2020年中考数学重难点复习《圆》解答题及答案解析 (23)
2020年中考数学试题《圆》试题精编含答案
(1)求证:直线DC是⊙O的切线;
(2)若BC=2,∠CAB=30°,求图中阴影部分的面积(结果保留π).
24.(2020•临沂)已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以 O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A交⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.
(1)求证:△ABD≌△ACD;
(2)判断直线DE与⊙O的位置关系,并说明理由.
27.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.
(1)求证:AE=AB;
(2)若AB=10,BC=6,求CD的长.
28.(2020•咸宁)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.
1.【解答】解:(1)证明:连接OC,如图,
∵CD与⊙O相切于点C,
∴∠OCD=90°,
∴∠ACD+∠ACO=90°,
∵AD⊥DC,
∴∠ADC=90°,
∴∠ACD+∠DAC=90°,
∴∠ACO=∠DAC,∵O Nhomakorabea=OC,
∴∠OAC=∠OCA,
∴∠DAC=∠OAC,
∴AC是∠DAB的角平分线;
(2)∵AB是⊙O的直径,
(1)求证:BF=DF;
(2)若AC=4,BC=3,CF=1,求半圆O的半径长.
2020-2021精选中考数学易错题专题复习圆的综合附答案解析
2020-2021精选中考数学易错题专题复习圆的综合附答案解析一、圆的综合1.如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.【答案】(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3).【解析】【分析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=1OP,因此△OCP是直角三角形,且∠OCP=90°,2而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣3劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣3劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,3优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,3);优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3【点睛】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.2.如图1,已知扇形MON2,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.【答案】 (1)证明见解析;(2) 2=+y x 02<≤x 1422=x . 【解析】 分析:(1)先判断出∠ABM =∠DOM ,进而判断出△OAC ≌△BAM ,即可得出结论; (2)先判断出BD =DM ,进而得出DM ME BD AE =,进而得出AE =122x (),再判断出2OA OC DM OE OD OD==,即可得出结论; (3)分三种情况利用勾股定理或判断出不存在,即可得出结论.详解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM =∠BAM =90°.∵∠ABM +∠M =∠DOM +∠M ,∴∠ABM =∠DOM .∵∠OAC =∠BAM ,OC =BM ,∴△OAC ≌△BAM ,∴AC =AM .(2)如图2,过点D 作DE ∥AB ,交OM 于点E .∵OB =OM ,OD ⊥BM ,∴BD =DM .∵DE ∥AB ,∴DM ME BD AE =,∴AE =EM .∵OM 2,∴AE =122x (). ∵DE ∥AB ,∴2OA OC DM OE OD OD ==, ∴22DM OA y OD OE x =∴=+,02x ≤< (3)(i ) 当OA =OC 时.∵111222DM BM OC x ===.在Rt △ODM 中,222124OD OM DM x =-=-. ∵2121224x DM y OD x x ==+-,1422x =,或1422x =(舍). (ii )当AO =AC 时,则∠AOC =∠ACO .∵∠ACO >∠COB ,∠COB =∠AOC ,∴∠ACO >∠AOC ,∴此种情况不存在.(ⅲ)当CO =CA 时,则∠COA =∠CAO =α.∵∠CAO >∠M ,∠M =90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA =2α>90°.∵∠BOA ≤90°,∴此种情况不存在.即:当△OAC 为等腰三角形时,x 的值为1422-.点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y 关于x 的函数关系式是解答本题的关键.3.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC(1)求证:AC 是⊙O 的切线;(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.【答案】(1)见解析;(2)30.【解析】【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案.【详解】(1)证明:∵CD 与⊙O 相切于点E ,∴OE CD ⊥,∴90CEO ∠=︒,又∵OC BE P ,∴COE OEB ∠=∠,∠OBE=∠COA∵OE=OB ,∴OEB OBE ∠=∠,∴COE COA ∠=∠,又∵OC=OC ,OA=OE ,∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒,又∵AB 为⊙O 的直径,∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形,∴OF=OB=BF=EF ,∴OE=OB=BE ,∴OBE ∆为等边三角形,∴60BOE ∠=︒,而OE CD ⊥,∴30D ∠=︒.故答案为30.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.4.如图,四边形ABCD 是⊙O 的内接四边形,AB=CD .(1)如图(1),求证:AD ∥BC ;(2)如图(2),点F 是AC 的中点,弦DG ∥AB,交BC 于点E,交AC 于点M,求证:AE=2DF ;(3)在(2)的条件下,若DG 平分∠ADC,GE=53,tan ∠ADF=43,求⊙O 的半径。
2020年九年级数学中考《圆》综合专题复习试题(含答案)
1 ∵AH=2AC= 3,
AH ∴OA=sin60°=2. ∴⊙O 半径的长为 2. (2)证明:在 BM 上截取 BE=BC,连接 CE, ∵∠ABC=120°,BM 平分∠ABC, ∴∠MBA=∠MBC=60°. ∵BE=BC, ∴△EBC 是等边三角形.
∴CE=CB=BE,∠BCE=60°. ∴∠BCD+∠DCE=60°. ∵∠ACM=∠ABM=60°,∴∠ECM+∠DCE=60°. ∴∠ECM=∠BCD. ∵∠CAM=∠CBM=60°,∠ACM=∠ABM=60°. ∴△ACM 是等边三角形.∴AC=CM. ∴△ACB≌△MCE(SAS).∴AB=ME. ∵ME+EB=BM, ∴AB+BC=BM.
基础题组
1.(2019·保定一模)已知⊙O 的半径 OA 长为 2,若 OB= 3,则可以得到的正确图形可
能是(A)
2.(2019·广州)平面内,⊙O 的半径为 1,点 P 到 O 的距离为 2,过点 P 可作⊙O 的切线条
数为(C)
A.0 条
B.1 条
C.2 条
D.无数条
3.如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=4,以点 A 为圆心作圆.如果⊙A 与线
则∠D=27°.
基础题组
1.(2019·柳州)如图,A,B,C,D 是⊙O 上的点,则图中与∠A 相等的角是(D)
A.∠B
B.∠C
C.∠DEB
D.∠D
A︵B
A︵B
2.(2019·吉林)如图,在⊙O 中, 所对的圆周角∠ACB=50°.若 P 为 上一点,
∠AOP=55°,则∠POB 的度数为(B)
A.30°
3 切,连接 OC,则 tan∠OCB= 5 .
2020-2021中考数学圆的综合的综合热点考点难点含详细答案
2020-2021中考数学圆的综合的综合热点考点难点含详细答案一、圆的综合1.如图,四边形ABCD是⊙O的内接四边形,AB=CD.(1)如图(1),求证:AD∥BC;(2)如图(2),点F是AC的中点,弦DG∥AB,交BC于点E,交AC于点M,求证:AE=2DF;(3)在(2)的条件下,若DG平分∠ADC,GE=53,tan∠ADF=43,求⊙O的半径。
【答案】(1)证明见解析;(2)证明见解析;(3)129【解析】试题分析:(1)连接AC.由弦相等得到弧相等,进一步得到圆周角相等,即可得出结论.(2)延长AD到N,使DN=AD,连接NC.得到四边形ABED是平行四边形,从而有AD=BE,DN=BE.由圆内接四边形的性质得到∠NDC=∠B.即可证明ΔABE≌ΔCND,得到AE=CN,再由三角形中位线的性质即可得出结论.(3)连接BG,过点A作AH⊥BC,由(2)知∠AEB=∠ANC,四边形ABED是平行四边形,得到AB=DE.再证明ΔCDE是等边三角形,ΔBGE是等边三角形,通过解三角形ABE,得到AB,HB,AH,HE的长,由EC=DE=AB,得到HC的长.在Rt△AHC中,由勾股定理求出AC的长.作直径AP,连接CP,通过解△APC即可得出结论.试题解析:解:(1)连接AC.∵AB=CD,∴弧AB=弧CD,∴∠DAC=∠ACB,∴AD∥BC.(2)延长AD到N,使DN=AD,连接NC.∵AD∥BC,DG∥AB,∴四边形ABED是平行四边形,∴AD=BE,∴DN=BE.∵ABCD是圆内接四边形,∴∠NDC=∠B.∵AB=CD,∴ΔABE≌ΔCND,∴AE=CN.∵DN=AD,AF=FC,∴DF=1CN,∴AE=2DF.2(3)连接BG ,过点A 作AH ⊥BC ,由(2)知∠AEB =∠ANC ,四边形ABED 是平行四边形,∴AB =DE .∵DF ∥CN ,∴∠ADF =∠ANC ,∴∠AEB =∠ADF ,∴tan ∠AEB = tan ∠ADF =43,DG 平分∠ADC ,∴∠ADG =∠CDG .∵AD ∥BC ,∴∠ADG =∠CED ,∠NDC =∠DCE .∵∠ABC =∠NDC ,∴∠ABC =∠DCE .∵AB ∥DG ,∴∠ABC =∠DEC ,∴∠DEC =∠ECD =∠EDC ,∴ΔCDE 是等边三角形,∴AB =DE =CE .∵∠GBC =∠GDC =60°,∠G =∠DCB =60°,∴ΔBGE 是等边三角形,BE = GE =53.∵tan ∠AEB = tan ∠ADF =43,设HE =x ,则AH =43x .∵∠ABE =∠DEC =60°,∴∠BAH =30°,∴BH =4x ,AB =8x ,∴4x +x =53,解得:x =3,∴AB =83,HB =43, AH =12,EC =DE =AB =83,∴HC =HE +EC =383+=93.在Rt △AHC 中,AC =222212(93)AH HC +=+=343.作直径AP ,连接CP ,∴∠ACP =90°,∠P =∠ABC =60°,∴sin ∠P =AC AP ,∴3432129sin6032AC AP ===︒,∴⊙O 的半径是129.2.如图,在ABC V 中,90ACB ∠=o ,BAC ∠的平分线AD 交BC 于点D ,过点D 作DE AD ⊥交AB 于点E ,以AE 为直径作O e .()1求证:BC 是O e 的切线;()2若3AC =,4BC =,求tan EDB ∠的值.【答案】(1)见解析;(2)1tan 2EDB ∠=. 【解析】【分析】 ()1连接OD ,如图,先证明OD//AC ,再利用AC BC ⊥得到OD BC ⊥,然后根据切线的判定定理得到结论;()2先利用勾股定理计算出AB 5=,设O e 的半径为r ,则OA OD r ==,OB 5r =-,再证明BDO V ∽BCA V ,利用相似比得到r :()35r =-:5,解得15r 8=,接着利用勾股定理计算5BD 2=,则3CD 2=,利用正切定理得1tan 12∠=,然后证明1EDB ∠∠=,从而得到tan EDB ∠的值.【详解】()1证明:连接OD ,如图,AD Q 平分BAC ∠,12∴∠=∠,OA OD =Q ,23∴∠=∠,13∴∠=∠,//OD AC ∴,AC BC ⊥Q ,OD BC ∴⊥,BC ∴是O e 的切线;()2解:在Rt ACB V 中,22345AB =+=,设O e 的半径为r ,则OA OD r ==,5OB r =-,//OD AC Q ,BDO V ∴∽BCA V ,OD ∴:AC BO =:BA ,即r :()35r =-:5,解得158r =, 158OD ∴=,258OB =, 在Rt ODB V 中,2252BD OB OD =-=, 32CD BC BD ∴=-=, 在Rt ACD V 中,312tan 132CD AC ∠===, AE Q 为直径,90ADE ∴∠=o ,90EDB ADC ∴∠+∠=o ,190ADC ∠+∠=o Q ,1EDB ∴∠=∠,1tan 2EDB ∴∠=. 【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;也考查了圆周角定理和解直角三角形.3.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD = 12,求AB 和FC 的长.【答案】(1)见解析;(2) ⑵AB=20 , 403CF =【解析】分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解.详解:⑴证明:连结OC∵AB 是⊙O 的直径∴∠ACB=90°∴∠B+∠BAC=90°∵OA=OC∴∠BAC=∠OCA∵∠B=∠FCA∴∠FCA+∠OCA=90°即∠OCF=90°∵C 在⊙O 上∴CF 是⊙O 的切线⑵∵AE=4,tan ∠ACD12AE EC = ∴CE=8 ∵直径AB ⊥弦CD 于点E∴»»AD AC =∵∠FCA =∠B∴∠B=∠ACD=∠FCA∴∠EOC=∠ECA∴tan ∠B=tan ∠ACD=1=2CE BE ∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE ⊥AB∴∠CEO=∠FCE=90°∴△OCE ∽△CFE ∴OC OE CF CE=即106=8 CF∴40CF3点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.4.已知:如图,△ABC中,AC=3,∠ABC=30°.(1)尺规作图:求作△ABC的外接圆,保留作图痕迹,不写作法;(2)求(1)中所求作的圆的面积.【答案】(1)作图见解析;(2)圆的面积是9π.【解析】试题分析:(1)按如下步骤作图:①作线段AB的垂直平分线;②作线段BC的垂直平分线;③以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC=3,如图弦AC所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.(2)连接OA,OB.∵AC=3,∠ABC=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴圆的半径是3,∴圆的面积是S=πr2=9π.5.如图,AB,BC分别是⊙O的直径和弦,点D为»BC上一点,弦DE交⊙O于点E,交AB于点F,交BC于点G,过点C的切线交ED的延长线于H,且HC=HG,连接BH,交⊙O 于点M,连接MD,ME.求证:(1)DE⊥AB;(2)∠HMD=∠MHE+∠MEH.【答案】(1)证明见解析;(2)证明见解析.【解析】分析:(1)连接OC,根据等边对等角和切线的性质,证明∠BFG=∠OCH=90°即可;(2)连接BE,根据垂径定理和圆内接四边形的性质,得出∠HMD=∠BME,再根据三角形的外角的性质证明∠HMD=∠DEB=∠EMB即可.详解:证明:(1)连接OC,∵HC=HG,∴∠HCG=∠HGC;∵HC切⊙O于C点,∴∠OCB+∠HCG=90°;∵OB=OC,∴∠OCB=∠OBC,∵∠HGC=∠BGF,∴∠OBC+∠BGF=90°,∴∠BFG=90°,即DE⊥AB;(2)连接BE,由(1)知DE⊥AB,∵AB是⊙O的直径,∴,∴∠BED=∠BME;∵四边形BMDE内接于⊙O,∴∠HMD=∠BED,∴∠HMD=∠BME;∵∠BME是△HEM的外角,∴∠BME=∠MHE+∠MEH,∴∠HMD=∠MHE+∠MEH.点睛:此题综合性较强,主要考查了切线的性质、三角形的内角和外角的性质、等腰三角形的性质、内接四边形的性质.6.如图1,延长⊙O的直径AB至点C,使得BC=12AB,点P是⊙O上半部分的一个动点(点P不与A、B重合),连结OP,CP.(1)∠C的最大度数为;(2)当⊙O的半径为3时,△OPC的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;(3)如图2,延长PO交⊙O于点D,连结DB,当CP=DB时,求证:CP是⊙O的切线.【答案】(1)30°;(2)有最大值为9,理由见解析;(3)证明见解析.【解析】试题分析:(1)当PC与⊙O相切时,∠OCP的度数最大,根据切线的性质即可求得;(2)由△OPC的边OC是定值,得到当OC边上的高为最大值时,△OPC的面积最大,当PO⊥OC时,取得最大值,即此时OC边上的高最大,于是得到结论;(3)根据全等三角形的性质得到AP=DB,根据等腰三角形的性质得到∠A=∠C,得到CO=OB+OB=AB,推出△APB≌△CPO,根据全等三角形的性质得到∠CPO=∠APB,根据圆周角定理得到∠APB=90°,即可得到结论.试题解析:(1)当PC与⊙O相切时,∠OCP最大.如图1,所示:∵sin∠OCP=OPOC =24=12,∴∠OCP=30°∴∠OCP的最大度数为30°,故答案为:30°;(2)有最大值,理由:∵△OPC的边OC是定值,∴当OC边上的高为最大值时,△OPC的面积最大,而点P在⊙O上半圆上运动,当PO⊥OC时,取得最大值,即此时OC边上的高最大,也就是高为半径长,∴最大值S△OPC=12OC•OP=12×6×3=9;(3)连结AP,BP,如图2,在△OAP与△OBD中,OA ODAOP BODOP OB=⎧⎪∠=∠⎨⎪=⎩,∴△OAP≌△OBD,∴AP=DB,∵PC=DB,∴AP=PC,∵PA=PC,∴∠A=∠C,∵BC=12AB=OB,∴CO=OB+OB=AB,在△APB和△CPO中,AP CPA CAB CO=⎧⎪∠=∠⎨⎪=⎩,∴△APB≌△CPO,∴∠CPO=∠APB,∵AB为直径,∴∠APB=90°,∴∠CPO=90°,∴PC切⊙O于点P,即CP是⊙O的切线.7.四边形ABCD内接于⊙O,点E为AD上一点,连接AC,CB,∠B=∠AEC.(1)如图1,求证:CE=CD;(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC= 5311,EG=2,求AE的长.【答案】(1)见解析;(2)60°;(3)7.【解析】试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE.(2) 作CH⊥DE于H, 设∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)连接AG,作GN⊥AC,AM⊥EG,先证明∠CAG=∠BAC,设NG=3m,可得AN=11m,利用直角n AGM,n AEM,勾股定理可以算出m的值并求出AE长.试题解析:(1)解:证明:∵四边形ABCD内接于⊙O.∴∠B+∠D=180°,∵∠B=∠AEC,∴∠AEC+∠D=180°,∵∠AEC+∠CED=180°,∴∠D=∠CED,∴CE=CD.(2)解:作CH⊥DE于H.设∠ECH=α,由(1)CE=CD,∴∠ECD=2α,∵∠B=∠AEC,∠B+∠CAE=120°,∴∠CAE+∠AEC=120°,∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,∠ACD=∠ACH+∠HCD=60°+2α,∵∠ACD=2∠BAC,∴∠BAC=30°+α,∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.(3)解:连接AG,作GN⊥AC,AM⊥EG,∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,∴∠AEG=∠AGE,∴AE=AG,∴EM=MG=1EG=1,2∴∠EAG=∠ECD=2α,∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,∵tan∠BAC53,∴设NG=3,可得AN=11m,AG22-14m,AG AM∵∠ACG=60°,∴CN=5m,AM3,MG22-m=1,AG AM∴m=1,2∴CE=CD =CG ﹣EG =10m ﹣2=3,∴AE =22AM EM =221+43()=7.8.如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C .(1)若点A (0,6),N (0,2),∠ABN=30°,求点B 的坐标;(2)若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线.【答案】(1) B (,2).(2)证明见解析.【解析】 试题分析:(1)在Rt △ABN 中,求出AN 、AB 即可解决问题;(2)连接MC ,NC .只要证明∠MCD=90°即可试题解析:(1)∵A 的坐标为(0,6),N (0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B (,2). (2)连接MC ,NC∵AN 是⊙M 的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt △NCB 中,D 为NB 的中点,∴CD=NB=ND ,∴∠CND=∠NCD ,∵MC=MN ,∴∠MCN=∠MNC ,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC ⊥CD .∴直线CD 是⊙M 的切线.考点:切线的判定;坐标与图形性质.9.如图,AB是⊙O的直径,弦BC=OB,点D是»AC上一动点,点E是CD中点,连接BD 分别交OC,OE于点F,G.(1)求∠DGE的度数;(2)若CF OF=12,求BFGF的值;(3)记△CFB,△DGO的面积分别为S1,S2,若CFOF=k,求12SS的值.(用含k的式子表示)【答案】(1)∠DGE=60°;(2)72;(3)12SS=211k kk+++.【解析】【分析】(1)根据等边三角形的性质,同弧所对的圆心角和圆周角的关系,可以求得∠DGE的度数;(2)过点F作FH⊥AB于点H设CF=1,则OF=2,OC=OB=3,根据勾股定理求出BF的长度,再证得△FGO∽△FCB,进而求得BFGF的值;(3)根据题意,作出合适的辅助线,然后根据三角形相似、勾股定理可以用含k的式子表示出12SS的值.【详解】解:(1)∵BC=OB=OC,∴∠COB =60°,∴∠CDB =12∠COB =30°, ∵OC =OD ,点E 为CD 中点,∴OE ⊥CD ,∴∠GED =90°,∴∠DGE =60°;(2)过点F 作FH ⊥AB 于点H设CF =1,则OF =2,OC =OB =3∵∠COB =60°∴OH =12OF =1, ∴HFHB =OB ﹣OH =2,在Rt △BHF 中,BF ==由OC =OB ,∠COB =60°得:∠OCB =60°,又∵∠OGB =∠DGE =60°,∴∠OGB =∠OCB ,∵∠OFG =∠CFB ,∴△FGO ∽△FCB , ∴OF GF BF CF=, ∴, ∴BF GF =72. (3)过点F 作FH ⊥AB 于点H ,设OF =1,则CF =k ,OB =OC =k+1,∵∠COB =60°,∴OH =12OF=12,∴HF2=,HB =OB ﹣OH =k+12, 在Rt △BHF 中,BF =由(2)得:△FGO ∽△FCB , ∴GO OFCB BF =,即1GO k =+,∴GO 21k k =++,过点C 作CP ⊥BD 于点P∵∠CDB =30°∴PC =12CD , ∵点E 是CD 中点,∴DE =12CD , ∴PC =DE ,∵DE ⊥OE , ∴12S S =BF GO =2211k k k k ++++=211k k k +++【点睛】圆的综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形相似和勾股定理、数形结合的思想解答.10.已知,ABC ∆内接于O e ,点P 是弧AB 的中点,连接PA 、PB ;(1)如图1,若AC BC =,求证:AB PC ⊥;(2)如图2,若PA 平分CPM ∠,求证:AB AC =;(3)在(2)的条件下,若24sin 25BPC ∠=,8AC =,求AP 的值.【答案】(1)见解析;(2)见解析5【解析】【分析】(1)由点P 是弧AB 的中点,可得出AP=BP , 通过证明APC BPC ∆≅∆ ,ACE BCE ∆≅∆可得出AEC BEC ∠=∠进而证明AB ⊥ PC.(2)由PA 是∠CPM 的角平分线,得到∠MPA=∠APC, 等量代换得到∠ABC=∠ACB, 根据等腰三角形的判定定理即可证得AB=AC.(3)过A 点作AD ⊥BC,有三线合一可知AD 平分BC,点O 在AD 上,连结OB ,则∠BOD =∠BAC ,根据圆周角定理可知∠BOD=∠BAC, ∠BPC=∠BAC ,由∠BOD=∠BPC 可得sin sin BD BOD BPC OB∠=∠=,设OB=25x ,根据勾股定理可算出OB 、BD 、OD 、AD 的长,再次利用勾股定理即可求得AP 的值.【详解】解:(1)∵点P 是弧AB 的中点,如图1,∴AP =BP ,在△APC 和△BPC 中 AP BP AC BC PC PC =⎧⎪=⎨⎪=⎩,∴△APC ≌△BPC (SSS ),∴∠ACP =∠BCP ,在△ACE 和△BCE 中AC BC ACP BCP CE CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCE (SAS ),∴∠AEC =∠BEC ,∵∠AEC +∠BEC =180°,∴∠AEC =90°,∴AB ⊥PC ;(2)∵PA 平分∠CPM ,∴∠MPA =∠APC ,∵∠APC +∠BPC +∠ACB =180°,∠MPA +∠APC +∠BPC =180°,∴∠ACB =∠MPA =∠APC ,∵∠APC =∠ABC ,∴∠ABC =∠ACB ,∴AB =AC ;(3)过A 点作AD ⊥BC 交BC 于D ,连结OP 交AB 于E ,如图2,由(2)得出AB =AC ,∴AD 平分BC ,∴点O 在AD 上,连结OB ,则∠BOD =∠BAC ,∵∠BPC =∠BAC ,∴sin sin BOD BPC ∠=∠=2425BD OB =, 设OB =25x ,则BD =24x ,∴OD 22OB BD -7x ,在Rt ABD V 中,AD =25x +7x =32x ,BD =24x ,∴AB 22AD BD +40x ,∵AC =8,∴AB =40x =8,解得:x =0.2,∴OB =5,BD =4.8,OD =1.4,AD =6.4,∵点P 是¶AB 的中点,∴OP 垂直平分AB ,∴AE =12AB =4,∠AEP =∠AEO =90°, 在Rt AEO ∆中,OE 223AO AE -=,∴PE =OP ﹣OE =5﹣3=2,在Rt APE ∆中,AP =22222425PE AE +=+=.【点睛】 本题是一道有关圆的综合题,考查了圆周角定理、勾股定理、等腰三角形的判定定理和三线合一,是初中数学的重点和难点,一般以压轴题形出现,难度较大.11.如图1,已知⊙O 是ΔADB 的外接圆,∠ADB 的平分线DC 交AB 于点M ,交⊙O 于点C ,连接AC ,BC .(1)求证:AC=BC ;(2)如图2,在图1 的基础上做⊙O 的直径CF 交AB 于点E ,连接AF ,过点A 作⊙O 的切线AH ,若AH//BC ,求∠ACF 的度数;(3)在(2)的条件下,若ΔABD 的面积为63,ΔABD 与ΔABC 的面积比为2:9,求CD 的长.【答案】(1)证明见解析;(2)30°;(3)33【解析】分析:(1)运用“在同圆或等圆中,弧相等,所对的弦相等”可求解;(2)连接AO 并延长交BC 于I 交⊙O 于J,由AH 是⊙O 的切线且AH ∥BC 得AI ⊥BC ,易证∠IAC=30°,故可得∠ABC=60°=∠F=∠ACB ,由CF 是直径可得∠ACF 的度数;(3)过点D 作DG ⊥AB ,连接AO ,知ABC 为等边三角形,求出AB 、AE 的长,在RtΔAEO 中,求出AO 的长,得CF 的长,再求DG 的长,运用勾股定理易求CD 的长.