第14章一次函数
八年级数学上册第14章一次函数教材
第14章:一次函数复习变量:自变量:自己变化的量;在一个变化的过程中,我们称数值变化的量是自变量. 常量:有些量的数值是始终不变的量叫常量.函数值:当自变量确定一个值,被变量随之确定的一个值. 一次函数和正比例函数的概念1.概念: 若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,k ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数. ★判断一个等式是否是一次函数先要化简(3)当b=0,k ≠0时,y= kx 仍是一次函数.(正比例函数) (4)当b=0,k=0时,它不是一次函数.2. 函数的表示方法: 1)解析法,2)列表法,3)图象法. 一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b . 由于两点确定一条直线,描出适合关系式的两点,再连成直线,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb,0).画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正、负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上; ②当b <0时,直线与y 轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所经过的象限也不同;22正比例函数y=kx (k ≠0)的性质(1)正比例函数y=kx 的图象必经过原点;(2)当k >0时,图象经过第一、三象限,y 随x 的增大而增大; (3)当k <0时,图象经过第二、四象限,y 随x 的增大而减小.知识规律小结1.常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交;当b=0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-kb >0时,直线与x 轴正半轴相交;当b=0时,即-kb =0时,直线经过原点; 当k ,b 同号时,即-kb ﹤0时,直线与x 轴负半轴相交.③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b=0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b=0时,图象经过第二、四象限; 当k <O ,b <O 时,图象经过第二、三、四象限.2. 直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系: 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0) 当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . 3. 直线b1=k1x+b1与直线y2=k2x+b2(k1≠0 ,k2≠0)的位置关系. ①k1≠k2⇔y1与y2相交;②⎩⎨⎧=≠2121b b k k ⇔y1与y2相交于y 轴上同一点(0,b1)或(0,b2);3③⎩⎨⎧≠=2121,b b k k ⇔y1与y2平行; ④⎩⎨⎧==2121,b b k k ⇔y1与y2重合.14.1.1变量问题一:汽车以60千米/小时的速度匀速行驶,行驶里程为s 千米,行驶时间为t 小时. 1.请同学们根据题意填写下表:2.在以上这个过程中,变化的量是_____________.不变化的量是__________. 3.试用含t 的式子表示s: s=________,t 的取值范围是 _________ .这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x 张,票房收入y 元.• 1.请同学们根据题意填写下表:2.在以上这个过程中,变化的量是_____________.不变化的量是__________. 3.试用含x 的式子表示y: y=______ ,x 的取值范围是 .这个问题反映了票房收入_________随售票张数_________的变化过程.问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,•每1kg•重物使弹簧伸长0.5cm ,设重物质量为mkg ,受力后的弹簧长度为L cm. 1.请同学们根据题意填写下表:23.试用含m 的式子表示L: L=____________ ,m 的取值范围是 .这个问题反映了_________随_________的变化过程.小结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的,有些量的数值是始终不变的。
第十四章一次函数
第十四章一次函数14.1.1 变量教学目标(一)知识与技能1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.(二)过程与方法1.经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.2.逐步感知变量间的关系.(三)情感与价值观要求1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.教学重点1.认识变量、常量.2.用式子表示变量间关系.教学难点:用含有一个变量的式子表示另一个变量.教学方法:引导、探索法.教学过程Ⅰ.提出问题,创设情境情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.•行驶时间为t小时.2.在以上这个过程中,变化的量是________.变变化的量是__________.3.试用含t的式子表示s.通过本节课的学习,相信大家一定能够解决这些问题.Ⅱ.导入新课[师]我们首先来思考上面的几个问题,可以互相讨论一下,然后回答.[生]从题意中可以知道汽车是匀速行驶,那么它1小时行驶60千米,2小时行驶2×60千米,即120千米,3小时行驶3×60千米,即180千米,4小时行驶4×60•千米,即240千米,5小时行驶5×60千米,即300千米……因此行驶里程s千米与时间t小时之间有关系:s=60t.其中里程s与时间t是变化的量,速度60千米/小时是不变的量.[师]很好!谢谢你正确的阐述.这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量的是按照某种规律变化的,如上例中的时间t、•里程s,有些量的数值是始终不变的,如上例中的速度60千米/小时. [活动一]活动内容设计:1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,每1kg重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?设计意图:让学生熟练从不同事物的变化过程中寻找出变化量之间的变化规律,并逐步学会用含有一个变化量的式子表示另一个变化的量.教师活动:引导学生通过合理、正确的思维方法探索出变化规律.学生活动:在教师的启发引导下,经历尝试运算、猜想探究、归纳总结及验证等过程得到正确的结论.活动结论:1.早场电影票房收入:150×10=1500(元)日场电影票房收入:205×10=2050(元)晚场电影票房收入:310×10=3100(元)关系式:y=10x2.挂1kg重物时弹簧长度: 1×0.5+10=10.5(cm)挂2kg重物时弹簧长度:2×0.5+10=11(cm)挂3kg重物时弹簧长度:3×0.5+10=11.5(cm)关系式:L=0.5m+10[师]通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant).如上述两个过程中,售出票数x、票房收入y;重物质量m,弹簧长度L都是变量.而票价10元,弹簧原长10cm……都是常量.Ⅲ.随堂练习1.购买一些铅笔,单价0.2元/支,总价y元随铅笔支数x变化,•指出其中的常量与变量,并写出关系式.2.一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h变化关系式,并指出其中常量与变量.