lim ()2x f x →=特训题25、 求1402sin lim 1x x x e x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭. 解 1402sin lim 211()1x x x e x x e -→⎛⎫+ ⎪+=-= ⎪- ⎪+⎝⎭ 43402sin lim 0111x xx x e e x x e +--→-⎛⎫+ ⎪+=+= ⎪ ⎪+⎝⎭ ∴1402sin lim 11xx x e x x e →⎛⎫+ ⎪+= ⎪ ⎪+⎝⎭特训题26、 设221lim3sin(1)x x ax bx →++=-,求a 和b. 解 由题设可知21lim()0x x ax b →++=,∴1+a+b=0再对极限用洛必达法则2221122lim lim 3sin(1)2cos(1)2x x x ax b x a a x x x →→++++===-- 4,5a b ==- 特训题27、()f x 连续,21cos(sin )lim1(1)()x x x e f x →-=-,则(0)f =解:12分析:220011sin 22lim 1,lim 1()()x x xx f x f x →→==则,由()f x 连续,则1(0)2f =特训题28、 讨论函数()10001sin 0x e x f x x x x x ⎧⎪<⎪==⎨⎪⎪>⎩在点0x =处的连续性。
函数极限题库及答案详解
函数极限题库及答案详解1. 求极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。
答案:根据洛必达法则,当 \(x \to 0\) 时,分子分母同时趋向于0,可以应用洛必达法则。
对分子分母同时求导,得到 \(\lim_{x \to 0}\frac{\cos x}{1} = 1\)。
2. 求极限 \(\lim_{x \to \infty} \frac{3x^2 + 2x + 1}{x^2 +5}\)。
答案:当 \(x \to \infty\) 时,分子和分母的高次项将主导极限的值。
因此,\(\lim_{x \to \infty} \frac{3x^2}{x^2} = 3\)。
3. 求极限 \(\lim_{x \to 2} \frac{x^2 - 4}{x - 2}\)。
答案:这是一个0/0的不定式,可以进行因式分解,分子可以分解为\((x - 2)(x + 2)\),因此原式变为 \(\lim_{x \to 2} (x + 2)\),结果为4。
4. 求极限 \(\lim_{x \to 0} \frac{e^x - 1}{x}\)。
答案:根据e的泰勒展开式,\(e^x = 1 + x + \frac{x^2}{2!} +\frac{x^3}{3!} + \cdots\),当 \(x \to 0\) 时,高阶项可以忽略,因此 \(\lim_{x \to 0} \frac{e^x - 1}{x} = 1\)。
5. 求极限 \(\lim_{x \to 0} \frac{1 - \cos x}{x^2}\)。
答案:根据泰勒展开,\(\cos x = 1 - \frac{x^2}{2!} +\frac{x^4}{4!} - \cdots\),因此 \(\lim_{x \to 0} \frac{1 -\cos x}{x^2} = \lim_{x \to 0} \frac{-\frac{x^2}{2!} +\text{高阶项}}{x^2} = -\frac{1}{2}\)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[]Ax f Au f u x u x x x u u x x =ϕ=≠ϕ=ϕ→→→)(lim )(lim )()(lim 000试证:,又,且设设试确定实数,之值,使得:当时,为无穷小;当时,为无穷大。
f x x xa b x a f x x b f x ()ln ()()=-→→1设,问:当趋于何值时,为无穷小。
f x xx x f x ()tan ()=2.该邻域内 的某去心邻域,使得在证明:存在点,且,若)()()(lim )(lim 00x f x g x AB B x g A x f x x x x >>==→→设,试证明:对任意给定的,必存在正数,使得对适含不等式;的一切、,都有成立。
lim ()()()x x f x A x x x x x x f x f x →=><-<<-<-<000010201221εδδδε.,试用极限定义证明:已知:A x f A x f x x x x =>=→→)(lim0)(lim 0{}{}{}是否也必发散?同发散,试问数列与若数列n n n n y x y x +设 其中、为常数,,求的表达式;确定,之值,使,.f x x x a bx x a b a f x a b f x f f x f n n n x x ()limsincos()()()()()lim ()()lim ()()=+++<<==-→∞-→→-2121121021211ππ.,求,设)(lim )()()()(1)(33)(22x f x f x x x x f x x x n n n n ∞→=ϕ++ϕ+ϕ+=+-=ϕ 求的表达式.f x x x x x x xx n n ()lim ()()=+++++++⎡⎣⎢⎤⎦⎥→∞-11122221 求的表达式。