详解:(1)∵DC 平分∠ADB ,∴∠ADC=∠BDC , ∴AC=BC .(2)如图,连接AO 并延长交BC 于I 交⊙O 于J∵AH 是⊙O 的切线且AH ∥BC ,∴AI ⊥BC ,∴BI=IC ,∵AC=BC ,∴IC=12AC , ∴∠IAC=30°,∴∠ABC=60°=∠F=∠ACB .∵FC 是直径,∴∠FAC=90°,∴∠ACF=180°-90°-60°=30°.(3)过点D 作DG AB ⊥,连接AO由(1)(2)知ABC 为等边三角形∵∠ACF=30°,∴AB CF ⊥,∴AE=BE ,∴2ΔABC 33S AB == ∴AB=3∴33AE =在RtΔAEO 中,设EO=x ,则AO=2x ,∴222AO AE OE =+,∴()()222233x x =+,∴x =6,⊙O 的半径为6,∴CF=12. ∵ΔABD 11636322S AB DG DG =⨯⨯=⨯⨯=, ∴DG=2.如图,过点D 作DG CF '⊥,连接OD .∵AB CF ⊥,DG AB ⊥,∴CF//DG ,∴四边形G ′DGE 为矩形,∴2G E '=, 63211CG G E CE +=++'==',在RtΔOG D '中,5,6OG OD ='=,∴11DG '=,∴2221111233CD DG CG =+=+=''点睛:本题是一道圆的综合题.考查了圆的基本概念,垂径定理,勾股定理,圆周角定理等相关知识.比较复杂,熟记相关概念是解题关键.12.在直角坐标系中,O 为坐标原点,点A 坐标为(2,0),以OA 为边在第一象限内作等边△OAB ,C 为x 轴正半轴上的一个动点(OC >2),连接BC ,以BC 为边在第一象限内作等边△BCD ,直线DA 交y 轴于E 点.(1)求证:△OBC ≌△ABD(2)随着C 点的变化,直线AE 的位置变化吗?若变化,请说明理由;若不变,请求出直线AE 的解析式.(3)以线段BC 为直径作圆,圆心为点F ,当C 点运动到何处时,直线EF ∥直线BO ;这时⊙F 和直线BO 的位置关系如何?请给予说明.【答案】(1)见解析;(2)直线AE 的位置不变,AE 的解析式为:33y x =-(3)C 点运动到(4,0)处时,直线EF ∥直线BO ;此时直线BO 与⊙F 相切,理由见解析.【解析】【分析】(1)由等边三角形的性质可得到OB=AB ,BC=BD ,∠OBA=∠DBC ,等号两边都加上∠ABC ,得到∠OBC=∠ABD ,根据“SAS”得到△OBC ≌△ABD.(2)先由三角形全等,得到∠BAD=∠BOC=60°,由等边△BCD ,得到∠BAO=60°,根据平角定义及对顶角相等得到∠OAE=60°,在直角三角形OAE 中,由OA 的长,根据tan60°的定义求出OE 的长,确定出点E 的坐标,设出直线AE 的方程,把点A 和E 的坐标代入即可确定出解析式.(3)由EA ∥OB ,EF ∥OB ,根据过直线外一点作已知直线的平行线有且只有一条,得到EF 与EA 重合,所以F 为BC 与AE 的交点,又F 为BC 的中点,得到A 为OC 中点,由A 的坐标即可求出C 的坐标;相切理由是由F 为等边三角形BC 边的中点,根据“三线合一”得到DF 与BC 垂直,由EF 与OB 平行得到BF 与OB 垂直,得证.【详解】(1)证明:∵△OAB 和△BCD 都为等边三角形,∴OB=AB ,BC=BD ,∠OBA=∠DBC=60°,∴∠OBA+∠ABC=∠DBC+∠ABC ,即∠OBC=∠ABD ,在△OBC 和△ABD 中,OB AB OBC ABD BC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△OBC ≌△ABD.(2)随着C 点的变化,直线AE 的位置不变,∵△OBC ≌△ABD ,∴∠BAD=∠BOC=60°,又∵∠BAO=60°,∴∠DAC=60°,∴∠OAE=60°,又OA=2,在Rt △AOE 中,tan60°=OE OA, 则∴点E 坐标为(0,设直线AE 解析式为y=kx+b ,把E 和A 的坐标代入得:02k b b=+⎧⎪⎨-=⎪⎩ ,解得,k b ⎧=⎪⎨=-⎪⎩, ∴直线AE的解析式为:y =-(3)C 点运动到(4,0)处时,直线EF ∥直线BO ;此时直线BO 与⊙F 相切,理由如下:∵∠BOA=∠DAC=60°,EA∥OB,又EF∥OB,则EF与EA所在的直线重合,∴点F为DE与BC的交点,又F为BC中点,∴A为OC中点,又AO=2,则OC=4,∴当C的坐标为(4,0)时,EF∥OB,这时直线BO与⊙F相切,理由如下:∵△BCD为等边三角形,F为BC中点,∴DF⊥BC,又EF∥OB,∴FB⊥OB,∴直线BO与⊙F相切,【点睛】本题考查了一次函数;三角形全等的判定与性质;等边三角形的性质和直线与圆的位置关系.熟练掌握相关性质定理是解题关键.13.如图,⊙O的直径AB=8,C为圆周上一点,AC=4,过点C作⊙O的切线l,过点B 作l的垂线BD,垂足为D,BD与⊙O交于点E.(1)求∠AEC的度数;(2)求证:四边形OBEC是菱形.【答案】(1)30°;(2)详见解析.【解析】【分析】(1)易得△AOC是等边三角形,则∠AOC=60°,根据圆周角定理得到∠AEC=30°;(2)根据切线的性质得到OC⊥l,则有OC∥BD,再根据直径所对的圆周角为直角得到∠AEB=90°,则∠EAB=30°,可证得AB∥CE,得到四边形OBE C为平行四边形,再由OB=OC,即可判断四边形OBEC是菱形.【详解】(1)解:在△AOC中,AC=4,∵AO=OC=4,∴△AOC是等边三角形,∴∠AOC=60°,∴∠AEC=30°;(2)证明:∵OC⊥l,BD⊥l.∴OC∥BD.∴∠ABD=∠AOC=60°.∵AB为⊙O的直径,∴∠AEB=90°,∴△AEB为直角三角形,∠EAB=30°.∴∠EAB=∠AEC.∴CE∥OB,又∵CO∥EB∴四边形OBEC为平行四边形.又∵OB=OC=4.∴四边形OBEC是菱形.【点睛】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理及其推论以及菱形的判定方法.14.如图,在中,,以为直径作,交边于点,交边于点,过点作的切线,交的延长线于点,交于点.(1)求证:;(2)若,,求的半径.【答案】(1)证明见解析;(2)4.【解析】试题分析:(1)连接AD,根据等腰三角形三线合一即可证明.(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD,由△FOD∽△FAE,得列出方程即可解决问题.试题解析:(1)连接AD,∵AB是直径,∴∠ADB=90°,∵AB=AC,AD⊥BC,∴BD=DC.(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD、∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴△FOD∽△FAE,∴,∴,整理得R2﹣R﹣12=0,∴R=4或(﹣3舍弃).∴⊙O的半径为4.考点:切线的性质、等腰三角形的性质等知识.15.已知:如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.(1)判断⊙O与BC的位置关系,并说明理由;(2)若CE=2,求⊙O的半径r.【答案】(1)相切,理由见解析;(2)2.【解析】试题分析:(1)根据切线的性质,可得∠ODC的度数,根据菱形的性质,可得CD与BC 的关系,根据SSS,可得三角形全等,根据全等三角形的性质,可得∠OBC的度数,根据切线的判定,可得答案;(2)根据等腰三角形的性质,可得∠ACD=∠CAD,根据三角形外角的性质,∠COD=∠OAD+∠AOD,根据直角三角形的性质,可得OC与OD的关系,根据等量代换,可得答案.(1)⊙O与BC相切,理由如下连接OD、OB,如图所示:∵⊙O与CD相切于点D,∴OD⊥CD,∠ODC=90°.∵四边形ABCD为菱形,∴AC垂直平分BD,AD=CD=CB.∴△ABD的外接圆⊙O的圆心O在AC上,∵OD=OB,OC=OC,CB=CD,∴△OBC≌△ODC.∴∠OBC=∠ODC=90°,又∵OB为半径,∴⊙O与BC相切;(2)∵AD=CD,∴∠ACD=∠CAD.∵AO=OD,∴∠OAD=∠ODA.∵∠COD=∠OAD+∠AOD,∠COD=2∠CAD.∴∠COD=2∠ACD又∵∠COD+∠ACD=90°,∴∠ACD=30°.∴OD=12OC,即r=12(r+2).∴r=2.【点睛】运用了切线的判定与性质,利用了切线的判定与性质,菱形的性质,直角三角形的性质.。
2020年中考数学重难点复习《圆》解答题及答案解析 (20)
2020年中考数学重难点复习《圆》解答题1.如图,点B为长为5的线段AC上一点,且AB=2,过B作BE⊥BC于B,且BE=4,以BC、BE为邻边作矩形BCDE,将线段AB绕点B顺时针旋转,得到线段BF,优弧交BE于N,交BC于M,设旋转角为a(1)若扇形MBF的面积为π,则a的度数为200;(2)连接EC,判断CE与扇形ABF所在圆⊙B的位置关系,并说明埋由.(3)设P为直线AC上一点,沿EP所在直线折叠矩形,若折叠后DE所在的直线与扇形ABF所在的⊙B相切,求CP的长.【分析】(1)由扇形的面积公式得:=,则∠MBF=20°,即可求解;(2)过点B作BG⊥CE于点G,则CB×BE=CE×BG,求出BG=>2,即可求解;(3)分点Q在BE的左侧、点Q在BE右侧两种情况,分别求解即可.【解答】解:(1)由扇形的面积公式得:=,则∠MBF=20°,a=180°+20°=200°,答案为:200;(2)相离.如图1,∵BE⊥BC,∴∠EBC=90°,∵BE=4,BC=3,∴EC=5,过点B作BG⊥CE于点G,∴CB×BE=CE×BG,∴BG=>2,∴CE与扇形ABF所在圆⊙B相离;(3)①当折叠后DE所在的直线与扇形ABF所在的圆B相切时,切点为Q,如图2,当点Q在BE的左侧时,连接BQ,则∠BQE=90°,∵BQ=2,BE=4,sin∠QEB=,∴∠QEB=30°,∵四边形EBCD为矩形,∴∠DEB=90°,∴∠QED=120°,又由题意得:∠QEP=∠PED=60°,∴∠EPB=30°,∵BE=4,∴PB=,∴CP=3﹣;②如图3,当点Q在BE右侧时,同理可得:∠QEB=30°,又由题意得:∠QEP=∠PED=30°,∵BE=4,∴PB=4,∠BEP=60°,∴CP=4﹣3.③当D′E于圆相切时,如图3,由折叠知:∠1=∠2,在Rt△BQE中,∵BQ=BE,∴∠BEC=30°,又∠B′EC=90°,∴∠1=∠2=30°,在Rt△PBE中,PB=tan∠PEB•BE=×4=,PC=3+;④当D′E同左侧圆相切时,如图4,同理可得:PB=4,PC=4+3;综上,PC=3﹣或4﹣3或3+或4+3.。
2020中考数学 压轴专题 圆的综合(包含答案)
2020中考数学 压轴专题 圆的综合(含答案)1. 如图,PB 为⊙O 的切线,B 为切点,直线PO 交⊙O 于点E 、F ,过点B 作PO 的垂线BA ,垂足为点D ,交⊙O 于点A ,延长AO 与⊙O 交于点C ,连接BC ,AF .(1)求证:直线P A 为⊙O 的切线;(2)求证:EF 2=4OD ·OP ;(3)若BC =6,tan F =12,求AC 的长.第1题图(1)证明:如解图,连接OB ,第1题解图⊙PB 是⊙O 的切线,⊙⊙PBO =90°,⊙OA =OB ,BA ⊙PO 于点D ,⊙AD =BD ,⊙点D 为AB 的中点,即OP 垂直平分AB ,⊙⊙APO =⊙BPO ,⊙⊙ADP =⊙BDP =90°,⊙⊙APD ⊙⊙BPD ,⊙AP =BP ,在⊙P AO 和⊙PBO 中,⎩⎪⎨⎪⎧P A =PB ⊙APO =⊙BPO OP =OP,⊙⊙P AO ⊙⊙PBO (SAS ),⊙⊙P AO =⊙PBO =90°,⊙OA 为⊙O 的半径,⊙直线P A 为⊙O 的切线;(2)证明:⊙⊙P AO =⊙PDA =90°,⊙⊙OAD +⊙AOD =90°,⊙OP A +⊙AOP =90°,⊙⊙OAD =⊙OP A ,⊙⊙OAD ⊙⊙OP A ,⊙OA OP =OD OA,即OA 2=OD ·OP , 又⊙EF =2OA ,⊙EF 2=4OD ·OP ;(3)解:⊙OA =OC ,AD =BD ,BC =6,⊙OD =12BC =3, 设AD =x ,⊙tan F =AD DF =x DF =12, ⊙DF =2x ,⊙OA =OF =2x -3,在Rt⊙AOD 中,由勾股定理得(2x -3)2=x 2+32,解得x 1=4或x 2=0(不合题意,舍去),⊙OA =2x -3=5,⊙AC 为⊙O 的直径,⊙AC =2OA =10.2. 如图,在⊙ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E 两点,过点D 作DF ⊙AC ,垂足为点F .(1)求证:DF 是⊙O 的切线;(2)若AE =4,cos A =25,求DF 的长.第2题图(1)证明:如解图,连接OD ,第2题解图 G⊙OB =OD ,⊙⊙ODB =⊙B ,又⊙AB =AC ,⊙⊙C =⊙B ,⊙⊙ODB =⊙C ,⊙OD ⊙AC ,⊙DF ⊙AC ,⊙⊙DFC =90°,⊙⊙ODF =⊙DFC =90°,⊙OD 是⊙O 的半径,⊙DF 是⊙O 的切线;(2)解:如解图,过点O 作OG ⊙AC ,垂足为G ,⊙AG =12AE =2. ⊙cos A =AG OA =2OA =25, ⊙OA =5,⊙OG =OA 2-AG 2=21,⊙⊙ODF =⊙DFG =⊙OGF =90°,⊙四边形OGFD 为矩形,⊙DF =OG =21.3. 如图,在⊙O 中,直径CD ⊙弦AB 于点E ,AM ⊙BC 于点M ,交CD 于点N ,连接AD .(1)求证:AD =AN ;(2)若AB =42,ON =1,求⊙O 的半径.第3题图(1)证明:⊙⊙BAD 与⊙BCD 是同弧所对的圆周角,⊙⊙BAD =⊙BCD ,⊙AE ⊙CD ,AM ⊙BC ,⊙⊙AEN =⊙AMC =90°,⊙⊙ANE =⊙CNM ,⊙⊙BAM =⊙BCD ,⊙⊙BAM =⊙BAD ,在⊙ANE 与⊙ADE 中,⎩⎪⎨⎪⎧⊙BAM =⊙BAD AE =AE⊙AEN =⊙AED, ⊙⊙ANE ⊙⊙ADE (ASA),⊙AN =AD ;(2)解:⊙AB =42,AE ⊙CD ,⊙AE =12AB =22,又⊙ON=1,⊙设NE=x,则OE=x-1,NE=ED=x,OD=OE+ED=2x-1,如解图,连接AO,则AO=OD=2x-1,第3题解图⊙⊙AOE是直角三角形,AE=22,OE=x-1,AO=2x-1,⊙(22)2+(x-1)2=(2x-1)2,解得x1=2,x2=-43(舍),⊙AO=2x-1=3,即⊙O的半径为3.4.如图,在⊙ABC中,⊙C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连接EF.(1)求证:⊙1=⊙F;(2)若sin B=55,EF=25,求CD的长.第4题图(1)证明:如解图,连接DE.第4题解图⊙BD是⊙O的直径,⊙⊙DEB=90°.⊙E是AB的中点,⊙DA=DB,⊙⊙1=⊙B.⊙⊙1=⊙F;(2)解:⊙⊙1=⊙F,⊙AE=EF=25,⊙AB=2AE=4 5.在Rt⊙ABC中,AC=AB·sin B=4,⊙BC=AB2-AC2=8.设CD=x,则AD=BD=8-x.在Rt⊙ACD中,由勾股定理得AC2+CD2=AD2,即42+x2=(8-x)2,解得x=3,⊙CD=3.5.如图,直线DP和⊙O相切于点C,交直径AE的延长线于点P,过点C作AE的垂线,交AE于点F,交⊙O于点B,作Y ABCD,连接BE,DO,CO.(1)求证:DA=DC;(2)求⊙P及⊙AEB的度数.第5题图(1)证明:⊙四边形ABCD是平行四边形,⊙CB ⊙AE ,⊙AD ⊙AE ,⊙⊙DAO =90°,又⊙直线DP 和⊙O 相切于点C ,⊙DC ⊙OC ,⊙⊙DCO =90°,⊙在Rt⊙DAO 和Rt⊙DCO 中,⎩⎪⎨⎪⎧DO =DO AO =CO , ⊙Rt⊙DAO ⊙Rt⊙DCO (HL),⊙DA =DC ;(2)解:⊙CB ⊙AE ,AE 是⊙O 的直径,⊙CF =FB =12BC , 又⊙四边形ABCD 是平行四边形,⊙AD =BC ,⊙CF =12AD , 又⊙CF ⊙DA ,⊙⊙PCF ⊙⊙PDA ,⊙PC PD =CF AD =12,即PC =12PD ,DC =12PD . 由(1)知DA =DC ,⊙DA =12PD , ⊙在Rt⊙DAP 中,⊙P =30°.⊙⊙F AB =⊙P =30°,又⊙⊙ABE =90°,⊙⊙AEB =90°-30°=60°.6. 如图,在⊙ABC 中,AB =AC ,以AB 为直径的⊙O 与BC 交于点D ,过点D 作⊙O 的切线交AC 于点E .(1)求证:⊙ABD =⊙ADE ;(2)若⊙O 的半径为256,AD =203,求CE 的长.第6题图(1)证明:如解图,连接OD .第6题解图 ⊙DE 为⊙O 的切线, ⊙OD ⊙DE ,⊙⊙ADO +⊙ADE =90°. ⊙AB 为⊙O 的直径, ⊙⊙ADB =90°, ⊙⊙ADO +⊙ODB =90°. ⊙⊙ADE =⊙ODB , ⊙OB =OD , ⊙⊙OBD =⊙ODB , ⊙⊙ABD =⊙ADE ;(2)解:⊙AB =AC =2×256=253,⊙ADB =⊙ADC =90°,⊙⊙ABC =⊙C ,BD =CD . ⊙O 为AB 的中点, ⊙OD 为⊙ABC 的中位线,⊙OD ⊙AC , ⊙OD ⊙DE , ⊙AC ⊙DE , 在Rt⊙ACD 中, CD =AC 2-AD 2=(253)2-(203)2=5, ⊙⊙C =⊙C ,⊙DEC =⊙ADC =90°, ⊙⊙DEC ⊙⊙ADC , ⊙CE DC =DC AC ,即CE 5=5253, ⊙CE =3.7. 如图,在⊙ABC 中,⊙ACB =90°,D 是边AB 上的一点,且⊙A =2⊙DCB ,点E 是BC 上的一点,以EC 为直径的⊙O 经过点D . (1)求证:AB 是⊙O 的切线;(2)若CD 的弦心距为1,BE =EO ,求BD 的长.第7题图(1)证明:如解图⊙,连接OD ,第7题解图⊙则⊙DOB=2⊙DCB,又⊙⊙A=2⊙DCB,⊙⊙A=⊙DOB,又⊙⊙A+⊙B=90°,⊙⊙DOB+⊙B=90°,⊙⊙BDO=90°,即OD⊙AB,又⊙OD是⊙O的半径,⊙AB是⊙O的切线.(2)解:如解图⊙,过点O作OM⊙CD于点M,连接DE,第7题解图⊙⊙OD =OE =BE =12BO ,⊙BDO =90°,⊙⊙B =30°, ⊙⊙DOB =60°, ⊙⊙DCB =30°, ⊙OC =2OM =2, ⊙OD =2,⊙BD =OD tan60°=2 3.8. 如图,PB 为⊙O 的切线,B 为切点,过B 作OP 的垂线BA ,垂足为C ,交⊙O 于点A ,连接P A ,AO ,并延长AO 交⊙O 于点E ,与PB 的延长线交于点D . (1)求证:P A 是⊙O 的切线;(2)若cos⊙CAO =45,且OC =6,求PB 的长.第8题图(1)证明:如解图,连接OB,第8题解图⊙OA=OB,⊙⊙OAB=⊙OBA,⊙OP⊙AB,⊙AC=BC,⊙OP是AB的垂直平分线,⊙P A =PB , ⊙⊙P AB =⊙PBA , ⊙⊙P AO =⊙PBO . ⊙PB 为⊙O 的切线, ⊙⊙OBP =90°, ⊙⊙P AO =90°, ⊙OA 为⊙O 的半径, ⊙P A 是⊙O 的切线; (2)解:⊙cos⊙CAO =45,⊙设AC =4k ,AO =5k ,由勾股定理可知OC =3k , ⊙sin⊙CAO =35,tan⊙COA =43,⊙CO OA =35,即6OA =35,解得OA =10, ⊙tan⊙POA =tan⊙COA =AP AO =43,⊙AP 10=43,解得AP =403,⊙P A =PB , ⊙PB =P A =403.9. 如图,在⊙ABC 中,以BC 为直径的⊙O 交AB 于点D ,⊙ACD =⊙ABC . (1)求证:CA 是⊙O 的切线;(2)若点E 是BC 上一点,已知BE =6,tan⊙ABC =23,tan⊙AEC =53,求⊙O 的直径.第9题图(1)证明:⊙BC 是⊙O 的直径, ⊙⊙BDC =90°, ⊙⊙ABC +⊙DCB =90°, ⊙⊙ACD =⊙ABC , ⊙⊙ACD +⊙DCB =90°, ⊙⊙ACB =90°, 即BC ⊙CA ,又⊙BC 是⊙O 的直径, ⊙CA 是⊙O 的切线;(2)解:在Rt⊙AEC 中,tan⊙AEC =53,⊙AC EC =53,EC =35AC . 在Rt⊙ABC 中,tan⊙ABC =23,⊙AC BC =23,BC =32AC . ⊙BC -EC =BE =6,⊙32AC -35AC =6,解得AC =203, ⊙BC =32×203=10,即⊙O 的直径为10.10. 如图,在⊙ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作⊙O 的切线DE 交AC 于点E ,交AB 延长线于点F . (1)求证:DE ⊙AC ;(2)若AB =10,AE =8,求BF 的长.第10题图(1)证明:如解图,连接OD ,AD ,第10题解图⊙DE 与⊙O 相切于点D , ⊙OD ⊙DE .⊙AB 是⊙O 的直径, ⊙⊙ADB =90°, ⊙AB =AC , ⊙D 为BC 中点, 又⊙O 为AB 中点, ⊙OD ⊙AC ,⊙DE ⊙AC ; (2)解:⊙AB =10, ⊙OB =OD =5. 由(1)知OD ⊙AC , ⊙⊙ODF ⊙⊙AEF ,⊙ABBF OB BF AF OF AE OD ++==,设BF =x ,则有10585++=x x 解得x =310,⊙BF =310. 11. 如图,已知AB 为⊙O 的直径,F 为⊙O 上一点,AC 平分⊙BAF 且交⊙O 于点C ,过点C作CD ⊙AF 于点D ,延长AB 、DC 交于点E ,连接BC 、CF . (1)求证:CD 是⊙O 的切线; (2)若AD =6,DE =8,求BE 的长; (3)求证:AF +2DF =AB .第11题图(1)证明:如解图,连接OC .第11题解图⊙AC 平分⊙BAD ,⊙⊙OAC =⊙CAD ,又⊙OAC =⊙OCA ,⊙⊙OCA =⊙CAD ,⊙CO ⊙AD .又CD ⊙AD ,⊙CD ⊙OC ,又⊙OC 是⊙O 的半径,⊙CD 是⊙O 的切线;(2)解:在Rt⊙ADE 中,⊙AD =6,DE =8,根据勾股定理得:AE =10,⊙CO ⊙AD ,⊙⊙EOC ⊙⊙EAD ,⊙ADOC EA EO =. 设⊙O 的半径为r ,⊙OE =10-r . ⊙61010r r -=, ⊙r =415,⊙BE =10-2r =25; (3)证明:如解图,过点C 作CG ⊙AB 于点G .⊙⊙OAC =⊙CAD ,AD ⊙CD ,⊙CG =CD ,在Rt⊙AGC 和Rt⊙ADC 中,⊙CG =CD ,AC =AC ,⊙Rt⊙AGC ⊙Rt⊙ADC (HL ),⊙AG =AD .又⊙⊙BAC =⊙CAD ,⊙BC =CF ,在Rt⊙CGB 和Rt⊙CDF 中,⊙BC =FC ,CG =CD ,⊙Rt⊙CGB ⊙Rt⊙CDF (HL ),⊙GB =DF .⊙AG +GB =AB ,⊙AD +DF =AB ,即AF +2DF =AB .12. 如图,在Rt⊙ABC 中,⊙ACB =90°,以BC 为直径的⊙O 交AB 于点D ,E 是AC 的中点,OE 交CD 于点F .(1)若⊙BCD =36°,BC =10,求BD ︵的长;(2)判断直线DE 与⊙O 的位置关系,并说明理由;(3)求证:2CE 2=AB ·EF .第12题图(1)解:如解图,连接OD ,第12题解图⊙⊙BCD =36°,⊙⊙BOD =2⊙BCD =2×36°=72°,⊙BC 是⊙O 的直径,BC =10,⊙OB =5,⊙l BD ︵=72π×5180=2π; (2)解:DE 是⊙O 的切线;理由如下:⊙BC 是⊙O 的直径,⊙⊙ADC =180°-⊙BDC =90°,又⊙点E 是线段AC 中点,⊙DE =12AC =EC , 在⊙DOE 与⊙COE 中,⎩⎪⎨⎪⎧OD =OC OE =OE DE =CE,⊙⊙DOE ⊙⊙COE (SSS).⊙⊙ACB =90°,⊙⊙ODE =⊙OCE =90°,⊙OD 是⊙O 的半径,⊙DE 是⊙O 的切线;(3)证明:由(2)知,⊙DOE ⊙⊙COE ,⊙OE 是线段CD 的垂直平分线,⊙点F 是线段CD 中点,⊙点E 是线段AC 中点,则EF =12AD , ⊙⊙BAC =⊙CAD ,⊙ADC =⊙ACB ,⊙⊙ACD ⊙⊙ABC ,则AC AB =AD AC,即AC 2=AB ·AD , 而AC =2CE ,AD =2EF ,⊙(2CE )2=AB ·2EF ,即4CE 2=AB ·2EF ,⊙2CE 2=AB ·EF .13. 如图,AB 是⊙O 的直径,点D 是»AE 上的一点,且⊙BDE =⊙CBE ,BD 与AE 交于点F . (1)求证:BC 是⊙O 的切线;(2)若BD 平分⊙ABE ,延长ED 、BA 交于点P ,若P A =AO ,DE =2,求PD 的长.第13题图(1)证明:⊙AB 是⊙O 的直径,⊙⊙AEB =90°,⊙⊙EAB +⊙EBA =90°,⊙⊙BDE =⊙EAB ,⊙BDE =⊙CBE , ⊙⊙EAB =⊙CBE ,⊙⊙ABE +⊙CBE =90°,⊙CB ⊙AB ,⊙AB 是⊙O 的直径,⊙BC 是⊙O 的切线;(2)解:⊙BD 平分⊙ABE , ⊙⊙ABD =⊙DBE ,如解图,连接DO ,第13题解图⊙OD =OB ,⊙⊙ODB =⊙OBD ,⊙⊙EBD =⊙OBD ,⊙⊙EBD =⊙ODB ,⊙OD ⊙BE ,⊙PD PE =PO PB, ⊙P A =AO ,⊙P A =AO =OB ,⊙PO PB =23, ⊙PD PE =23, ⊙PD PD +DE =23, ⊙DE =2, ⊙PD =4.。
2020-2021中考数学圆的综合的综合热点考点难点附答案
2020-2021中考数学圆的综合的综合热点考点难点附答案一、圆的综合1.如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O交BC于点D,交CA的延长线于点E.过点D作DF⊥AC,垂足为F.(1)求证:DF为⊙O的切线;(2)若AB=4,∠C=30°,求劣弧»BE的长.【答案】(1)证明见解析(2)4 3【解析】分析:(1)连接AD、OD,根据直径所对的圆周角为直角,可得∠ADB=90°,然后根据等腰三角形的性质求出BD=CD,再根据中位线的性质求出OD⊥DF,进而根据切线的判定证明即可;(2)连接OE,根据三角形的外角求出∠BAE的度数,然后根据圆周角定理求出∠BOE的度数,根据弧长公式求解即可.详解:(1)连接AD、OD.∵AB是直径,∴∠ADB=90°.∵AB=AC,∴BD=CD,又∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF即∠ODF=90°.∴DF为⊙O的切线;(2)连接OE.∵AB=AC,∴∠B=∠C=30°,∴∠BAE=60°,∵∠BOE=2∠BAE,∴∠BOE=120°,∴=·4π=π.点睛:本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、圆周角定理,灵活添加辅助线是解题关键.2.在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,23),则以AB为边的“坐标菱形”的最小内角为;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O的半径为2,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.【答案】(1)60°;(2)y=x+1或y=﹣x+3;(3)1≤m≤5或﹣5≤m≤﹣1【解析】分析:(1)根据定义建立以AB为边的“坐标菱形”,由勾股定理求边长AB=4,可得30度角,从而得最小内角为60°;(2)先确定直线CD与直线y=5的夹角是45°,得D(4,5)或(﹣2,5),易得直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,根据等腰直角三角形的性质分别求P'B=BD=1,PB=5,写出对应P的坐标;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,同理可得结论.详解:(1)∵点A(2,0),B(0,3∴OA=2,OB3.在Rt△AOB中,由勾股定理得:AB22(),∴∠ABO=30°.223∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°.∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°.故答案为:60°;(2)如图2.∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于E,∴D(4,5)或(﹣2,5),∴直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3.∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴P'D=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4.∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴BD=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;综上所述:m的取值范围是1≤m≤5或﹣5≤m≤﹣1.点睛:本题是一次函数和圆的综合题,考查了菱形的性质、正方形的性质、点P,Q的“坐标菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题,学会用分类讨论的思想思考问题,注意一题多解,属于中考创新题目.3.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