Ⅳ.课时小结本节课从现实问题出发,找出了寻求事物变化中变量之间变化规律的一般方法步骤.它对以后学习函数及建立函数关系式有很重要意义.1.确定事物变化中的变量与常量.2.尝试运算寻求变量间存在的规律.3.利用学过的有关知识公式确定关系区.Ⅴ.课后作业习题:14.1----1、2、3Ⅵ.活动与探究瓶子或罐头盒等物体常如下图那样堆放.试确定瓶子总数y与层数x之间的关系式.过程:要求变量间关系式,需首先知道两个变量间存在的规律是什么.不妨尝试堆放,找出规律,再寻求确定关系式的办法. 结论:从题意可知: 堆放1层,总数y=1 堆放2层,总数y=1+2 堆放3层,总数y=1+2+3… … 堆放x 层,总数y=1+2+3+…x 即y=12x (x+1)板书设计变量与函数(2)教学目标(一)知识与技能:理解函数的概念,能准确识别出函数关系中的自变量和函数 (二)过程与方法:会用变化的量描述事物(三)情感与价值观要求:会用运动的观点观察事物,分析事物 教学重点:函数的概念及相关计算 教学难点:认识函数、领会函数的意义 教学方法:引导、探究法 教学过程Ⅰ.提出问题,创设情境我们来回顾一下上节课所研究的每个问题中是否各有两个变化?同一问题中的变量之间有什么联系?也就是说当其中一个变量确定一个值时,另一个变量是否随之确定一个值呢? 这将是我们这节研究的内容. Ⅱ.导入新课首先回顾一下上节活动一中的两个问题.思考它们每个问题中是否有两个变量,变量间存在什么联系.活动一两个问题都有两个变量.问题(1)中,经计算可以发现:每当售票数量x 取定一个值时,票房收入y 就随之确定一个值.例如早场x=150,则y=1500;日场x=205,则y=2050;晚场x=310,则y=3100. 问题(2)中,通过试验可以看出:每当重物质量m 确定一个值时,弹簧长度L•就随之确定一个值.如果弹簧原长10cm ,每1kg 重物使弹簧伸长0.5cm .当m=10时,则L=15,当m=20时,则L=20.由以上回顾我们可以归纳这样的结论:上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应.活动二:其实,在一些用图或表格表达的问题中,也能看到两个变量间的关系.我们来看下面两个问题,通过观察、思考、讨论后回答:(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y•表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每个确定的年份(x),都对应着个确定的人口数(y)吗?通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值.据此可以认为:上节情景问题中时间t是自变量,里程s是t的函数.t=1时的函数值s=60,t=2时的函数值s=120,t=2.5时的函数值s=150,…,同样地,在以上心电图问题中,时间x是自变量,心脏电流y是x的函数;人口数统计表中,年份x是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52亿.从上面的学习中可知许多问题中的变量之间都存在函数关系.例1:一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.1.写出表示y与x的函数关系式.2.指出自变量x的取值范围.3.汽车行驶200km时,油桶中还有多少汽油?结论:1.行驶里程x是自变量,油箱中的油量y是x的函数.行驶里程x时耗油为:0.1x油箱中剩余油量为:50-0.1x所以函数关系式为:y=50-0.1x2.仅从式子y=50-0.1x上看,x可以取任意实数,但是考虑到x•代表的实际意义是行驶里程,所以不能取负数,并且行驶中耗油量为0.1x,它不能超过油箱中现有汽油50L,即0.1x≤50,x≤500.因此自变量x的取值范围是:0≤x≤5003.汽车行驶200km时,油箱中的汽油量是函数y=50-0.1x在x=200时的函数值,将x=200代入y=50-0.1x得: y=50-0.1×200=30汽车行驶200km时,油箱中还有30升汽油.Ⅲ.随堂练习下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.1.改变正方形的边长x,正方形的面积S随之改变.2.秀水村的耕地面积是106m2,这个村人均占有耕地面积y随这个村人数n的变化而变化.解答:1.正方形边长x是自变量,正方形面积S是x的函数.函数关系式:S=x22.这个村人口数n是自变量,人均占有耕地面积y是n的函数.Ⅴ.作业1、p14--1,6题.教学反思:变量与函数(3)教学目标(一)知识与技能:进一步理解掌握确定函数关系式.会确定自变量取值范围.(二)过程与方法:会用变化的量描述事物(三)情感与价值观要求:会用运动的观点观察事物,分析事物教学重点:1.进一步掌握确定函数关系的方法.2.确定自变量的取值范围.教学难点:认识函数、领会函数的意义.教学方法:引导法、合作学习教学过程1.在计算器上按照下面的程序进行操作:填表:显示的数y是输入的数x的函数吗?为什么?2.在计算器上按照下面的程序进行操作.下表中的x与y是输入的5所按的第三、四两个键是哪两个键?y是x的函数吗?如果是,写出它的表达式(用含有x的式子表示y).活动结论:1.从计算结果完全可以看出,每输入一个x的值,操作后都有一个唯五的y值与其对应,所以在这两个变量中,x是自变量、y是x的函数.2.从表中两行数据中不难看出第三、四按键是1这两个键,且每个x•的值都有唯一一个y值与其对应,所以在这两个变量中,x是自变量,y是x的函数.关系式是:y=2x+1关于函数自变量的取值范围1.实际问题中的自变量取值范围问题1:在上面的联系中所出现的各个函数中,自变量的取值有限制吗?如果有.各是什么样的限制?问题2:某剧场共有30排座位,第l排有18个座位,后面每排比前一排多1个座位,写出每排的座位数与这排的排数的函数关系式,自变量的取值有什么限制。
八年级上册数学第十四章知识点总结
八年级上册数学第十四章知识点总结第十四章一次函数一、知识点1. 函数:在某一变化过程中,有两个变量x和y,对于x的每一个取值,y都有唯一确定的值与之对应,那么就说y是x的函数,x叫做自变量。
2. 一次函数:一般地,如果y与x之间的函数关系式为y=kx+b(k≠0,k,b是常数),那么y随x增大而增大,我们就称它为一次函数。
3. 正比例函数:对于两个相关联的变量x,y,如果它们的函数关系式中,k,b为常数且k≠0,那么就称y按照关于x的一次函数关系随x变化。
4. 正比例函数图象:一般地,当我们把形如y=kx(k≠0)的函数的图象画在同一个直角坐标系中时,正比例函数的图象是经过原点的一条直线。
二、理解与应用1. 理解一次函数的概念:我们需要关注函数的表达方式和形式(即定义),了解常数k的几何意义,并理解b的含义。
2. 应用一次函数解决实际问题:我们要能够将实际问题转化为数学问题,通过运用一次函数的性质来求解。
例如,我们可以利用一次函数的增减性来解决问题,根据实际情况做出选择。
3. 注意在解题过程中运用画图辅助的方法:利用图象可以直观地看出两个变量之间的变化关系,有助于我们更好地理解问题,找到解题的关键点。
三、例题解析【例】已知正比例函数y=kx的图象经过点(2,4),求k的值并画出这个函数的图象。
【解析】根据题目中的条件,我们可以直接将点(2,4)代入函数表达式中求得k的值。
根据所求得的k值,我们可以画出这个函数的图象。
通过观察图象,我们可以更好地理解一次函数与自变量之间的关系。
解:将点(2,4)代入函数表达式中,可得k=2×4=8。
画出这个函数的图象如下:这个图象是一条经过原点和点(2,4)的直线。
通过观察图象,我们可以发现当x>0时,y随x的增大而增大。
这对于我们解决实际问题非常有帮助。
四、练习题请完成以下练习题,尝试运用一次函数的知识来解决实际问题。
1. 已知正比例函数y=kx的图象经过点(3,2),求k的值并画出这个函数的图象。
人教版 八年级数学上册 第十四章 一次函数
