OIML官方砝码规范等级(允许误差)表 R111-1 2004 excel版
砝码公差表
砝码公差表:确保测量准确性的关键工具在日常生活和工业生产中,砝码作为一种重要的测量工具,被广泛应用于各种称重和测量设备中。
为了确保砝码的准确性和可靠性,砝码公差表应运而生。
本文将对砝码公差表进行详细介绍,包括其定义、作用、分类以及在工业生产中的应用。
一、砝码公差表的定义砝码公差表是一种用于规定砝码允许误差范围的技术文件。
它详细列出了不同规格、不同材质砝码在不同使用环境下的允许误差值,为使用者提供了参考依据,以确保砝码在测量过程中的准确性和可靠性。
二、砝码公差表的作用1.指导生产:砝码公差表为砝码生产企业提供了明确的生产标准,确保生产出的砝码符合规定要求。
2.保障测量准确性:通过砝码公差表,使用者可以了解砝码的允许误差范围,从而在测量过程中选择合适的砝码,提高测量准确性。
3.促进贸易公平:在国际贸易中,砝码公差表有助于各国统一砝码标准,确保贸易公平和公正。
三、砝码公差表的分类根据使用环境和需求,砝码公差表可分为多种类型,如国际公差表、国家公差表、行业标准公差表等。
不同类型的公差表具有不同的特点和适用范围,用户需根据自身需求选择合适的公差表。
四、砝码公差表在工业生产中的应用在工业生产中,砝码公差表发挥着举足轻重的作用。
例如,在化工、制药、食品等行业中,精确的称重和测量对于保证产品质量至关重要。
通过使用符合公差要求的砝码,企业可以确保生产过程中的准确性和可靠性,从而提高产品质量和生产效率。
总之,砝码公差表是确保砝码准确性和可靠性的关键工具。
通过了解和掌握砝码公差表的相关知识,用户可以更好地选择和使用砝码,提高测量准确性和生产效率,促进工业生产的发展。
砝码
Dmkg
大约具有相同标准偏差的一组或一系列相同测量序列的测
量的平均值
Dmc kg折算质量的差值
r0 kg/m3空气密度的参考值,等于1.2kg/m3
rref kg/m3砝
码
的
约
定
密
度
,
例
如
8000 kg/m3
|MPE/m0|砝码最大允许相对误差的绝对值
2
Test Report Format. Edition 2004(E))
使用本规程时,应注意使用上述引用文献的现行有效版本。
3术语和计量单位
3.1术语
3.1.1折算质量,即折算质量值:一物体在约定温度和约定密度的空气中,与一约定密度的
标准器达到平衡,则标准器的质量即为该物体的折算质量。约定温度(tref)为20℃;约
个使用,而且也可将不同的单个砝码组合在一起使用,用以复现若干个大小不同的一组质量
值。
5计量性能要求
5.1 最大允许误差
5.1.1 首次检定及后续检定的最大允许误差
5.1.1.1 除了附录G 中的特例和1.3.9 的专用砝码以外,其它各准确度等级的砝码,首次检
定、后续检定折算质量的最大允许误差不应大于表1 中的要求。
面R参数,主表面P参数,曲表面W参数。
3.1.5标尺因子:将灵敏度砝码,质量ms,放在衡量仪器上所获得的相应的指示差DIs的比
率。
3.1.6灵敏度砝码:用于确定衡量仪器灵敏度的砝码。
3.2计量单位
3.2.1使用的单位
¾质量:微克(mg)、毫克(mg)、克(g)、公斤(kg)和吨(t);
¾密度:公斤每立方米(kg/m3)、克每立方厘米(g/cm3)、毫克每立方厘米
砝码技术指标及其它
13、必须按用户要求生产并铸上单位名称
14、没有预付款; 以上参数全部为主要参数必须全部满足。
设备名称
技术指标及其它
砝码 1、规格:2t。 2、等级:M1等级。 3、砝码最大允许误差的绝对值(︱MPE︱):0.1kg。 4、形状: 4.1、矩形设计形状,并要求在砝码两侧有可用于装卸的沟槽和在砝码底部用叉车搬运的搬 运沟槽。 4.2、砝码的边和角应修圆,表面不应有锐边或锐角和明显的砂眼,以防止磨损和积灰。 4.3、按我方图纸尺寸。 5、结构:砝码可有一个调整腔,所有调整腔的总体积不应超过砝码总体积的1/10。 腔体应密封、防水、防尘。调整腔可用带螺纹的塞子或提钮密封。 6、材料:砝码应由一块或多块材料制造,材料的抗腐蚀性要等于或优于灰口铁。在正常 使用情况下,材料的硬度和强度应能承受家在高砝码的抗腐蚀性和硬度,对于砝码的表面应有适当的金属镀层或涂层。 8、要求砝码的各项指标都符合JJG99-2006《砝码检定规程》的要求。 9、砝码数量:2000kg圆形(附图纸)2块,1000kg方形(附图纸)16块; 10、出具天津市级以上检定合格证书; 11、砝码生产厂应是中国衡器协会会员; 12、交货期为10天;
(整理)准确度等级和最大允许误差1