2020-2021中考数学圆的综合的综合热点考点难点含答案解析
2020-2021中考数学圆的综合的综合热点考点难点含答案解析一、圆的综合1.已知O e 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______o ;()2如图②,若m 6=.①求C ∠的正切值;②若ABC V 为等腰三角形,求ABC V 面积.【答案】()130;()2C ∠①的正切值为34;ABC S 27=V ②或43225. 【解析】【分析】 ()1连接OA ,OB ,判断出AOB V 是等边三角形,即可得出结论;()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结论;②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.【详解】()1如图1,连接OB ,OA ,OB OC 5∴==,AB m 5==Q ,OB OC AB ∴==,AOB ∴V 是等边三角形,AOB 60∠∴=o ,1ACB AOB 302∠∠∴==o , 故答案为30;()2①如图2,连接AO 并延长交O e 于D ,连接BD ,AD Q 为O e 的直径,AD 10∴=,ABD 90∠=o ,在Rt ABD V 中,AB m 6==,根据勾股定理得,BD 8=,AB 3tan ADB BD 4∠∴==, C ADB ∠∠=Q ,C ∠∴的正切值为34; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,AC BC =Q ,AO BO =,CE ∴为AB 的垂直平分线,AE BE 3∴==,在Rt AEO V 中,OA 5=,根据勾股定理得,OE 4=,CE OE OC 9∴=+=,ABC 11S AB CE 692722∴=⨯=⨯⨯=V ; Ⅱ、当AC AB 6==时,如图4,连接OA 交BC 于F ,AC AB =Q ,OC OB =,AO ∴是BC 的垂直平分线,过点O 作OG AB ⊥于G , 1AOG AOB 2∠∠∴=,1AG AB 32==, AOB 2ACB ∠∠=Q ,ACF AOG ∠∠∴=,在Rt AOG V 中,AG 3sin AOG AC 5∠==, 3sin ACF 5∠∴=, 在Rt ACF V 中,3sin ACF 5∠=, 318AF AC 55∴==, 24CF 5∴=, ABC 111824432S AF BC 225525∴=⨯=⨯⨯=V ; Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC 432S 25=V .【点睛】圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.2.如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,BC=6cm,AC=8cm,∠BAD=45°.点E 在⊙O 外,做直线AE ,且∠EAC=∠D .(1)求证:直线AE 是⊙O 的切线.(2)求图中阴影部分的面积.【答案】(1)见解析;(2)25-504π. 【解析】 分析:(1)根据圆周角定理及推论证得∠BAE=90°,即可得到AE 是⊙O 的切线; (2)连接OD ,用扇形ODA 的面积减去△AOD 的面积即可.详解:证明:(1) ∵AB 是⊙O 的直径,∴∠ACB=90°,即∠BAC+∠ABC=90°,∵∠EAC=∠ADC ,∠ADC=∠ABC ,∴∠EAC=∠ABC∴∠BAC+∠EAC =90°,即∠BAE= 90°∴直线AE 是⊙O 的切线;(2)连接OD∵ BC=6 AC=8∴ 226810AB =+=∴ OA = 5又∵ OD = OA∴∠ADO =∠BAD = 45°∴∠AOD = 90°∴AOD ODA S S S ∆-阴影扇形= =90155553602π⨯⨯-⨯⨯ 25504π-= (2cm )点睛:此题主要考查了圆周角定理和圆的切线的判定与性质,关键是利用圆周角定理和切线的判定与性质,结合勾股定理的和弓形的面积的求法求解,注意数形结合思想的应用.3.如图,一条公路的转弯处是一段圆弧»().AB ()1用直尺和圆规作出»AB 所在圆的圆心O ;(要求保留作图痕迹,不写作法) ()2若»AB 的中点C 到弦AB 的距离为2080m AB m =,,求»AB 所在圆的半径.【答案】(1)见解析;(2)50m【解析】分析:()1连结AC 、BC ,分别作AC 和BC 的垂直平分线,两垂直平分线的交点为点O ,如图1;()2连接OA OC OC ,,交AB 于D ,如图2,根据垂径定理的推论,由C 为»AB的中点得到1OC AB AD BD AB 402⊥===,,则CD 20=,设O e 的半径为r ,在Rt OAD V 中利用勾股定理得到222r (r 20)40=-+,然后解方程即可.详解:()1如图1,点O 为所求;()2连接OA OC OC ,,交AB 于D ,如图2,C Q 为»AB 的中点,OC AB ∴⊥, 1402AD BD AB ∴===, 设O e 的半径为r ,则20OA r OD OD CD r ==-=-,,在Rt OAD V 中,222OA OD AD =+Q ,222(20)40r r ∴=-+,解得50r =,即»AB 所在圆的半径是50m .点睛:本题考查了垂径定理及勾股定理的应用,在利用数学知识解决实际问题时,要善于把实际问题与数学中的理论知识联系起来,能将生活中的问题抽象为数学问题.4.如图,△ABC 中,∠A=45°,D 是AC 边上一点,⊙O 经过D 、A 、B 三点,OD ∥BC . (1)求证:BC 与⊙O 相切;(2)若OD=15,AE=7,求BE 的长.【答案】(1)见解析;(2)18.【解析】分析:(1)连接OB ,求出∠DOB 度数,根据平行线性质求出∠CBO=90°,根据切线判定得出即可;(2)延长BO 交⊙O 于点F ,连接AF ,求出∠ABF ,解直角三角形求出BE .详解:(1)证明:连接OB .∵∠A=45°,∴∠DOB=90°.∵OD ∥BC ,∴∠DOB+∠CBO=180°.∴∠CBO=90°.∴直线BC 是⊙O 的切线.(2)解:连接BD.则△ODB是等腰直角三角形,∴∠ODB=45°,BD=OD=15,∵∠ODB=∠A,∠DBE=∠DBA,∴△DBE∽△ABD,∴BD2=BE•BA,∴(15)2=(7+BE)BE,∴BE=18或﹣25(舍弃),∴BE=18.点睛:本题考查了切线的判定,圆周角定理,解直角三角形等知识点,能综合运用定理进行推理和计算是解此题的关键,题目综合性比较强,难度偏大.5.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.(1)求证:CD是⊙O的切线;(2)若圆O的直径等于2,填空:①当AD=时,四边形OADC是正方形;②当AD=时,四边形OECB是菱形.【答案】(1)见解析;(2)①1;②3.【解析】试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;(2)①依据正方形的四条边都相等可知AD=OA;②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.试题解析:解:∵AM⊥AB,∴∠OAD=90°.∵OA=OC,OD=OD,AD=DC,∴△OAD≌△OCD,∴∠OCD=∠OAD=90°.∴OC⊥CD,∴CD是⊙O的切线.(2)①∵当四边形OADC是正方形,∴AO=AD=1.故答案为:1.②∵四边形OECB 是菱形,∴OE=CE .又∵OC=OE ,∴OC=OE=CE .∴∠CEO=60°.∵CE ∥AB ,∴∠AOD=60°.在Rt △OAD 中,∠AOD=60°,AO=1,∴AD=. 故答案为:.点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.6.如图,△ABC 内接于⊙O ,弦AD ⊥BC,垂足为H ,连接OB .(1)如图1,求证:∠DAC=∠ABO;(2)如图2,在弧AC 上取点F,使∠CAF=∠BAD,在弧AB 取点G ,使AG ∥OB ,若∠BAC=600, 求证:GF=GD;(3)如图3,在(2)的条件下,AF 、BC 的延长线相交于点E,若AF :FE=1:9,求sin ∠ADG 的值。
2020-2021中考数学圆的综合的综合热点考点难点附答案解析
2020-2021中考数学圆的综合的综合热点考点难点附答案解析一、圆的综合1.如图,⊙A 过▱OBCD 的三顶点O 、D 、C ,边OB 与⊙A 相切于点O ,边BC 与⊙O 相交于点H ,射线OA 交边CD 于点E ,交⊙A 于点F ,点P 在射线OA 上,且∠PCD=2∠DOF ,以O 为原点,OP 所在的直线为x 轴建立平面直角坐标系,点B 的坐标为(0,﹣2). (1)若∠BOH=30°,求点H 的坐标; (2)求证:直线PC 是⊙A 的切线;(3)若,求⊙A 的半径.【答案】(1)(12)详见解析;(3)53. 【解析】 【分析】(1)先判断出OH=OB=2,利用三角函数求出MH ,OM ,即可得出结论; (2)先判断出∠PCD=∠DAE ,进而判断出∠PCD=∠CAE ,即可得出结论;(3)先求出OE ═3,进而用勾股定理建立方程,r 2-(3-r )2=1,即可得出结论.【详解】(1)解:如图,过点H 作HM ⊥y 轴,垂足为M . ∵四边形OBCD 是平行四边形, ∴∠B=∠ODC∵四边形OHCD 是圆内接四边形 ∴∠OHB=∠ODC ∴∠OHB=∠B ∴OH=OB=2 ∴在Rt △OMH 中, ∵∠BOH=30°,∴MH=12OH=1,∴点H 的坐标为(1 (2)连接AC . ∵OA=AD , ∴∠DOF=∠ADO ∴∠DAE=2∠DOF∵∠PCD=2∠DOF , ∴∠PCD=∠DAE ∵OB 与⊙O 相切于点A ∴OB ⊥OF ∵OB ∥CD ∴CD ⊥AF ∴∠DAE=∠CAE ∴∠PCD=∠CAE∴∠PCA=∠PCD+∠ACE=∠CAE+∠ACE=90° ∴直线PC 是⊙A 的切线; (3)解:⊙O 的半径为r .在Rt △OED 中,DE=12CD=12OB=1, , ∴OE ═3∵OA=AD=r ,AE=3﹣r .在Rt △DEA 中,根据勾股定理得,r 2﹣(3﹣r )2=1解得r=53.【点睛】此题是圆的综合题,主要考查了平行四边形的性质,圆内接四边形的性质,勾股定理,切线的性质和判定,构造直角三角形是解本题的关键.2.图1和图2,半圆O 的直径AB=2,点P (不与点A ,B 重合)为半圆上一点,将图形延BP 折叠,分别得到点A ,O 的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C ∥AB ,如图1,判断A′C 与半圆O 的位置关系,并说明理由.(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.【解析】试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,∵α=15°,A′C∥AB,∴∠ABA′=∠CA′B=30°,∴DE=A′E,OE=BE,∴DO=DE+OE=(A′E+BE)=AB=OA,∴A′C与半圆O相切;(2)当BA′与半圆O相切时,则OB⊥BA′,∴∠OBA′=2α=90°,∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB,∴∠O′AB=30°,∴∠ABO′=60°,∴α=30°,(3)∵点P,A不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B;当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点B,但是点P,B不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.考点:圆的综合题.3.如图,在锐角△ABC中,AC是最短边.以AC为直径的⊙O,交BC于D,过O作OE∥BC,交OD于E,连接AD、AE、CE.(1)求证:∠ACE=∠DCE;(2)若∠B=45°,∠BAE=15°,求∠EAO的度数;(3)若AC=4,23CDFCOESS∆∆=,求CF的长.【答案】(1)证明见解析,(2)60°;(3【解析】【分析】(1)易证∠OEC =∠OCE ,∠OEC =∠ECD ,从而可知∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G ,易证∠AGC =∠B +∠BAG =60°,由于OE ∥BC ,所以∠AEO =∠AGC =60°,所以∠EAO =∠AEO =60°; (3)易证12COE CAES S=,由于23CDF COES S=,所以CDF CAES S =13,由圆周角定理可知∠AEC =∠FDC =90°,从而可证明△CDF ∽△CEA ,利用三角形相似的性质即可求出答案. 【详解】(1)∵OC =OE ,∴∠OEC =∠OCE .∵OE ∥BC ,∴∠OEC =∠ECD ,∴∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G .∵∠AGC 是△ABG 的外角,∴∠AGC =∠B +∠BAG =60°. ∵OE ∥BC ,∴∠AEO =∠AGC =60°. ∵OA =OE ,∴∠EAO =∠AEO =60°. (3)∵O 是AC 中点,∴12COE CAES S=. 23CDF COES S=,∴CDF CAES S=13. ∵AC 是直径,∴∠AEC =∠FDC =90°. ∵∠ACE =∠FCD ,∴△CDF ∽△CEA ,∴CFCACF【点睛】本题考查了圆的综合问题,涉及平行线的性质,三角形的外角的性质,三角形中线的性质,圆周角定理,相似三角形的判定与性质等知识,需要学生灵活运用所学知识.4.如图,四边形ABCD 是⊙O 的内接四边形,AB=CD . (1)如图(1),求证:AD ∥BC ;(2)如图(2),点F 是AC 的中点,弦DG ∥AB,交BC 于点E,交AC 于点M,求证:AE=2DF ; (3)在(2)的条件下,若DG 平分∠∠,求⊙O 的半径。
备考2020年中考数学复习专题 《圆》综合练习题(含答案)
备考2020年中考数学复习专题《圆》综合练习题一.选择题1.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A.4 B.5 C.6 D.102.如图,在⊙O中,弦AB长6cm,圆心O到AB的距离是3cm,⊙O的半径是()A.3cm B.C.4cm D.3.如图为球形灯笼的截面图,过圆心的CD垂直弦AB于D,AB=2dm,CD=4dm,则⊙O半径为()A.2dm B.dm C.dm D.dm4.下列判断中不正确的是()A.半圆是弧,但弧不一定是半圆B.平分弦的直径垂直于弦C.在平面内,到圆心的距离等于半径的点都在圆上D.在同圆或等圆中,相等的圆心角所对的弦相等5.如图,点A、B、C在⊙O上,D是的中点,若∠ACD=20°,则∠AOB的度数为()A.60°B.70°C.80°D.90°6.在菱形ABCD中,记∠ABC=∠α(0°<∠α<90°),菱形的面积记作S,菱形的周长记作C,若AD=2,则()A.C与∠α的大小有关B.当∠α=45°时,S=C.A,B,C,D四个点可以在同一个圆上D.S随∠α的增大而增大7.如图在一次游园活动中有个投篮游戏,活动开始时四个人A、B、C、D在距篮筐P都是5米处站好,篮球放在AC和BD的交点O处,已知取篮球时A要走6米,B要走3米,C要走2米,则D要走()A.2米B.3米C.4米D.5米8.⊙O半径为5,圆心O的坐标为(0,0),点P的坐标为(3,4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.点P在⊙O上或外9.给定下列条件可以确定一个圆的是()A.已知圆心B.已知半径C.已知直径D.不在同一直线上三点10.如图,△ABC是⊙O的内接三角形,半径OE⊥AB,垂足为点F,连结弦AE,已知OE =1,则下面的结论:①AE2+BC2=4 ②sin∠ACB=③cos∠B=,其中正确的是()A.①②B.①③C.②③D.②11.若半径为5m的圆,其圆心到直线的距离是5m,则直线和圆的位置关系为()A.相离B.相交C.相切D.无法确定12.如图,圆上有A、B、C三点,直线l与圆相切于点A,CD平分∠ACB,且与l交于点D,若=80°,=60°,则∠ADC的度数为()A.80°B.85°C.90°D.95°二.填空题13.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是cm.14.如图,⊙O的半径OA垂直于弦BC,垂足是D,OA=5,AD:OD=1:4,则BC的长为.15.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在墙壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”问题题意为:如图,有一圆柱形木材埋在墙壁中,不知其直径大小.用锯去锯这木材,锯口深1寸(即CD=1寸),锯道长1尺(即AB=1尺),问这圆形木材直径是多少?(注:1尺=10寸)由此,可求出这圆形木材直径为为寸.16.′如图,在平面直角坐标系xOy中,扇形OAB的圆心角∠AOB=60°,点A在x轴正半轴上且OA=2,带你C为弧AB的中点,D为半径OA上一点,点A关于直线CD的对称点为E,若点E落在扇形OAB内(不含边界),则点E的横坐标x取值范围为.17.如图,以等边△ABC的一边AB为直径的半圆O交AC于点D,交BC于点E,若AB =4,则阴影部分的面积是.18.在一个圆内接四边形ABCD中,已知∠A=100°,则∠C的度数为.三.解答题19.如图AB=3cm,用图形表示:到点A的距离小于2cm,且到点B的距离不小于2cm 的所有点的集合(用阴影表示,注意边界上的点是否在集合中,如果在,用实线表示,如果不在,则用虚线表示).20.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.21.一条排水管的截面如图所示,已知排水管的半径OA=10m,水面宽AB=12m,某天下雨后,水管水面上升了2m,求此时排水管水面的宽CD.22.如图,已知⊙O的弦AB,E,F是弧AB上两点,=,OE、OF分别交于AB于C、D两点,求证:AC=BD.23.如图,CD为⊙O的弦,P为⊙O上一点,OP∥CD,∠PCD=15°(1)求∠POC的度数;(2)若=,AB⊥CD,点A在CD的上方,直接写出∠BPA的度数.24.如图,四边形ABCD内接于⊙O,∠ABC=135°,AC=4,求⊙O的半径长.25.已知圆O,弦AB、CD相交于点M.(1)求证:AM•MB=CM•MD;(2)若M为CD中点,且圆O的半径为3,OM=2,求AM•MB的值.参考答案一.选择题1.解:因为五边形的各边长都和小圆的周长相等,所以小圆在每一边上滚动正好一周,在五条边上共滚动了5周.由于每次小圆从五边形的一边滚动到另一边时,都会翻转72°,所以小圆在五个角处共滚动一周.因此,总共是滚动了6周.故选:C.2.解:如图所示,由题意知OC=3,且OC⊥AB,∵AB=6,∴AC=AB=3,则OA===3,故选:B.3.解:∵过圆心的CD垂直弦AB于D,AB=2dm,CD=4dm,∴BD=AD=1dm,在Rt△ODB中,OD2+DB2=OB2,即(4﹣r)2+12=r2,解得:r=dm,故选:C.4.解:A、半圆是弧,但弧不一定是半圆,正确;B、平分弦的直径垂直于弦,不正确.需要添加条件:此弦非直径;C、在平面内,到圆心的距离等于半径的点都在圆上,正确;D、在同圆或等圆中,相等的圆心角所对的弦相等,正确,故选:B.5.解:连接OD,∴∠AOD=2∠ACD,∵D是的中点,∴∠AOB=2∠AOD=4∠ACD=80°,故选:C.6.【解答】解:A、错误.菱形的周长=8,与∠α的大小无关;B、错误,∠α=45°时,菱形的面积=2•2•sin45°=2;C、错误,A,B,C,D四个点不在同一个圆上;D、正确.∵0°<α<90°,S=菱形的面积=2•2•sinα,∴菱形的面积S随α的增大而增大.故选:D.7.解:根据题意得:A、B、C、D在以P为圆心,半径是5米的圆上.∴OA•OC=OB•OD,即6×2=3×OD.解得OD=4.故选:C.8.解:∵点P的坐标为(3,4),∴由勾股定理得,点P到圆心O的距离==5,∴点P在⊙O上,故选B.9.解:A、不能确定.因为半径不确定,故不符合题意;B、不能确定.因为圆心的位置不确定,故不符合题意;C、不能确定,因为圆心的位置不确定,故不符合题意;D.不在同一直线上三点可以确定一个圆.故符合题意;故选:D.10.解:连接AO,延长AO交⊙O于M,连接BM、CM、EM.∵AM是直径,∴∠AEM=90°,∴AE2+EM2=AM2,∴AE2+EM2=4,显然无法判定BC=EM,故①错误,∵∠ACB=∠AMB,∴sin∠ACB=sin∠AMB==,故②正确,∵∠ABC=∠AMC,∴cos∠ABC=cos∠AMC==,显然无法判断CM=AE,故③错误,故选:D.11.解:根据圆心到直线的距离等于圆的半径,则直线和圆相切.故选:C.12.解:设圆心为O,连接OA、OC,∵=80°,=60°,∴∠AOC=140°,∠ACB=40°,∵OA=OC,∴∠OAC=20°,∵直线l与圆相切于点A,∴OA⊥l,∴∠OAD=90°,∴∠CAD=70°,∵CD平分∠ACB,∴∠ACD=∠ACB=20°,∴∠ADC=180°﹣∠CAD﹣∠ACD=90°,故选:C.二.填空题(共6小题)13.解:根据题意得:EF=BC,MN=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段BC形成一半径为2cm的圆,线段BC是圆的周长,BC=EF=2π×2=4π,∴的长=EF==,∴n=120°,即∠MON=120°,∵OM=ON,∴∠M=30°,过O作OG⊥MN于G,∵OM=2,∴OG=1,MG=,∴MN=2MG=2,故答案为:2.14.解:连接OB,∵OA=5,AD:OD=1:4,∴AD=1,OD=4,OB=5,在Rt△ODB中,由勾股定理得:OB2=OD2+BD2,52=42+BD2,解得:BD=3,∵OD⊥BC,OD过O,∴BC=2BD=6,故答案为:6.15.解:延长CD,交⊙O于点E,连接OA,由题意知CE过点O,且OC⊥AB,则AD=BD=AB=5(寸),设圆形木材半径为r,则OD=r﹣1,OA=r,∵OA2=OD2+AD2,∴r2=(r﹣1)2+52,解得r=13,所以⊙O的直径为26寸,故答案为:26.16.解:当点E落在半径OA上时,连接OC,如下图1所示,∵∠ADC=90°,∠AOB=60°,点C为弧AB的中点,点A(2,0),∴∠COD=30°,OA=OC=2,∴CD=OC•sin30°=2×=1,∴OD=O C•cos30°=2×=,∴AD=OA﹣OD=2﹣,∵DE=DA,∴OE=OD﹣OE=﹣(2﹣)=2﹣2,即点E的坐标为(2﹣2,0);当点E落在半径OB上时,连接OC,CD,如图2所示,由已知可得,CE=CA=CB,由上面的计算可知,OE=2﹣2,∴点E的横坐标为:(2﹣2)×cos60°=﹣1,点E的纵坐标为:(2﹣2)×sin60°=3﹣,∴E(﹣1,3﹣),∴满足条件的点E的横坐标x取值范围为﹣1<x<2﹣2.故答案为﹣1<x<2﹣2.17.解:如图,连接OD,OE,DE.∵△ABC是等边三角形,∴∠A=∠B=60°,∵OA=OD=OB=OE=2,∴△AOD,∠EOB都是等边三角形,∴∠AOD=∠EOB=60°,∴∠DOE=60°,△DOE是等边三角形,∴∠DOE=∠EOB,∴弓形DE与弓形BE的面积相等,∵CD=DE=CE=2,∴△CDE是等边三角形,∴S阴=S△CDE=×22=,故答案为.18.解:∵四边形ABCD是⊙O的内接四边形,∴∠C+∠A=180°,∴∠C=180°﹣100°=80°.故答案为:80°三.解答题(共7小题)19.解:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合如图所示:20.解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.21.解:如图:作OE⊥AB于E,交CD于F,∵AB=12m,OE⊥AB,OA=1m,∴OE=8m.∵水管水面上升了2m,∴OF=8﹣2=6m,∴CF==8m,∴CD=16m.22.证明:连接OA、OB,∵OA=OB,∴∠A=∠B,∵=,∴∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD.23.解:(1)∵OP∥CD,∴∠OPC=∠PCD=15°,∵OP=OC,∴∠OPC=∠OCP=15°,∴∠OCD=30°.(2)①如图1中,当AB在点O的左侧时,连接PA,PB,OD,OA,OB.∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,∵=,∴∠AOB=∠COD=120°,∴∠APB=∠AOB=60°.②如图2中,当AB在点O的右侧时,同法可得∠ACB=60°,∵∠APB+∠ACB=180°,∴∠APB=120°,综上所述,∠APB=60°或120°.24.解:∵四边形ABCD内接于⊙O,∠ABC=135°,∴∠D=180°﹣∠ABC=45°,∴∠AOC=2∠D=90°,∵OA=OC,且AC=4,∴OA=OC=AC=2,即⊙O的半径长为2.25.解:(1)连接AD、BC.∵∠A=∠C,∠D=∠B,∴△ADM∽△CBM∴即AM•MB=CM•MD.(2)连接OM、OC.∵M为CD中点,∴OM⊥CD在Rt△OMC中,∵OC=3,OM=2 ∴CD=CM===由(1)知AM•MB=CM•MD.∴AM•MB=•=5.。
2020年中考数学复习:《圆》解答题压轴专题训练(解析版)