14.2.2 一次函数(3)——确定一次函数解析式教学目标1.知识与技能会用待定系数法求解一次函数的解析式.体会二元一次方程组的实际应用.2.过程与方法经历探索求一次函数解析式的过程,感悟数学中的数与形的结合.3.情感、态度与价值观培养抽象的数学思维和与人合作的学习习惯,形成良好的学习态度.重、难点与关键1.重点:待定系数法求一次函数解析式.2.难点:解决抽象的函数问题.3.关键:熟练应用二元一次方程组的代入法、•加减法解一次函数中的待定系数.教学方法采用“问题解决”的方法,让学生在问题解决中感受一次函数的内涵.教学过程一、范例点击,获取新知【例4】已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.【思路点拨】求一次函数y=kx+b的解析式,关键是求出k、b的值,从已知条件可以列出关于k、b的二元一次方程组,并求出k、b.【教师活动】分析例题,讲解方法.【学生活动】联系已学习的二元一次方程组,以此为工具,解决问题,参与教师讲例,主动思考.解:设这个一次函数的解析式为y=kx+b.依题意得:352 491 k b kk b b+==⎧⎧⎨⎨-+=-=-⎩⎩解得这个一次函数的解析式为y=2x-1.【方法流程】【教师活动】引导学生归纳总结知识的流程图,提高认识.二、随堂练习,巩固深化课本P118练习.三、课堂总结,发展潜能根据已知的自变量与函数的对应值,可以利用待定系数法确定一次函数解析式,具体步骤如下:1.写出函数解析式的一般形式,其中包括未知的系数(需要确定这些系数,•因此叫做待定系数).2.•把自变量与函数的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数的方程或方程组.(有几个待定系数,就要有几个方程)3.解方程或方程组,求出待定系数的值,从而写出所求函数的解析式.四、布置作业,专题突破课本P121习题14.2第6,7,8题.。
第14章一次函数知识总结
人教版八年级上册第十四章 一次函数 知识总结1.函数的概念:在一个变化过程中,有两个变量,例如,x 、y ,对于x 的每一个值,y 都有唯一的值与之对应,我们称y 是x 的函数.其中x 是自变量.2.正比例函数解析式: y=kx (k ≠0)3.正比例函数图象: 经过原点的直线4.正比例函数性质: 当k >0时,图象经过第三、一象限,y 随x 的增大而增大,当k <0时,图象经过第二、四象限,y 随x 的增大而减小5.描点法画函数图像的一般步骤:列表 描点 连线6. 一次函数解析式: y =kx +b (k ≠0),与x 轴交点坐标为 与y 轴交点坐标为(0,b ),当b=0时,y =kx +b 即 y =kx ,所以说正比例函数是一种特殊的一次函数.7.一次函数y =kx +b (k ≠0)与坐标轴所围三角形面积公式为b k b S ⋅-=∆218.求函数解关系的一般步骤是怎样的呢?可归纳为:“一设、二列、三解、四还原”一设:设出函数关系式的一般形式y=kx+b;二列:根据已知两点的坐标列出关于k 、b 的二元一次方程组; 三解:解这个方程组,求出k 、b 的值;四还原:把求得的k 、b 的值代入y=kx+b ,写出函数关系式.像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从⎪⎭⎫ ⎝⎛-,0kb而具体写出这个式子的方法,叫做待定系数法.9.一次函数y=kx+b 的图象与正比例函数y=kx 图象有什么关系? 一次函数y=kx+b 的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到。
(当b>0时,向上平移;当b<0时,向下平移)当 k 相等时,两直线平行;反之,若两直线平行,则 k 值相等. 当 k 不相等时,两直线相交;反之,两直线相交,则k 不相等. 当 b 值相等时,两直线相交于y 轴. 交点坐标为(0,b )10.一次函数 的图象是一条直线,一次项系数k 确定直线的倾斜程度,常数项b 决定直线与y 轴交点的位置。
【八年级】第十四章一次函数
【八年级】第十四章一次函数第十四章一次函数本章小结小结1 本章概述本章的主要内容包括:变量与函数的概念,函数的三种表示方法,正比例函数和一次函数的概念、图象、性质以及应用举例,用函数观点认识一元一次方程、一元一次不等式以及二元一次方程组,课题学习“选择方案”.函数是研究运动变化的重要数学模型,它来源于客观实际,又服务于客观实际,而一次函数又是函数中最简单、最基本的函数,它是学习其他函数的基础,所以理解和掌握一次函数的概念、图象和性质至关重要,应认真掌握.小结2 本章学习重难点【本章重点】理解函数的概念,特别是一次函数和正比例函数的概念,掌握一次函数的图象及性质,会利用待定系数法求一次函数的解析式.利用函数图象解决实际问题,发展数学应用能力,初步体会方程与函数的关系及函数与不等式的关系,从而建立良好的知识联系.【本章难点】1.根据题设的条件寻找一次函数关系式,熟练作出一次函数的图象,掌握一次函数的图象和性质,求出一次函数的表达式,会利用函数图象解决实际问题.2.理解一次函数与一元一次方程、一元一次不等式以及二元一次方程组的关系.小结3 学法指导1.注意从运动变化和联系对应的角度认识函数.2.借助实际问题情境,由具体到抽象地认识函数,通过函数应用举例,体会数学建模思想.3.注重数形结合思想在函数学习中的应用.4.加强前后知识的联系,体会函数观点的统领作用.5.结合课题学习,提高实践意识和综合应用数学知识的能力.知识网络结构图专题总结及应用一、知识性专题专题1 函数自变量的取值范围【专题解读】一般地,求自变量的取值范围时应先建立自变量满足的所有不等式,通过解不等式组下结论.例1 函数中,自变量x的取值范围是 ( )A.x≠0 B.x≠1C.x≠2 D.x≠-2分析由x+2≠0,得x≠-2.故选D.例2 函数中,自变量x的取值范围是 ( )A.x≥-1 B.-1<x<2C.-1≤x<2 D.x<2分析由得即-1≤x<2.故选C.专题2 一次函数的定义【专题解读】一次函数一般形如y=kx+b,其中自变量的次数为1,系数不为0,两者缺一不可.例3 在一次函数y=(m-3)xm-1+x+3中,符x≠0,则m的值为.分析由于x≠0,所以当m-1=0,即m=1时,函数关系式为y=x+1.当m-3=0,即m=3时,函数关系式为y=x+3;当m-1=1,即m=2时,函数关系式为y=(m-2)x+3,当m=2时,m-2=0,此时函数不是一次函数.所以m=1或m=3.故填1或3.专题3 一次函数的图象及性质【专题解读】一次函数y=kx+b的图象为一条直线,与坐标轴的交点分别为,(0,b).它的倾斜程度由k决定,b决定该直线与y轴交点的位置.例4 已知一次函数的图象经过(2,5)和(-1,-1)两点.(1)画出这个函数的图象;(2)求这个一次函数的解析式.分析已知两点可确定一条直线,运用待定系数法即可求出对应的函数关系式.解:(1)图象如图14-104所示.(2)设函数解析式为y=kx+b,则解得所以函数解析式为y=2x+1.二、规律方法专题专题4 一次函数与方程(或方程组或不等式)的关系【专题解读】可根据一次函数的图象求出一元一次方程或二元一次方程(组)的解或一元一次不等式的解集,反之,由方程(组)的解也可确定一次函数表达武.例5 如图14-105所示,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是.分析由图象知当x>-2时,y=3x+b对应的y值大于y=ax-3对应的y值,或者y=3x+b的图象在x>-2时位于y=ax-3的图象上方.故填x>-2.专题5 一次函数的应用【专题解读】在应用一次函数解决实际问题时,关键是将实际问题转化为数学问题.例6 假定拖拉机耕地时,每小时的耗油量是个常最,已知拖拉机耕地2小时油箱中余油28升,耕地3小时油箱中余油22升.(1)写出油箱中余油量Q(升)与工作时间t(小时)之间的函数关系式;(2)画出函数的图象;(3)这台拖拉机工作3小时后,油箱中的油还够拖拉机继续耕地几小时?分析由两组对应量可求出函数关系式,再画出图象(在自变量取值范围内).解:(1)设函数关系式为Q=kt+b(k≠0).由题意可知∴∴余没量Q与时间t之间的函数关系式是Q=-6t+40.∵40-6t≥0,∴t≤ .∴自变量t的取值范围是0≤t≤ .(2)当t=0时,Q=40;当t=时,Q=0.得到点(0,40),( ,0).连接两点,得出函数Q=-6t+40(0≤t≤ )的图象,如图14-106所示.(3)当Q=0时,t=,那么-3= (小时).∴拖拉机还能耕地小时,即3小时40分.规律.方法运用一次函数图象及其性质可以帮助我们解决实际生活中的许多问题,如利润最大、成本最小、话费最省、最佳设计方案等问题,我们应善于总结规律,达到灵活运用的目的.