电流表、电压表、功率表和电阻表准确度等级及最大允许误差( JJG124-2005)压力表允许误差计算值一览表( JJG52-1999)单位:MPa精密压力表允许误差计算值一览表( JJG49-1999)单位:MPa砝码最大允许误差的绝对值(│ MPE│)( JJG99-2006)单位:mg通用卡尺示值误差(JJG30-2002 4.9 )单位:mm指针式指示表的最大允许误差和回程误差(JJG34-2008 4.9 表6)单位:mm数显式指示表的最大允许误差和回程误差(JJG34-2008 4.9 表6)单位:mm外径千分尺示值的最大允许误差及两测量面平行度450-475 ,475-500 ±13电子天平最大允许误差(JJG21-2008 4.11 表3)单位:g数字指示秤首次检定最大允许误差(JJG539-97)单位:g模拟指示秤首次检定最大允许误差(JJG13-97)单位:g非自行指示秤首次检定最大允许误差(JJG14-97)单位:g使用中检验的最大允许误差,是首次检定最大允许误差的两倍。
数字温度指示调节仪设定点误差Δ 1(JJG617-1996)动圈式温度指示/ 指示位式调节仪表指示基本误差(JJG186-1997)卷烟/滤棒物理综合测试台(JJG(烟草)01-1998)卷烟/滤棒压降仪(JJG(烟草)02-1998)检定环境:温度(± )℃,相对湿度(± ),大气压(± )施加负荷2.94N ,允差│δ│ max0.01N ,压陷时硬度压头面积:直径12mm 0.1mm间15s ,允差│δ│ max1.0s检定环境:温度(22± 2)℃,相对湿度(60±5)%RH,大气压(96±10)kPa卷烟/滤棒圆周仪(JJG(烟草)03-1998)全压式卷烟硬度仪(JJG(烟草)04-1998 )检定环境:温度(±)℃,相对湿度(±),大气压(±)卷烟含末率测定仪(JJG(烟草)05-1998 )检定环境:温度(± )℃,相对湿度(± ),大气压(± )点压法卷烟/ 滤棒硬度仪(JJG(烟草)06-1998 )检定环境:温度(±)℃,相对湿度(± ),大气压(± )烟用纤维丝束线密度测定仪(JJG(烟草)07-1998 )检定环境:温度(±)℃,相对湿度(±),大气压(±)纸张透气度测定仪(JJG(烟草)08-1998 )检定环境:温度(±)℃,相对湿度(±),大气压(±)卷烟纸阴燃仪(JJG(烟草)09-1998 )烟用恒温干燥箱(JJG(烟草)10-1998 )卷烟/滤棒重量分选仪(JJG(烟草)12-1998)A01-A06型压降测定仪(JJG(烟草)14-1998)检定环境:温度(± )℃,相对湿度(± ),大气压(± )卷烟检测用测量设备的计量要求(YC/T28-1996)测试环境:温度(±)℃,相对湿度(±),大气压(±)。
E1级e1标准砝码的材质要求
E1 级 e1 标准砝码的材质要求 产品详情: 生产标准:OIML-R111,JJG99-2006 砝码检定规程 等级:E1 e1 级 材质:JF-1 无磁不锈钢 结构:实心整体 密度:8.00g/cm³ 磁化率:<0.0006 极化强度:<2.5 形状:1mg-500mg 片状,1g-100g 圆柱形 砝码数量:21 只 砝码组成: 1mg,2mg,2mg,5mg,10mg,20mg,20mg,50mg,100mg,200mg,200mg,500mg 1g,2g,2g,5g,10g,20g,20g,50g,100g 包装:铝盒 包装尺寸(cm):170*130*80 含盒子重量(kg):0.83 适用于:检定分辨率 100000d,小于 500000d 的天平(分辨率=最大称量/可 读性) 上海实润专业从事中高档砝码的研发、生产和销售。 选购砝码通用规程: 十万分之一天平(精度 0.01mg 天平)需要用 E2/E1 级砝码校正
Байду номын сангаас
万分之一天平(精度 0.1mg 天平)需要用 E2 级砝码校正或 F1 砝码校正 千分之一天平(精度 1mg 天平)用 F1 等级砝码校正 百分之一天平(精度 0.01 克天平)用 F2 等级砝码校正 十分之一天平(精度 0.1 克天平)用 M1 等级砝码校正 大吨位电子称或磅秤用 M1 等级铸铁砝码校正 砝码使用提示: 1、砝码使用前,先用专用清洁刷和擦拭布将砝码表面的灰尘等污渍清洁 掉。 2、严禁用手直接触摸砝码。 使用砝码时,请戴上专用手套,用专用工具夹取砝码。 3、在天平检测或砝码比对前,砝码都需要恒温以达到实验室的大气状况, 否则会对检测结果造成影响。 4、砝码使用后,必须贮存在原配包装盒内。 产品优势: 1、标准砝码长期现货 2、带出厂检定合格证书(亦可代送第三方、国家计量院校准)不另收手续 费用 产品应用: 工业,实验室,建标,医药厂,计量院,质监局,化学,医疗质量校准。精 密天平,地磅,台秤,汽车衡,吊秤等质量校准。 E1 级 e1 标准砝码的材质要求 tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!