2020年中考数学复习:《圆》解答题压轴专题训练1.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于E,过点A作AF⊥AC于F 交⊙O于D,连接DE,BE,BD(1)求证:∠C=∠BED;(2)若AB=12,tan∠BED=,求CF的长.(1)证明:∵AB是⊙O的直径,CA切⊙O于A,∴∠C+∠AOC=90°;又∵OC⊥AD,∴∠OFA=90°,∴∠AOC+∠BAD=90°,∴∠C=∠BAD.又∵∠BED=∠BAD,∴∠C=∠BED.(2)解:由(1)知∠C=∠BAD,tan∠BED=,∴tan∠C=,∴tan∠C==,且OA=AB=6,∴,解得AC=8,∴=10,∵OC•AF=OA•AC,∴.∴==.2.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D 为弧BE的中点,连接AD交BC于F,AC=FC,连接BD.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径R=5cm,AB=8cm,求△ABD的面积.(1)证明:连接OA,OD.∵点D是弧BE的中点,∴∠BOD=∠EOD=90°,∴∠ODF+∠OFD=90°又∵∠OFD=∠AFC,∴∠ODF+∠AFC=90°又∵AC=FC,∴∠AFC=∠CAF,∵OA=OD,∴∠ODF=∠OAF,∴∠OAF+∠CAF=90°,即∠OAC=90°,故AC是⊙O的切线;(2)解:过点B作BG⊥AD于G,∵∠BOD=90°,OB=OD=R=5,∴,∵点D是弧BE的中点,∴∠BAD=45°,∵∠AGB=90°,∴∠ABG=∠BAD=45°,即BG=AG.∴又∵,∴=AD•BG==28(cm2).故S△ABD3.如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G过C作CE∥BD交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)求证:CG=BG;(3)若∠DBA=30°,CG=8,求BE的长.(1)证明:连接OC,∵∠A=∠CBD,∴=,∴OC⊥BD,∵CE∥BD,∴OC⊥CE,∴CE是⊙O的切线;(2)证明:∵AB为直径,∵CF⊥AB,∴∠ACB=∠CFB=90°,∵∠ABC=∠CBF,∴∠A=∠BCF,∵∠A=∠CBD,∴∠BCF=∠CBD,∴CG=BG;(3)解:连接AD,∵AB为直径,∴∠ADB=90°,∵∠DBA=30°,∴∠BAD=60°,∵=,∴∠DAC=∠BAC=∠BAD=30°,∴=tan30°=,∵CE∥BD,∴∠E=∠DBA=30°,∴AC=CE,∴=,∵∠A=∠BCF=∠CBD=30°,∴∠BCE=30°,∴BE=BC,∴△CGB∽△CBE,∴==,∵CG=8,∴BC=8,∴BE=8.4.如图,B,E是⊙O上的两个定点,A为优弧BE上的动点,过点B作BC⊥AB交射线AE于点C,过点C作CF⊥BC,点D在CF上,且∠EBD=∠A.(1)求证:BD与⊙O相切;(2)已知∠A=30°.①若BE=3,求BD的长;②当O,C两点间的距离最短时,判断A,B,C,D四点所组成的四边形的形状,并说明理由.(1)证明:如图1,作直径BG,连接GE,则∠GEB=90°,∴∠G+∠GBE=90°,∵∠A=∠EBD,∠A=∠G,∴∠EBD=∠G,∴∠EBD+∠GBE=90°,∴∠GBD=90°,∴BD⊥OB,∴BD与⊙O相切;(2)解:如图2,连接AG,∵BC⊥AB,∴∠ABC=90°,由(1)知∠GBD=90°,∴∠GBD=∠ABC,∴∠GBA=∠CBD,又∵∠GAB=∠DCB=90°,∴△BCD∽△BAG,∴==tan30°=,又∵Rt△BGE中,∠BGE=30°,BE=3,∴BG=2BE=6,∴BD=6×=2;(3)解:四边形ABCD是平行四边形,理由如下,由(2)知=,=,∴=,∵B,E为定点,BE为定值,∴BD为定值,D为定点,∵∠BCD=90°,∴点C在以BD为直径的⊙M上运动,∴当点C在线段OM上时,OC最小,此时在Rt△OBM中,==,∴∠OMB=60°,∴MC=MB,∴∠MDC=∠MCD=30°=∠A,∵AB⊥BC,CD⊥BC,∴∠ABC=∠DCB=90°,∴AB∥CD,∴∠A+∠ACD=180°,∴∠BDC+∠ACD=180°,∴AC∥BD,∴四边形ABCD为平行四边形.5.如图,在△ABC中,A B=AC,⊙O是△ABC的外接圆,连结OA、OB、OC,延长BO与AC 交于点D,与⊙O交于点F,延长BA到点G,使得∠BGF=∠GBC,连接FG.(1)求证:FG是⊙O的切线;(2)若⊙O的径为4.①当OD=3,求AD的长度;②当△OCD是直角三角形时,求△ABC的面积.(1)证明:连接AF,∵BF为⊙O的直径,∴∠BAF=90°,∠FAG=90°,∴∠BGF+∠AFG=90°,∵AB=AC,∴∠ABC=∠ACB,∵∠ACB=∠AFB,∠BGF=∠ABC,∴∠BGF=∠AFB,∴∠AFB+∠AFG=90°,即∠OFG=90°,又∵OF为半径,∴FG是⊙O的切线;(2)解:①连接CF,则∠ACF=∠ABF,∵AB=AC,AO=AO,BO=CO,∴△ABO≌△ACO(SSS),∴∠ABO=∠BAO=∠CAO=∠ACO,∴∠CAO=∠ACF,∴AO∥CF,∴=,∵半径是4,OD=3,∴DF=1,BD=7,∴==3,即CD=AD,∵∠ABD=∠FCD,∠ADB=∠FDC,∴△ADB∽△FDC,∴=,∴AD•CD=BD•DF,∴AD•CD=7,即AD2=7,∴AD=(取正值);②∵△ODC为直角三角形,∠DCO不可能等于90°,∴存在∠ODC=90°或∠COD=90°,当∠ODC=90°时,∵∠ACO=∠ACF,∴OD=DF=2,BD=6,∴AD=CD,∴AD•CD=AD2=12,∴AD=2,AC=4,=×4×6=12;∴S△ABC当∠COD=90°时,∵OB=OC=4,∴△OBC是等腰直角三角形,∴BC=4,延长AO交BC于点M,则AM⊥BC,∴MO=2,∴AM=4+2,=×4×(4+2)=8+8,∴S△ABC∴△ABC的面积为12或8+8.6.如图⊙O的直径AB=10cm,弦BC=6cm,∠ACB的平分线交⊙O于D,交AB于E,P是AB 延长线上一点,且PC=PE.(l)求证:PC是⊙O的切线;(2)求AC、AD的长.(1)证明:连结OC,如图所示:∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线;(2)连结BD,如图所示,∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=5(cm).7.如图,在Rt△ABC中,∠BAC=90°,CD平分∠ACB,交AB于点D,以点D为圆心,DA 为半径的圆与AB相交于点E,与CD交于点F.(1)求证:BC是⊙D的切线;(2)若EF∥BC,且BC=6,求图中阴影部分的面积.(1)证明:过D作DG⊥BC于G,∵DA⊥AC,∠ACD=∠BCD,∴DG=DA,∴BC是⊙D的切线;(2)解:连接EF,∵EF∥BC,由(1)DG⊥BC,∴DG⊥EF,∴=.∴∠EDG=∠CDG.由(1)∠ACD=∠BCD,∠ACD+∠ADC=∠BCD+∠CDG=90°,∴∠CDG=∠ADC,∴∠CDG=∠ADC=∠BDG=60°.∵EF∥BC,∴∠DEF=∠B,∠DFE=∠DCB,在⊙D中,DE=DF,∴∠DFE=∠DEF.∴∠B=∠DCB,∴DB=DC.∵DG⊥BC,∴CG=BC=3.在Rt△DCG中,D G=CG/=.∴S=×3×﹣π()2=﹣.阴影8.请阅读下列材料,并完成相应的任务.人类会作圆并且真正了解圆的性质是在2000多年前,由我国的墨子给出圆的概念:“一中同长也.”.意思说,圆有一个圆心,圆心到圆周的长都相等.这个定义比希腊数学家欧几里得给圆下的定义要早100年.与圆有关的定理有很多,弦切角定理就是其中之一.我们把顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.弦切角定理:弦切角的度数等于它所夹弧所对的圆周角度数.下面是弦切角定理的部分证明过程:证明:如图①,AB与⊙O相切于点A.当圆心O在弦AC上时,容易得到∠CAB=90°,所以弦切角∠BAC的度数等于它所夹半圆所对的圆周角度数.如图②,AB与⊙O相切于点A,当圆心O在∠BAC的内部时,过点A作直径AD交⊙O于点D,在上任取一点E,连接EC,ED,EA,则∠CED=∠CAD.任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)如图③,AB与⊙O相切于点A.当圆心O在∠BAC的外部时,请写出弦切角定理的证明过程.解:(1)如图②,∵AD是⊙O直径,∴∠DEA=90°.∵AB与⊙O相切于点A,∴∠DAB=90°.∴∠CED+∠DEA=∠CAD+∠DAB,即∠CEA=∠CAB,∴弦切角的度数等于它所夹弧所对的圆周角度数;(2)证明:如图③,过点A作直径AF交⊙O于点F,连接FC,∵AF是直径,∴∠ACF=90°,∴∠CFA+∠FAC=90°,∵AB与⊙O相切于点A,∴∠FAB=90°,∴∠CAB+∠FAC=90°,∴∠CAB=∠CFA,即弦切角的度数等于它所夹弧所对的圆周角度数.9.【问题背景】(1)如图1,⊙O与∠P的两边分别切与A,B两点.求证:PA=PB.【深入探究】(2)在(1)的条件下,若∠APB=60°,连接PO,以PO为一条边向上作等边三角形POQ,连接AO,AQ.求证:AO=AQ.(3)若在(1)的条件下,以OP为斜边向上作等腰直角三角形POQ,取OP中点M,连接MB,MQ,BQ,求证:∠MQB=∠MBQ.【拓展延伸】在(3)的条件下,连接AO,AQ,探索AO,AQ,AP之间的数量关系.解:【问题背景】(1)连接OA,OB,OP,∵PA、PB是切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,在Rt△PAO和Rt△PBO中,,∴Rt△PAO≌Rt△PBO(HL),∴PA=PB;【深入探究】(2)∵Rt△PAO≌Rt△PBO,∴∠APO=∠BPO,∵∠APB=60°,∴∠APO=∠BPO=30°,∵△POQ是等边三角形,∴∠OPQ=60°,PO=PQ,∴∠APQ=∠APO=30°,且PO=PQ,∴PA垂直平分OQ,∴AO=AQ;(3)如图3,连接OB,∵PB是⊙O是切线,∴PB⊥OB,且点M是OP的中点,∴BM=PO,∵△OPQ是等腰直角三角形,且点M是OP的中点,∴QM=OP,∴QM=BM,∴∠MQB=∠MBQ;拓展延伸】AO+AQ=AP,理由如下:过点Q作QH⊥AQ交AP于点H,∴∠AQH=∠PQO=90°,∴∠AQO=∠PQH,∵∠QPO+∠QOP=90°,∠AOP+∠APO=90°,∴∠APQ+∠APO=∠APO+∠AOQ,∴∠APQ=∠AOP,且∠AQO=∠PQH,QP=OQ,∴△AOQ≌△HPQ(ASA)∴QH=AQ,AO=PH,∴AH=AQ,∵AP=PH+AH,∴AO+AQ=AP.10.如图,AB、CE是⊙O的直径,过点C的切线与AB的延长线交于点P,AD⊥PC于D,连接AC、OD、PE.(1)求证:AC是∠DAP的角平分线;(2)求证:PC2=PA•PB;(3)若AD=3,PE=2DO,求⊙O的半径.证明:(1)∵PC是圆的切线,AD⊥PD,∴AD∥OC,∴∠DAC=∠ACO,∵AO=CO,∴∠CAO=∠ACO,∴∠DAC=∠CAO,∴AC是∠DAP的平分线;(2)如右图,连接BC,∵OC=OB,∴∠OCB=∠OBC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠OBC=90°,∵PC是⊙O的切线,∴∠OCB+∠BCP=90°,∴∠CAB=∠BCP,又∵∠CPB=∠APC,∴△CPB∽△APC,∴=,∴PC2=PA•PB;(3)设半径为r,在Rt△PCE中,PE2=(2r)2+PC2=4r2+PC2,∵PE=2DO,∴4DO2=4r2+PC2,∴4(DO2﹣r2)=PC2,∴4DC2=PC2,∴PC=2CD,∵AD∥OC,∴△PCO∽△PDA,∴=,∴=,∴r=2.11.如图,AB是直经,D是的中点,DE⊥AC交AC的延长线于E,⊙O的切线BF交AD的延长线于点F.(1)求证:DE是⊙O的切线.(2)试探究AE,AD,AB三者之间的等量关系.(3)若DE=3,⊙O的半径为5,求BF的长.(1)证明:如图1,连接OC,OD,BC,∵AB是直径,∵DE⊥AC于E,∴∠E=90°,∴∠ACB=∠E,∴BC∥DE,∵点D是的中点,∴,∴∠COD=∠BOD,又∵OC=OB,∴OD垂直平分BC,∵BC∥DE,∴OD⊥DE,∴DE是⊙O的切线;(2)AD2=AE•AB,理由如下:如图2,连接BD,由(1)知,,∴∠EAD=∠DAB,∵AB为直径,∴∠ADB=∠E=90°,∴△AED∽△ADB,∴=,即AD2=AE•AB;(3)由(1)知,∠E=∠ECH=∠CHD=90°,∴四边形CHDE为矩形,∴ED=CH=BH=3,∴OH===4,∴CE=HD=OD﹣OH=5﹣4=1,AC===8,∵BF是⊙O的切线,∴∠FBA=∠E=90°,又∵∠EAD=∠DAB,∴△EAD∽△BAF,∴=,即=,∴BF=.12.如图1,在直角坐标系中,直线l与x、y轴分别交于点A(2,0)、B(0,)两点,∠BAO的角平分线交y轴于点D.点C为直线l上一点,以AC为直径的⊙G经过点D,且与x轴交于另一点E.(1)求出⊙G的半径r,并直接写出点C的坐标;(2)如图2,若点F为⊙G上的一点,连接AF,且满足∠FEA=45°,请求出EF的长?解:(1)连接GD,EC.∵∠OAB的角平分线交y轴于点D,∴∠GAD=∠DAO,∵GD=GA,∴∠GDA=∠GAD,∴∠GDA=∠DAO,∴GD∥OA,∴∠BDG=∠BOA=90°,∵GD为半径,∴y轴是⊙G的切线;∵A(2,0),B(0,),∴OA=2,OB=,在Rt△AOB中,由勾股定理可得:AB===设半径GD=r,则BG=﹣r,∵GD∥OA,∴△BDG∽△BOA,∴=,∴r=2(﹣r),∴r=,∵AC是直径,∴∠AEC=∠AOB=90°,∴EC∥OB,∴==,∴==,∴EC=2,AE=,∴OE=2﹣=,∴C的坐标为(,2);(2)过点A作AH⊥EF于H,连接CE、CF,∵AC是直径,∴AC=2×=∴∠AEC=∠AFC=90°∵∠FEA=45°∴∠FCA=45°∴在Rt△AEH中,由勾股定理可知:AF=CF=,设OE=a∴AE=2﹣a∵CE∥OB∴△ACE∽△ABO∴=,∴CE=,∵CE2+AE2=AC2,∴(2﹣a)2+(2﹣a)2=∴a=或a=(不合题意,舍去)∴AE=∴在Rt△AEH中,由勾股定理可得,AH=EH=,∴在Rt△AEH中,由勾股定理可知:FH2=AF2﹣AH2=()2﹣()2=2,∴FH=,∴EF=EH+FH=.13.如图I,四边形ADBC内接于⊙O,E为BD延长线上一点,AD平分∠EDC,(1)求证:AB=AC;(2)如图2,若CD为直径,过A点的圆的切线交BD延长线于E,若DE=1,AE=2.求⊙O的半径.(1)证明:∵四边形ADBC内接于⊙O,∴∠EDA=∠ACB,由圆周角定理得,∠CDA=∠ABC,∵AD平分∠EDC,∴∠EDA=∠CDA,∴∠ABC=∠ACB,∴AB=AC;(2)解:连接AO并延长交BC于H,AM⊥CD于M,∵AB=AC,∴AH⊥BC,又AH⊥AE,∴AE∥BC,∵CD为⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC=90°,∴四边形AEBH为矩形,∴BH=AE=2,∴BC=4,∵AD平分∠EDC,∠E=90°,AM⊥CD,∴DE=DM=1,AE=AM=2,在Rt△ABE和Rt△ACM中,∴Rt△ABE≌Rt△ACM(HL),∴BE=CM,设BE=x,CD=x+2,在Rt△BDC中,x2+42=(x+2)2,解得,x=3,∴CD=5,∴⊙O的半径为2.5.14.如图,AB为⊙O的直径,弦CD⊥AB,垂足为F,CG⊥AE,交弦AE的延长线于点G,且CG=CF.(1)求证:CG是⊙O的切线;(2)若AE=2,EG=1,求由弦BC和所围成的弓形的面积.解:(1)证明:连接OC.∵CD⊥AB,CG⊥AE,CG=CF,∴∠CAG=∠BAC,∠AFC=∠G=90°,∵OA=OC,∴∠ACO=∠BAC.∴∠CAG=∠ACO,∴OC∥AG,∴∠OCG=180°﹣∠G=90°,∴CG是⊙O的切线;(2)过点O作OM⊥AE,垂足为M,则AM=ME=AE=1,∠OMG=∠OCG=∠G=90°.∴四边形OCGM为矩形,∴OC=MG=ME+EG=2.在Rt△AGC和Rt△AFC中∴Rt△AGC≌Rt△AFC(HL),∴AF=AG=AE+EG=3,∴OF=AF﹣OA=1,在Rt△COF中,∵cos∠COF==.∴∠COF=60°,CF=OC•sin∠COF=2×=,=﹣×2×=π﹣.∴S弓形BC15.如图,AB、AC是⊙O的两条弦,M是的中点,N是的中点,弦MN分别交AB、AC 于点P、D.(1)求证:AP=AD;(2)连接PO,当AP=3,OP=,⊙O的半径为5,求MP的长.(1)证明:连AM,AN,∵=,=,∴∠BAM=∠ANM,∠AMN=∠CAN,∵∠APD=∠AMN+∠BAM,∠ADP=∠CAN+∠ANM,∴∠APD=∠ADP,∴AP=AD.(2 )解:连AO,OM交AB于E,设PE=x,∵=,∴OM⊥AB,∴∠AEO=90°,∵OE2=OA2﹣AE2=OP2﹣PE2∴52﹣(x+3)2=()2﹣x2,∴x=1,∴AE=4,OE=3,ME=2,∴MP===.16.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(﹣4,0),点P在AB上,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.(1)求直线AB的函数解析式;(2)求证:∠BDE=∠ADP;(3)设DE=x,DF=y.请求出y关于x的函数解析式.解:(1)设直线AB的函数解析式为y=kx+4,将点B(4,0)代入y=kx+4,得:4k+4=0,解得:k=﹣1,则直线AB的函数解析式为y=﹣x+4;(2)由已知得:OB=OC,∠BOD=∠COD=90°,又∵OD=OD,∴△BOD≌△COD(SAS),∴∠BDO=∠CDO,∵∠CDO=∠ADP,∴∠BDE=∠ADP;(3)如图2,连结PE,∵∠ADP是△DPE的一个外角,∴∠ADP=∠DEP+∠DPE,∵∠BDE是△ABD的一个外角,∴∠BDE=∠ABD+∠OAB,∵∠ADP=∠BDE,∠DEP=∠ABD,∴∠DPE=∠OAB,∵OA=OB=4,∠AOB=90°,∴∠OAB=45°,∴∠DPE=45°,∴∠DFE=∠DPE=45°,∵DF是⊙Q的直径,∴∠DEF=90°,∴△DEF是等腰直角三角形,∴DF=DE,即y=x.17.如图1,AB为⊙O的弦,弧AC=弧BC,G为弧BC上一点,连接AG交BC于点D,连接CG、BG.(1)求证:∠GCB+∠GBC=∠CBA;(2)如图2,若AB为⊙O的直径,求证:AG=CG+BG;(3)如图3,在(2)的条件下,F为圆上一点,连接CF交AB于点E,若CD:DB=5:7,∠ACF=∠CAG,AE=,求线段CG的长.证明:(1)∵=,∴∠CAB=∠CBA,∵∠GCB=∠GAB,∠CBG=∠CAG,∴∠GCB+∠GBC=∠GAB+∠CAG=∠CAB=∠CBA;(2)如图2,过点C作CH⊥CG交AG于点H,∵AB为⊙O的直径,∴∠AGB=∠ACB=90°,且AC=BC,∴∠ABC=∠BAC=45°.∵∠AGC=∠ABC,∴∠AGC=45°,且CH⊥CG,∴∠CHG=∠AGC=45°,∴CH=CG,∠AHC=135°∴GH=CG.∵∠CGB=∠CGA+∠AGB=135°,∴∠AHC=∠CGB,CH=CG,∠CAH=∠CBG,∴△ACH≌△BCG(AAS)∴AH=BG,∴AG=CG+BG;(3)∵CD:DB=5:7,∴设CD=5a,DB=7a,∴BC=AC=12a,∴AD===13a.如图3,过点E作EH⊥AC于H,作AP平分∠GAC,交BC于P,作PQ⊥AD于Q,∴∠CAP=∠DAP=∠CAG,∠PQA=90°=∠ACB,且AP=AP,∴△CAP≌△QAP(AAS)∴AC=AQ=12a,CP=PQ,∴QD=AD﹣AQ=a.∵PD2=PQ2+QD2,∴(5﹣PQ)2=PQ2+a2,∴PQ=a,∴CP=a,∵HE⊥AC,∠CAB=45°,∴∠HEA=∠CAB=45°,∴AH=HE,∵AE2=AH2+HE2=(3)2,∴AH=HE=3,∵∠ACF=∠CAG,∠CAP=∠DAP=∠CAG,∴∠ACF=∠CAP,∴tan∠CAP=tan∠ACF=,∴∴CH=15,∴AC=3+15=18=12a,∴a=,∴CD=,BD=,AD=.∵∠ACD=∠AGB=90°,∠CAD=∠DBG,∴△ACD∽△BGD,∴,∴,∴BG=,DG=,∴AG=AD+DG=+=,∵AG=CG+BG,∴==CG,∴CG=.18.如图1,在△ABC中,∠ACB=90°,∠ABC的角平分线交AC上点E,过点E作BE的垂线交AB于点F,△BEF的外接圆⊙O与CB交于点D.(1)求证:AC是⊙O的切线;(2)若BC=9,EH=3,求⊙O的半径长;(3)如图2,在(2)的条件下,过C作CP⊥AB于P,求CP的长.(1)证明:连接OE.如图1所示:∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC⊥OE,∴AC是⊙O的切线;(2)解:∵∠ACB=90°,∴EC⊥BC,∵BE平分∠ABC,EH⊥AB,∴EH=EC,∠BHE=90°,在Rt△BHE和Rt△BCE中,,∴Rt△BHE≌Rt△BCE(HL),∴BH=BC=9,∵BE⊥EF,∴∠BEF=90°=∠BHE,BF是圆O的直径,∴BE===3,∵∠EBH=∠FBE,∴△BEH∽△BFE,∴=,即=,解得:BF=10,∴⊙O的半径长=BF=5;(3)解:连接OE,如图2所示:由(2)得:OE=OF=5,EC=EH=3,∵EH⊥AB,∴OH===4,在Rt△OHE中,cos∠EOA==,在Rt△EOA中,cos∠EOA==,∴OA=OE=,∴AE===,∴AC=AE+EC=+3=,,∵AB=OB+OA=5+=,∠ACB=90°,∴△ABC的面积=AB×CP=BC×AC,∴CP===.19.△ABC内接于⊙O,弦BD与AC相交于点E,连接BO,且AC⊥BD.(1)如图1,求证:∠OBC=∠ABD;(2)如图2,作CG⊥AB于G,交BD于F,若∠BAC=∠ABO+30°,求证:BO=BF;(3)如图3,在(2)的条件下,直线OF与AB相交于点M,与BC相交于点N,若NC:MA=5:3,且S=16,求线段AE的长.△BMN解:(1)延长BO交⊙O于点K,连接CK,则BK为⊙O的直径,∴∠BCK=90°,∴∠OBC+∠K=90°,∵AC⊥BD,∴∠AEB=90°,∴∠ABE+∠A=90°,∵,∴∠A=∠K∴∠OBC=∠ABD;(2)作OH⊥BC于H,则BC=2BH,∵∠K+∠KBC=90°,∴∠BAC+∠KBC=90°,∴∠ABO+30°+∠KBC=90°,∴∠ABC=60°∴BC=2BG,∴BG=BH,且∠ABD=∠OBC,∠BGF=∠BHO=90°,∴△BFG≌△BOH(AAS)∴BO=BF;(3)作OH⊥BC于H,∵△BFG≌△BOH,∴BF=BO,∴∠MFB=∠BON,且BF=BO,∠ABD=∠OBN,∴△BFM≌△BON(ASA)∴BM=BN,且∠ABC=60°,∴△MBN为等边三角形,∴S=BM2=16,△BMN∴BM=BN=8,∵NC:MA=5:3,∴设NC=5x,AM=3x,∴BC=8+5x,BH==BG,CG=BG=•()∴GM=HN=8﹣=,∵∠MNB=60°,∴OH=HN=•(),∵∠OBC=∠ABD=∠ACG,∴tan∠OBC=tan∠ACG,∴,∴=,∴x=1,∴AM=3,CN=5,HN=GM=,OH=,BH=∴OB===7,∵sin∠OBH=sin∠ABD,∴∴AE==.20.如图1,AB为⊙O的直径,BC为⊙O的切线,过点B作OC的垂线与⊙O的另一交点为点E,连接CE.(1)求证:CE为⊙O的切线;(2)如图2,过点C作BC的垂线交AE的延长线于点F,若BC=AB,求的值.解:(1)证明:如图,连接OE,设OC与BE的交点为M∵OB=OE∠OBM=∠OEM∵BE⊥OC∴∠BMO=∠EMO∴∠BOC=∠EOC∴在△OBC和△OEC中∴△OBC≌△OEC(SAS)∴∠OEC=∠OBC∵BC为⊙O的切线∴OB⊥BC∴∠OBC=90°∴∠OEC=90°∴CE为⊙O的切线;(2)∵AB为⊙O的直径,∴∠BEA=90°∵OB⊥BC∴AF∥OC∵AB⊥BC,CF⊥BC∴AO∥CF∴四边形AOCF为平行四边形∴AF=OC∵BC=AB∴设BC=AB=2k,则OB=OA=k在Rt△OBC中,由勾股定理得:OC==k∴AF=k∵∠ABE+∠CBE=90°,∠CBE+∠BCO=90°∴∠ABE=∠BCO∴sin∠ABE=sin∠BCO∵=sin∠BCO==∴=sin∠ABE=∴AE=×2k=∴EF=AF﹣AE=∴=.。
2023年中考数学复习---圆综合知识点总结与专项练习题(含答案解析)
2023年中考数学复习---圆综合知识点总结与专项练习题(含答案解析)知识点总结1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
2.垂径定理的推论:推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题。
3.圆心角、弦以及弧之间的关系:①定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
②推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧。
4.圆周角定理:5.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
6.圆的内接四边形:①定义:四个顶点都在圆上的四边形叫做圆的内接四边形。
②性质:I:圆内接四边形的对角互补。
II:圆内接四边形的任意一个外角等于它的内对角。
7.三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆。
圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。
8.切线的性质:①圆的切线垂直于经过切点的半径。
②经过圆心且垂直于切线的直线必经过切点。
③经过切点且垂直于切线的直线必经过圆心。
运用切线的性质进行计算或证明时,常常作的辅助线是连接圆心和切点,通过构造直角三角形或相似三角形解决问题。
9. 切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线。
在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”。
2023年中考数学必刷真题考点专题23圆的有关性质(共38题)【解析版】
专题23圆的有关性质(共38题)一.选择题(共17小题)1.(2022•包头)如图,AB,CD是⊙O的两条直径,E是劣弧的中点,连接BC,DE.若∠ABC=22°,则∠CDE的度数为()A.22°B.32°C.34°D.44°2.(2022•宜昌)如图,四边形ABCD内接于⊙O,连接OB,OD,BD,若∠C=110°,则∠OBD=()A.15°B.20°C.25°D.30°3.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为()A.10cm B.15cm C.20cm D.24cm4.(2022•台湾)如图,AB为圆O的一弦,且C点在AB上.若AC=6,BC=2,AB的弦心距为3,则OC 的长度为何?()A.3B.4C.D.5.(2022•山西)如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°6.(2022•广元)如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠CAB=65°,则∠ADC的度数为()A.25°B.35°C.45°D.65°7.(2022•嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为()A.55°B.65°C.75°D.130°8.(2022•陕西)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44°B.45°C.54°D.67°9.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F是劣弧上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为()A.115°B.118°C.120°D.125°10.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为()A.2B.3C.2D.11.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为()A.95°B.100°C.105°D.130°12.(2022•滨州)如图,在⊙O中,弦AB、CD相交于点P.若∠A=48°,∠APD=80°,则∠B的大小为()A.32°B.42°C.52°D.62°13.(2022•泸州)如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC =4,DE=4,则BC的长是()A.1B.C.2D.414.(2022•安徽)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若P A=4,PB=6,则OP=()A.B.4C.D.515.(2022•自贡)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,∠ABD=20°,则∠BCD的度数是()A.90°B.100°C.110°D.120°16.(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD 为()A.70°B.65°C.50°D.45°17.(2022•云南)如图,已知AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为E.若AB=26,CD=24,则∠OCE的余弦值为(A.B.C.D.二.填空题(共14小题)18.(2022•内江)如图,在⊙O中,∠ABC=50°,则∠AOC等于.19.(2022•吉林)如图,在半径为1的⊙O上顺次取点A,B,C,D,E,连接AB,AE,OB,OC,OD,OE.若∠BAE=65°,∠COD=70°,则与的长度之和为(结果保留π).20.(2022•雅安)如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=72°,那么∠BOD的度数为.21.(2022•长沙)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D为OC的中点,若OA=7,则BC的长为.22.(2022•永州)如图,AB是⊙O的直径,点C、D在⊙O上,∠ADC=30°,则∠BOC=度.23.(2022•随州)如图,点A,B,C在⊙O上,若∠ABC=60°,则∠AOC的度数为.24.(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D =°.25.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为cm(玻璃瓶厚度忽略不计).26.(2022•武威)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=°.27.(2022•湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O 于点D.若∠APD是所对的圆周角,则∠APD的度数是.28.(2022•黑龙江)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为.29.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD 为2厘米,则镜面半径为厘米.30.(2021•宁夏)如图,四边形ABCD是⊙O的内接四边形,∠ADC=150°,弦AC=2,则⊙O的半径等于.31.(2022•遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28°纬线的长度.小组成员查阅相关资料,得到如下信息:信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;信息二:如图2,赤道半径OA约为6400千米,弦BC∥OA,以BC为直径的圆的周长就是北纬28°纬线的长度;(参考数据:π≈3,sin28°≈,cos28°≈0.88,tan28°≈0.53)根据以上信息,北纬28°纬线的长度约为千米.三.解答题(共7小题)32.(2022•宜昌)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长)AB=26m,设所在圆的圆心为O,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.连接OB.(1)直接判断AD与BD的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1m).33.(2022•武汉)如图,以AB为直径的⊙O经过△ABC的顶点C,AE,BE分别平分∠BAC和∠ABC,AE 的延长线交⊙O于点D,连接BD.(1)判断△BDE的形状,并证明你的结论;(2)若AB=10,BE=2,求BC的长.34.(2022•怀化)如图,点A,B,C,D在⊙O上,=.求证:(1)AC=BD;(2)△ABE∽△DCE.35.(2022•娄底)如图,以BC为边分别作菱形BCDE和菱形BCFG(点C,D,F共线),动点A在以BC为直径且处于菱形BCFG内的圆弧上,连接EF交BC于点O.设∠G=θ.(1)求证:无论θ为何值,EF与BC相互平分;并请直接写出使EF⊥BC成立的θ值.(2)当θ=90°时,试给出tan∠ABC的值,使得EF垂直平分AC,请说明理由.36.(2022•威海)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.(1)若AB=AC,求证:∠ADB=∠ADE;(2)若BC=3,⊙O的半径为2,求sin∠BAC.37.(2022•湖北)如图,正方形ABCD内接于⊙O,点E为AB的中点,连接CE交BD于点F,延长CE 交⊙O于点G,连接BG.(1)求证:FB2=FE•FG;(2)若AB=6,求FB和EG的长.38.(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.。