三、思想方法专题专题6 函数思想【专题解读】函数思想就是应用运动、变化的观点来分析问题中的数量关系,抽象升华为函数模型,进而解决有关问题的方法,函数的实质是研究两个变量之间的对应关系,灵活运用函数思想可以解决许多数学问题.例7 利用图象解二元一次方程组分析方程组中的两个方程均为关于x,y的二元一次方程,可以转化为y关于x的函数.由①得y=2x-2,由②得y=-x-5,实质上是两个y关于x的一次函数,在平面直角坐标系中画出它们的图象,可确定它们的交点坐标,即可求出方程组的解.解:由①得y=2x-2,由②得y=-x-5.在平面直角坐标系中画出一次函数y=2x-2,y=-x-5的图象,如图14-107所示.观察图象可知,直线y=2x-2与直线y=-x-5的交点坐标是(-1,-4).∴原方程组的解是规律?方法解方程组通常用消元法,但如果把方程组中的两个方程看做是两个一次函数,画出这两个函数的图象,那么它们的交点坐标就是方程组的解.例8 我国是一个严重缺水的国家,大家应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05 mL.小明同学在洗手时,没有把水龙头拧紧,当小明离开x小时后,水龙头滴了y mL水.(1)试写出y与x之间的函数关系式;(2)当滴了1620 mL水时,小明离开水龙头几小时?分析已知拧不紧的水龙头每秒滴2滴水,又∵1小时=3600秒,∴1小时滴水(3600×2)滴,又∵每滴水约0.05 mL,每小时约滴水3600×2×0.05=360(mL).解:(1)y与x之间的函数关系式为y=360x(x≥0).(2)当y=1620时,有360x=1620,∴x=4.5.∴当滴了1620 mL水时,小明离开水龙头4.5小时.专题7 数形结合思想【专题解读】数形结合思想是指将数与形结合起来进行分析、研究、解决问题的一种思想方法.数形结合思想在解决与函数有关的问题时,能起到事半功倍的作用.例9 如图14-108所示,一次函数的图象与x轴、y轴分别相交于A,B两点,如果A 点的坐标为(2,0),且OA=OB,试求一次函数的解析式.分析通过观察图象可以看出,要确定一次函数的关系式,只要确定B点的坐标即可,因为OB=OA=2,所以点B的坐标为(0,-2),再结合A点坐标,即可求出一次函数的关系式.解:设一次函数的关系式为y=kx+b(k,b为常数,且k≠0).∵OA=OB,点A的坐标为(2,0),∴点B的坐标为(0,-2).∵点A,B的坐标满足一次函数的关系式y=kx+b,∴ ∴∴一次函数的解析式为y=x-2.【解题策略】利用函数图象研究数量之间的关系是数形结合思想的具体运用,在解决有关函数问题时有着重要的作用.专题8 分类讨论思想【专题解读】分类讨论思想是在对数学对象进行分类的过程中寻求答案的一种思想方法.分类讨论思想既是一种重要的数学思想,又是一种重要的数学方法.分类的关键是根据分类的目的,找出分类的对象.分类既不能重复,也不能遗漏,最后要全面总结.例10 在一次遥控车比赛中,电脑记录了速度的变化过程,如图14-109所示,能否用函数关系式表示这段记录?分析根据所给图象及函数图象的增减性,本题要分三种情况进行讨论.电脑记录提供了赛车时间t(s)与赛车速度v(m/s)之间的关系,在10 s内,赛车的速度从0增加到7.5 m/s,又减至0,因此要注意时间对速度的影响.解:观察图象可知.当t在0~1 s内时,速度v与时间t是正比例函数关系,v=7.5t(0≤t≤1).当t在1~8 s内时,速度v保持不变,v=7.5(1<t≤8);当t在8~10 s内时,速度v与时间t是一次函数关系,设一次函数为v=kt+b(k≠0),又一次函数图象过(8,7.5)和(10,0),则解得∴v=-3.75t+37.5(8<t≤10).即专题9 方程思想【专题解读】方程思想是指对通过列方程(组)使所求数学问题得解的方法.在函数及其图象中,方程思想的应用主要体现在运用待定系数法确定函数关系式.例11 已知一次函数y=kx+b(k≠0)的图象经过点A(-3,-2)及点B(1,6),求此函数关系式,并作出函数图象.分析可将由已知条件给出的坐标分别代入y=kx+b中,通过解方程组求出k,b的值,从而确定函数关系式.解:由题意可知∴∴函数关系式为y=2x+4.图象如图14-110所示.2021中考真题精选一、选择题1. (2021新疆乌鲁木齐,5,4)将直线y=2x向右平移1个单位后所得图象对应的函数解析式为()A、y=2x-1B、y=2x-2C、y=2x+1D、y=2x+2考点:一次函数图象与几何变换。
一次函数
第十四章一次函数一、一次函数及其图像知识总结(一)知识总结(二)例题精讲知识点一:变量与函数知识点二:一次函数与正比例函数的意义知识点三:待定系数法求一次函数的解析式知识点一:变量与函数A、夯实基础每个同学购买一支钢笔,每支笔 5 元,求总金额y(元)与学生数出式中的函数与自变量,写出自变量的取值范围。
解答: y=5n, n 是自变量, y 是 n 的函数。
自变量n 的取值范围是:解析:这里的自变量的取值范围,要考虑它的实际意义。
n(个)的函数关系并指n 为自然数。
B、双基固化如果 A、 B两人在一次百米赛跑中,路程s(米)与赛跑的时间t (秒)的关系如图所示,则下列说法正确的是((A) A 比 B 先出发(B)A、B两人的速度相同(C) A 先到达终点( D) B 比 A 跑的路程多C )C、能力提升一水管以均匀的速度向容积为如下表,请从表中找出 t 与100 立方米的空水池中注水,注水的时间t 与注入的水量Q Q之间的函数关系式,且求当t=5 分 15 秒时水池中的水量Q的值.T(分钟)2468...Q(立方米)481216...解答:∵水管是匀速流出水于池中,速度是(4 ÷ 2)=2 ,即每分钟Q=2t,自变量 t 为非负数 .又∵水池容积为100 立方米,时间不能超过100÷2=50( 分钟 ) ,∴0≤ t ≤ 50.2 立方米,函数解析式为当t=5 分 15 秒时, Q=2× 5.25=10.5( 立方米 )即当 t 为 5 分 15 秒时,水量为10.5立方米.知识点二:一次函数与正比例函数的意义A、夯实基础下列函数中 , 哪些是一次函数(1)Y = -3X+7是一次函数.(2)Y = 6X2-3X不是一次函数.(3)Y = 8X是一次函数, 也是正比例函数(4)Y = 1+9X是一次函数(5)Y =6不是一次函数XB、双基固化列出下列函数关系式,判别其中哪些为一次函数、正比例函数.(1)正方形周长 p 和一边的长 a.解答 :(1)∵p=4a.自变量 a 为一次且其系数为4( 不为零 ) .∴p为 a 的一次函数.又∵不含常数项∴也是正比例函数.(2) 长 a 一定时矩形面积y 与宽 x.解答:∵ y=ax,自变量x 为一次且系数 a 为长度 ( 不为零 ) .∴y是 x 的一次函数.∵不含常数项.∴y也是 x 的正比例函数.(3)定期存 100 元本金,月利率 1.8 %,本息和 y 与所存月数 x.解答 : ∵ y=100+100× 1.8%x,自变量 x 的次数为一次,又含有常数项.∴ y 是 x 的一次函数但不是正比例函数.(4) 水库原存水Q立方米,现以每小时 a 立方米的流量开闸放水,同时上游以每小时 b 立方米的流量向水库注水,求这时水库的蓄水量M与时间 t 的函数关系.解答 : ∵ M=Q+(b-a)t ,因为自变量 t 的次数为一次,当 a≠ b 时, M是 t 的一次函数.若 Q=0 时,M是 t 的正比例函数;若 a=b 时, M是常量函数,不是 t 的一次函数.C、能力提升已知 y = -(m2+2m)xm2+m-1 ,当 m是什么数值时,为正比例函数?解答:设正比例函数为y = kx (k≠ 0),∵正比例函数k≠ 0,x 的指数为1.∴m2+2m≠ 0,解得 m1≠ 0, m2≠-2 ,且m2+m-1 = 1 ,解得 m3 = -2 ,m4 = 1 .∴当 m = 1 时,为正比例函数.知识点三:待定系数法求一次函数的解析式B、双基固化已知一次函数y=kx+b 在 x=-4 时的值为9,在 x=6 时的值为 3,求k 与 b解:由已知得:9 = - 4k + b3 = 6k + b解得 k=- 0.6, b = 6.6C、能力提升一次函数的图象经过点(0,2)和点( 4, 6)。
第十四章 一次函数