f x x x x x x x n n n n ()lim ()()()=+-+-++-⎡⎣⎢⎤⎦⎥→∞1121212222 .的表达式,其中求01)1(1)1(lim)(≥+++++=∞→x x x x x x f nn n .,其中求数列的极限1)321(lim 12<++++-∞→q nq q q n n求数列的极限其中.lim ()()()()()()()()n a a a a a a a n a n a n a →∞+++++++++-+++⎡⎣⎢⎤⎦⎥>11211231110 .求数列的极限⎥⎦⎤⎢⎣⎡+++⋅+⋅+⋅∞→)1(1431321211lim n n n [])0( )1(321lim 222232>-++++∞→a n na n 其中求数列的极限.求数列的极限⎥⎦⎤⎢⎣⎡--+++++∞→2)1(321(21lim 2n n n n )200( 2122lim≠>>+-+--+∞→b b a n b n n a n n 且,.求数列的极限.,,且的某邻域内若在B x g A x f x g x f x x x x x ==>→→)(lim )(lim )()(00.试判定是否可得:B A >是否成立?为什么?,则,若0)()(lim 0)(1lim 0)(lim 000=βα≠=β=α→→→x x b x x x x x x x x[][]确定,之值,使,并在确定好,后求极限a b x x ax b a b xx x ax b x x lim()lim ()→+∞→+∞++-+=++-+347034722求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222求极限.lim ()()()()()()x x x x x x x →∞+++++-⋅12131415153222222222335 为无穷小.时,之值,使当,确定)(54)(2b ax x x x f x b a +-+-=-∞→设f x ax a x ax a x a()()()=------2211222问:当为何值时,; 当为何值时,; 当为何值时,,并求出此极限值。
()lim ()()lim ()()lim ()1212301112a f x a f x a f x x x x →→→=∞=>[] 答( ) 存在不一定存在都存在,而,不一定存在存在,但不一定存在存在,但,则,上的单调增函数,,是定义在设)(lim )()(lim )0()0()()0()0()()0()0()()()(00000000x f D x f x f x f C x f x f B x f x f A b a x b a x f x x x x →→+--++-∈.存在,并求出此极限值,证明:,且设n n n n x ax x a x ∞→+=>>lim 011 。
存在,并求出此极限值,证明,且设n n n n x x x x ∞→++==lim 2211设,且其中,证明极限存在,并求出此极限值.x x x ax a x n n n n n 110120>=+>+→∞()()lim设,,,.证明极限存在,并求出此极限值。
x x x x x x x x n nnn n 010*******==++=+++→∞lim存在.求证:为正整数,设n n n x n n x ∞→++++=lim )(131211222.lim 1311311311112存在,求证:设n n n n x x ∞→++++++++=设,,,,证明:;求极限.x x x n n x n x n n n n 1212132413521246211212==⋅⋅=⋅⋅-⋅⋅<+→∞()()()()lim{}.为定数)证明:适合设数列0lim ( ,11=<≤∞→+n n nn n x r r x x x.则"证明数列的极限用极限存在的"夹逼准02lim=∞→nn n.求数列的极限)12111(lim 222nn n n n +++++∞→[]设,,当,当讨论及.f x xg x x x x x g x f g x x x ()sin ()lim ()lim ()==-≤+>⎧⎨⎪⎪⎩⎪⎪→→220200ππ [])()(lim , )()(lim )(lim 0000u f x f u f u f u x x x u u x x =ϕ==ϕ→→→证明:,设。
{}.求证:适合若数列rra a a r a a r a a a n n n n n n n --=<<-=-∞→-+1lim )10()(1211n n n nn n x x n a n n a x 1lim , 0!+求极限为正整数是常数, 其中设∞→>⋅=设时,与是等价无穷小且证明:x x x x x f x Ax f x Ax x x x →⋅=⋅=→→00αβαβ()()lim ()()lim ()()设,且,试证明必有的某个去心邻域存在,使得在该邻域内有界lim ()().x xf x A A x f x →=≠001[][]下述结论:"若当时,与是等价无穷小,则当时,与也是等价无穷小"是否正确?为什么?x x x x x x x x →→++0011αβαβ()()ln ()ln ().求极限应用等阶无穷小性质,xx x x )1arctan()1arctan(lim 0--+→设当时,与是等价无穷小,且,,证明:.x x x x f x x a f x x g x A f x x g x A x x x x x x →=≠-=-=→→→00001αβααβ()()lim ()()lim ()()()lim ()()()设当时,,是无穷小且证明:.x x x x x x e e x x x x →-≠--00αβαβαβαβ()()()()~()()()()若当时,与是等价无穷小,是比高阶的无穷小.则当时,与是否也是等价无穷小?为什么?x x x x x x x x x x x x →→--0101ααβααβαβ()()()()()()()()[][]设当时,、是无穷小,且证明: 与是等价无穷小.x x x x x x x x x x →-≠+-+-0011αβαβαβαβ()()()().ln ()ln ()()()设当时,是比高阶的无穷小.证明:当时,与是等价无穷小.x x f x g x x x f x g x g x →→+00()()()()()吗?为什么?也是等价无穷小与无穷小。