2020年中考数学二轮复习压轴专题:圆(解析版)
2020年中考数学二轮复习压轴专题:《圆》1.如图1,△ABD内接于⊙O,AD是直径,∠BAD的平分线交BD于H,交⊙O于点C,连接DC并延长,交AB的延长线于点E,(1)求证:AE=AD;(2)若=,求的值;(3)如图2,连接CB并延长,交DA的延长线于点F,若AH=HC,AF=6,求△BEC的面积.解:(1)∵AD是直径,∴∠ACD=90°,即AC⊥ED,BD是∠BAD的平分线,故AE=AD;(2)=,则设BE=3a,AB=2a,AD=AE=5a,O交BD于点G,BD是∠BAD的平分线,则,则OC⊥BD,故OC∥AB,则OC是△ADE的中位线,则OG=AB=a,OC=AD=,则CG=OC﹣OG=,∵CG∥AB,则=;(3)设:OG=m,则AB=2m,当AH=HC时,由(2)知,△AHB≌△CHG(AAS),则AB=CG=2m,则OC=3m,即圆的半径为3m,∵AB∥CO,则,即,解得:m=1,故AB=2,AD=6,BE=4,则BD==4,∵EC=DC,=×BE×BD=×4×4=4.则△BEC的面积=S△EBD2.如图,AB是⊙O的直径,M是OA的中点,弦CD⊥AB于点M,过点D作DE⊥CA交CA的延长线于点E.(1)连接AD,求∠OAD;(2)点F在上,∠CDF=45°,DF交AB于点N.若DE=,求FN的长.解:(1)如图1,连接OD,∵是⊙的直径,于点∴AB垂直平分CD,∵M是OA的中点,∴,∴,∴∠DOM=60°,∵AO=OD,∴△OAD是等边三角形,∴∠OAD=60°;(2)如图2,连接CF,CN,∵OA⊥CD于点M,∴点M是CD的中点,∴AB垂直平分CD,∴NC=ND,∵∠CDF=45°,∴∠NCD=∠NDC=45°,∴∠CND=90°,∴∠CNF=90°,由(1)可知,∠AOD=60°,∴∠ACD=30°,又∵DE⊥CA交CA的延长线于点E,∴∠E=90°,∵∠ACD=30°,DE=.∴CD=2DE=2,∴CN=CD•sin45°=2,由(1)可知,∠CAD=2∠OAD=120°,∴∠F=180°﹣120°=60°,在Rt△CFN中,FN=.3.如图1,锐角△ABC,AB=AC,⊙O是△ABC的外接圆,连接BO并延长交AC于点D,(1)若∠BDC=30°,求∠BAC的度数;(2)如图2,当0°<∠BAC<60°时,作点C关于BD的对称点E,连接AE、DE,DE交AB于F.①点E在⊙O上(选填“内”、“上”、“外”);②证明:∠AEF=∠EAB;③若△BDC为等腰三角形,AD=2,求AE的长.解:(1)延长BD交圆O于点G,连结CG,如图:∵,∴∠A=∠G,∵直径BG,∴∠BCG=90°,∵AB=AC,∴∠BCA=∠CBA,设∠BCA=∠CBA=α,则∠A=∠G=180°﹣2α,∠DCG=90°﹣α,∴∠BDC=∠G+∠DCG=180°﹣2α+90°﹣α=30°,∴α=80°,∴∠BAC=∠G=180°﹣2×80°=20°;(2)连结OC、OE,延长BD交圆O于点M,连结CM,如图:①∵C、E是关于BD的对称点,∴OC=OE,∴点E在⊙O上,故答案为:上;②证明:∵C、E是关于BD的对称点,∴,∠2=∠3,∴∠4=∠5=∠M,设∠1=∠ABC=x,则∠4=∠5=∠M=180°﹣2x,∠6=90°﹣x,∴∠2=∠3=∠M+∠6=270°﹣3x,∴∠AEF=∠EDC﹣∠EAD=2∠3﹣2∠4=2(270°﹣3x)﹣2(180°﹣2x)=180°﹣2x,∴∠AEF=∠5=180°﹣2x,即∠AEF=∠EAB;③∵∠1=∠ABC>∠DBC,∴BD>DC,∵△BDC为等腰三角形,∴分两种情况讨论:(Ⅰ)当BD=BC时,∠1=∠2,即x=270°﹣3x,解得:x=67.5°,∴∠4=45°<60°,满足题意,此时△AED为等腰直角三角形,AE=AD=2,∴AE=2;(Ⅱ)当DC=BC时,∠2=∠DBC,即270°﹣3x=180°﹣2x,解得:x=90°,∴∠4=0°,不满足0°<∠BAC<60°;综上所述:AE=2.4.如图,AB是⊙O的直径,点C、D在⊙O上,AD与BC相交于点E.连接BD,作∠BDF=∠BAD,DF与AB的延长线相交于点F.(1)求证:DF是⊙O的切线;(2)若DF∥BC,求证:AD平分∠BAC;(3)在(2)的条件下,若AB=10,BD=6,求CE的长.解:(1)连接OD,CD,∵AB是直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∵OA=OD,∴∠BAD=∠ADO,∵∠BDF=∠BAD,∴∠BDF+∠ODB=90°,∴∠ODF=90°,∴OD⊥DF,∴DF是⊙O的切线;(2)∵DF∥BC,∴∠FDB=∠CBD,∵=,∴∠CAD=∠CBD,且∠BDF=∠BAD,∴∠CAD=∠BAD=∠CBD=∠BDF,∴AD平分∠BAC;(3)∵AB=10,BD=6,∴AD===8,∵∠CBD=∠BAD,∠ADB=∠BDE=90°,∴△BDE∽△ADB,∴,∴,∴DE=,∴AE=AD﹣DE=,∵∠CAD=∠BAD,∴sin∠CAD=sin∠BAD∴∴∴CE=与x轴相切于点A(﹣3,0),与y轴相交于B、C 5.如图1,在平面直角坐标系中,⊙O1两点,且BC=8,连接AB.=∠ABO;(1)求证:∠ABO1(2)求AB的长;(3)如图2,⊙O2经过A、B两点,与y轴的正半轴交于点M,与O1B的延长线交于点N,求出BM﹣BN的值.(1)证明:如图1﹣1,连接AO1,∵⊙O1与x轴相切于点A,∴∠OAO1=90°,又∠AOB=90°,∴∠OAO1+∠AOB=180°,∴AO1∥OB,∴∠ABO=∠O1AB,∵O1A=O1B,∴∠O1AB=∠ABO1,∴∠ABO1=∠ABO;(2)解:如图1﹣2,过点O1作O1H⊥BC于H,则CH=BH=BC=4,∴∠O1HO=∠HOA=∠OAO1=90°,∴四边形AO1HO是矩形,∴AO1=AO=3,∴在Rt△O1HB中,O1B==5,∴HO=O1A=O1B=5,∴OB=HO﹣BH=1,∴在Rt△AOB中,AB===;(3)解:如图2,作点B关于x轴的对称点B',则点OB'=OB=1,AB=AB',∴BB'=2,∠AB'O=∠ABO∴由(1)知,∠ABO=∠ABO,1=∠AB'O,∴∠ABO1=180°﹣∠AB'O,∴180°﹣∠ABO1即∠ABN=∠AB'M,又∵,∴∠AMB'=∠N,∴△AMB'≌△ANB(AAS),∴MB'=NB,∴BM﹣BN=BM﹣B'M=BB'=2,∴BM﹣BN的值为2.6.如图,P是直径AB上的一点,AB=6,CP⊥AB交半圆于点C,以BC为直角边构造等腰Rt△BCD,∠BCD=90°,连接OD.小明根据学习函数的经验,对线段AP,BC,OD的长度之间的关系进行了探究.下面是小明的探究过程,请补充完整:(1)对于点P在AB上的不同位置,画图、测量,得到了线段AP,BC,OD的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置…AP0.00 1.00 2.00 3.00 4.00 5.00 …BC 6.00 5.48 4.90 4.24 3.46 2.45 …OD 6.71 7.24 7.07 6.71 6.16 5.33 …在AP,BC,OD的长度这三个量中确定AP的长度是自变量,BC的长度和OD的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,推断:当OD=2BC时,线段AP的长度约为 4.5 .解:(1)由图表观察,可看出随着AP的变化,BC和OD都在发生变化,且都有唯一确定的值和其对应,所以AP的长度是自变量,BC和OD的长度都是这个自变量的函数,故答案分别为:AP,BC,OD;(2)如右图,可先描点,再画出如图所示图象;(3)由图象可推断:当OD=2BC时,线段AP的长度约为4.5,故答案为:4.5.7.如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D 为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线;(2)若BF=8,DF=,求⊙O的半径.(3)过点B作⊙O的切线交CA的延长线于G,如果连接AE,将线段AC以直线AE为对称轴作对称线段AH,点H正好落在⊙O上,连接BH,求证:四边形AHBG为菱形.(1)证明:如图1,连接OA,OD,则∠OAF=∠D,∵D为BE的下半圆弧的中点,∴,∴∠EOD=∠BOD=×180°=90°,∴∠OFD+∠D=90°,∵CA=CF,∴∠CAF=∠CFA=∠OFD,∴∠CAF+∠∠OAF=90°,即∠CAO=90°,∴OA⊥CA,∴AC是⊙O的切线;(2)如图1,设半径为r,则OF=BF﹣OB=8﹣r,∵在Rt△OFD中,OF2+OD2=DF2,∴(8﹣r)2+r2=()2,解得,r1=6,r2=2(舍去),∴⊙O的半径为6;(3)如图2,连接EH,由对称性可知AC=AH,∠CAE=∠HAE,又∵AE=AE,∴△CAE≌△HAE(SAS),∴∠C=∠EHA,∵,∴∠EHA=∠ABE,∴∠C=∠ABE,∵OA=OB,∴∠OAB=∠OBA,∵BE为⊙O的直径,∴∠EAB=90°,∴∠OAB+∠OAE=90°,又∵∠CAE∠+∠OAE=90°,∴∠CAE=∠OAB,∴∠C=∠OBA=∠∠OAB=∠CAE,∴AC=AB,∴△CAE≌△BAO(ASA),∴AE=AO=OE,∴△AEO是等边三角形,∴∠AEO=60°,∴∠ABE=90°﹣∠AEO=30°,∠AHB=∠AEO=60°,∴∠ABG=90°﹣∠ABE=60°,∵CA=AH,CA=AB,∴AH=AB,又AHB=60°,∴△ABH是等边三角形,∴AB=BH=AH,∵GB,GA是⊙O的切线,∴GB=GA,又∠ABG=60°,∴△ABG是等边三角形,∴AB=BG=AG,∴BH=AH=BG=AG,∴四边形AHBG是菱形.8.已知:△ABC是⊙O的内接三角形,AB为直径,AC=BC,D、E是⊙O上两点,连接AD、DE、AE.(1)如图1,求证:∠AED﹣∠CAD=45°;(2)如图2,若DE⊥AB于点H,过点D作DG⊥AC于点G,过点E作EK⊥AD于点K,交AC于点F,求证:AF=2DG;(3)如图3,在(2)的条件下,连接DF、CD,若∠CDF=∠GAD,DK=3,求⊙O的半径.(1)证明:如图1,连接CO,CE,∵AB是直径,∴∠ACB=90°,∵AC=BC,∴∠B=∠CAB=45°,∴∠COA=2∠B=90°,∵,∴∠CAD=∠CED,∴∠AED﹣∠CAD=∠AED﹣∠CED=∠AEC=∠COA=45°,即∠AED﹣∠CAD=45°;(2)如图2,连接CO并延长,交⊙O于点N,连接AN,过点E作EM⊥AC于M,则∠CAN=90°,∵AC=BC,AO=BO,∴CN⊥AB,∴AB垂直平分CN,∴AN=AC,∴∠NAB=∠CAB,∵AB垂直平分DE,∴AD=AE,∴∠DAB=∠EAB,∴∠NAB﹣∠EAB=∠CAB﹣∠DAB,即∠GAD=∠NAE,∵∠CAN=∠CME=90°,∴AN∥EM,∴∠NAE=∠MEA,∴∠GAD=∠MEA,又∵∠G=∠AME=90°,AD=EA,∴△ADG≌△EAM(AAS),∴AG=EM,AM=DG,又∵∠MEF+∠MFE=90°,∠MFE+∠GAD=90°,∴∠MEF=∠GAD,又∵∠G=∠FME=90°,∴△ADG≌△EFM(ASA),∴DG=MF,∵DG=AM,∴AF=AM+MF=2DG;(3)∵∠CDF=∠GAD,∠FCD=∠DCA,∴△FCD∽△DCA,∴∠CFD=∠CDA=∠CBA,∵AC=BC,AB为直径,∴△ABC为等腰直角三角形,∴∠CFD=∠CDA=∠CBA=45°,∴△GFD为等腰直角三角形,设GF=GD=a,则FD=a,AF=2a,∴==,∵∠FAK=∠DAG,∠AKF=∠G=90°,∴△AFK∽△ADG,∴==,在Rt△AFK中,设FK=x,则AK=3x,∵FK2+AK2=AF2,∴x2+(3x)2=(2a)2,解得,x=a(取正值),∴FK=a,在Rt△FKD中,FK2+DK2=FD2,∴(a)2+32=(a)2,解得,a=(取正值),∴GF=GD=,AF=,∵△FCD∽△DCA,∴=,∴CD2=CA•FC,∵CD2=CG2+GD2,∴CG2+GD2=CA•FC,设FC=n,则(﹣n)2+()2=(+n)n,解得,n=,∴AC=AF+CF=+=,∴AB=AC=,⊙O的半径为.9.如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB=3时,求PA的长以及⊙O的半径;(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.解:(1)如图1,过点A作BP的垂线,垂足为H,作直径AM,连接MP,在Rt△ABH中,∠ABH=60°,∴∠BAH=30°,∴BH=AB=2,AH=AB•sin60°=2,∴HP=BP﹣BH=1,∴在Rt△AHP中,AP==,∵AB是直径,∴∠APM=90°,在Rt△AMP中,∠M=∠ABP=60°,∴AM===,∴⊙O的半径为,即PA的长为,⊙O的半径为;(2)当∠APB=2∠PBE时,∵∠PBE=∠PAE,∴∠APB=2∠PAE,在平行四边形ABCD中,AD∥BC,∴∠APB=∠PAD,∴∠PAD=2∠PAE,∴∠PAE=∠DAE,∴AE平分∠PAD;(3)①如图3﹣1,当AE⊥BD时,∠AEB=90°,∴AB是⊙O的直径,∴r=AB=2;②如图3﹣2,当AE⊥AD时,连接OB,OE,延长AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴=,在Rt△ABF中,∠ABF=60°,∴AF=AB•sin60°=2,BF=AB=2,∴=,∴EF=,在Rt△BFE中,BE===,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r=;③当AE⊥AB时,∠BAE=90°,∴AE为⊙O的直径,∴∠BPE=90°,如图3﹣3,过点D作BC的垂线,交BC的延长线于点N,延开PE交AD于点Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC•sin60°=2,CN=CD=2,∴PQ=DN=2,设QE=x,则PE=2﹣x,在Rt△AEQ中,∠QAE=∠BAD﹣BAE=30°,∴AE=2QE=2x,∵PE∥DN,∴△BPE∽△BND,∴=,∴=,∴BP=10﹣x,在Rt△ABE与Rt△BPE中,AB2+AE2=BP2+PE2,∴16+4x2=(10﹣x)2+(2﹣x)2,解得,x1=6(舍),x2=,∴AE=2,∴BE===2,∴r=,∴⊙O的半径为2或或.10.已知:四边形ABCD内接于⊙O,连接AC,AB=AD(1)如图1,求证:CA平分∠BCD;(2)如图2,连接BD交AC于点E,若BD为⊙O直径,求证:tan∠CAD=;(3)如图3,在(2)的条件下,点F为BC中点,连接AF并延长交⊙O于G,若FG=2,tan∠GAD=,求DE的长.(1)证明:∵AB=AD,∴=,∴∠ACB=∠ACD,∴CA平分∠BCD;(2)证明:如图2,过点D作AC的平行线交BC延长线于Q,∵=,∴∠CAD=∠CBD,∵BD为直径,∴∠B CD=90°,∴tan∠CAD=tan∠CBD=,∵DQ∥AC∴∠Q=∠ACB,∠ACD=∠CDQ,由(1)得∠ACB=∠ACD,∴∠Q=∠CDQ,∴CD=CQ,∵CE∥DQ,∴DE:EB=CQ:BC,即DE:EB=CD:CB,∴tan∠CAD=;(3)如图3,过点D、B分别作DH⊥AG于H,BN⊥AG于N,过O作OM⊥AG于M,∵tan∠GAD=,∴设AH=3k,DH=4k,∵∠BAN+∠NAD=90°,∠NAD+∠ADH=90°,∴∠BAN=∠ADH,又∵∠BNA=∠AHD=90°,AB=AD,∴△ADH≌△BAN(AAS),∴BN=AH=3k,AN=DH=4k,∵DH∥OM∥BN,且OB=OD,∴MH=MN,NH=AN﹣AH=k,∵OM⊥AG,∴MA=MG,∴AH=NG=3k,∴FN=3k﹣2,连接CG,过点C作CP∥AB,则∠ABF=∠PCF,∠BAF=∠P,又BF=CF,∴△ABF≌△PCF(AAS),∴FA=FP,∵=,∴∠BAF=∠GCB,∴∠GCF=∠P,∴△FCG∽△FPC,∴CF2=FG•FP,CF=BF,即BN2+FN2=FG•FA,∴(3k)2+(3k﹣2)2=2(4k+3k﹣2),解得k=1 或k=(∵FN>0∴舍去),∴在Rt△AHD中,AH=3,DH=4,∴AD==5,∴BD=AB=5,∴BF2=BN2+FN2=(3k)2+(3k﹣2)2=10,∴BF=,∴BC=2,∴在Rt△BCD中,CD==,∴tan∠CBD===,∴DE=BD=.11.已知:AB、AC是⊙O中的两条弦,连接OC交AB于点D,点E在AC上,连接OE,∠AEO =∠BDO.(1)如图1,若∠CAD=∠COE,求证:=;(2)如图2,连接OA,若∠OAB=∠COE,求证:AE=CD;(3)如图3,在第(2)问的条件下,延长AO交⊙O于点F,点G在AB上,连接GF,若∠ADC=2∠BGF,AE=5,DG=1,求线段BG的长.(1)证明:设OE与AB交于点H,∵∠CAD=∠COE,∠EHA=∠DHO,∴∠AEO=∠ODA,∵∠AEO=∠BDO,∴∠BDO+∠ADO=180°,∴∠ADO=∠BDO=90°,∴OD⊥AB,∴;(2)证明:∵∠AEO+∠CEO=180°,∠BDO+∠ADO=180°,∴∠AEO=∠BDO,∴∠CEO=∠ADO,在△CEO和ODA中,∵∠COE=∠OAD,∠CEO=∠ADO,OC=OA,∴△CEO≌△ODA(AAS),∴CE=OD,∠ECO=∠AOD,∴OA=AC=OC,∴△AOC为等边三角形,∵AE=AC﹣CE,CD=OC﹣OD,∴AE=CD;(3)证明:延长FG交OC于点S,延长CO到点T,使OT=OS,连接AT,BF,设∠BGF=α,则∠BGF=∠SGD=α,∵∠ADC=2∠BGF=2α,∠ADC=∠GSD+∠SGD∴∠DSG=∠DGS=α∴SD=DG=1∵AE=CD=5∴CS=CD﹣SD=4在△FOS和△AOT中,∵OS=OT,∠SOF=∠AOT,OF=OA,∴△FOS≌△AOT(SAS)∴∠ATO=∠FSO=α,∵∠ADC=2α,∴∠DAT=∠DTA=α,∴AD=DT,设OA=OC=AC=r,∴OT=OS=r﹣4,OD=r﹣5,AD=DT=2r﹣9,在△ADC中,CD=5,AC=r,AD=2r﹣9,∠ACD=60°,解△ADC得,r=8,AD=7,过点D作DK⊥OA,在△DOK中,∵OD=3,∠DOK=60°,∴OK=,AK=,cos∠DAK==,在△ABF中,AB=AF×cos∠DAK=,∴BG=AB﹣AG=.12.已知四边形ABCD为⊙O的内接四边形,直径AC与对角线BD相交于点E,作CH⊥BD于H,CH与过A点的直线相交于点F,∠FAD=∠ABD.(1)求证:AF为⊙O的切线;(2)若BD平分∠ABC,求证:DA=DC;(3)在(2)的条件下,N为AF的中点,连接EN,若∠AED+∠AEN=135°,⊙O的半径为2,求EN的长.(1)证明:如图1,∵AC为⊙O的直径,∴∠ADC=90°,∴∠DAC+∠DCA=90°.∵=,∴∠ABD=∠DCA,∵∠FAD=∠ABD,∴∠FAD=∠DCA,∴∠FAD+∠DCA=90°,∴CA⊥AF,∴AF为⊙O的切线.(2)证明:如图2,连接OD,∵=,∴∠ABD=∠AOD,∵=,∴∠DBC=∠DOC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠DOA=∠DOC,∴DA=DC.(3)如图3,连接OD交CF于M,作EP⊥AD于P,∵AC为⊙O的直径,∴∠ADC=90°.∵DA=DC,∴DO⊥AC,∴∠FAC=∠DOC=90°,∴AF∥OM,∵AO=OC,∴OM=AF.∵∠ODE+∠DEO=90°,∠OCM+∠DEO=90°.∴∠ODE=∠OCM.∵∠DOE=∠COM,OD=OC,∴∴△ODE≌△OCM,∴OE=OM,设OM=m,∴AE=2﹣m,AP=PE=2﹣m,DP=2+m,∵∠AED+∠AEN=135°,∠AED+∠ADE=135°,∴∠AEN=∠ADE,∵∠EAN=∠DPE,∴△EAN∽△DPE,∴=,∴=,∴m=,∴AN=,AE=,∴勾股定理得NE=.13.MN是⊙O上的一条不经过圆心的弦,MN=4,在劣弧MN和优弧MN上分别有点A,B(不与M,N重合),且,连接AM,BM.(1)如图1,AB是直径,AB交MN于点C,∠ABM=30°,求∠CMO的度数;(2)如图2,连接OM,AB,过点O作OD∥AB交MN于点D,求证:∠MOD+2∠DMO=90°;(3)如图3,连接AN,BN,试猜想AM•MB+AN•NB的值是否为定值,若是,请求出这个值;若不是,请说明理由.解:(1)如图1,∵AB是⊙O的直径,∴∠AMB=90°.∵,∴∠AMN=∠BMN=45°.∵OM=OB,∴∠OMB=∠OBM=30°,∴∠CMO=45°﹣30°=15°;(2)如图2,连接OA,OB,ON.∵,∴∠AON=∠BON.又∵OA=OB,∴ON⊥AB.∵OD∥AB,∴∠DON=90°.∵OM=ON,∴∠OMN=∠ONM.∵∠OMN+∠ONM+∠MOD+∠DON=180°,∴∠MOD+2∠DMO=90°;(3)如图3,延长MB至点M′,使BM′=AM,连接NM′,作NE⊥MM′于点E.设AM=a,BM=b.∵四边形AMBN是圆内接四边形,∴∠A+∠MBN=180°.∵∠NBM′+∠MBN=180°,∴∠A=∠NBM′.∵,∴AN=BN,∴△AMN≌△BM′N(SAS),∴MN=NM′,BM′=AM=a.∵NE⊥MM′于点E.∴.∵ME2+(BN2﹣BE2)=MN2,∴.化简得ab+NB2=16,∴AM•MB+AN•NB=16.14.已知,在△PAB中,PA=PB,经过A、B作⊙O.(1)如图1,连接PO,求证:PO平分∠APB;(2)如图2,点P在⊙O上,PA:AB=:2,E是⊙O上一点,连接AE、BE.求tan ∠AEB的值;(3)如图3,在(2)的条件下,AE经过圆心O,AE交PB于点F,过F作FG⊥BE于点G,EF+BG=14,求线段OF的长度.(1)证明:连接OA,OB,则OA=OB,又∵PA=PB,∴PO垂直平分AB,∴∴PO平分∠APB;(2)解:延长PO,交AB于H,过点A作AM⊥PB于M,由(1)知PH垂直平分AB,∵PA:AB=:2,∴设AB=2,则AP=BP=,AH=BH=1,∴在Rt△PAH中,PH==3,=AB•PH=PB•AM,∵S△PAB∴2×3=×AM,∴AM=,在Rt△PAM中,PM==,∴tan∠APM==:=,∵∠AEB=∠APM,∴tan∠AEB=;(3)连接PO并延长,交AB于点H,由(1)知,PH垂直平分AB,∵AE为直径,在Rt△EFG中,tan∠FEG=,∴设FG=3x,则EG=4x,EF=5x,∵EF+BG=14,∴BG=14﹣5x,∴∠ABE=90°=∠AHP=∠PHB,∴PH∥EB,∴∠HPB=∠GBF,∴△HPB∽△GBF,∴==,∴=,解得,x=1,∴EF=5,BE=BG+EG=9+4=13,∴AB=BE=,∴AE==,∴OE=AE=,∴OF=OE﹣EF=﹣5=,∴线段OF的长度为.15.如图1,在⊙O中,点A为的中点,点D在⊙O上.(1)求证:∠BAC+2∠ADB=180°;(2)如图2,点G为⊙O上一点,DG与B C的延长线交于点K,若∠CBD=2∠ABC,BC=CK,求证:BG=KG;(3)如图3,在(2)的条件下,AC与BG的延长线交于点E,CE=3AC=15,BE=10,求线段BD的长.(1)证明:如图1,连接DC,∵点A为的中点,∴,∴∠ADB=∠ADC,∴∠BDC=2∠ADB,∵四边形ABCD是圆内接四边形,∴∠BAC+∠BDC=180°,∴∠BAC+2∠ADB=180°;(2)如图2,连接CG,∵∠ABC=∠ADC=∠ADB,∴∠BDC=2∠ABC,∵∠CBD=2∠ABC,∴∠BDC=∠CDB,∴CB=CD,∵BC=CK,∴CD=CK,∴∠CDK=∠K,∵∠CBD+∠CDB+∠CDK+∠K=180°,∴∠CBD+∠K=90°,∴∠BDK=90°,∴BG为⊙O的直径,∴BCG=90°,∴GC⊥BK,又∵BC=CK,∴BG=KG;(3)∵CE=3AC=15,∴AC=AB=5,∵四边形ABGC是圆内接四边形,∴∠BAC+∠BGC=180°,∵∠CGE+∠BGC=180°,∴∠BAC=∠CGE,又∵∠E=∠E,∴△ECG∽△EBA,∴==,即==,∴GE=6,CG=,∴BG=BE﹣GE=4,由(2)知,BG=KG,∴KG=4,在Rt△BCG中,BC===5,∴BK=BC+CK=10,∵∠BDG=∠GCK=90°,∠K=∠K,∴△KCG∽△KDB,∴=,即=,∴DB=,∴线段BD的长为.。
2020九年级中考数学 专题复习:圆的综合(含答案)