全章共包括三节:14.1 变量与函数14.2 一次函数14.3 用函数观点看方程(组)与不等式14.4 课题学习选择方案其中,14.1节是全章的基础部分,14.2节是全章的重点内容,14.3节是引申的内容,起加强知识前后联系的作用,14.4节是探究性学习的内容,以课题学习的形式呈现,突出建立数学模型的实际意义和思想方法.函数的概念是数学中极为重要的基本概念,它的抽象性较强,接受并理解它有一定难度,这也是本章的难点.变化与对应的思想体现在函数概念之中,用运动变化的眼光,以函数为工具,从数量关系和图象两方面动态地分析问题,是本章学习的特点.本章知识结构框图:2.本单元知识与其他单元知识之间的关系:本单元的主要内容为正比例函数,一次函数的性质与图像及由这些知识引申出来的有关实际应用的问题.从整个初中及本单元知识是属于比较基础的一类.本单元知识是以前面的方程(组)的知识为解决问题的工具,作为今后学习反比例函数、二次函数等这些章节的基础知识储备,也可以说本单元的知识是整个初中数学知识体系中函数部分的必备基础知识.本章最后的14.3节“用函数观点看方程(组)与不等式”,从函数的角度对前面学习过的一元一次方程、一元一次不等式和二元一次方程组重新进行了分析,这种再认识不是原来水平上的回顾复习,而是站在更高的起点上的动态分析.加深对已经学习过的方程(组)及不等式内容的认识,构建和发展相互联系的知识体系.通过本单元的教学,应加强知识间横向和纵向的联系,发挥函数对相关内容的统领作用,能用一次函数可以把以前学习的方程和不等式等不同的数学概念统一起来,使得新旧知识融会贯通,从而进一步体现函数概念的重要性,提高灵活地分析解决问题的能力,加大分析问题的深度.进一步在学生已有的建立方程或不等式这样的数学模型的基础上,继续重视数学与实际的关系,在建立函数这种应用更广泛的数学模型的过程中继续体现建模思想.3.本单元学习方法及对以后单元的启示:本章节采用讲练结合,自主探究,小组讨论等方法.人的认识过程是波浪式前进、螺旋式上升的.学习数学中的一个重要的基本概念,需要分阶段地完成,逐步深化认识程度.本套教科书将对代数函数的学习分三章安排,即八年级上学期学习第十四章“一次函数”,八年级下学期学习第十七章“反比例函数”,九年级下学期学习第二十六章“二次函数” .在学习这些内容之前,分别安排了学习二元一次方程(组)、分式方程和一元二次方程,即按代数运算类型划分阶段,将函数作为方程的后续内容.(三)典型题归纳例1:下列函数(1)y=πx (2)y=2x-1 (3)y= (4) (5)中,是一次函数的有()(A)4个.(B)3个.(C)2个.(D)1个.分析:这一例题是一次函数定义的直接应用,但是部分同学可能会出现错误,注意2点,一次项系数不能为0,且未知数的次数是1次,因此(3)(5)都不是一次函数,正确答案是(B).例2:已知y -2与x成正比,且当x=1时,y=-6.(1)求y与x之间的函数关系式;(2)若点(a,2)在这个函数图象上,求a.分析考察正比例函数的定义,还有图像上的点与其函数关系式的关系.(1)由正比例函数的定义可知,y-2=kx且把x=1,y=-6代入得k=-8,即可得y=-8x+2.(2)点在函数图象上,直接将点的坐标代入该函数关系式即可,2=-8a+2,得a=0.例3:某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门.乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量x的取值范围.(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由.分析:本题考查一次函数的应用与方案选择问题.(1)得甲方案的关系式是:y=9x.乙方案:y=8x+5000.x≥3000.(2)需要分情况进行讨论,当>时,9x>8x+5000,即x>5000时,此时乙方案付款少.当=时,9x=8x+5000,即x=5000时,甲,乙方案付款一样多.当<时,9x<8x+5000,即3000≤x<5000时,此时甲方案付款少.(四)思想方法归纳本单元所涉及到的思想方法主要有:数形结合的思想方法,转化的思想方法,函数与方程思想方法.五、学习评价(一)选择题1.下列各曲线中不能表示y是x的函数是()2.若点A(2,4)在函数y=kx-2的图象上,则下列各点在此函数图象上的是()(A)(0,-2).(B)(1.5,0).(C)(8,20).(D)(0.5,0.5).3.函数y=k(x-k)(k<0)的图象不经过()(A)第一象限.(B)第二象限.(C)第三象限.(D)第四象限.4.如果直线y=2x+m与两坐标轴围成的三角形面积等于m,则m的值是()(A)±3.(B)3.(C)±4.(D)4.5.若把一次函数y=2x-3,向上平移3个单位长度,得到图象解析式是( )(A)y=2x. (B) y=2x-6.(C) y=5x-3.(D)y=-x-3.6.已知一次函数y=kx+b的图象如图所示,则k、b的符号是( )(A)k>0,b>0. (B)k>0,b<0. (C)k<0,b>0. (D)k<0,b<0.(二)填空题7.若函数是正比例函数,则m的值是.8.已知一次函数y=kx-5,请你补充一个条件,使y随x的增大而减小.9.出租车按公里收费,3公里内收费8元,以后每超过1公里加收1.5元,若行驶了x公里(x≥3),则需车费y(元)与x(公里)之间的函数关系式是.10.某市自来水公司为了鼓励市民节约用水,采取分段收费标准,某市居民每月交水费y(元)与水量x(吨)的函数关系如图所示,请你通过观察函数图象,回答自来水公司收费标准:若用水不超过5吨,水费为元/吨;若用水超过5吨,超过部分的水费为元/吨.11.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组的解是________.12.若直线y=kx+b平行直线y=5x+3,且过点(2,-1),则k=______ ,b=______ .(三)解答题:13.已知一次函数图象经过(3, 5)和(-4,-9)两点,(1)求此一次函数的解析式;(2)若点(a,2)在函数图象上,求a的值.14、画出函数y=2x+6的图象,利用图象:(1)求方程2x+6=0的解;(2)求不等式2x+6>0的解;(3)若-1≤y≤3,求x的取值范围.15.如图,已知直线,直线直线、分别交x轴于B、C两点,、相交于点A.(1) 求A、B、C三点坐标;(2) 求△ABC的面积.答案与提示一、选择题1.C ; 2.A ; 3.A ; 4.C ; 5.A; 6. C.二、填空题7.-1 ;8.k=-1.提示:k<0即可;9.y=1.5x+3.5;10.0.72,0.9; 11. 12.5,-11.三、解答题13.(1)y=2x-1,(2)a=14.(1)x=-3,(2)x>-3,(3)15.(1)A(-,0),B(5,0),。
新人教版八年级数学上册第14章一次函数精品课件
Copyright 2004-2009 版权所有 盗版必究
活动二.分析思考,理解定义 1.问题:正方形的边长x与面积S的函数关系为S=x2, 你能想 到更直观地表示S与x 的关系的方法吗? 2.定义. 一般地,对于一个函数,如果把自变量与函数的每 对对应值分别作为点的横、纵坐标,那么坐标平面内由这些 点组成的图形,就是这个函数的图象。
Copyright 2004-2009 版权所有 盗版必究
例2 .在下列式子中,对于x的每一确定的值,y有唯一的对 应值,即y是x的函数,画出这些函数的图象:
(1)y=x+0.5; 解:
(2)y= 6 (x&g009 版权所有 盗版必究
活动四:知识巩固,课堂练习 1.课后小练习1,2题 2.思考:画函数图象的一般步骤是什么? 活动五.知识梳理,课堂小结 (1)什么是函数图象 (2)画函数图象的一般步骤 活动六.知识反馈,布置作业 课本第106-107页第5,6,7题
Copyright 2004-2009 版权所有 盗版必究
活动三.知识应用,强化提高 例1.下面的图象反映的过程是小明从家去菜地浇水,有去玉米 地锄草,然后回家.其中x表示时间,y表示小明离家的距离. 根据图象回答问题:
(1)菜地离小明家多远?小明走到菜地用了多少时间?; (2)小明给菜地浇水用了多少时间? (3)菜地离玉米地多远?小明从菜地到玉米地用了多少时间? (4)小明给玉米锄草用了多少时间? (5)玉米地离小名家多远?小明从玉米地走回家的平均速度是多 少?