E型1级允许误差等级
E型1级允许误差等级(一)标称值在砝码规程允许误差表没有的砝码,有两种测量方法:1.标准砝码累加法和被检砝码:累加法是累加标准砝码行测量,允许误差的值应由已有的标称值允许误差线性累计得到,而不是内插法得到。
例如:用 E 2 等级 20g 和 5g 砝码校准 F 1 等级的 25g 砝码,被校砝码的允许误差由 F 1 等级的 20g 和 5g 砝码累计得到,为 0.41mg,但是 50gF 1 等级砝码的质量允差为 0.3mg,这样计算就造成MPE25g > MPE 50g ,容易造成误解。
砝码允许误差是由 E 1 等级1kg 砝码按分倍量量传而来,故而允许误差是上级标准砝码量传到对应等级的允许误差的代数和决定的。
2.内插法:分量组合传递得到的测量结果。
被校砝码的允许误差可通过内插法得到。
检定个 F 1 等级 25g 砝码时,采用个 E 2 等级的 50g砝码作为标准,另外的 F 1 等级行组合传递,则此时可以采用内插法计算被检砝码的允许误差,对检定出来的结果。
雷氏夹膨胀测定仪、液体相对密度天平、机械天平等配衡砝码等仪器配套使用的砝码应按照相应的检定规程要求行计量。
液体相对密度天平 [6] 配套的标准器砝码 F 1 等级和 F 2 等级砝码根据砝码检定规程出具检定证书,允差见天平检定规程。
雷氏夹膨胀测定仪 [7] 配套砝码300g,允差为 0.1g 介于 M 2 等级允差 46mg 和 M 3 等级 150mg,根据允差选用标准器,采用 ABA 的闭环检定模式。
以下是砝码的类型:1.铸铁砝码2.电梯砝码3.起重机配重砝码4.地磅校准砝码5.船舶配重砝码6.计量所砝码7.钢厂配重砝码8.20公斤电梯砝码9.25公斤电梯砝码10.1吨锁形砝码11.2吨平板砝码12.2T铸铁砝码13.1T铸铁平板砝码(二)标准砝码可以称重、校准,经常被用于科研、医药、机械等多个领域,砝码的精度直接关系着称量的准确程度。
电子秤不确定度评定
TH168-3型电子秤测量结果不确定度评定1 概述1.1 测量依据:JJG539—1997《数字指示秤检定规程》。
1.2 测量标准:M 1级砝码,依据JJG99—2006《砝码检定规程》中给出100m g ~3kg 砝码 质量最大允许误差为±(0.5mg ~0.15g )。
1.3 被测对象电子计价秤三级,型号为TH168-3,检定分度值е为1g ,0~500е为±0.5е;>500~2000e 为±1.0e ;>2000e ~Max 为±1.5e 。
1.4 测量过程用砝码直接加载、卸载的方式。
2 数学模型△E =P -m 式中:△E 电子秤示值误差; P 电子秤示值; m 标准砝码质量值。
3 灵敏系数ə△E ə△EC 1= =1 C 2= =-1 əP əm4 输入量的标准不确定度评定因为电子秤的最大误差最有可能出现在最大称量点,故本次只对最大称量点3kg 进行评定。
4.1 电子秤示值引入的不确定度分量u (P )。
4.1.1 测量重复性引起的标准不确定度分项u (P 1)的评定 用固定砝码在重复性条件下对电子秤进行10次连续测量,得到测量列2998.7,2998.7,2998.9,2998.7,2998.7,2998.8,2998.9,2998.6,2998.8,2998.7g 。
)(8.299811g p n p i ni ==∑=单次实验标准差 )(11.01)(1g n p p S i ni =--∑==u(P 1)=0.11(g)4.1.2电子秤的偏载误差引起的标准不确定度分项u (P 2)的评定电子秤进行偏载试验时,用最大称量1/3的砝码,放置在1/4秤台面积中,最大值与最小值之差一般不会超过1g ,半宽a =0.5g ,而测量时放置砝码的位置较为注意,偏载量 远比做偏载试验时少,假设其误差为偏载试验时的1/3 ,并服从均匀分布,包含因子3=k ,可得)(10.0335.0)(2g p u =⨯=估计10.0)()(22=∆p u p u , 则自由度50])()([212222=∆=-p u p u p υ4.1.3 电源电压稳定度引起的标准不确定度分项u (P 3)评定电源电压在规定条件下变化可能会造成示值变化0.2e ,即0.2g ,假设半宽度a =0.2g ,服从均匀分布,包含因子3=k)(12.032.0)(3g p u ==△u (P 3) 1 △u (P 3) -2估计 =0.10,则自由度νP 3= [ ] =50。
F1等级砝码
计量标准技术报告计量标准名称F1等级毫克克组砝码标准装置计量标准负责人李轶建标单位名称(公章)遵化市质量技术监督检验所填写日期2008年05月10日目录一、建立计量标准的目的...................... ....... ....... .. (1)二、计量标准的工作原理及其组成................ ....... ....... . (1)三、计量标准器及主要配套设备...................... . (2)四、计量标准的主要技术指标....... ....... ....... ....... ....... (3)五、环境条件.............................................. (3)六、计量标准的量值溯源和传递框图................. (4)七、计量标准的重复性试验....................... (5)八、计量标准的稳定性考核.............................. (6)九、检定或校准结果的测量不确定度评定....................... (7)十、检定或校准结果的验证 (10)十一、结论 (11)十二、附加说明 (11)一、建立计量标准的目的加强计量器具管理,规范计量器具检定要求,保障国家计量单位制的统一和量值传递的一致性、准确性,为国民经济发展以及计量监督管理提供公正、准确的检定、校准数据或结果。
二、计量标准的工作原理及其组成1、工作原理:F1等级砝码借助相应精度的标准天平以比较法向F2级、M1级砝码、M2级砝码传递质量量值。
用此项标准对基层1—10级天平、水分测定仪进行检定。
首先以高一等的克砝码与其标称质量相当的其标秤质量的较小的一群被检砝码相比较,然后依次将被检砝码组中每个砝码与相当于其标称质量的较小的一群被检砝码相互比较。
平衡方程式及砝码质量修正值公式形式上与检定规程24.1.1项的平衡方程式及砝码质量修正值完全相同。
电子秤用砝码校准规程
教您如何选择砝码:如您的天平最大称量是205g,可读性为0.001g(1mg)。
此天平的分辨率为205g/0.001g=205,000d。
依据此分辨率您应该从E2中选择一个相应的校验砝码计算公式为:分辨率=最大称量/可读性原则上,天平的校准砝码应当高于天平的准确度等级。
十万分之一的,最小刻度是0.01mg,属于一等天平(特种准确度级),用高等E1、E2砝码校准。
万分之一的,最小刻度是0.1mg,属于一等天平,用标准E2砝码校准。
千分之一的,最小刻度是1mg,属于二等天平,用E2或F1砝码校准。
百分之一的,最小刻度是0.01g,属于三等天平,M1或F2砝码校准。
十分之一的,最小刻度是0.1g,属于三级电子秤,M1砝码校准。
对于相同量程的天平在同一个实验室使用的,几台可以共用一套砝码,如您所买的砝码是E2等级的套装,那么相同量程的十万分位、万分位、千分位、百分位\十分位的天平都可以用此套装来校准。
对于国标三级电子秤、电子地磅、汽车衡砝码的选择:原则上,是满量程校准,就是说300kg电子秤就用300kg的砝码校准,通常情况下如果条件不允许,就用三分之一量程校准(即30kg电子秤用10kg砝码校验,300kg电子秤用100kg砝码校准,100吨地磅用30吨砝码校准,具体情况如有不明白或校验方法可咨询小秦)。
电子秤用砝码校准规程1.目的通过对电子秤的内部校准,确保测量结果准确可靠。
2.范围适用于公司内所有在用电子秤。
3.职责3.1品控部:负责内部校准规程的制定及校准工作监督管理,负责按照相关规定对电子秤进行第三方鉴定并负责鉴定记录的归档、保管,并负责本部门所用电子秤日常自校并做好记录。
3.2生产部:负责按规程规定要求对所用电子秤日常自校并做好记录。
4.校准程序4.1角差校准和线性校准4.1.1校准频率:a)新购回首次使用前b)长时间未用重新使用前c)正常使用时每三个月4.1.2校准前准备:秤体稳定地放置在水平台面上,调节电子秤砝码水平气泡至中心位置,四周无物体相碰,秤台上无杂物,观察其显示器是否为零,若不为零,按“置零”键置零,若不能置零,按不合格测量设备处理。
OIML-R111-1-e04
Weights of classes E 1, E 2, F 1, F 2, M 1, M 1–2, M 2, M 2–3and M 3Part 1: Metrological and technical requirementsPoids des classes E 1, E 2, F 1, F 2, M 1, M 1–2, M 2, M 2–3et M 3Partie 1: Exigences métrologiques et techniquesO I M L R 111-1 E d i t i o n 2004 (E )OIML R 111-1Edition 2004 (E)I NTERNATIONAL R ECOMMENDATIONCon ten tsForeword (3)General (4)1Scope (4)2Terminology (5)3Symbols (8)4Units and nominal values for weights (11)Metrological requirements (11)5Maximum permissible errors on verification (11)Technical requirements (13)6Shape (13)7Construction (14)8Material (15)9Magnetism (16)10Density (17)11Surface conditions (18)12Adjustment (19)13Marking (20)14Presentation (21)Metrological controls (22)15Submission to metrological controls (22)16Control marking (23)Annex A Examples of different shapes and dimensions (25)Annex B Test procedures for weights (28)B.1Introduction (28)B.2Test sequence (28)B.3Document review and visual inspection (28)B.4Cleaning weights (29)B.5Surface roughness (30)B.6Magnetism (33)B.7Density (42)B.8Assignment of an OIML R 111 class to old and/or special weights (60)Annex C Calibration of a weight or weight set (61)C.1Scope (61)C.2General requirements (61)C.3Weighing designs (62)C.4Weighing cycles (63)C.5Data analysis (65)C.6Uncertainty calculations (66)Annex D Statistical control (71)D.1Check standard (71)D.2Precision of the balance (72)Annex E CIPM formula and an approximation formula (74)E.1CIPM formula (74)E.2Constants (74)E.3Approximation formula for air density (76)Referen ces (77)T he International Organization of Legal Metrology (OIML) is a worldwide, intergovernmental organizationwhose primary aim is to harmonize the regulations and