2020中考数学 专题复习:圆的综合(含答案)类型一 与基本性质有关的证明与计算1. 如图,AB 是⊙O 的直径,点D 是AE ︵上的一点,且∠BDE =∠CBE ,BD 与AE 交于点F . (1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:DE 2=DF ·DB ;(3)在(2)的条件下,延长ED ,BA 交于点P ,若P A =AO ,DE =2,求PD 的长.第1题图(1)证明:∵AB 是⊙O 的直径, ∴∠AEB =90°, ∴∠EAB +∠ABE =90°,∵∠BDE =∠EAB ,∠BDE =∠CBE , ∴∠EAB =∠CBE ,∴∠ABE +∠CBE =∠ABE +∠EAB =90°,即CB ⊥AB . 又∵AB 是⊙O 的直径, ∴BC 是⊙O 的切线; (2)证明:∵BD 平分∠ABE , ∴∠ABD =∠DBE ,AD ︵=DE ︵, ∴∠ABD = ∠DEA , ∴∠DEA = ∠DBE , ∵∠EDB =∠BDE , ∴△DEF ∽△DBE ,∴DE DB =DF DE, ∴DE 2= DF ·DB ;(3)解:如解图,连接OD ,延长ED 交BA 的延长线于点P ,第1题解图∵OD =OB , ∴∠ODB =∠OBD , ∵BD 平分∠ABE , ∴∠OBD = ∠EBD , ∴∠EBD =∠ODB , ∴OD ∥BE , ∴△PDO ∽△PEB , ∴PD PE =POPB, ∵P A =AO , ∴P A =AO =OB , ∴PO PB =PD PE =23, ∵PD PE =PD PD +DE =23,DE =2, ∴PD =4.2. 如图,AB 是⊙O 的直径,C 是BD ︵的中点,CE ⊥AB ,垂足为E ,BD 交CE 于点F . (1)求证:CF =BF ;(2)若BE =4,EF = 3,求⊙O 的半径.第2题图(1)证明:连接AC ,如解图,∵点C 是BD ︵的中点,∴∠DBC =∠BAC , 在△ABC 中,∠ACB =90°,CE ⊥AB ,第2题解图∴∠BCE +∠ECA =∠BAC +∠ECA =90°, ∴∠BCE =∠BAC , 又∵C 是BD ︵的中点, ∴∠DBC =∠CDB , ∴∠BCE =∠DBC , ∴CF = BF ;(2)解:∵BE = 4,EF = 3, ∴BF =32+42= 5,∴CF = 5,∴CE = 5+3= 8, ∵AB 是⊙O 的直径, ∴∠ACB = 90°, ∴CE 2=BE ·AB , ∴AB =CE 2BE = 644= 16,∴AO = 8,∴⊙O 的半径为8.3. 如图,⊙O 中,直径CD ⊥弦AB 于E ,AM ⊥BC 于M ,交CD 于N ,连接AD . (1)求证:AD =AN;(2)若AB =8,ON = 1,求⊙O 的半径.第3题图(1)证明:∵CD ⊥AB , ∴∠CEB = 90°, ∴∠C +∠B = 90°, 同理∠C +∠CNM = 90°, ∴∠CNM =∠B , ∵∠CNM = ∠AND , ∴∠AND = ∠B , ∵AC ︵=AC ︵, ∴∠ADN = ∠B , ∴∠AND = ∠ADN , ∴AN =AD ;第3题解图(2)解:设OE 的长为x ,连接OA , ∵AN =AD ,CD ⊥AB , ∴DE = NE =x +1,∴OD =OE +ED =x +x +1=2x +1, ∴OA = OD = 2x +1,∴在Rt △OAE 中,OE 2+AE 2= OA 2, ∴x 2+42=(2x +1)2,解得x =53或x =-3(不合题意,舍去),∴OA = 2x +1= 2×53+1= 133,即⊙O 的半径为133.4. 如图,A 、B 、C 为⊙O 上的点,PC 过O 点,交⊙O 于D 点,PD = OD ,若OB ⊥AC 于E 点.第4题图(1)判断A 是否是PB 的中点,并说明理由; (2)若⊙O 半径为8,试求BC 的长. 解:(1)A 是PB 的中点, 理由:连接AD ,如解图,第4题解图∵CD 是⊙O 的直径, ∴AD ⊥AC , ∵OB ⊥AC , ∴AD ∥OB , ∵PD = OD ,∴AD 是△PBO 的中位线, ∴P A =AB , ∴A 是PB 的中点; (2)∵AD ∥OB , ∴△APD ∽△BPO , ∴AD BO =PD PO = 12, ∵⊙O 半径为8, ∴OB = 8, ∴AD =4, ∴AC =CD 2-AD 2= 415,∵OB ⊥AC , ∴AE =CE = 215, ∴OE =12AD = 2,∴BE =6, ∴BC =BE 2+CE 2=4 6.5. 如图,AB 是⊙O 的直径,点C 、E 是⊙O 上的点,且AC ︵=EC ︵,连接AC 、BE ,并延长交于点D ,已知AB =2AC =6.第5题图(1)求DC 的长; (2)求EC ︵的长.解:(1)如解图,连接BC ,第5题解图∵ AB 是⊙O 的直径, ∴∠ACB =90°,CB ⊥AD , ∵AC ︵=EC ︵, ∴∠ABC =∠DBC , ∴△ABD 为等腰三角形, ∵AB =2AC =6, ∴DC =AC =3;(2)如解图,连接OC 、OE , ∵AB =2AC =6,∠ACB =90°, ∴∠ABC =30°,OC =OE =3, ∴∠DBC =∠ABC =30°∴∠COE =2∠DBC =60°,∴l EC ︵=60×π×3180=π.6. 如图,AB 为圆O 的直径,CD ⊥AB 于点E ,交圆O 于点D ,OF ⊥AC 于点F .第6题图(1)求证:OF =12BD ;(2)当∠D =30°,BC =1时,求圆中阴影部分的面积. (1)证明:如解图,连接OC ,第6题解图∵OF ⊥AC ,OA =OC , ∴AF =FC ,∵OA =OB ,∴OF 是△ABC 的中位线,∴OF =12BC ,∵AB ⊥CD ,∴BC ︵=BD ︵, ∴BC =BD , ∴OF =12BD ;(2)解:∵∠D =30°, ∴∠A =∠D =30°, ∴∠COB =2∠A =60°, ∴∠AOC =120°,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,BC=1,∴AB=2,AC=3,由(1)可知OF=12BC=1 2,∵∠COB=60°,OB=OC,∴△BOC是等边三角形,∴OA=OB=BC=1,∴S△AOC=12AC ·OF=12×3×12=34,S扇形AOC=120πOA2360=π3,∴S阴影=S扇形AOC-S△AOC=π3-34.7. 如图,△ABC内接于⊙O,AB为⊙O的直径,OD⊥AB交⊙O于点D,AC、OD的延长线交于点E,连接CD.(1)求证:∠ECD=∠BCD;(2)当AC=CD时,求证:CE=CB.第20题图证明:(1)∵AB是⊙O的直径,∴∠ACB=∠ECB=90°,∵OD⊥AB,∴∠DOB=90°,∴∠BCD=12∠DOB=45°,∴∠ECD=∠ECB-∠BCD=90°-45°=45°,∴∠ECD =∠BCD ;(2)如解图,连接OC 、BD ,第7题解图∵AC =CD ,∴∠AOC =∠DOC ,∠ABC =∠DBC , 又∵∠E +∠A =∠ABC +∠A =90°, ∴∠E =∠ABC =∠DBC , 在△ECD 和△BCD 中⎩⎨⎧∠E =∠DBC∠ECD =∠BCD CD =CD, ∴△ECD ≌△BCD (AAS), ∴CE = CB .8. 如图,四边形ABCD 内接于⊙O ,且BD 为直径,∠ACB = 45°,过A 点的AC 的垂线交BC 的延长线于点E . (1)求证:BE = DC ; (2)如果AD =2,求图中阴影的面积.第8题图解:(1)∵BD 是⊙O 的直径, ∴∠BAD =90°,∵∠ACB =45°,∴∠ADB =∠ACB = 45°, ∵AE ⊥AC ,∴△ACE 与△ABD 是等腰直角三角形,∴AE = AC ,AB = AD ,∠EAC = ∠BAD = 90°, ∴∠EAB = ∠CAD , 在△ABE 与△ADC 中,⎩⎨⎧AE =AC∠EAB = ∠CAD AB =AD, ∴△ABE ≌△ADC , ∴BE =DC ;第8题解图(2)如解图,连接AO ,则∠AOD = ∠ABD =90°, ∵AD = 2, ∴AO = OD = 1, ∴S 阴影= S 扇形-S △AOD =90 ·π×12360-12×1×1= π4-12. 9. 如图,在△ABC 中,以AC 为直径的⊙O 分别交AB ,BC 于点D ,E ,连接DE ,AD =BD ,∠ADE =120°. (1)证明:△ABC 是等边三角形; (2)若AC =2,求图中阴影部分的面积.第9题图(1)证明:如解图,连接CD , ∵AC 为⊙O 的直径, ∴CD ⊥AB , ∵AD =BD , ∴AC =BC ,∵∠ADE =120°,∴∠ACE =60°, 又∵AC =BC ,∴△ABC 是等边三角形;第9题解图(2)解:∵△ABC 是等边三角形, ∴∠CAB =∠ACB =∠B =60°,∵∠ADE =120°,∴∠BED =∠BDE =∠B =60°, ∴△BDE 是等边三角形, ∴BD =ED , ∵AD =BD ,∴DE =AD = BE =12AB = 12BC ,∴DE ︵=AD ︵,DE 为△ABC 的中位线,E 为BC 的中点, ∴S 弓形DE =S 弓形AD ,∴S 阴影=S △DEB = 12S △BDC ,∵AC =2,∴AD =BD =1,∴DC =3,∴S 阴影=12×12×1×3= 34.10. 如图,在△ABC 中,AB = AC ,以AB 为直径的半圆分别交AC ,BC 边于点D ,E ,连接BD .第10题图(1)求证:点E 是BD ︵的中点;(2)当BC = 12,且AD ∶CD =1∶2,求⊙O 的半径. (1)证明:如解图,连接AE ,DE ,第10题解图∵AB 是直径, ∴AE ⊥BC , ∵AB = AC , ∴BE = EC ,∵∠CDB =90°,DE 是斜边BC 的中线, ∴DE = EB , ∴ED ︵= EB ︵,即点E 是BD ︵的中点; (2)设AD =x ,则CD = 2x , ∴AB =AC =3x ,∵AB 为直径, ∴∠ADB =90°, ∴BD 2= (3x )2-x 2=8x 2, 在Rt △CDB 中, (2x )2+8x 2=122, ∴x =23, ∴OA = 32x =33,即⊙O 的半径是3 3.类型二 与切线有关的证明与计算1. 如图,AB 是⊙O 的切线,B 为切点,圆心O 在AC 上,∠A = 30°,D 为BC ︵的中点.第1题图(1)求证:AB =BC ;(2)试判断四边形BOCD 的形状,并说明理由. 解:(1)∵AB 是⊙O 的切线,∴∠OBA = 90°,∠AOB = 90°-30°= 60°. ∵OB =OC ,∴∠OBC =∠OCB ,∠OCB = ∠A = 30°, ∴AB = BC ;(2)四边形BOCD 为菱形,理由如下:连接OD 交BC 于点M , ∵D 是BC ︵的中点,第1题解图∴OD 垂直平分BC , 在Rt △OMC 中, ∵∠OCM = 30°, ∴OC =2OM =OD , ∴OM =MD ,∴四边形BOCD 为菱形.2. 如图,AB 为⊙O 的直径,C ,D 为⊙O 上两点,∠BAC =∠DAC ,过点C 作直线EF ⊥AD ,交AD 的延长线于点E ,连接BC .(1)求证:EF 是⊙O 的切线;(2)若DE =1,BC =2,求劣弧BC ︵的长l .第2题图(1)证明:如解图,连接OC , ∵OA =OC , ∴∠OAC =∠OCA , ∵∠BAC =∠DAC , ∴∠DAC =∠OCA , ∴AD ∥OC , ∵EF ⊥AD , ∴∠AEC =90°,∴∠OCF =∠AEC =90°, ∴EF 是⊙O 的切线;(2)解:如解图,连接OD ,DC .第2题解图∵∠DAC =12∠DOC ,∠OAC =12∠BOC ,∠DAC =∠OAC , ∴∠DOC =∠BOC , ∴DC =BC =2, 在Rt △EDC 中, ∵ED =1,DC =2, ∴sin ∠ECD =DE DC =12, ∴∠ECD =30°,∴∠OCD =90°-30°=60°, 又∵OC =OD ,∴△DOC 为等边三角形,∴∠BOC =∠COD =60°,OC =2, ∴l =60π×2180=23π. 3. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E 两点,过点D 作DF ⊥AC ,垂足为点F .第3题图(1)求证:DF 是⊙O 的切线; (2)若AE =4,cos A =25,求DF 的长.(1)证明:如解图,连接OD ,第3题解图∵OB =OD , ∴∠ODB =∠B . 又∵AB =AC , ∴∠C =∠B . ∴∠ODB =∠C . ∴OD ∥AC , ∵DF ⊥AC , ∴∠DFC =90°.∴∠ODF =∠DFC =90°, ∵OD 是⊙O 的半径, ∴DF 是⊙O 的切线;(2)解:如解图,过点O 作OG ⊥AC ,垂足为点G . ∴AG =12AE =2.∵cos A =AG OA =25,∴OA =225=5.∴OG =OA 2-AG 2=21.∵∠ODF =∠DFG =∠OGF =90°. ∴四边形OGFD 为矩形, ∴DF =OG =21.4. 如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙O的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=34,求⊙O的半径.第4题图(1)证明:如解图,连接OD,第4题解图∵BC是⊙O的切线,∴OD⊥BC,∴∠ODB=90°,又∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠CAD=∠OAD,∴AD平分∠BAC;(2)解:∵AC=8,tan∠P AC=CDAC=34,∴CD=6,在Rt△ACD中,AD=AC2+CD2=10,如解图,连接DE ,∵AE 为⊙O 的直径, ∴∠ADE = 90°, ∴∠ADE = ∠C , ∵∠CAD =∠OAD , ∴△ACD ∽△ADE , ∴AD AC = AE AD ,即108= AE10, ∴AE =252,∴⊙O 的半径是254.5. 如图,AB 为⊙O 的直径,CB ,CD 分别切⊙O 于点B ,D ,CD 交BA 的延长线于点E ,CO 的延长线交⊙O 于点G ,EF ⊥OG 于点F .(1)求证:∠FEB =∠ECF ; (2)若BC =6,DE =4,求EF 的长.第5题图(1)证明:∵EF ⊥OG ,BC 是⊙O 的切线, ∴∠CBA = ∠EFC =90°,∴∠EOF +∠FEB = 90°,∠BOC +∠BCO =90°, ∵∠EOF = ∠COB , ∴∠FEB = ∠BCO , ∵CB ,CD 是⊙O 的切线, ∴∠ECF = ∠BCO , ∴∠FEB = ∠ECF ;(2)解:如解图,连接OD ,则OD ⊥CE ,第5题解图∵CB,CD为⊙O的切线,BC=6,DE=4,∴CD=BC=6,∴CE=CD+DE=6+4=10,在Rt△CBE中,根据勾股定理得BE=CE2-BC2=102-62=8,设OD=x,则OE=8-x,在Rt△ODE中,根据勾股定理得OE2=OD2+ED2,即(8-x)2=x2+42,解得x=3,则OE=5.在Rt△ODC中,根据勾股定理得OC=CD2+OD2=62+32=35,∵∠EOF=∠COB,∠EFO=∠CBO,∴△EFO∽△CBO,∴EFCB=OEOC,即EF6=535,解得EF=2 5.6. 如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.第6题图 (1)证明:如解图,连接OB,第6题解图∵OB =OC ,∠ACB =30°,∴∠OBC =∠OCB =30°,∵DE ⊥AC ,∴∠DEC =90°,∴∠D =60°,∵CB =BD ,∴BE =BD ,∴△BDE 为等边三角形,∴∠DBE =60°,∴∠EBO =180°-∠DBE -∠OBC =180°-60°-30°=90°,即OB ⊥BE ,又∵OB 为⊙O 的半径,∴BE 是⊙O 的切线;(2)解:∵AC 为⊙O 的直径,∴∠ABC =90°,在Rt △ABC 中,BC =BD =BE =3,∠ACB =30°,∴AB =BC ·tan30°= 3,AC = 2AB =23,∴OA =12AC =3,∴S △ABC =12AB ·BC = 12×3×3=332, ∴S 阴影= S 半圆-S △ABC = 12π×(3)2-332=3π-332. 7. 如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于C ,BE ∥CO .(1)求证:BC 是∠ABE 的平分线;(2)若DC = 8,⊙O 的半径OA =6,求CE 的长.第7题图(1)证明:∵BE ∥CO ,∴∠OCB =∠EBC ,∵OC =OB ,∴∠OCB =∠OBC ,∴∠OBC =∠EBC ,∴BC 是∠ABE 的平分线;(2)解:∵CD 是⊙O 的切线,∴CD ⊥CO ,∴∠DCO =90°,在Rt △DCO 中,有DC 2+CO 2=DO 2,即82+62=DO 2,∴DO =10,∵CO ∥BE ,∴CE DC =BO DO ,即CE 8=610, ∴CE =4.8.8. 如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,BD 是⊙O 的弦,点E 是BC 的中点,连接DE .第8题图(1)求证:DE 是⊙O 的切线;(2)若CD ∶AD =1∶3,BC =2,求线段BD 的长. (1)证明:如解图,连接OD .第8题解图∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠CDB =90°,在Rt △CDB 中,∵点E 是BC 的中点,∴DE 是Rt △CDB 斜边BC 上的中线,∴ED =12BC ,EB =12BC , ∴ED =EB ,∴∠EDB =∠EBD ,∵OD =OB ,∴∠ODB =∠OBD ,∠OBD +∠EBD =∠ODB +∠EDB =∠ABC =90°,∴∠ODE =90°,∴OD ⊥DE ,又∵OD 是⊙O 的半径,∴DE 是⊙O 的切线.(2)解:在Rt △CDB 和在Rt △CBA ,∵∠C=∠C ,∠CDB=∠ABC=90°,∴Rt △CDB ≌Rt △CBA.∴CD :BC= BC :AC ,∵CD :AD=1:3,∴设CD 为x ,则AD =3x ,AC=4x ,∴x :2=2:4x ,解得x 1=1, x 2=-1(舍),∴CD =1,∴BD=222221 3.BC CD -=-=9. 如图,在⊙O 中,AB 为直径,C 为圆上一点且∠P +12∠AOC =90°. (1)求证:P A 是⊙O 的切线;(2)cos B =45,P A =8,求⊙O 的半径.第9题图(1)证明:∵∠B 与∠AOC 所对的弧都为弧AC ,∴∠B =12∠AOC , 又∵∠P +12∠AOC =90°, ∴∠P +∠B =90°.在△ABP 中,∠BAP =180°-90°=90°,∴P A ⊥AB .又∵AB 为⊙O 的直径,∴P A 是⊙O 的切线;(2)解:在Rt △ABP 中,∵cos B =45,P A =8,∴AB PB =45. ∴设AB =4x ,则PB =5x ,根据勾股定理得P A 2+AB 2=PB 2,∴82+(4x )2=(5x )2,化简得:9x 2=64,解得x =83. ∴AB =4×83=323, ∴AO =12AB =12×323=163. ∴⊙O 的半径为163.10. 如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC = BC = DC .(1)若∠CDB =39°,求∠BAD 的度数;(2)求证:∠1=∠2.第10题图(1)解:∵BC =DC ,∴∠CBD =∠CDB = 39°,∵∠BAC =∠CDB = 39°,∠CAD = ∠CBD = 39°,∴∠BAD =∠BAC +∠CAD = 39°+39°= 78°;(2)证明:∵BC = EC ,∴∠CBE =∠CEB ,∵∠CEB =∠2+∠BAE ,∠CBE =∠1+∠CBD ,∴∠2+∠BAE = ∠1+∠CBD ,∵∠BAE =∠CBD ,∴∠1= ∠2.。
2020年中考数学一轮复习基础考点及题型专题23 圆(解析版)
专题23 圆考点总结【思维导图】【知识要点】知识点一与圆有关的概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑴圆心;⑵半径,⑶其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,并且直径是同一圆中最长的弦.⏜,读作弧AB.在同圆或等弧的概念:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB圆中,能够重合的弧叫做等弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.弦心距概念:从圆心到弦的距离叫做弦心距.弦心距、半径、弦长的关系:(考点)圆心角概念:顶点在圆心的角叫做圆心角.圆周角概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角.三角形的外接圆1)经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.2)三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等; ②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.3)锐角三角形外接圆的圆心在它的内部(如图1);直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半,如图2);钝角三角形外接圆的圆心在它的外部(如图3).圆内接四边形概念:如果一个四边形的所有顶点都在一个圆上,那么这个四边形叫做圆内接四边形。
2020年《圆》解答题中考题汇编(含答案)
2020年《圆》解答题中考题汇编1.(2020•安徽)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD =BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.2.(2020•德州)如图,点C在以AB为直径的⊙O上,点D是半圆AB的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H.(1)求证:直线DH是⊙O的切线;(2)若AB=10,BC=6,求AD,BH的长.3.(2020•甘孜州)如图,AB是⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:∠CAD=∠CAB;(2)若=,AC=2,求CD的长.4.(2020•金华)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.5.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,=,求CD的长.6.(2020•衢州)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.7.(2020•嘉兴)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC =BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.8.(2020•湖州)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连结BD,BC平分∠ABD.(1)求证:∠CAD=∠ABC;(2)若AD=6,求的长.9.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.10.(2020•铁岭)如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.(1)求证:MD=MC;(2)若⊙O的半径为5,AC=4,求MC的长.11.(2020•浙江自主招生)已知:如图,在△ABC中,∠BAC=30°,BC=4,求△ABC面积的最大值.12.(2020•巴南区自主招生)如图,AB为⊙O的直径,直线CF与⊙O相切于点E,与直线AB相交于点F,BC⊥CF,垂足为C.(1)求证:BE平分∠CBF;(2)若AB=16,∠CFB=30°,求弧的长.13.(2020•浙江自主招生)如图,AB为半圆的直径且AB=4,D是AB的一个四等分点,CD⊥AB于D,E,F为线段CD的三等分点,连接AE且延长交半圆于Q点,连接AF 且延长交半圆于P点,连接QP.(Ⅰ)求∠F AD;(Ⅱ)求四边形EFPQ的面积.14.(2020•浙江自主招生)已知I为Rt△ABC的内心,∠A=90°,BI,CI的延长线分别交AC,AB于点D,E,S△BIC=12,求S四边形EDCB.15.(2020•浙江自主招生)已知如图,Rt△ABC中,内切圆O的半径r=1.求:S△ABC的最小值.16.(2020•浙江自主招生)已知:如图,在△ABC中,∠ACB=90°,AC=3,BC=4,I1为△ABC内切圆的圆心,⊙l2与BA,BC的延长线及AC边都相切(旁切圆).(1)求⊙I2的半径;(2)求线段I1I2的长.17.(2020•浙江自主招生)如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心I,且点E在半圆弧上.(1)若设△ABC的三边为a,b,c(其中∠A对边为a,∠B对边为b,∠C对边为c),试用含a,b,c的代数式表示AD,BD的长(2)证明:正方形DEFG的面积和△ABC的面积相等.18.(2020•浙江自主招生)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,P为AD中点,BP延长线与AC交于点F,EF⊥BC于点F,FE的延长线与△ABC的外接圆⊙O交于点G,若AE=3,EC=12,求线段EG的长.19.(2020•浙江自主招生)如图,AB是⊙O的直径,点C是⊙O上的一个动点,点D是劣弧的中点,射线OD上存在一点E,使得OE=AC,在AB的延长线上找一点F,连结FE并延长,分别交直线AC,OC于点G,H.(1)连结CE,判断CE与AB的位置关系与数量关系,并说明理由;(2)设HG=x,GF=y,若HE=5,求y与x的函数解析式.20.(2020•浙江自主招生)如图.已知△ABC的周长为2p,在AB、AC上分别取点M和N,使MN∥BC,且MN与△ABC的内切圆相切.求MN的最大值.21.(2020•浙江自主招生)如图,点P在△ABC的边AB上,且AB=4AP,过点P的直线MN与△ABC的外接圆交于点M,N,且点A是弧MN的中点.(1)求证:∠APN=∠ANB;(2)求的值.22.(2020•浙江自主招生)矩形ABCD的一边长AB=4,且BC>AB,以边AB为直径的圆O交对角线AC于H,AH=2.如图,点K为优弧AKB上一点.(Ⅰ)求∠HKA的度数;(Ⅱ)求CH的长;(Ⅲ)求图中阴影部分的面积;(Ⅳ)设AK=m,若圆O的圆周上到直线AK的距离为1的点有且仅有三个,求实数m 的值.23.(2020•浙江自主招生)已知:如图,在锐角三角形ABC中,以AC边为直径的⊙O交BC于点D,作BH⊥AC,依次交⊙O于点E,交AC于点G,交⊙O于点H.(1)求证:∠BEC=∠EDC;(2)若∠ABG+∠DEC=45°,⊙O的直径等于10,BC=14,求CE的长.24.(2020•浙江自主招生)如图所示,已知:∠AOB=120°,PT切⊙O于T,A,B,P三点共线,∠APT的平分线依次交AT,BT于C,D.(1)求证:△CDT为等边三角形.(2)若AC=4,BD=1,求PC的长.25.(2020•浙江自主招生)如图所示,在△ABC中,CD为∠ACB的平分线,以CD为弦作一与AB相切的圆,分别交CA,CB于点M,N.(1)求证:MN∥AB;(2)若AC=12,AB=10,BC=8,求MN的长度.26.(2020•浙江自主招生)如图,四边形ABCD内接于⊙O,CD∥AB,且AB是⊙O的直径,AE⊥CD交CD的延长线于点E,若AE=2,CD=3.(1)求⊙O的直径;(2)若翻折使点B与E重合的直线l(折痕)交⊙O于P,Q两点,求△BPQ的面积.27.(2020•浙江自主招生)如图,已知AB是⊙O的直径,BC是⊙O的切线,OC平行于弦AD,过点D作DE⊥AB于点E,连结AC与DE交于点P.证明:EP=PD.28.(2020•浙江自主招生)如图,正方形ABCD中,E、F分别是BC边、CD边上的动点,满足∠EAF=45°.(1)求证:BE+DF=EF;(2)若正方形边长为1,求△CEF内切圆半径的最大值.29.(2020•浙江自主招生)如图,已知ABCD是某圆的内接四边形,AB=BD,BM⊥AC于M,求证:AM=DC+CM.30.(2020•雨花区校级二模)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,交BC于F.(1)若∠ABC=40°,∠C=80°,求∠CBD的度数;(3)若AB=6,AC=4,BC=5,求DE的长.31.(2020•鼓楼区校级模拟)如图,AB是⊙O直径,AC是⊙O切线,BC交⊙O与点E.(1)若点D在AC上,连接DE,且AD=DE,求证:DE是⊙O的切线;(2)若CE=1.BE=3,求∠ACB的度数.32.(2020•武汉模拟)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E.F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求⊙O的半径.33.(2020•鼓楼区校级模拟)如图①,AB为⊙O的直径,点C在⊙O上,AD平分∠CAB,AD与BC交于点F,过点D作DE⊥AB于点E.(1)求证:BC=2DE;(2)如图②,连接OF,若∠AFO=45°,半径为2时,求AC的长.34.(2020•江阴市二模)如图,Rt△ABC中,∠ACB=90°,点D在AC边上,以AD为直径作⊙O交BD的延长线于点E,且CE是⊙O的切线.(2)若CD=2,BD=2,求⊙O的半径.35.(2020•姜堰区二模)如图,AC是⊙O的直径,AB是弦,P A与⊙O相切于点A,连接PB、PC,且P A=PB.(1)求证:PB与⊙O相切;(2)若∠APB=60°,P A=6,求PC、PB、弧BC所围成图形的面积.36.(2020•滨海县二模)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC 分别交于D、E两点,过点D作DF⊥AC于点F.(1)判断DF与⊙O的位置关系,并说明理由;(2)求证:点F为CE的中点;(3)若⊙O的半径为2,∠C=67.5°,求阴影部分的面积.37.(2020•张家港市模拟)如图,四边形ABCD内接于⊙O,AB=AC,BD⊥AC,垂足为E.(1)若∠BAC=40°,则∠ADC=°;(2)求证:∠BAC=2∠DAC;(3)若AB=10,CD=5,求BC的值.38.(2020•海安市模拟)如图,O是△ABC的边AB上一点,⊙O经过点A、C,交AB于点D.过点C作CE⊥AB,垂足为E.连接CD,CD恰好平分∠BCE.(1)求证:直线BC是⊙O的切线;(2)若⊙O的半径为3,CD=2,求BC的长.39.(2020•吴江区一模)如图,△ABC中,∠ACB=90°,D为AB上的一点,以CD为直径的⊙O交AC于E,连接BE交CD于P,交⊙O于F,连接DF,∠ABC=∠EFD.(1)求证:AB与⊙O相切;(2)若AD=4,BD=6,则⊙O的半径=;(3)若PC=2PF,BF=a,求CP(用a的代数式表示).40.(2020•昆山市一模)如图,AB为⊙O的直径,C、D为圆上的两点,OC∥BD,弦AD 与BC,OC分别交于E、F.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)若BD=6,AB=10,求DE的长.参考答案与试题解析1.【分析】(1)根据圆周角定理得到∠ACB=∠ADB=90°,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到∠E=∠BFE,根据切线的性质得到∠ABE=90°,根据三角形的内角和以及角平分线的定义即可得到结论.【解答】(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∴∠DAF+∠AFD=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∴∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.2.