新人教版八年级数学上册第14章一次函数 第1节变量与函数第3小节 第1课时函数图象
Copyright 2004-2009 版权所有 盗版必究
八年级数学上《第14章 一次函数》全章课件(17份)-16
需要更完整的资源请到 新世纪教 育网 -
3 8 y x 5 5
3 8 y x 上的每个点的坐标(x,y)都是方程 5 5
3x+5y =8的解.
需要更完整的资源请到 新世纪教 育网 -
任意的二元一次方程是否都能转化成y=kx+b的 形式呢? 我们说任意的二元一次方程都能进行这样的转 化,所以每个二元一次方程都对应一个一次函数, 故也对应一条直线. 3x 5 y 8 解二元一次方程组 2 x y 1
14.3.3 一次函数与二元一次方程(组)
需要更完整的资源请到 新世纪教 育网 -
ห้องสมุดไป่ตู้
一次函数与一元一次方程有什么关系?
一次函数与一元一次不等式有什么关系?
需要更完整的资源请到 新世纪教 育网 -
方程3x+5y =8如何转化成y=kx+b的形式?
故我们可以用图象法解方程组,画出两函数图象: 两直线交点坐标为(1,1) .
所以原方程 组的解为
x 1 y 1
需要更完整的资源请到 新世纪教 育网 -
例 一家电信公司给顾客提供两种上网收费方 式:方式 A 以每分 0.1 元的价格按上网时间计费; 方式 B除收月基费 20元外再以每分 0.05元的价格按 上网时间计费.上网时间为多少分,两种方式的 计费相等? 解:设上网时间为x分,若按方式A则收y=0.1x 元;若按方式B则收y=0.05x+20元. 在同一坐标系中分别画出这两个函数的图象.
需要更完整的资源请到 新世纪教 育网 -
3 8 y x 方程组可转化为 5 5 y 2x 1
从“数”上看
相当于求当自变量 x 为何值时两函数的 值相等?这个函数值是多少? 从“形”上看 相当于求两条直线的交点坐标.
第十四章一次函数单元介绍
第十四章一次函数单元介绍一、本章内容在生活和学习中的作用(一)在日常生活中的应用一元一次函数在我们的日常生活中应用十分广泛。
当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。
例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。
这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。
俗话说:“从南京到北京,买的没有卖的精。
”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。
现以2007年的中考题目为例,浅析一次函数在生活中的应用。
1.用水用电问题例1、为了鼓励节能降耗,某市规定如下用电收费标准:每户每月的用电量不超过120度时,电价为a元/度;超过120度时,不超过部分仍为a元/度,超过部分为b元/度。
已知某用户五月份用电115度,交电费69元,六月份用电140度,交电费94元。
(1)求a,b的值;(2)设该用户每月用电量为x(度),应付电费为y(元)。
①分别求出0≤x≤120和x>120时,y与x之间的函数关系式;②若该用户计划七月份所付电费不超过83元,问该用户七月份最多可用电多少度?解:(1)根据题意,得115a=69,120a+20b=94.解这个方程组,得a=0.6,b=1.1.(2)①当0≤x≤120时,y=0.6x.当x>120时,y=120×0.6+1.1(x-120),即y=1.1x-60.②∵83>120×0.6=72,∴y与x之间的函数关系式为y=1.1x-60..由题意得:1.1x-60≤83所以x≤130.∴该用户七月份最多可用电130度.【评析】随着人民生活水平的提高,家庭电器化已基本普及,为鼓励居民节约用电用水,节能降耗,采取了居民用电、用水分段计价的办法进行收费。
解决此类问题的关键是把实际问题建构为一次函数的数学模型,并通过数学的方式把问题解决。
最新人教版八年级数学第14章一次函数教案
最新人教版八年级数学第14章一次函数教案备课应有教师自己的东西,教案也应突出教参所没有的内容。
不仅有对教参的割舍与放弃,也有具体的知识拓展与补充,以及传授的演算法与步骤。
今天在这里整理了一些最新人教版八年级数学讲演录第14章一次函数教案范文,我们一起来试试吧!最新人教版八年级数学第14章第一次函数教案范文1一、教学目标:理解分式乘除法的法则,会进行分式乘除运算.二、重点、难点1.重点:会用分式乘除的法则进行运算.2.难点:灵活运用分式乘除的法则进行三元组运算 .3. 难点与突破方法分式的运算演算以有理数和整式的运算为基础,以因式分解为技术手段,经过转化后往经过转化后往往可看做整式的运算.分式的乘除的法则和运算时序可类比分数有关内容得到.所以,教给学生类比的数学思想方法能较好地实现知识的转化.只要做到这一点点就可充分发挥学生的主体性,使学生主动获取知识.教师要重点处理分式中有别于分数运算不同于的有关内容,使学生规范掌握,特别是运算符号的问题,要抓住出现的问题认真落实.三、例、习题的意图分析1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是,大拖拉机的工作效率是小拖拉机的工作效率的倍.引出了分式的乘除法实际存在的意义,进一步引出P14[观察]从类比分数的乘除法引导学生等效出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2.P14例1应用分式的乘除法法则量度需要进行计算,注意计算的结果如能约分,应化简到最简.3.P14例2是较复杂的代换乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.4.P14例3是应用题,题意也比较容易理解,关系式也比较容易列出来,但要注意根据问题的实际意义可知a>1,因此(a-1)2=a2-2a+1四、课堂引入1.出示P13本节的引入的问题1求容积的高,问题2求大拖拉机的工作效率是拖拉机的工作效率的倍.[引入]从上面的环境问题可知,有时可能需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,表示法出分式的乘除法法则.1. P14[观察] 从上面的算式可以看到分式的乘除法法则.3.[提问] P14[思考]类比分数的乘除法法则,你表露能说出可分的乘除法法则?类似分数的乘除法法则得到分式的乘除法法则的结论.五、例题讲解P14例1.[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟需注意整式加法一样,先判断运算符号,在计算结果.P15例2.[分析]这道例题的分式的分子、分母是多项式,应先把多项式裂解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式是不必把它们展开.P15例.[分析]这道应用题有两问,第一问是:哪一种单位名称小麦的单位面积产量?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是、,预判还要判断出以上两个分式的值,哪一个值更大.要根据可见环境问题的实际意义可知a>1,因此(a-1)2=a2-2a+1最新人教版八年级数学第14章一次函数教案范文2一、教学目标1.理解凸多边形的基本性质.2.会用分式碎裂的基本性质将分式变形.二、重点、难点1.重点: 理解齐次的基本性质.2.难点: 翻转灵活应用分式的基本性质将分式变形.3.认知关键环节与突破方法教学难点是灵活应用运用分式的基本性质将分式变形.突破的方法是通过高分复习分数的通分、约分总结出性质分数的基本上性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式概括变形.三、例、习题的意图分析1.P7的例2是使到学生观察等式约莫左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的指数函数再加系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生适时做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使到下列分式的分子和分母都不含“-”号.这一类题教材里没有数学公式,但基本上它也是由分式的基本晶体结构得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”一般性是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗? 与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生卷积猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的属性基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简三元组.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.,,,,。
新人教版八年级数学上册第14章一次函数精品课件ppt
Copyright 2004-2009 版权所有 盗版必究
活动三.共同探究,理解知识 1.例题.画出下列正比例函数的图象,并进行比较,寻找两个 函数图象的相同点与不同点,考虑两个函数的变化规律. 1.y=2x 2.y=-2x
学生通过活动,了解正比例函数图象特点及函数变化规 律,让学生自己动手、动口、动脑,经历规律发现的整个过 程,从而提高各方面能力及学习兴趣.并能正确画图、积极 探索、总结规律、准确表述.
x -3 -2 -1 0 1 2 3 y 6 4 2 0 -2 -4 -6
画出图象如图(1). (2)y=-2x的自变量取值范围可以是全体实数,列表表示几组对应 值:画出图象如图(2).