metrological controls applied by the national metrological services, or related organizations, of its Member States.The two main categories of OIML publications are:•In tern ation al Recommen dation s (OIML R), which are model regulations that establish the metrological charac-teristics required of certain measuring instruments and which specify methods and equipment for checking their conformity; the OIML Member States shall implement these Recommendations to the greatest possible extent;•In tern ation al Documen ts (OIML D), which are inform-ative in nature and intended to improve the work of the metrology services.OIML Draft Recommendations and Documents are devel-oped by technical committees or subcommittees which are formed by Member States. Certain international and regional institutions also participate on a consultation basis. Cooperative agreements are established between OIML and certain institutions, such as ISO and IEC, with the objective of avoiding contradictory requirements; consequently, manu-facturers and users of measuring instruments, test labor-atories, etc. may apply simultaneously OIML publications and those of other institutions.International Recommendations and International Docu-ments are published in French (F) and English (E) and are subject to periodic revision.This publication - OIML R111-1, Edition 2004 (E) - was developed by TC9/SC3 Weights. It was directly sanctioned by the International Conference of Legal Metrology in 2004. OIML Publications may be downloaded from the OIML web site in the form of PDF files. Additional information on OIML Publications may be obtained from the Organization’s headquarters:Bureau International de Métrologie Légale11, rue Turgot - 75009 Paris - FranceTelephone:33 (0)1 48 78 12 82Fax:33 (0)1 42 82 17 27E-mail:biml@Internet:ForewordWeights of classes E 1, E 2, F 1, F 2, M 1, M 1–2, M 2, M 2–3and M 3General1SCOPE1.1This Recommendation contains technical (e.g. principal physical characteristics) and metrological re-quirements for weights used:•As standards for the verification of weighing instruments;•As standards for the verification or calibration of weights of a lower accuracy class; •With weighing instruments.1.2ApplicationThis Recommendation applies to weights with nominal values of mass from 1mg to 5000kg in the E 1, E 2, F 1, F 2,M 1, M 1–2, M 2, M 2–3and M 3 accuracy classes.1.3Minimum accuracy class of weightsThe accuracy class for weights used as standards for the verification of weights or weighing instruments should be in accordance with the requirements of the relevant OIML Recommendations.1.3.1The OIML weight classes are defined as follows:Class E 1:Weights intended to ensure traceability between national mass standards (with values derived from the International Prototype of the kilogram) and weights of class E 2and lower. Class E 1weights or weight sets shall be accompanied by a calibration certificate (see 15.2.2.1).Class E 2:Weights intended for use in the verification or calibration of class F 1weights and for use with weighing instruments of special accuracy class I. Class E 2weights or weight sets shall be accom-panied by a calibration certificate (see 15.2.2.2). They may be used as class E 1weights if they com-ply with the requirements for surface roughness, magnetic susceptibility and magnetization for class E 1weights, and if their calibration certificate gives the appropriate data as specified in 15.2.2.1.Class F 1:Weights intended for use in the verification or calibration of class F 2 weights and for use with weighing instruments of special accuracy class I and high accuracy class II.Class F 2:Weights intended for use in the verification or calibration of class M 1and possibly class M 2weights. Also intended for use in important commercial transactions (e.g. precious metals and stones) on weighing instruments of high accuracy class II.Class M 1:Weights intended for use in the verification or calibration of class M 2weights, and for use with weighing instruments of medium accuracy class III.Class M 2:Weights intended for use in the verification or calibration of class M 3weights and for use in gener-al commercial transactions and with weighing instruments of medium accuracy class III.Class M 3:Weights intended for use with weighing instruments of medium accuracy class III and ordinary accuracy class IIII.Classes M 1–2Weights from 50 kg to 5 000 kg of lower accuracy intended for use with weighing instruments of and M 2–3:medium accuracy class III.Note:The error in a weight used for the verification of a weighing instrument shall not exceed 1/3 of the maximum permissible er-ror for an instrument. These values are listed in section 3.7.1 of OIML R 76 Nonautomatic Weighing Instruments (1992).2TERMINOLOGYThe terminology used in this Recommendation conforms to the International Vocabulary of Basic and General Terms in Metrology(1993 edition) [1] and the International Vocabulary of Terms in Legal Metrology(2000 edition) [2]. In addition, for the purposes of this Recommendation, the following definitions apply.2.1Accuracy classClass designation of a weight or weight set which meets certain metrological requirements intended to maintain the mass values within specified limits.2.2BalanceInstrument indicating apparent mass that is sensitive to the following forces:Gravity.Air buoyancy equal to the weight of the