试判定:等价是同阶无穷小,但不是与是等价无穷小,与时,若)()()()()()()()(110x x x x x x x x x x β-αβ-αβααα→确定及,使当时,与,是等价无穷小.A n x f x x x g x Ax n →=++=0122()ln()().时,,使当及求,, 设)(~)(0)(5sin 3sin 2sin )(x g x f x n A Ax x g x x x x f n →=+-=设,为常数求及,使当时,f x e e e a g x Ax A n x f x g x a x a x a n()()()()~().()()=+-=→+-22220设, ,确定及,使当时,.f x x x xg x Axk A x f x g x k ()()()~()=+-++=→+∞221设, ,确定及,使当时,αβαβ()()()()~()x x x x c x c n x x x n =-+=-→33211求极限 ,且,,lim()()x x xx xa xb a b a b a b →++>>≠≠≠011100112求极限 ,为常数,且lim ln()ln()().x ax e bxa b a →+∞++>110[]求极限lim ()ln()()ln()ln x x x x x x x x →+∞++-+++22211是常数其中求数列的极限0 ; ln 2)1ln()1ln(lim 2>⎥⎦⎤⎢⎣⎡--++∞→a a n a n a n n设,,,则有, ,, , 答( )f x x x xx f x a f x b A a b B a b C a b D a b x x ()sin sin lim ()lim ()()()()()=+==========→→∞11111221220limsin ()()()()x xxA B C D →∞=∞10 不存在但不是无穷大 答( )lim sin ()()()()x x xA B C D →∞===∞110之值 不存在但不是无穷大 答( )已知 其中、、、是非常数则它们之间的关系为 答( )limtan (cos )ln()()()()()()()x x A x B x C x D eA B C D A B D B B D C A C C A C→-+--+-===-==-011211022222{}.,试证明及满足设有数列0lim )10( lim 01=<≤=>∞→+∞→n n nn n n n a r r a aa a{},试按极限定义证明:,且满足设有数列)10( lim 0<≤=>∞→r r a a a n n n n n .0lim =∞→n n a.语言证明,试用 设A x f A A x f x x x x =δ-ε>=→→)(lim"")0()(lim 0试问:当时,,是不是无穷小?x x x x→=012α()sin的某去心邻域,使得试证明:必存在,且,设0,)(lim )(lim 0x B A B x g A x f x x x x >==→→.在该邻域为)()(x g x f >[] 答( ) 大无界变量,但不是无穷小有界变量,但不是无穷无穷小量无穷大量是时,则当,设数列的通项为)()()()()1(12D C B A x n nn n x n n n ∞→--+=以下极限式正确的是 答( )()lim()()lim()()lim()()lim()A x e B xe C x e D xx x x x x x x x →+→+-→∞-→∞-+=-=-=+=001111111111设, ,,,求.x x x n x n n n n 1110612==+=+→∞()limab A a D a A b a C b A b a B A b a A A b a Ax f x b x x e x f x ax ======⎪⎩⎪⎨⎧=≠-=→可取任意实数且可取任意实数,,可取任意实数,,可取任意实数,,之间的关系为,,则,且, 当,当设)()()(1)()(lim 001)(0答:( )aA A b a D Ab a a C b A b a B a A b a A A b a A x f x b x xax d x f x ln )()()()()(lim 0 0)1ln()(0======⎪⎩⎪⎨⎧=≠+=→仅取可取任意实数,而,可取任意实数且可取任意实数,,可取任意实数,,之间的关系为,,则,,且当 , ,当设答:() 答( ) 可取任意实数可取任意实数可取任意实数,可取任意实数,间正确的关系是,,则,且当, ,当设2)(2)(2)(2)()(lim 0 0cos 1)(222a Ab a D aA b a C a A b aB aA b a A A b a A x f x b x x ax x f x =======⎪⎩⎪⎨⎧=≠-=→[][]设有,,且在的某去心邻域内复合函数有意义。