Copyright 2004-2009 版权所有 盗版必究
(3)分析比较两个图象的共同点和不同点 1)共同点:都是经过原点的直线. 2)不同点:函数y=2x的图象从左向右呈上升状态,即随着x的 增大y也增大;经过第一、三象限.函数y=-2x的图象从左向 右呈下降状态,即随x增大y反而减小;经过第二、四象限.
一九九六年,鸟类研究者在芬兰给一只燕鸥뼈မ鸟) 套上标志环.4个月零1周后人们在2.56万千米外的澳 大利亚发现了它. (1)这只百余克重的小鸟大约平均每天飞行多少千米 (精确到10千米)? (2)这只燕鸥的行程y(千米)与飞行时间x(天)之间有 什么关系? (3)这只燕鸥飞行1个半月的行程大约是多少千米?
Copyright 2004-2009 版权所有 盗版必究
活动四.自己动手,课堂练习
在同一坐标系中,画出下列函数的图象,并对它们进行
比较.(1)y=0.5x
(2)y= -0.5x
八年级数学《一次函数》全章复习与练习
第十四章《一次函数》全章复习一、归纳知识点: (一)函数1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,y 是x 的函数。
注意:判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应3、确定函数自变量取值范围的方法:(1)关系式为整式时,自变量取值范围为:一切实数;(2)关系式含有分式时,自变量取值范围为:分式的分母不等于零;(3)关系式含有二次根式时,自变量取值范围为:被开放方数大于等于零; (4)实际问题中,自变量取值范围还要和实际情况相符合,使之有意义。
4、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 5、描点法画函数图形的一般步骤:列表-----描点-----连线。
6、函数的表示方法及其优点:列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系 (二)一次函数 1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2)必过点:(0,0)、(1,k ) (2) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限 (3) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (4) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y=kx+b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-kb,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.性质 y 随x 的增大而增大 y 随x 的增大而减小4、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),.即横坐标或纵坐标为0的点.b>0b<0 b=0k>0经过第一、二、三象限经过第一、三、四象限 经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限 经过第二、四象限图象从左到右下降,y 随x 的增大而减小5一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度 正比例函数一次函数概 念一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,是y=kx ,所以说正比例函数是一种特殊的一次函数. 自变量范 围 X 为全体实数 图 象 一条直线必过点 (0,0)、(1,k )(0,b )和(-kb,0) 走 向k>0时,直线经过一、三象限;k >0,b >0,直线经过第一、二、三象限k<0时,直线经过二、四象限k >0,b <0直线经过第一、三、四象限 k <0,b >0直线经过第一、二、四象限 k <0,b <0直线经过第二、三、四象限增减性 k>0,y 随x 的增大而增大;(从左向右上升) k<0,y 随x 的增大而减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数复习一、本章知识结构梳理二、本章专题讲解专题一、求字母系数或函数解析式专题概说:在已知函数解析式中,设置未知的系数,要求该函数是一次函数或具备一次函数的某些性质,据此确定解析式中的未知系数的值或者未知系数的取值范围.求解此类题时,应牢抓一次函数的定义、图象及性质,特别注意容易出错的地方,如系数k≠0,图象经过的象限与k、b的关系等.例1、函数y=(k-5)x|k|-4+2是一次函数,求此函数的解析式.解:由一次函数的定义,知自变量x的指数等于1,系数不为零,即解得k=-5.因此此函数的解析式为y=-10x+2.例2、已知一次函数y=mx+2x-2,要使函数值y随x的增大而增大,则m的取值范围是()A.m≥-2B.m>-2C.m≤-2D.m<2解:由一次函数的性质知,要使y随x的增大而增大,m必须满足m+2>0,则m>-2.故选B.例3、已知一次函数y=kx+1(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是图中的()解:由一次函数的性质知,当y随x的增大而减小时,k<0;由1>0,k<0,可知y=x+k的图象交于y轴的负半轴上,故选B.专题二、求函数图象与坐标轴围成的三角形面积专题概说:由于一次函数的图象是直线,所以当它与两坐标轴相交时,可能产生一个三角形,于是就出现了把一次函数与三角形内容相联系的许多问题,大多以考查三角形的周长,面积问题为主.求解此类题时,要多注意利用点的坐标来表示三角形的底与高.例4、直线y=x+4和直线y=-x+4与x轴所围成的三角形的面积是()A.32B.64C.16D.8解:利用方程组求的解为则直线y=x+4与直线y=-x+4交于点C(0,4).如图,又因=|4-(-为直线y=x+4与x轴交于点A(-4,0),直线y=-x+4与x轴交于点B(4,0),所以S△ABC4)|·|4|=16.故选C.专题三、利用函数图象解方程组、不等式例5、作出函数y=3x+1的图象,根据图象,回答:(1)x取什么值时,函数值y大于零?(2)x取什么值时,函数值y小于零?(3)x取什么值时,函数值y小于-2?解:函数y=3x+1的图象如图所示,由图象可知(1)当时,y>0;(2)当时,y<0;(3)当x<-1时,y<-2.专题四、待定系数专题概说:待定系数法是求函数解析式的最重要的方法,求解时首先设出函数解析式,再根据已知建立未知系数的方程(组),进而解方程(组)获得未知系数的值,应注意题目中的某些隐含条件的限制作用.例6、已知直线y =kx +b 过点A (-1,5),且平行于直线y =-x +2.(1)求直线的解析式;(2)B (m ,-5)在这条直线上,O 为原点,求m 的值及S △AOB . 解:(1)由两直线平行,得k =-1.易求b =4.所以y =-x +4;(2)把B (m ,-5)代入y =-x +4,得m =9.可求y =-x +4与y 轴的交点为C (0,4),则S △AOB =S △ACO +S △BCO .所以S =×|-1|×4+×9×4=20.如图所示.专题五、数形结合专题概说:本章自始自终都是用数形结合的思想方法研究问题,平面直角坐标系的建立是实现数与形转化的重要工具,数形结合使抽象的数形象化、直观化,化数为形,以形思数,常常是解决问题的关键,数形结合思想不仅为分析问题,解决问题提供了有利条件,而且是开发智力、培养能力的重要途径. 例7、为发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式.其中,使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x (分钟)与通话费y (元)的关系如图所示.(1)分别求出通话费y 1、y 2与通话时间之间的函数解析式;(2)请你帮用户计算一下,在一个月内使用哪种卡便宜?解:(1)设y 1=k 1x +b ,y 2=k 2x.由图象可知,y 1=k 1x +b ,经过点A(0,29),B(30,35).所以解得=+29(0≤x≤43200),y2=k2x的图象过点(30,15).所以y1=15.所以k2=.所以y2=(0≤x≤43200);所以30k2(2)当y=y2时,即,得;1>y2时,即,得,即当x≤96时,y1>y2;当y1当y<y2时,即,得,即当x≥97时,y1<y2.1所以,当通话时间为小于97分钟时,“如意卡”便宜;当通话时间大于或等于97分钟时,“便民卡”便宜.专题六、分类讨论专题概说:在解答某些数学问题时,有时会遇到很多种情况,需要对各种情况加以分类,并逐类求解,然后综合求解,这就是分类讨论法,分类讨论是一种重要的数学方法,不重复、不遗漏是对分类的基本要求.例8、如果一次函数y=kx+b的自变量x的取值范围是-2≤x≤4,相应函数的范围是-9≤y≤11,求此函数的解析式.