displacedair.Vertical component of the magnetic interactionbetween the weight and the balance and/or theenvironment.H and M are vectors; z is the vertical cartesian coordinate.If magnetic effects are negligible, i.e. the permanent magnetization (M) of the weight and the magnetic susceptibil-ity (χ) are sufficiently small, and the balance is calibrated with reference weights of well known mass, the balance, of a body under conventionally chosen conditions.can be used to indicate the conventional mass, mc2.3CalibrationSet of operations that establish, under specified conditions, the relationship between values of quantities indicated by a measuring instrument or measuring system, or values represented by a material measure or a reference mate-rial, and the corresponding values realized by standards.Note 1:The result of a calibration permits either assignment of values of measurands to the indications or the determination of cor-rections with respect to indications.Note 2: A calibration may also determine other metrological properties such as the effect of influence quantities.Note 3:The result of a calibration may be recorded in a document, sometimes called calibration certificate or calibration report. 2.3.1Calibration certificate (report)Certificate issued only by authorized or accredited laboratories that record the results of a calibration.2.4Certificate of conformityDocument provided by the national responsible body indicating confidence that an identified weight or weight set, or samples thereof, is in conformity with the relevant requirements of this Recommendation (see OIML Certificate System for Measuring Instruments).2.5Check standardStandard that is used in a statistical control process to provide a “check” to ensure that standards, measurement processes and results are within acceptable statistical limits.2.6ComparisonMethod of measurement based on comparing the value of a quantity to be measured with a known value of the same quantity.2.7Conventional mass (also called the conventional value of mass)Conventional value of the result of weighing in air, in accordance with OIML D 28 Conventional value of the result of weighing in air [3]. For a weight taken at a reference temperature (t ref ) of 20°C, the conventional mass is the mass of a reference weight of a density (ρref ) of 8000kg m –3which it balances in air of a reference density (ρ0) of 1.2kg m –3.2.8Density of a bodyMass divided by volume, given by the formula .2.9MagnetismEffect that generates an attractive or repulsive force.2.9.1Magnetic dipole moment (m d )Parameter of a magnetic dipole. The magnetic field strength generated by a dipole, also the force between the di-pole and a magnetized sample, is proportional to this dipole moment. The force between the dipole and a sample having a magnetic susceptibility is proportional to the square of the dipole moment.2.9.2Magnetic field strength (H )Local magnetic intensity, generated by magnetic material, such as a permanent magnet, or by electrical circuits.2.9.3Magnetic force (F 1, F 2, F a , F b , F max and F z )Force produced on magnetic or magnetically susceptible material by external magnetic fields.2.9.4Magnetic permeability (µ)Measure of the ability of a medium to modify a magnetic field.2.9.5Magnetic constant (magnetic permeability of vacuum (µ0))µ0=4π × 10–7NA –2.2.9.6(Volume) magnetic susceptibility (χ)Measure of the ability of a medium to modify a magnetic field. It is related to the magnetic permeability (µ)by the relation: µ/ µ0= 1+ χ. The quantity µ/ µ0is sometimes referred to as the relative permeability, µr .2.9.7(Permanent) magnetization (M )Parameter that specifies a magnetic state of material bodies such as weights, in the absence of an external magnet-ic field (most generally, magnetization is a vector whose magnitude and direction are not necessarily constant within the material). The magnetization of a body generates an inhomogeneous magnetic field in space and thus may produce magnetic forces on other materials.2.10Maximum permissible error (δm or mpe)Maximum absolute value of the difference allowed by national regulation, between the measured conventional mass and the nominal value of a weight, as determined by corresponding reference weights.2.11Roughness parameter or R-parameter (R a or R z )Parameter that describes the assessed roughness profile of a sample. The letter R is indicative of the type of as-sessed profile, in this case R for roughness profile. The assessed profile of a sample can be in terms of different profile types: a roughness profile or R-parameter, primary profile or P-parameter, a waviness profile or W-parame-ter. [4]2.12Sensitivity weightWeight that is used to determine the sensitivity of a weighing instrument (see T.4.1 in OIML R 76-1).2.13Set of weights or weight setSeries or group of weights, usually presented in a case so arranged to make possible any weighing of all loads be-tween the mass of the weight with the smallest nominal value and the sum of the masses of all weights of the series with a progression in which the mass of the smallest nominal value weight constitutes the smallest step series. The weights have similar metrological characteristics and the same or different nominal values as defined in 4.3 of this Recommendation, and belong to the same accuracy class.2.14Temperature(t)In degrees Celsius, is related to the