【分析】(1)连接OD,根据圆周角定理得到∠AOD=AOB=90°,根据平行线的性质得到∠ODH=90°,于是得到结论;(2)连接CD,根据圆周角定理得到∠ADB=∠ACB=90°,推出△ABD是等腰直角三角形,得到AB=10,解直角三角形得到AC==8,求得∠CAD=∠DBH,根据平行线的性质得到∠BDH=∠OBD=45°,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OD,∵AB为⊙O的直径,点D是半圆AB的中点,∴∠AOD=AOB=90°,∵DH∥AB,∴∠ODH=90°,∴OD⊥DH,∴直线DH是⊙O的切线;(2)解:连接CD,∵AB为⊙O的直径,∴∠ADB=∠ACB=90°,∵点D是半圆AB的中点,∴=,∴AD=DB,∴△ABD是等腰直角三角形,∵AB=10,∴AD=10sin∠ABD=10sin45°=10×=5,∵AB=10,BC=6,∴AC==8,∵四边形ABCD是圆内接四边形,∴∠CAD+∠CBD=180°,∵∠DBH+∠CBD=180°,∴∠CAD=∠DBH,由(1)知∠AOD=90°,∠OBD=45°,∴∠ACD=45°,∵DH∥AB,∴∠BDH=∠OBD=45°,∴∠ACD=∠BDH,∴△ACD∽△BDH,∴,∴=,解得:BH=.3.【分析】(1)连接OC,根据切线的性质,判断出AD∥OC,再应用平行线的性质,即可推得AC平分∠DAB;(2)如图2,连接BC,设AD=2x,AB=3x,根据圆周角定理得到∠ACB=∠ADC=90°,根据相似三角形的性质即可得到结论.【解答】(1)证明:如图1,连接OC,,∵CD是切线,∴OC⊥CD.∵AD⊥CD,∴AD∥OC,∴∠1=∠4.∵OA=OC,∴∠2=∠4,∴∠1=∠2,即∠CAD=∠CAB.(2)解:如图2,连接BC,∵=,∴设AD=2x,AB=3x,∵AB是⊙O的直径,∴∠ACB=∠ADC=90°,∴∠ACB=90°,∵AD⊥DC,∴∠ADC=90°,∵∠DAC=∠CAB,∴△ACD∽△ABC,∴=,∴=,解得,x1=2,x2=﹣2(舍去),∴AD=4,∴CD==2.4.【分析】(1)根据题意和垂径定理,可以求得AC的长,然后即可得到AB的长;(2)根据∠AOC=60°,可以得到∠AOB的度数,然后根据弧长公式计算即可.【解答】解:(1)∵的半径OA=2,OC⊥AB于点C,∠AOC=60°,∴AC=OA•sin60°=2×=,∴AB=2AC=2;(2)∵OC⊥AB,∠AOC=60°,∴∠AOB=120°,∵OA=2,∴的长是:=.5.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tan A==tan∠BCE==,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴==,∵AD=8,∴CD=4.6.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出=,求出EC即可解决问题.【解答】(1)证明:∵AE=DE,OC是半径,∴=,∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴=,∴=,∴CE=3.6,∵OC=AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.7.【分析】连结OC,根据切线的性质和等腰三角形的性质即可得到结论.【解答】解:证法错误;证明:连结OC,∵⊙O与AB相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC.8.【分析】(1)由角平分线的性质和圆周角定理可得∠DBC=∠ABC=∠CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】解:(1)∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;(2)∵∠CAD=∠ABC,∴=,∵AD是⊙O的直径,AD=6,∴的长=××π×6=π.9.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解答】解:(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴=,∴BD2=BF•BA=2×6=12.∴BD=2.10.【分析】(1)连接OC,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可.【解答】解:(1)连接OC,∵CN为⊙O的切线,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由题意可知AB=5×2=10,AC=4,∵AB是⊙O的直径,∴∠ACB=90°,∴BC=,∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴,即,可得:OD=2.5,设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=.11.【分析】作出△ABC的外接圆⊙O,连接OB,OC,当△ABC的BC边上的高经过点O 时,△ABC面积最大,如图,过点O作OD⊥BC,并延长DO交圆于点A',连接A'B,A'C,得出△OBC为等边三角形,则∠BOD=30°,OB=OA'=BC=4,求出OD=2,则由三角形面积公式可得出答案.【解答】解:作出△ABC的外接圆⊙O,连接OB,OC,当△ABC的BC边上的高经过点O时,△ABC面积最大,如图,过点O作OD⊥BC,并延长DO交圆于点A',连接A'B,A'C,∵∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△OBC为等边三角形,∴∠BOD=30°,OB=OA'=BC=4,∴OD=2,∴A'D=4+2,∴S△A'BC=×BC×A'D==8+4.12.【分析】(1)连接OE,根据切线的性质得到OE⊥CF,得到OE∥BC,根据平行线的性质、等腰三角形的性质得到∠CBE=∠OBE,根据角平分线的定义证明即可;(2)根据直角三角形的性质求出∠EOF=60°,根据弧长公式计算,得到答案.【解答】(1)证明:连接OE,∵直线CF与⊙O相切,∴OE⊥CF,∵BC⊥CF,∴OE∥BC,∴∠CBE=∠OEB,∵OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠OBE,∴BE平分∠CBF;(2)解:∵∠OEF=90°,∠CFB=30°,∴∠EOF=60°,∴的长==π.13.【分析】(Ⅰ)设半圆的圆心为O,连接CO.通过计算证明AF=2DF即可解决问题.(Ⅱ)连接PB,BQ.证明△AEF∽△APQ,求出△APQ,△AEF的面积即可.【解答】解:(I)设半圆的圆心为O,连接CO.∵直径AB=4,D是AB的一个四等分点,∴AD=,OD=,CO=2,∵CD⊥OA,∴∠CDO=90°,在Rt△CDO中,由勾股定理得:CD===3,∵E,F为线段CD的三等分点,∴DF=1,在Rt△ADF中,由勾股定理得:AF===2,即AF=2DF,∴∠F AD=30°;(2)连接PB,BQ.∵AB是直径,∴∠APB=90°,∵∠BAP=30°∴BP=AB=2,P A===6,AE==,∵∠ABQ=∠APQ,∠ABQ=∠AED,∴∠AED=∠APQ,∠EAF=∠P AQ,∴△AEF∽△APQ,∴=,=()2=,∵S△AEF=•EF•AD=,∴S△APQ=∴S四边形EFPQ=S△APQ﹣S△AEF=.14.【分析】将△EBI,△DCI分别沿BD,CE翻折,点E、D落在BC边上的E1、D1处根据翻折的性质及内切圆的性质可得,∠EID=135°,∠D1IE1=45°,EI=IE1,DI=ID1,进而可以证明,可得S四边形EDCB=2S△BIC.【解答】解:将△EBI,△DCI分别沿BD,CE翻折,点E、D落在BC边上的E1、D1处,∵I为Rt△ABC的内心,∴∠EIB=∠IBC+∠ICB=(∠ABC+∠ACB)=45°,∴∠E1IB=∠EIB=45°,∴∠EID=135°,同理:∠DIC=∠D1IC=45°,∴∠D1IE1=45°,∵EI=IE1,DI=ID1,作DH⊥EC,D1H′⊥E1I于点H、H′,∴DH=DI•sin45°,D1H′=D1I•sin45°,∴S△EID=EI•DH=×EI•DI•sin45°,S=E1I•D1H′=E1I•D1I•sin45°,∴,∵S△BEI=S,S△CDI=S,∴S四边形EDCB=2S△BIC=24.答:S四边形EDCB为24.15.【分析】根据Rt△ABC中,内切圆O的半径r,三角形三个边分别为:a、b、c,可得S=ab,ab=2S△,2r=a+b﹣c,c=a+b﹣2r,再根据勾股定理列出方程,根据一元△ABC二次方程根的判别式即可求解.【解答】解:∵Rt△ABC中,内切圆O的半径r,三角形三个边分别为:a、b、c,∴S△ABC=ab,设S△ABC=S△,∴ab=2S△,∵2r=a+b﹣c,∴c=a+b﹣2r,∴a+b﹣2r=.两边平方,得a2+b2+4r2+2ab﹣4(a+b)r=a2+b2,4r2+2ab﹣4(a+b)r=0,将r=1,ab=2S△代入,得:4+4S△﹣4(a+b)=0,a+b=S△+1,∵ab=2S△且a+b=S△+1,∴a,b是方程x2﹣(S△+1)x+2S△=0的两个根.∵a,b是正实数,∴△≥0,即[﹣(S△+1)]2﹣4×2S△≥0,﹣6S△+1≥0.解得S△或S△≤3﹣2,S△≤3﹣2不合题意舍去.∴S△ABC的最小值是.16.【分析】(1)根据作图可得,四边形QCSl2,I1MCN均为正方形,设⊙I2的半径为R,得AQ=AP=3﹣R,CS=CQ=R,再根据切线长定理即可求出⊙I2的半径;(2)根据∠ACB=90°,AC=3,BC=4,可得AB=5,再根据I1为△ABC内切圆的圆心,可求出内切圆的半径,根据勾股定理即可求出线段I1I2的长.【解答】解:(1)如图,过点I2作I2Q⊥AC于点Q,连接I2S,过点I1作I1M⊥BC于点M,I1N⊥AC于点N,交I2S于点H,可得四边形QCSl2,I1MCN均为正方形,I1HSM为矩形,设⊙I2的半径为R,则AQ=AP=3﹣R,CS=CQ=R,又因为BP=BS,所以5+3﹣R=4+R,解得R=2.(2)∵∠ACB=90°,AC=3,BC=4,∴AB==5,∵I1为△ABC内切圆的圆心,∴I1M=I1N=,∴I1H=3,∴I1l2==.17.【分析】(1)由切线长定理可以推出结论.(2)连接AE、BE.根据射影定理可得DE2=AD•BD,将(1)中得出的AD与BD表达式代入上式并整理,其结果就是△ABC的面积,于是结论得证.【解答】解:(1)如图,设圆I与AC切于点M,与BC切于点N,由切线长定理可知:AD=AM,CM=CN,BN=BD,∴AD+AM=AB+BC+CA﹣CM﹣CN﹣BN﹣BD=a+b+c﹣2a=b+c﹣a,∴AD=,∴BD=.(2)连接AE、BE.∵AB是直径,∴∠AEB=∠ACB=90°,∴c2=a2+b2,∴四边形DEFG是正方形,∴ED⊥AB,由射影定理可知:DE2=AD•BD=×=ab.∴正方形DEFG的面积和△ABC的面积相等.18.【分析】延长AB,FE交于T,根据相似三角形的性质得到,求得ET=EF,根据相似三角形的性质得到TE•EF=CE•AE,求得EF=ET=6,连接BG,CG,根据射影定理即可得到结论.【解答】解:延长AB,FE交于T,∵AD∥FT,∴△ABP∽△TBE,△PBD∽△EBF,∴,∵AP=DP,∴ET=EF,∵∠BAC=90°,∴∠TAE=90°,∵EF⊥BC,∴∠CFE=∠TAE=90°,∵∠AET=∠CEF,∴△AET∽△CEF,∴=,∠T=∠C,∴TE•EF=CE•AE,∴EF=ET=6,∵∠BFT=∠CFE=90°,∴△BFT∽△EFC,∴=,∴BF•FC=EF•TF=6×12=72,连接BG,CG,∴FG2=BF•CF=72,∴FG=6,∴EG=6﹣6.19.【分析】(1)根据垂径定理可以证明∠BOD=∠A,可得AC∥OE,再根据AC=OE,可得四边形AECO是平行四边形,进而可得CE∥AB,CE=AB;(2)根据AC∥OE,CE∥AO,可得=,=,即可得=,得HE2=HG•HF,根据HG=x,GF=y,HE=5,代入即可得y与x的函数解析式.【解答】解:(1)CE∥AB,CE=AB,理由如下:∵点D是劣弧的中点,∴=,∴∠COD=∠BOD=BOC,∵∠A=BOC,∴∠BOD=∠A,∴AC∥OE,∵AC=OE,∴四边形AECO是平行四边形,∴CE∥AO,CE=AO,∵AO=AB,∴CE=AB,∴CE∥AB,CE=AB.(2)∵AC∥OE,CE∥AO,∴=,=,∴=,即HE2=HG•HF,∵HG=x,GF=y,HE=5,∴52=x(x+y),∴y=.∴y与x的函数解析式为y=.20.【分析】设BC=a,BC边上的高为h,内切圆半径为r.则S△ABC=pr,从而得出MN 是p的二次函数,再求最大值.【解答】解:设BC=a,BC边上的高为h,内切圆半径为r.∵△AMN∽△ABC,∴,MN=a(1),∵S△ABC=ar+br+cr=(a+b+c)r=•2pr=pr,∴r==,∴MN=a(1﹣)=(1﹣)≤p•=,当且仅当,即a=时,取等号,∴MN的最大值为.21.【分析】(1)根据点A是的中点,得到∠AMN=∠ANM,求得∠ABN=∠ANP,根据三角形的文件的性质即可得到结论;(2)根据全等三角形的性质得到,求得AN=2AP,得到BN=2NP,同理,BM=2MP,于是得到结论.【解答】解:(1)证明:∵点A是的中点,∴∠AMN=∠ANM,∵∠AMN=∠ABN,∴∠ABN=∠ANP,∴∠APN=∠ABN+∠PNB=∠ANM+∠PNB=∠ANB;(2)∵∠ABN=∠ANP,∠BAN=∠NAP,∴△ABN∽△ANP,∴,∵AB=4AP,∴AN=2AP,∴=2,∴BN=2NP,同理,BM=2MP,∴BM+BN=2MN,∴=2.22.【分析】(Ⅰ)连接BH,根据圆周角定理得到∠AHB=90°,根据三角函数的定义得到∠ABH=30°,于是得到∠HKA=∠ABH=30°;(Ⅱ)根据三角形的内角和得到∠BAH=60°,根据直角三角形的性质健康得到结论;(Ⅲ)连接OH,则△AOH是等边三角形,求得AO=AH=2,∠AOH=60°,过H作HE⊥AO于E,则HE=,根据三角形和扇形的面积公式即可得到结论;(Ⅳ)过O作平行于AK的直线交⊙O于MN,过O作OP⊥AK于Q交⊙O于P,解直角三角形即可得到结论.【解答】解:(Ⅰ)连接BH,∵AB为⊙O的直径,∴∠AHB=90°,∵AB=4,AH=2,∴sin∠ABH===,∴∠ABH=30°,∴∠HKA=∠ABH=30°;(Ⅱ)∵∠AHB=90°,∠ABH=30°,∴∠BAH=60°,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC=2AB=8,∴CH=AC﹣AH=6;(Ⅲ)连接OH,则△AOH是等边三角形,∴AO=AH=2,∠AOH=60°,过H作HE⊥AO于E,则HE=,∵AC=8,CD=AB=4,∴AD=4,∴图中阴影部分的面积=×44﹣(﹣×2×)=9﹣π;(Ⅳ)过O作平行于AK的直线交⊙O于MN,过O作OP⊥AK于Q交⊙O于P,∵⊙O的半径=2,则PQ=OQ=1,∵OA=2,∴AQ=,∴AK=2AQ=2,∴m=2.23.【分析】(1)连接AD,由圆周角定理得出∠ADC=90°,证明△ECD∽△BCE,即可得出∠BEC=∠EDC;(2)证出BD=AD,得出AD+DC=14,由勾股定理得出AD2+DC2=AC2,即(14﹣DC)2+DC2=102,解得DC=8或DC=6,由题意得出DC=6,AD=8,由相似三角形的性质得出CE:BC=CD:CE,即可得出答案.【解答】(1)证明:连接AD,∵AC为⊙O的直径,∴∠ADC=90°,∴∠ADB=90°,∵BH⊥AC,∴∠BGC=90°,∵∠DAC+∠ACD=∠GBC+∠ACD=90°,∴∠DAC=∠GBC,又∵∠DAC=∠DEC,∴∠EBC=∠DEC,∵∠ECD=∠BCE,∴△ECD∽△BCE,∴∠BEC=∠EDC;(2)解:由(1)得:∠EBC=∠DEC,∵∠ABG+∠DEC=45°,∴∠ABC=45°,∠BAD=45°,∴△ABD是等腰直角三角形,∴BD=AD,∴AD+DC=BD+DC=BC=14,∵∠ADC=90°,AC=10,∴AD2+DC2=AC2,即(14﹣DC)2+DC2=102,解得:DC=8或DC=6,∵∠DAC=∠GBC<45°,∴AD>DC,∴DC=6,AD=8,由(1)得:△ECD∽△BCE,∴CE:BC=CD:CE,∴CE2=CD×BC=6×14=84,∴CE=2.24.【分析】(1)根据在同圆中,圆周角是同弧所对的圆心角的一半可得∠ATB==60°,由弦切角等于同弧所对的圆周角可得∠BTP=∠TAP,由角平分线的定义和三角形外角的性质可得∠TCD=∠CDT==60°,根据有三个角相等的三角形是等边三角形可得结论;(2)设CT=DT=x,证明△PCT∽△PDB和△ACP∽△TDP列比例式可得结论.【解答】(1)证明:∵∠AOB=120°,∴∠ATB==60°,∵PT切⊙O于T,∴∠BTP=∠TAP,∵PC平分∠APT,∴∠APC=∠CPT,∵∠TCD=∠TAP+∠APC,∠CDT=∠BTP+∠CPT,∴∠TCD=∠CDT==60°,∴△CDT为等边三角形;(2)解:设CT=DT=x,∵∠TCD=∠CDT=∠BDP,∠BPD=∠CPT,∴△PCT∽△PDB,∴,∵∠DTP=∠P AC,∠APC=∠DPT,∴△ACP∽△TDP,∴,∴,即,∴x2=4,∴x=±2,∵x>0,∴x=2,∴,PC=4.25.【分析】(1)连接DN,根据切线的性质得到∠BCD=∠BDN,根据角平分线的定义得到∠ACD=∠BCD,等量代换得到∠MND=∠BDN,于是得到MN∥AB;(2)根据相似三角形的性质得到,根据三角形角平分线定理得到=,根据射影定理即可得到结论.【解答】(1)证明:连接DN,∵AB是⊙O的切线,∴∠BCD=∠BDN,∵CD为∠ACB的平分线,∴∠ACD=∠BCD,∵∠ACD=∠MND,∴∠MND=∠BDN,∴MN∥AB;(2)解:∵MN∥AB,∴△CMN∽△CAB,∴,∵CD为∠ACB的平分线,∴=,∴=,∴AD=6,∵AD2=AC•AM,∴62=12AM,∴AM=3,∴CM=9,∴=,∴MN=.26.【分析】(1)证AE是⊙O的切线,即证AB⊥AE即可;根据切割线定理,可将DE的长求出,再由△ACE∽△BAC可将AB的长求出;(2)设BE与PQ交于G,AB与PQ交于F,根据勾股定理得到BE==,根据折叠的性质得到BG⊥PQ,BG=BE=,根据相似三角形的性质得到BF=,求得OF=﹣=,过O作OH⊥于H,由相似三角形的性质得到OH=,连接OQ,于是得到结论.【解答】解:(1)连接AC,∵AB∥CD且AE⊥CD,∴AB⊥AE,∠ECA=∠BAC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠BAC=∠BAC+∠EAC=90°,∴∠B=∠EAC,∵∠ADE=∠B,∴∠EAC=∠ADE,∵∠E=∠AEC,∴△ACE∽△DAE,∴=,∴AE2=ED•EC,设DE=x,则22=x(x+3),解得:x1=1,x2=﹣4(舍去),即:DE=1,在Rt△ACE中,AC2=AE2+CE2,∴AC2=20,∵∠ACB=∠E,∠CAE=∠B,∴△ACE∽△BAC,∴=∴AB=5;(2)设BE与PQ交于G,AB与PQ交于F,∵AE=2,AB=5,∴BE==,∵翻折使点B与E重合,∴BG⊥PQ,BG=BE=,∵∠BGF=∠EAB=90°,∠GBF=∠ABE,∴△BGF∽△BAE,∴=,∴=,∴BF=,∴OF=﹣=,过O作OH⊥于H,∴OH∥BG,PQ=2HQ,∴△OFH∽△BFG,∴=,∴=,∴OH=,连接OQ,∴HQ==,∴PQ=2HQ=,∴△BPQ的面积=×=.27.【分析】证明Rt△AEP∽Rt△ABC和Rt△AED∽Rt△OBC,然后利用其对应边成比例即可得出结论.【解答】证明:∵AB是⊙O的直径,BC是⊙O的切线,∴AB⊥BC.∴DE∥BC,∴Rt△AEP∽Rt△ABC,∴,又∵AD∥OC,∴∠DAE=∠COB,∴Rt△AED∽Rt△OBC.∴,∴ED=2EP.∴EP=PD.28.【分析】(1)延长FD到G,使DG=BE,连接AG,证△GDA≌△EBA,△GAF≌△EAF,根据全等三角形的性质得出GD+DF=BE+DF=EF进而求出即可;(2)首先令BE=a,DF=b,则EF=a+b,r==1﹣(a+b),进而利用勾股定理得出(a+b)2+(a+b)﹣1≥0,进而求出即可.【解答】(1)证明:延长FD到G,使DG=BE,连接AG,∵在△GDA和△EBA中,,∴△GDA≌△EBA,∴AG=AE,∠GAD=∠EAB,故∠GAF=45°,在△GAF和△EAF中,∵,∴△GAF≌△EAF,∴GF=EF,即GD+DF=BE+DF=EF;(2)解:令BE=a,DF=b,则EF=a+b,r==1﹣(a+b),∵(1﹣a)2+(1﹣b)2=(a+b)2,整理得1﹣(a+b)=ab,而ab≤(a+b)2,(a+b)2+(a+b)﹣1≥0,解得:a+b≥﹣2+2或a+b≤﹣2﹣2(舍去),r=1﹣(a+b)≤1﹣(﹣2+2)=3﹣2,当且仅当a=b=﹣1时,等号成立.29.【分析】首先在MA上截取ME=MC,连接BE,由BM⊥AC,根据垂直平分线的性质,即可得到BE=BC,得到∠BEC=∠BCE;再由AB=BD,得到∠ADB=∠BAD,而∠ADB =∠BCE,则∠BEC=∠BAD,根据圆内接四边形的性质得∠BCD+∠BAD=180°,易得∠BEA=∠BCD,从而可证出△ABE≌△DBC,得到AE=CD,即有AM=DC+CM.【解答】证明:在MA上截取ME=MC,连接BE,∵BM⊥AC,∴BE=BC,∴∠BEC=∠BCE,∵AB=BD,∴=,∴∠ADB=∠BAD,而∠ADB=∠BCE,∴∠BCE=∠BAD,又∵∠BCD+∠BAD=180°,∠BEA+∠BCE=180°,∴∠BEA=∠BCD,∵∠BAE=∠BDC,∴△ABE≌△DBC,∴AE=CD,∴AM=AE+EM=DC+CM.30.【分析】(1)根据∠ABC=40°,∠C=80°,利用三角形内心定义和同弧所对圆周角相等即可求∠CBD的度数;(2)理解BE,根据三角形内心定义和同弧所对圆周角相等∠DEB=∠DBE,从而依据等角对等边即可证明DB=DE;(3)利用已知AB=6,AC=4,和角平分线性质可得==,由BC=5,可得BF和FC的值,再证明△BDF∽△ACF和△DBF∽△DAB,再利用相似三角形的性质得到关于BD的方程,即可求DE的长.【解答】解:(1)∵∠ABC=40°,∠C=80°,∴∠BAC=180°﹣40°﹣80°=60°,∵点E是△ABC的内心,∴∠CAD=∠BAD=BAC=30°,∴∠CBD=∠CAD=30°.答:∠CBD的度数为30°;(2)证明:如图,连接BE,∴∠1=∠2,∠3=∠4,∵∠2=∠6,∴∠1=∠6,∵∠5=∠1+∠3,∠DBE=∠6+∠4=∠1+∠3,∴∠5=∠DBE,∴DB=DE;(3)∵∠1=∠2,AB=6,AC=4,BC=5,∴==,∴BF=3,CF=2,∵∠6=∠2,∠D=∠C,∴△BDF∽△ACF,∴===2,=,∴DF=BD,DF•AF=BF•CF=6,∵∠1=∠2=∠6,∠BDF=∠ADB,∴△DBF∽△DAB,∴=,∴BD2=DF•DA=DF(AF+DF)=DF•AF+DF2=6+(BD)2,解得BD=2,∴DE=BD=2.答:DE的长为2.31.【分析】(1)连接OE,AE,根据切线的性质与判定即可求出答案.(2)易证△CAE∽△ABE,所以AE2=CE•BE,求出AE=,根据锐角三角函数的定义即可求出答案.【解答】解:(1)连接OE,AE,∵AE=DE,OA=OE,∴∠DAE=∠DEA,∠OAE=∠OEA,∵AC是⊙O的切线,∴∠BAC=90°,∴∠DAE+∠OAE=∠DEA+∠OEA=90°,∵OE是⊙O的半径,∴DE是⊙O的切线.(2)∵AB是⊙O的直径,∴∠AEB=90°,∵∠C+∠CAE=∠CAE+∠BAE=90°,∴∠C=∠BAE,∴△CAE∽△ABE,∴AE2=CE•BE,∴AE2=1×3,∴AE=,在Rt△ACE中,∴tan∠ACE==,∴∠ACE=60°.32.【分析】(1)求出OD∥AC,求出OD⊥BC,根据切线的判定得出即可;(2)根据勾股定理得出方程,求出方程的解即可.【解答】解:(1)线BC与⊙O的位置关系是相切,理由是:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD为半径,∴线BC与⊙O的位置关系是相切;(2)设⊙O的半径为R,则OD=OF=R,在Rt△BDO中,由勾股定理得:OB2=BD2+OD2,即(R+2)2=(2)2+R2,解得:R=4,即⊙O的半径是4.33.【分析】(1)如图①中,延长DE交⊙O于G,连接AG.想办法证明DE=EG,BC=DG即可.(2)如图②中,作FR⊥AB于R,OS⊥AD于S.首先证明BF=BO,利用相似三角形的性质证明AC=2FR=2CF,由tan∠F AR=tan∠F AC=,设SO=t,AS=2t,SF=SO=t,利用勾股定理求出t即可解决问题.【解答】(1)证明:如图①中,延长DE交⊙O于G,连接AG.∵AB⊥DG,AB是直径,∴=,DE=EG,∵AD平分∠CAB,∴∠CAD=∠DAB,∴=,∴=,∴BC=DG=2DE.(2)解:如图②中,作FR⊥AB于R,OS⊥AD于S.∵AD平分∠CAB,FC⊥AC,FR⊥AB,∴∠CAD=∠BAD=x,FC=FR,∴∠FBO=90°﹣2x,∵∠AFO=45°,∴∠FOB=45°+x,∴∠OFB=180°﹣(90°﹣2x)﹣(45°+x)=45°+x,∴∠FOB=∠OFB∴BF=BO=OA,∵∠FRB=∠ACB=90°,∠FBR=∠ABC,∴△BFR∽△BAC,∴==,∴AC=2FR=2FC,∴tan∠F AR=tan∠F AC=,设SO=t,AS=2t,SF=SO=t,则t2+4t2=4,∵t>0,∴t=,∴AF=3t=,设CF=m,则AC=2m,则有5m2=,∵m>0,∴m=,∴AC=2m=.34.【分析】(1)如图,连接OE,根据切线的性质得到OE⊥CE.于是得到∠2+∠3=90°,根据等腰三角形的性质得到∠3=∠4.于是得到∠1=∠2,根据等腰三角形的性质即可得到结论;(2)解直角三角形得到BC=CE=4,设⊙O的半径为r,则OD=OE=r,OC=r+2,根据勾股定理列方程即可得到结论.【解答】(1)证明:如图,连接OE,∵∠ACB=90°,∴∠1+∠5=90°,∵CE是⊙O的切线,∴OE⊥CE,∴∠2+∠3=90°,∵OE=OD,∴∠3=∠4.又∵∠4=∠5,∴∠3=∠5,∴∠1=∠2,∴CE=BC;(2)解:在Rt△BCD中,∠DCB=90°,CD=2,BD=,∴BC=CE=4,设⊙O的半径为r,则OD=OE=r,OC=r+2,在Rt△OEC中,∠OEC=90°,∴OE2+CE2=OC2,∴r2+42=(r+2)2,解得r=3,∴⊙O的半径为3.35.【分析】(1)由切线的性质可得∠OAP=90°,由等腰三角形的性质可得∠OAB+∠P AB =∠OBA+∠PBA=∠P AO=∠PBO=90°,可得结论;(2)根据已知条件得到△APB是等边三角形,求得∠P AB=60°,AB=P A=6,得到∠BOC=60°,求得OB=6,连接OP,推出OP垂直平分AB,得到PO∥BC,根据扇形的面积公式即可得到结论.【解答】证明:(1)连接OB,BC,设AB与OP交于点K,∵P A是⊙O的切线,∴∠OAP=90°,∵P A=PB,∴∠PBA=∠P AB,∵OA=OB,∴∠OAB=∠OBA,∴∠OAB+∠P AB=∠OBA+∠PBA,∴∠P AO=∠PBO=90°,且OB是半径,∴PB是⊙O的切线;(2)∵P A=PB,∠APB=60°,∴△APB是等边三角形,∴∠P AB=60°,AB=P A=6,∴∠CAB=30°,∴∠BOC=60°,∴∠ABC=90°,∴AC=2BC=2×AB=12,∴OB=6,连接OP,∵OA=OB,AP=BP,∴OP垂直平分AB,∴PO∥BC,∴S△OBC=S△PBC,∴S阴影=S扇形COB==6π.36.【分析】(1)连接OD,作OG⊥AC于点G,推出∠ODB=∠C;然后根据DF⊥AC,∠DFC=90°,推出∠ODF=∠DFC=90°,即可推出DF是⊙O的切线;(2)连接DE,证∠DEC=∠B,由∠B=∠C,得出∠C=∠DEC,则DE=DC,由等腰三角形的性质得出EF=FC即可;(3)连接OE,求出∠A=45°,由等腰三角形的性质得出∠OEA=45°,则∠AOE=90°,由扇形面积公式和三角形面积公式即可得出答案.【解答】(1)解:DF与⊙O相切,理由如下:连接OD,如图1所示:∵OB=OD,∴∠ODB=∠B,又∵AB=AC,∴∠C=∠B,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∵点D在⊙O上,(2)证明:连接DE,如图2所示:∵∠DEC+∠AED=180°,∠B+∠AED=180°,∴∠DEC=∠B,又∵∠B=∠C,∴∠C=∠DEC,∴DE=DC,又∵DF⊥AC,∴EF=FC,即点F为CE的中点;(3)解:连接OE,如图3所示:∵∠C=67.5°,AB=AC,∴∠B=∠C=67.5°,∴∠A=45°,又∵OA=OE=2,∴∠OEA=45°,∴∠AOE=90°,∴阴影部分的面积=﹣×2×2=π﹣2.37.