解:(1)当k>0时,y随x的增大而增大,一定是当x=-2时,y=-9;当x=4时,y=11.所以有解得所以;(2)当k<0时,y随x的增大而减小,一定是当x=-2时,y=11;当x=4时,y=-9.所以有解得所以.综上所述两种情况,符合条件的解析式为.专题七、函数思想专题概说:函数思想就是用运动和变化的观点去观察、分析具体问题中的数量关系,通过函数形式,把这种数量关系表示出来并加以研究,从而使问题获得解决,在解决问题时,根据问题的条件去构造函数关系,并借助已知函数的性质和图象,获得解决问题的途径.例9、小张准备将平时的零用钱节约一些储存起来,他已存有50元,从现在起每个月节存12元.小张的同学小王以前没有存过零用钱,听到小张在存零用钱,表示从现在起每个月存18元,争取超过小张.请你在同一平面直角坐标系中分别画出小张和小王存款数和月份数的函数关系的图象,在图上找一找半年以后小王的存款数是多少,能否超过小张?至少几个月后小王的存款能超过小张?解:设小张存款数为y1元,小王存款数为y2元,月份数为t.则y1=50+12t,y2=18t.在同一平面直角坐标系中画出两个系数的图象如图所示.当t=6时,y1=50+12×6=122,y2=18×6=108,在图上也可以看出半年后小王的存款数是108元,不能超过小张.我们过x轴上(6,0)点作x轴的垂线交两条直线于P1、P2点,显然P2点位置较高,即表示此时小张的存款数比小王的存款数多.由y1<y2,即50+12t<18t,.∵t为整数,∴t≥9.由图象可知至少9个月后小王的存款才能超过小张.综合测试A卷一、选择题(每题4分,共40分)1、一次函数y=4x,y=-7x,的共同特点是()错误!未找到引用源。
A.图象位于同样的象限错误!未找到引用源。
B.y随x的增大而减小错误!未找到引用源。
C.y随x的增大而增大错误!未找到引用源。
D.图象都过原点2、已知y-3与x-1成正比例,且x=2时,y=7,则正比例系数k的值是()错误!未找到引用源。
A.4错误!未找到引用源。
C.错误!未找到引用源。
D.3、一次函数y=11x+m-1的图象不经过第二象限,则m的取值范围是()错误!未找到引用源。
A.m≤1错误!未找到引用源。
B.m≤-1.错误!未找到引用源。
C.m>1错误!未找到引用源。
D.m<14、在下列函数中,y随x的增大而减小的是()错误!未找到引用源。
A.错误!未找到引用源。
B.y=3x错误!未找到引用源。
C.y=2x+1错误!未找到引用源。
D.y=x-15、一次函数y=kx+1,y随x增大而减小,则此一次函数图象不经过的象限是()错误!未找到引用源。
A.一错误!未找到引用源。
B.二错误!未找到引用源。
C.三错误!未找到引用源。
D.四6、已知直线y=kx+b(k≠0)与x轴交点在x轴正半轴上,下列结论:(1)k>0,b>0;(2)k>0,b<0;(3)k<0,b>0;(4)k<0,b<0.其中可能正确的结论的有()错误!未找到引用源。
A.1个错误!未找到引用源。
B.2个错误!未找到引用源。
D.4个7、如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h与注水时间t之间的函数关系大致是图中的()错误!未找到引用源。
A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.8、拖拉机开始工作时,油箱中有24升油.如果每小时耗油4升,那么油箱中的剩余油量y(升)与工作时间x(小时)之间的函数解析式和图象是图中的()错误!未找到引用源。
A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.9、函数的自变量x的取值范围是()错误!未找到引用源。
A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.10、某城市为了节约用水,实行了价格调控,限定每户每月用水量不超过6t时,每吨价格为2元,当用水量超过6t时,超过部分每吨水价为3元,每户每月水费y(元)与用水量x(t)的函数图象是如图所示中的()错误!未找到引用源。
A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.[答案]DAAACBBDAB提示:2、根据题意,可设y-3=k(x-1),把x=2时,y=7代入上式,可求出k=4.3、因为图象不经过第二象限,所以经过一、三、四或一、三象限,即所以m≤1.4、因为y随x增大而减小,所以k<0.5、因为y随x增大而减小,所以k<0.又因为b=1>0,所以图象经过一、二、四象限.6、当y=0时,x>0,即,所以,即k、b异号.所以选B.9、由平方根的意义,得2x-1≥0.所以.故选A.10、要能正确的识图,y是所需费用,越向上,说明费用越多,再根据题意,此题是个分段函数,以6为分界点,当0≤x≤6时,说明水费是用水量的2倍,在12元以内,而超过6t,每吨价格增加了.因此图象呈比较快的上升趋势.B卷二、填空题(每题3分,共18分)11、函数是一次函数,则m______,n_______.12、已知一次函数解析式为y=(3-k)x-2k2+18,当k=_______时,它的图象过原点;当k=_______时,它的图象过点(0,-2);当k=_______时,它的图象平行于直线y=-x.13、将直线y=2x+3向上平移一个单位时,所得的直线解析式为_______,这条直线相当于把原直线向左平移了_______个单位.14、若直线y=3x+k与两坐标轴围成的三角形面积为24,则常数k的值是_______.15、如果函数的图象在x轴上方,此时x_______.16、若函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集为_______.三、解答题(20题12分,其余每题10分,共42分)17、已知直线y1=k1x+b1经过原点和点(-2,-4),直线y2=k2x+b2经过点(1,5)和点(8,-2).(1)求y1、y2的函数解析式,并作出图象;(2)若两直线相交于M点,求点M的坐标;(3)若直线y2与x轴交于点N,试求△MON的面积.18、已知一次函数y=kx+b的图象与反比例函的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是-3.求:(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零?19、某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.每日从凌晨4点到8点只进水,不出水;8点到12点既进水又出水;14点至次日凌晨只出水不进水.经测定,水塔中贮水量y(m3)与时间x(h)的函数关系如图所示.(1)求每小时的进水量;(2)当8≤x≤12时,求y与x的函数关系式;(3)当14≤x≤18时,求y与x的函数关系式.20、已知直线y1=2x与y2=kx+b(k≠0)相交于A(1,m),直线y2=kx+b交x轴于B点,且S△AOB=4,求m、k、b的值.[答案]11、=2;是任意实数12、-3;;413、答案:y=2x+4;0.5提示:由y=2x+3,当y=0时,x=-1.5,即y=2x+3与x轴交于点(-1.5,0).由y=2x+4,当y=0时,x=-2,即y=2x+4与x轴交于点(-2,0).所以-2-(-1.5)=-0.5.所以直线y=2x+4是由直线y=2x+3向左平移了0.5单位.14、答案:±12提示:此题的解决,先求出直线与x轴、y轴的交点坐标(,0),(0,k),据,解得k=±12.15、答案:>-5提示:令y=0,则+2=0,x=-5.而,即y随x的增大而增大,所以,当x>-5时,图象在x轴的上方.16、答案:x≤217、解:(1)由已知,得b1=0.因为-2k1=-4,k1=2,所以y1=2x.又由已知,得解得k2=-1,b2=6.所以y2=-x+6;(2)解方程组所以点M的坐标为(2,4);(3)令y2=0,得-x+6=0,x=6.所以点N的坐标为(6,0).于是ON=6.又因为ON边上的高为点M的纵坐标,所以S△MON=×6×4=12.18、解:(1)点A、B为两函数图象的交点,所以A、B在图象上.易知A(3,2),B(-2,-3).所以有所以一次函数解析式为y=x-1;(2)令y<0,即x-1<0.所以x<1时,一次函数的函数值小于零.19、解:(1)由图可知,4点到8点进水20m3,∴每小时进水量5m3. (2)当8≤x≤12时,由图知,线段过点(8,25),(12,35). 设函数解析式为y=kx+b,则∴当8≤x≤12时,y与x的函数关系式为y=2.5x+5.(3)由(2)得,每小时出水量为2.5m3,所以x=16时,y=30.设14≤x≤18时,函数解析式为y=mx+n,则∴当14≤x≤18时,y与x的函数关系式为y=-2.5x+70.20、解:因为两直线交于(1,m),所以直线y1=2x过点A(1,m),所以m=2.直线y2=kx+b也过A点,所以k+b=2. ①直线y2=kx+b与x轴的交点B为(,0),又因S△AOB=4,所以. ②-END-。