【分析】(1)根据等腰三角形的性质和圆内接四边形的性质即可得到结论;(2)根据等腰三角形的性质和三角形的内角和即可得到结论;(3)过A作AH⊥BC于H,根据等腰三角形的性质得到∠BAH=∠CAH=CAB,CH=BH,过C作CG⊥AD交AD的延长线于G,根据全等三角形的性质得到AG=AH,CG=CH,根据相似三角形的性质得到=,设BH=k,AH=2k,根据勾股定理即可得到结论.【解答】(1)解:∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∵四边形ABCD是⊙O的内接四边形,∴∠ADC=180°﹣∠BAC=110°,故答案为:110;(2)证明:∵BD⊥AC,∴∠AEB=∠BEC=90°,∴∠ACB=90°﹣∠CBD,∵AB=AC,∴∠ABC=∠ACB=90°﹣∠CBD,∴∠BAC=180°﹣2∠ABC=2∠CBD,∵∠DAC=∠CBD,∴∠BAC=2∠DAC;(3)解:过A作AH⊥BC于H,∵AB=AC,∴∠BAH=∠CAH=CAB,CH=BH,∵∠BAC=2∠DAC,∴∠CAG=∠CAH,过C作CG⊥AD交AD的延长线于G,∴∠G=∠AHC=90°,∵AC=AC,∴△AGC≌△AHC(AAS),∴AG=AH,CG=CH,∵∠CDG=∠ABC,∴△CDG∽△ABH,∴==,∴=,设BH=k,AH=2k,∴AB==k=10,∴k=2,∴BC=2k=4.38.【分析】(1)证明∠OCD+∠DCB=90°,得出∠OCB=90°,则结论得证;(2)证明△CDB∽△ACB,得出,设BC=x,则AB=2x,DB=2x﹣6,由BC2=AB•DB得出方程,解方程则可得出答案.【解答】解:(1)证明:∵CE⊥AB,∴∠CED=90°,∴∠ECD+∠CDE=90°,∵OC=DO,∴∠ODC=∠OCD,∵CD平分∠BCE,∴∠ECD=∠DCB,∴∠OCD+∠DCB=90°,∴∠OCB=90°,∴直线BC是⊙O的切线;(2)∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD+∠CDA=90°,∵∠DCB+∠ODC=90°,∴∠DCB=∠CAD,∵∠CBD=∠ABC,∴△CDB∽△ACB,∴,∴BC2=AB•DB∵⊙O的半径为3,CD=2,∴AC===4,∴=,设BC=x,则AB=2x,DB=2x﹣6,∴x2=2,解得x=,∴BC=.39.【分析】(1)证明∠CDF+∠FDB=90°,即∠CDB=90°,则结论得证;(2)证明△ACD∽△CBD,求出CD=2,则答案可得出;(3)证明△PCF∽△PBC,得出,即PF=,可得出结论.【解答】(1)证明:∵∠ACB=90°,∴∠CEB+∠CBE=90°,∵∠ABC=∠EFD,∠EFD=∠FDB+∠FBD,∴∠EBC=∠FDB,∵∠CEB=∠CDF,∴∠CDF+∠FDB=90°,即∠CDB=90°,∴CD⊥AB,∴AB与⊙O相切;(2)解:∵∠ACD+∠A=90°,∠A+∠ABC=90°,∴∠ACD=∠ABC,∵∠ADC=∠BDC=90°,∴△ACD∽△CBD,∴,∴CD2=AD•BD=4×6=24,∴CD=2,∴⊙O的半径OC=,故答案为:.(3)解:∵CD为⊙O的直径,∴∠CFD=90°,∴∠DCF+∠CDF=90°,又∵∠CDB=90°,∴∠FDB+∠CDF=90°,∴∠FDB=∠DCF,∵∠EBC=∠FDB,∴∠EBC=∠DCF,∴△PCF∽△PBC,∴,∴,∴PB=2PC=4PF,又PB=PF+BF,∴4PF=PF+BF,即PF=,∵PC=2PF.∴PC=a.40.【分析】(1)根据圆周角定理得到∠ADB=90°,利用平行线的性质得到∠AFO=∠ADB =90°,然后根据垂径定理得到结论;(2)连接AC,如图,利用=得到∠CAD=∠ABC,再证明△ACE∽△BCA,利用相似比计算出AC=2,接着根据圆周角定理得到∠ACB=90°,然后利用勾股定理计算出AB,从而得到⊙O的半径;(3)先在Rt△DAB中计算出AD=8,再利用垂径定理得到AF=DF=4,则OF=3,所以CF=2,然后证明△ECF∽△EBD得到=,所以=,然后把DF=4代入计算即可得到DE的长.【解答】(1)证明:∵AB是圆的直径,∴∠ADB=90°,∵OC∥BD,∴∠AFO=∠ADB=90°,∴OC⊥AD∴=;(2)解:连接AC,如图,∵=,∴∠CAD=∠ABC,∵∠ECA=∠ACB,∴△ACE∽△BCA,∴AC2=CE•CB,即AC2=1×(1+3),∴AC=2,∵AB是圆的直径,∴∠ACB=90°,∴AB==2,∴⊙O的半径为;(3)解:在Rt△DAB中,AD==8,∵OC⊥AD,∴AF=DF=4,∵OF==3,∴CF=2,∵CF∥BD,∴△ECF∽△EBD,∴===,∴=∴DE=×4=3.。
2020-2021中考数学圆的综合的综合复习及答案解析
2020-2021中考数学圆的综合的综合复习及答案解析一、圆的综合1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题:(1)求证:CD 是⊙O 的切线;(2)若BC=4,CD=6,求平行四边形OABC 的面积.【答案】(1)证明见解析(2)24【解析】试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解.试题解析:(1)证明:连接OD ,∵OD=OA ,∴∠ODA=∠A ,∵四边形OABC 是平行四边形,∴OC ∥AB ,∴∠EOC=∠A ,∠COD=∠ODA ,∴∠EOC=∠DOC ,在△EOC 和△DOC 中,OE OD EOC DOC OC OC =⎧⎪∠=∠⎨⎪=⎩∴△EOC ≌△DOC (SAS ),∴∠ODC=∠OEC=90°,即OD ⊥DC ,∴CD 是⊙O 的切线;(2)由(1)知CD 是圆O 的切线,∴△CDO 为直角三角形,∵S △CDO =12CD•OD , 又∵OA=BC=OD=4,∴S△CDO=12×6×4=12,∴平行四边形OABC的面积S=2S△CDO=24.2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过»BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG =34,AH=33,求EM的值.【答案】(1)证明见解析;(2)证明见解析;(3)253.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出»»AD AC=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HCEM OE=,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴»»AD AC=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G=AHHC=34,∵AH=33,∴HC=43,在Rt△HOC中,∵OC=r,OH=r﹣33,HC=43,∴222(33)(43)r r-+=,∴r=253,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴AH HCEM OE=,∴33432536=,∴EM=253.点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.4.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.5.如图1,以边长为4的正方形纸片ABCD的边AB为直径作⊙O,交对角线AC于点E.(1)图1中,线段AE=;(2)如图2,在图1的基础上,以点A为端点作∠DAM=30°,交CD于点M,沿AM将四边形ABCM剪掉,使Rt△ADM绕点A逆时针旋转(如图3),设旋转角为α(0°<α<150°),在旋转过程中AD与⊙O交于点F.①当α=30°时,请求出线段AF的长;②当α=60°时,求出线段AF的长;判断此时DM与⊙O的位置关系,并说明理由;③当α=°时,DM与⊙O相切.【答案】(1)2(2)①2②2,相离③当α=90°时,DM与⊙O相切【解析】(1)连接BE,∵AC是正方形ABCD的对角线,∴∠BAC=45°,∴△AEB是等腰直角三角形,又∵AB=8,∴AE=4;(2)①连接OA、OF,由题意得,∠NAD=30°,∠DAM=30°,故可得∠OAM=30°,∠DAM=30°,则∠OAF=60°,又∵OA=OF,∴△OAF是等边三角形,∵OA=4,∴AF=OA=4;②连接B'F,此时∠NAD=60°,∵AB'=8,∠DAM=30°,∴AF=AB'cos∠DAM=8×=4;此时DM与⊙O的位置关系是相离;③∵AD=8,直径的长度相等,∴当DM与⊙O相切时,点D在⊙O上,故此时可得α=∠NAD=90°.点睛:此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含30°角的直角三角形进行计算,另外在解答最后一问时,关键是判断出点D的位置,有一定难度.6.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB, DF.(1)求证:DF是⊙O的切线;(2)若DB平分∠ADC,AB=52AD,∶DE=4∶1,求DE的长.【答案】(1)见解析5【解析】分析:(1)直接利用直角三角形的性质得出DF=CF=EF,再求出∠FDO=∠FCO=90°,得出答案即可;(2)首先得出AB=BC即可得出它们的长,再利用△ADC~△ACE,得出AC2=AD•AE,进而得出答案.详解:(1)连接OD.∵OD=CD,∴∠ODC=∠OCD.∵AC为⊙O的直径,∴∠ADC=∠EDC=90°.∵点F为CE的中点,∴DF=CF=EF,∴∠FDC=∠FCD,∴∠FDO=∠FCO.又∵AC⊥CE,∴∠FDO=∠FCO=90°,∴DF是⊙O的切线.(2)∵AC为⊙O的直径,∴∠ADC=∠ABC=90°.∵DB平分∠ADC,∴∠ADB=∠CDB,∴¶AB=¶BC,∴BC=AB2.在Rt△ABC中,AC2=AB2+BC2=100.又∵AC⊥CE,∴∠ACE=90°,∴△ADC~△ACE,∴ACAD =AEAC,∴AC2=AD•AE.设DE为x,由AD:DE=4:1,∴AD=4x,AE=5x,∴100=4x•5x,∴x=5,∴DE=5.点睛:本题主要考查了切线的判定以及相似三角形的判定与性质,正确得出AC2=AD•AE是解题的关键.7.如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线;(2)若AE=4,tan∠ACD=3,求FC的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案;(2)根据正切的性质求出EC的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB是⊙O的直径,∴∠ACB=90°,∴∠OCB+∠ACO=90°.∵OB=OC,∴∠B=∠OCB.又∵∠FCA=∠B,∴∠FCA=∠OCB,∴∠FCA+∠ACO=90°,即∠FCO=90°,∴FC⊥OC,∴FC是⊙O切线.(2)解:∵AB⊥CD,∴∠AEC=90°,∴EC=AE43 tan ACE3∠==设OA=OC=r,则OE=OA-AE=r-4.在Rt△OEC中,OC2=OE2+CE2,即r2=(r-4)2+32,解得r=8.∴OE =r -4=4=AE.∵CE ⊥OA ,∴CA =CO =8,∴△AOC 是等边三角形,∴∠FOC =60°,∴∠F =30°.在Rt △FOC 中,∵∠OCF =90°,OC =8,∠F =30°,∴OF =2OC =16,∴FC =22OF OC 83-=. 点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC 的长是解题关键.8.阅读下列材料:如图1,⊙O 1和⊙O 2外切于点C ,AB 是⊙O 1和⊙O 2外公切线,A 、B 为切点, 求证:AC ⊥BC证明:过点C 作⊙O 1和⊙O 2的内公切线交AB 于D ,∵DA 、DC 是⊙O 1的切线∴DA=DC .∴∠DAC=∠DCA .同理∠DCB=∠DBC .又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,∴∠DCA+∠DCB=90°.即AC ⊥BC .根据上述材料,解答下列问题:(1)在以上的证明过程中使用了哪些定理?请写出两个定理的名称或内容;(2)以AB 所在直线为x 轴,过点C 且垂直于AB 的直线为y 轴建立直角坐标系(如图2),已知A 、B 两点的坐标为(﹣4,0),(1,0),求经过A 、B 、C 三点的抛物线y=ax 2+bx+c 的函数解析式;(3)根据(2)中所确定的抛物线,试判断这条抛物线的顶点是否落在两圆的连心O 1O 2上,并说明理由.【答案】(1)见解析;(2)213222y x x =+- ;(3)见解析 【解析】 试题分析:(1)由切线长相等可知用了切线长定理;由三角形的内角和是180°,可知用了三角形内角和定理;(2)先根据勾股定理求出C 点坐标,再用待定系数法即可求出经过、、A B C 三点的抛物线的函数解析式;(3)过C 作两圆的公切线,交AB 于点D ,由切线长定理可求出D 点坐标,根据,C D 两点的坐标可求出过,C D 两点直线的解析式,根据过一点且互相垂直的两条直线解析式的关系可求出过两圆圆心的直线解析式,再把抛物线的顶点坐标代入直线的解析式看是否适合即可.试题解析:(1)DA 、DC 是1O e 的切线,∴DA =DC .应用的是切线长定理;180DAC DCA DCB DBC ∠+∠+∠+∠=o ,应用的是三角形内角和定理.(2)设C 点坐标为(0,y ),则222AB AC BC =+, 即()()222224141y y --=-+++,即225172y =+,解得y =2(舍去)或y =−2.故C 点坐标为(0,−2),设经过、、A B C 三点的抛物线的函数解析式为2y ax bx c ,=++ 则164002,a b c a b c c -+=⎧⎪++=⎨⎪=-⎩ 解得12322a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩, 故所求二次函数的解析式为213 2.22y x x =+- (3)过C 作两圆的公切线CD 交AB 于D ,则AD =BD =CD ,由A (−4,0),B (1,0)可知3(,0)2D -, 设过CD 两点的直线为y =kx +b ,则 3022k b b ⎧-+=⎪⎨⎪=-⎩, 解得432k b ⎧=-⎪⎨⎪=-⎩,故此一次函数的解析式为423y x =--, ∵过12,O O 的直线必过C 点且与直线423y x =--垂直, 故过12,O O 的直线的解析式为324y x =-, 由(2)中所求抛物线的解析式可知抛物线的顶点坐标为325(,)28--,代入直线解析式得33252,428⎛⎫⨯--=- ⎪⎝⎭ 故这条抛物线的顶点落在两圆的连心12O O 上.9.如图,△ABC 是⊙O 的内接三角形,点D ,E 在⊙O 上,连接AE ,DE ,CD ,BE ,CE ,∠EAC+∠BAE=180°,»»AB CD =.(1)判断BE 与CE 之间的数量关系,并说明理由;(2)求证:△ABE ≌△DCE ;(3)若∠EAC=60°,BC=8,求⊙O 的半径.【答案】(1)BE=CE ,理由见解析;(2)证明见解析;(383. 【解析】 分析:(1)由A 、B 、C 、E 四点共圆的性质得:∠BCE+∠BAE=180°,则∠BCE=∠EAC ,所以»»BECE =,则弦相等;(2)根据SSS 证明△ABE ≌△DCE ; (3)作BC 和BE 两弦的弦心距,证明Rt △GBO ≌Rt △HBO (HL ),则∠OBH=30°,设OH=x ,则OB=2x ,根据勾股定理列方程求出x 的值,可得半径的长.本题解析:(1)解:BE=CE ,理由:∵∠EAC+∠BAE=180°,∠BCE+∠BAE=180°,∴∠BCE=∠EAC ,∴»»BECE =, ∴BE=CE ;(2)证明:∵»»AB CD =,∴AB=CD ,∵»»BE CE =,»»AE ED=,∴AE=ED , 由(1)得:BE=CE ,在△ABE 和△DCE 中,∵AE DE AB CD BE CE=⎧⎪=⎨⎪=⎩,∴△ABE≌△DCE(SSS);(3)解:如图,∵过O作OG⊥BE于G,OH⊥BC于H,∴BH=12BC=12×8=4,BG=12BE,∵BE=CE,∠EBC=∠EAC=60°,∴△BEC是等边三角形,∴BE=BC,∴BH=BG,∵OB=OB,∴Rt△GBO≌Rt△HBO(HL),∴∠OBH=∠GBO=12∠EBC=30°,设OH=x,则OB=2x,由勾股定理得:(2x)2=x2+42,x=43,∴OB=2x=833,∴⊙O的半径为833.点睛:本题是圆的综合题,考查了四点共圆的性质、三角形全等的性质和判定、勾股定理、直角三角形30°的性质,难度适中,第一问还可以利用三角形全等得出对应边相等的结论;第三问作辅助线,利用勾股定理列方程是关键.10.如图1,是用量角器一个角的操作示意图,量角器的读数从M点开始(即M点的读数为0),如图2,把这个量角器与一块30°(∠CAB=30°)角的三角板拼在一起,三角板的斜边AB与量角器所在圆的直径MN重合,现有射线C绕点C从CA开始沿顺时针方向以每秒2°的速度旋转到与CB,在旋转过程中,射线CP与量角器的半圆弧交于E.连接BE.(1)当射线CP经过AB的中点时,点E处的读数是,此时△BCE的形状是;(2)设旋转x秒后,点E处的读数为y,求y与x的函数关系式;(3)当CP旋转多少秒时,△BCE是等腰三角形?【答案】(1)60°,直角三角形;(2)y=4x(0≤x≤45);(3)7.5秒或30秒【解析】【分析】(1)根据圆周角定理即可解决问题;(2)如图2﹣2中,由题意∠ACE=2x,∠AOE=y,根据圆周角定理可知∠AOE=2∠ACE,可得y=2x(0≤x≤45);(3)分两种情形分别讨论求解即可;【详解】解:(1)如图2﹣1中,∵∠ACB=90°,OA=OB,∴OA=OB=OC,∴∠OCA=∠OAC=30°,∴∠AOE=60°,∴点E处的读数是60°,∵∠E=∠BAC=30°,OE=OB,∴∠OBE=∠E=30°,∴∠EBC=∠OBE+∠ABC=90°,∴△EBC是直角三角形;故答案为60°,直角三角形;(2)如图2﹣2中,∵∠ACE=2x,∠AOE=y,∵∠AOE=2∠ACE,∴y=4x(0≤x≤45).(3)①如图2﹣3中,当EB=EC时,EO垂直平分线段BC,∵AC⊥BC,∵EO∥AC,∴∠AOE=∠BAC=30°,∠AOE=15°,∴∠ECA=12∴x=7.5.②若2﹣4中,当BE=BC时,易知∠BEC =∠BAC =∠BCE =30°,∴∠OBE =∠OBC =60°,∵OE =OB ,∴△OBE 是等边三角形,∴∠BOE =60°,∴∠AOB =120°,∴∠ACE =12∠ACB =60°, ∴x =30,综上所述,当CP 旋转7.5秒或30秒时,△BCE 是等腰三角形;【点睛】本题考查几何变换综合题、创新题目、圆周角定理、等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.11.对于平面直角坐标系xoy 中的图形P ,Q ,给出如下定义:M 为图形P 上任意一点,N 为图形Q 上任意一点,如果M ,N 两点间的距离有最小值,那么称这个最小值为图形P ,Q 间的“非常距离”,记作d (P ,Q ).已知点A (4,0),B (0,4),连接AB .(1)d (点O ,AB )= ;(2)⊙O 半径为r ,若d (⊙O ,AB )=0,求r 的取值范围;(3)点C (-3,-2),连接AC ,BC ,⊙T 的圆心为T (t ,0),半径为2,d (⊙T ,△ABC ),且0<d <2,求t 的取值范围.【答案】(1)222)224r ≤≤;(3)25252t -<<-或6<r <8.【解析】【分析】(1)如下图所示,由题意得:过点O 作AB 的垂线,则垂线段即为所求;(2)如下图所示,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB ,交AB 于点E ,则:OB=2,2,即可求解;(3)分⊙T 在△ABC 左侧、⊙T 在△ABC 右侧两种情况,求解即可.【详解】(1)过点O 作OD ⊥AB 交AB 于点D ,根据“非常距离”的定义可知,d (点O ,AB )=OD=2AB =22442+=22; (2)如图,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB,则OE=22,OB=OA=4,∵⊙O 与线段AB 的“非常距离”为0,∴224r ≤≤;(3)当⊙T 在△ABC 左侧时,如图,当⊙T 与BC 相切时,d=0,2236+35,过点C 作CE ⊥y 轴,过点T 作TF ⊥BC,则△TFH ∽△BEC,∴TF TH BE BC=, 即2635,∴TH=5, ∵HO ∥CE,∴△BHO ∽△BEC,∴HO=2,此时T(-5-2,0);当d=2时,如图,同理可得,此时T (252--);∵0<d <2,∴25252t --<<--;当⊙T 在△ABC 右侧时,如图,当p=0时,t=6,当p=2时,t=8.∵0<d <2,∴6<r <8;综上,25252t -<<或6<r <8.【点睛】本题主要考查圆的综合问题,解题的关键是理解并掌握“非常距离”的定义与直线与圆的位置关系和分类讨论思想的运用.12.如图,在△ABC 中,AB =AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作FE ⊥AB 于点E ,交AC 的延长线于点F .(1)求证:EF 与⊙O 相切;(2)若AE =6,sin ∠CFD =35,求EB 的长.【答案】(1)见解析(2)32【解析】【分析】 ()1如图,欲证明EF 与O e 相切,只需证得OD EF ⊥.()2通过解直角AEF V 可以求得AF 10.=设O e 的半径为r ,由已知可得△FOD ∽△FAE ,继而得到OF OD AF AE =,即10r r 106-=,则易求15AB AC 2r 2===,所以153EB AB AE 622=-=-=. 【详解】(1)如图,连接OD ,OC OD =Q ,OCD ODC ∠∠∴=.AB AC =Q ,ACB B ∠∠∴=,ODC B ∠∠∴=,OD //AB ∴,ODF AEF ∠∠∴=,EF AB ⊥Q ,ODF AEF 90∠∠∴==o ,OD EF ∴⊥,OD Q 是O e 的半径,EF ∴与O e 相切;()2由()1知,OD//AB ,OD EF ⊥.在Rt AEF V 中,AE 3sin CFD AF 5∠==,AE 6=, 则AF 10=, OD //AB Q ,∴△FOD ∽△FAE ,OF OD AF AE∴=, 设O e 的半径为r ,10r r 106-∴=, 解得,15r 4=, 15AB AC 2r 2∴===, 153EB AB AE 622∴=-=-=. 【点睛】 本题考查了切线的判定、相似三角形的判定与性质、解直角三角形的应用等,正确添加辅助线、灵活应用相关知识是解题的关键.13.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQ k CQ+=,则称点A (或点B )是⊙C 的“K 相关依附点”,特别地,当点A 和点B 重合时,规定AQ=BQ ,2AQ k CQ =(或2BQ CQ ). 已知在平面直角坐标系xoy 中,Q(-1,0),C(1,0),⊙C 的半径为r .(1)如图1,当r =①若A 1(0,1)是⊙C 的“k 相关依附点”,求k 的值.②A 2,0)是否为⊙C 的“2相关依附点”.(2)若⊙C 上存在“k 相关依附点”点M ,①当r=1,直线QM 与⊙C 相切时,求k 的值.②当k =r 的取值范围.(3)若存在r 的值使得直线y b =+与⊙C 有公共点,且公共点时⊙C 的相关依附点”,直接写出b 的取值范围.【答案】(1)2.②是;(2)①3k =②r 的取值范围是12r <≤;(3)333b -<. 【解析】【分析】(1)①如图1中,连接AC 、1QA .首先证明1QA 是切线,根据2AQ k CQ =计算即可解决问题;②根据定义求出k 的值即可判断;(2)①如图,当1r =时,不妨设直线QM 与C e 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥,根据定义计算即可;②如图3中,若直线QM 与C e 不相切,设直线QM 与C e 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,可得()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=,2CQ =,推出2MQ NQ DQ k DQ CQ CQ +===,可得当3k =3DQ =221CD CQ DQ -=,假设C e 经过点Q ,此时2r =,因为点Q 早C e 外,推出r 的取值范围是12r <…; (3)如图4中,由(2)可知:当3k =12r <….当2r =时,C e 经过点(1,0)Q -或(3,0)E ,当直线3y x b =-+经过点Q 时,3b =3y x b =-+经过点E 时,33b =,即可推出满足条件的b 的取值范围为333b -<<.【详解】(1)①如图1中,连接AC 、1QA .由题意:1OC OQ OA ==,∴△1QA C 是直角三角形,190CA Q ∴∠=︒,即11CA QA ⊥,1QA ∴是C e 的切线,122222QA k QC ∴===. ②Q 2(12,0)A +在C e 上,2212122k -+++∴==,2A ∴是C e 的“2相关依附点”.故答案为:2,是; (2)①如图2,当1r =时,不妨设直线QM 与C e 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥.(1,0)Q -Q ,(1,0)C ,1r =,2CQ ∴=,1CM =,∴3MQ =,此时23MQ k CQ==; ②如图3中,若直线QM 与C e 不相切,设直线QM 与C e 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,()222MQ NQ MN NQ NQ ND NQ DQ ∴+=++=+=,2CQ =Q ,∴2MQ NQ DQ k DQ CQ CQ +===,∴当3k =时,3DQ =,此时221CD CQ DQ =-=,假设C e 经过点Q ,此时2r =,Q 点Q 早C e 外,r ∴的取值范围是12r <….(3)如图4中,由(2)可知:当3k =12r <….当2r =时,C e 经过点(1,0)Q -或(3,0)E ,当直线3y x b =-+经过点Q 时,3b =-,当直线3y x b =-+经过点E 时,33b =,∴满足条件的b 的取值范围为333b -<<.【点睛】 本题考查了一次函数综合题、圆的有关知识、勾股定理、切线的判定和性质、点A (或点)B 是C e 的“k 相关依附点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会考虑特殊位置解决问题,属于中考压轴题.14.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于C 点,AC 平分∠DAB . (1)求证:AD ⊥CD ;(2)若AD =2,AC=6,求⊙O 的半径R 的长.【答案】(1)证明见解析(2)32【解析】试题分析:(1)连接OC ,由题意得OC ⊥CD .又因为AC 平分∠DAB ,则∠1=∠2=12∠DAB .即可得出AD ∥OC ,则AD ⊥CD ; (2)连接BC ,则∠ACB =90°,可证明△ADC ∽△ACB .则2AD AC AC R =,从而求得R . 试题解析:(1)证明:连接OC ,∵直线CD 与⊙O 相切于C 点,AB 是⊙O 的直径,∴OC ⊥CD .又∵AC 平分∠DAB ,∴∠1=∠2=12∠DAB . 又∠COB =2∠1=∠DAB ,∴AD ∥OC ,∴AD ⊥CD .(2)连接BC ,则∠ACB =90°,在△ADC 和△ACB 中∵∠1=∠2,∠3=∠ACB =90°,∴△ADC ∽△ACB . ∴2AD AC AC R= ∴R =2322AC AD =15.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt △ABC 的内切圆与斜边AB 相切于点D ,AD=3,BD=4,求△ABC 的面积. 解:设△ABC 的内切圆分别与AC 、BC 相切于点E 、F ,CE 的长为x .根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x .根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x 2+7x=12.所以S △ABC =12AC•BC =12(x+3)(x+4) =12(x 2+7x+12) =12×(12+12) =12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;【解析】【分析】(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.【详解】设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn;(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=3x2+(m+n)x+mn]=3(3mn+mn).【点睛】本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.。