absolute thermodynamic temperature scale, called the Kelvin scale, by t=T–273.15K.2.15TestTechnical operation that consists of the determination of one or more characteristics or performance of a given product, material, equipment, organism, physical phenomenon, process or service according to a specified proce-dure. (Based on 13.1. Test, ISO/IEC Guide 2:1996 Standardization and Related Activities—General Vocabulary)[5] )2.16Test weight(mtWeight that is to be tested according to this Recommendation.2.17TypeDefinite model of weights or weight set to which it conforms.2.17.1Type evaluationSystematic examination and testing of the performance of a type of weights or weight sets against the documented requirements of this Recommendation, the results of which are contained in a test report.2.17.2Type approvalProcess of making a decision by a responsible body, based on a review of a type evaluation test report for the type of weights or weight set and professional judgment, that the type is in conformity with the mandatory require-ments of this Recommendation for legal applications.2.18VerificationAll the operations carried out by an organ of the national service of legal metrology (or other legally authorized or-ganization) having the object of ascertaining and confirming that the weight entirely satisfies the requirements of the regulations for verification. Verification includes both examination and stamping. (Adapted from VIML 2.4 and 2.13)2.18.1Initial verificationSeries of tests and visual examinations carried out before the equipment/weight is put into service to determine whether a weight or weight set has been manufactured to replicate a given type and conforms to that type and to regulations, and that its metrological characteristics lie within the limits required for initial verification of copies of that type. If the weights or weight set pass all the tests and examinations, it is given legal character by its accept-ance as evidenced by stamping and/or the issuing of a certificate of verification. (Adapted from OIML D 20 Initial and subsequent verification of measuring instruments and processes(1988))2.18.2Subsequent verification or in-service inspectionSeries of tests and visual examinations, also carried out by an official of the legal metrology service (inspector), to ascertain whether the weights or weight set, having been in use for some time since the previous verification, con-tinues to conform to, or again conforms to, regulations and maintains its metrological characteristics within the required limits. If the weights or weight set passes all tests and examinations, its legal character is either con-firmed, or re-established by its acceptance as evidenced by stamping and/or the issuing of a certificate of verifica-tion. When sampling is used to verify a population of weights, all elements in the population will be deemed veri-fied.2.19WeightMaterial measure of mass, regulated in regard to its physical and metrological characteristics: shape, dimensions, material, surface quality, nominal value, density, magnetic properties and maximum permissible error.2.20Weight of a body(Fg)Gravitational force with which the body is attracted by the earth. The word weight denotes a quantity of the same nature as a force: the weight of a body is the product of its mass and the acceleration due to gravity.3SYMBOLSSymbol Unit DefinitionA m2areaB T magnetic induction in mediumBET gaussmeter reading of the ambient magnetic field with the weight absentBT magnetic induction in vacuumC–correction factor for air buoyancyCa–correction factor for air buoyancy for density of air during the weighing cycle in airCal–correction factor for air buoyancy for density of air during the weighing cycle in liquidCs–correction factor for air buoyancy for density of sensitivity weightD kg difference of balance readings between minimum and maximum values fromeccentricity testd kg scale intervalF 1N average force calculated using the average mass change on the mass comparator for first set of readingsF 2N average force calculated using the average mass change on the mass comparator for second set of readingsFaN average force used for the magnetic susceptibilityFbN average force used for the magnetizationFgN gravitational forceFmaxN maximum force for magnetic susceptibilityF Z N magnetic force between a mass comparator and a weight in the vertical or z-directiong m s–2gravitational accelerationh mm or m heightH A m–1magnetizing field strengthHEZA m–1vertical component of earth magnetic field strength hr%relative humidity∆I kg indication difference of the balance, where ∆I= It – Ir∆Ia kg indication difference in air of the balance, where ∆Ia= Ita– Ira∆Il kg indication difference in liquid of the balance, where ∆Il= Itl– Irl∆Iskg change in indication of balance due to sensitivity weightI kg indication of the weighing instruments (scale division)Ia–geometric correction factor [6]Ib–geometric correction factor [6]Idl–indication of balance for displaced liquid differenceIl–indication of balance for vessel and contained liquidIl+t–indication of balance for vessel containing liquid and weightIta–indication of balance for test weight in air (after taring)Itl–indication of balance for test weight in liquid (after taring)j–subscript for number of test weights or number of series of measurementsk –coverage factor, typically 2 or 3 (Guide to the expression of uncertainty in measurement (GUM)(1995))[7]m kg mass of a rigid body (weight)M A m–1permanent magnetization (see also µM)Mvkg mol–1molar mass of water (equation E.1)Makg mol–1molar mass of dry airmckg conventional mass of the weightmcrkg conventional mass of the reference weightmctkg conventional mass of the test weight∆mc –average weighing difference observed between test and reference weight and ρrefdensity of the reference weightmdA m2magnetic moment (of the magnets used in the susceptometer)mkg mass, nominal value of the weight (e.g. 1 kg)mr kg mass of reference weight for comparisons with test weight, both in air or both sub-mersed in liquidmrakg mass of reference weight for comparison against test weight, both in airmrl kg mass of a combination of reference weights for comparison against test weight, stan-dards in air, test weight in liquidmskg mass of the sensitivity weightmtkg mass of the test weightmwakg mass of weight in airmwlkg mass of weight in liquid∆m kg mass difference, usually between test and reference weight∆m kg average value of a series of measurements, comprising a number of identical weighing cycles, or a number of series, having approximately the same standard deviation∆mckg difference of conventional massn_subscript for number of measurement sequencesp Pa or hPa pressurepsvPa saturation vapor pressure of moist airR J/(mol K)molar gas constantR a µm mean height of roughness profile (R-parameter) (see clause 11)Symbol Unit DefinitionR z µm maximum height of roughness profile (R-parameter) (see clause 11)r –subscript for reference weight s kg standard deviations –subscript for sensitivity weightT K thermodynamic temperature using the International Temperature Scale of 1990 (ITS-90)t –subscript for test weightt °C temperature in degrees Celsius, where t = T – 273.15 K t ref °C reference temperatureU kg uncertainty, expanded uncertainty u kg uncertainty, standard uncertainty u (m r )kg uncertainty of the reference weight u b kg uncertainty of air buoyancy correction u ba kg uncertainty due to the balanceu ba (∆m c )kg combined standard uncertainty of the balance u c kg combined standard uncertaintyu d kg uncertainty due to the display resolution of a digital balance u E kg uncertainty due to eccentricityu inst kg uncertainty due to instability of the reference weight u ma kg uncertainty due to magnetismu s kg uncertainty due to the sensitivity of the balance u w kg uncertainty due to the weighing process V m 3volume of a solid body (weight)V rl i m 3volume of the i-th reference weight of a combination of weights x v –mole fraction of water vapor Z –compressibility factorZ 1mm distance from top of weight to center of magnet (Figure B.1)Z 0mm distance from center of magnet to the bottom of weight (Figure B.1)ρa kg m –3density of moist airρ0kg m –3density of air as a reference value equal to 1.2 kg m –3ρr kg m –3density of a reference weight with mass m r ρra kg m –3density of a reference weight with mass m ra ρref kg m –3reference density (i.e. 8 000 kg m –3)ρrl kg m –3density of a reference weight with mass m rl ρs kg m –3density of the sensitivity weight ρt kg m –3density of the weight being tested ρx kg m –3density of alloy (x)ρy kg m –3density of alloy (y)δm /m 0– maximum permissible relative error on the weights µN A –2magnetic permeabilityµr – relative magnetic permeability (µ/µ0)µ0N A –2magnetic constant (magnetic permeability of vacuum), µ0= 4π ×10–7 N A –2µ0M T magnetic polarizationχ–(volume) magnetic susceptibilitySymbol Unit Definition4UNITS AND NOMINAL VALUES FOR WEIGHTS 4.1UnitsThe units used are:•For mass, the milligram (mg), the gram (g) and the kilogram (kg);•For density, the kilogram per cubic meter (kg m –3).4.2Nominal valuesThe nominal values of the mass for weights or weight sets shall be equal to 1 ×10n kg, 2 ×10n kg or 5 ×10n kg,where “n ” represents a positive or negative whole number or zero.4.3Weight sequence4.3.1 A set of weights may consist of different sequences of nominal values. If weight sequences are used in a set of weights, the following individual weight sequences shall be used:(1; 1; 2; 5)×10n kg;(1; 1; 1; 2; 5) ×10n kg;(1; 2; 2; 5) ×10n kg; or (1; 1; 2; 2; 5) ×10n kgwhere “n ”represents a positive or negative whole number or zero.4.3.2 A set of weights may also comprise multiple weights, all of which have the same nominal value (e.g. 10 pieces or members of the set, each piece or member having a nominal capacity of 5 ×10n kg).Metrological requirements5MAXIMUM PERMISSIBLE ERRORS ON VERIFICATION5.1Maximum permissible errors on initial and subsequent verification or in-service inspection5.1.1Maximum permissible errors for initial verification of individual weights are given in Table 1 and relate to conventional mass.5.1.2Maximum permissible errors for subsequent verification or in-service verification are left to the discretion of each state. If, however, the maximum permissible errors allowed are greater than those in Table 1, the weight cannot be declared as belonging to the corresponding OIML class.5.2Expanded uncertaintyFor each weight, the expanded uncertainty, U , for k = 2, of the conventional mass, shall be less than or equal to one-third of the maximum permissible error in Table 1.U ≤1/3 δm(5.2-1)5.3Conventional mass5.3.1For each weight, the conventional mass, m c (determined with an expanded uncertainty, U , according to 5.2) shall not differ from the nominal value of the weight, m 0,by more than the maximum permissible error, δm ,minus the expanded uncertainty:m 0– (δm – U ) ≤m c ≤m 0+ (δm – U )(5.3-1)5.3.2For class E 1and E 2weights, which are always accompanied by certificates giving the appropriate data (specified in 15.2.1), the deviation from the nominal value, m c – m 0, shall be taken into account by the user.Table 1Maximum permissible errors for weights (±δm in mg)*The nominal weight values in Table 1 specify the smallest and largest weight permitted in any class of R 111 and the maximum per-missible errors and denominations shall not be extrapolated to higher or lower values. For example, the smallest nominal value fora weight in class M2is 100 mg while the largest is 5 000 kg. A 50 mg weight would not be accepted as an R 111 class M2weight andinstead should meet class M1maximum permissible errors and other requirements (e.g. shape or markings) for that class of weight.Otherwise the weight cannot be described as complying with R 111.Technical requirements6SHAPE 6.1General6.1.1Weights shall have a simple geometrical shape to facilitate their manufacture. They shall have no sharp edges or corners to prevent their deterioration and no pronounced hollows to prevent deposits (i.e. of dust) on their surface.6.1.2Weights of a given weight set shall have the same shape, except for weights of 1 g or less.6.2Weights less than or equal to 1 g6.2.1Weights less than 1 g shall be flat polygonal sheets or wires, with shapes according to Table 2, which per-mit easy handling.6.2.2Weights of 1 g may be flat polygonal sheets or wires (see 6.3.1). The shape of weights not marked with their nominal value shall conform to the values given in Table 2.6.2.3 A weight set may comprise more than one sequence of shapes, differing from one sequence to the other. In a series of sequences, however, a sequence of weights of a different shape shall not be inserted between two se-quences of weights that have the same shape.6.3Weights of 1 g up to 50 kg6.3.1 A 1 g weight may have either the shape of multiples of 1 g weights or the shape of sub-multiples of 1g weights.6.3.2The weights of nominal values from 1 g to 50 kg may have the external dimensions shown in the Figures and Tables in Annex A.6.3.2.1These weights may also have a cylindrical or slightly tapered conical body (see example in Figure A.1). The height of the body shall be between 3/4 and 5/4 of its mean diameter.6.3.2.2These weights may also be provided with a lifting knob which has a height between 0.5 ×and 1 ×the mean diameter of the body.6.3.3In addition to the above shapes (6.3.2), weights of 5 kg to 50 kg may have a different shape suitable for their method of handling. Instead of a lifting knob, they may have rigid handling devices embodied with the weights, such as axles, handles, hooks or eyes, etc.6.3.4Class M weights with nominal values from 5 kg to 50 kg may also have the shape of rectangular paral-lelepipeds with rounded edges and a rigid handle. Typical examples of dimensions for these weights are shown in Figures A.2 and A.3.Table 2Shape of weights of 1g or lessNominal values Polygonal sheetsWires5, 50, 500 mg Pentagon Pentagon 5 segments 2, 20, 200 mg Square Square or2 segments 1, 10, 100, 1 000 mgTriangleTriangle1 segment。
准确度等级和最大允许误差
电流表、电压表、功率表和电阻表准确度等级及最大允许误差( JJG124-2005)注:干湿球温度计的准确度等级可不写,最大允许误差为:士2/2%压力表允许误差计算值一览表(JJG52-1999)精密压力表允许误差计算值一览表(JJG49-1999)砝码最大允许误差的绝对值(丨MPE )( JJG99-2006)通用卡尺示值误差(JJG30-2002 4.9 )指针式指示表的最大允许误差和回程误差(JJG34-2008 4.9表6)单位:mm数显式指示表的最大允许误差和回程误差(JJG34-2008 4.9表6)外径千分尺示值的最大允许误差及两测量面平行度电子天平最大允许误差(JJG21-2008 4.11 表3)数字指示秤首次检定最大允许误差(JJG539-97)单位:g模拟指示秤首次检定最大允许误差(JJG13-97)非自行指示秤首次检定最大允许误差(JJG14-97)单位:ge = d使用中检验的最大允许误差,是首次检定最大允许误差的两倍。
数字温度指示调节仪设定点误差△ i (JJG617-1996)动圈式温度指示/指示位式调节仪表指示基本误差(JJG186-1997)卷烟/滤棒物理综合测试台(JJG(烟草)01-1998)检定环境:温度± 2,相对湿度(60 ± 5)%RH大气压(96 士10)kPa/滤棒圆周仪(JJG (烟草)03-1998)卷烟全压式卷烟硬度仪(JJG (烟草)04-1998)检定环境:温度(22 士2,相对湿度(60 士5)%RH大气压(96 士10)kPa卷烟含末率测定仪(JJG (烟草)05-1998)检定环境:温度士 2 相对湿度(60 ± 5)%RH大气压(96 ± 10)kPa烟用纤维丝束线密度测定仪(JJG(烟草)07-1998 )检定环境:温度(22士2相对湿度(60 士5)%RH大气压(96士10)kPa纸张透气度测定仪(JJG (烟草)08-1998)烟用恒温干燥箱(JJG (烟草)10-1998 )卷烟/滤棒重量分选仪(JJG (烟草)12-1998)A01-A06型压降测定仪(JJG (烟草)14-1998)卷烟检测用测量设备的计量要求(YC/T28-1996)。
电子秤用砝码校准规程
教您如何选择砝码:如您的天平最大称量是205g,可读性为(1mg)。
此天平的分辨率为205g/=205,000d。
依据此分辨率您应该从E2中选择一个相应的校验砝码计算公式为:分辨率=最大称量/可读性原则上,天平的校准砝码应当高于天平的准确度等级。
十万分之一的,最小刻度是,属于一等天平(特种准确度级),用高等E1、E2砝码校准。
万分之一的,最小刻度是,属于一等天平,用标准E2砝码校准。
千分之一的,最小刻度是1mg,属于二等天平,用E2或F1砝码校准。
百分之一的,最小刻度是,属于三等天平,M1或F2砝码校准。
十分之一的,最小刻度是,属于三级电子秤,M1砝码校准。
对于相同量程的天平在同一个实验室使用的,几台可以共用一套砝码,如您所买的砝码是E2等级的套装,那么相同量程的十万分位、万分位、千分位、百分位\十分位的天平都可以用此套装来校准。
对于国标三级电子秤、电子地磅、汽车衡砝码的选择:原则上,是满量程校准,就是说300kg电子秤就用300kg的砝码校准,通常情况下如果条件不允许,就用三分之一量程校准(即30kg电子秤用10kg砝码校验,300kg电子秤用100kg砝码校准,100吨地磅用30吨砝码校准,具体情况如有不明白或校验方法可咨询小秦)。
电子秤用砝码校准规程1.目的通过对电子秤的内部校准,确保测量结果准确可靠。
2.范围适用于公司内所有在用电子秤。
3.职责品控部:负责内部校准规程的制定及校准工作监督管理,负责按照相关规定对电子秤进行第三方鉴定并负责鉴定记录的归档、保管,并负责本部门所用电子秤日常自校并做好记录。
生产部:负责按规程规定要求对所用电子秤日常自校并做好记录。
4.校准程序角差校准和线性校准校准频率:a)新购回首次使用前b)长时间未用重新使用前c)正常使用时每三个月校准前准备:秤体稳定地放置在水平台面上,调节电子秤砝码水平气泡至中心位置,四周无物体相碰,秤台上无杂物,观察其显示器是否为零,若不为零,按“置零”键置零,若不能置零,按不合格测量设备处理。
砝码表
0.01g
0.1g
0.1g
5kg
1
1
0.01g
0.01g
0.1g
2kg
1
1
0.01g
0.01g
0.1g
1kg
0.1
1
1
0.01g
0.01g
500g
0.1
0.1
1
0.001g
0.01g
200g
0.1
0.1
1
0.001g
0.01g
100g
0.01
0.1
0.1
0.001g
0.001g
50g
0.01
0.1
表51砝码最大允许误差的绝对值(|MPE|,以mg为单位)
标称值
E1
E2
F1
F2
M1
M12
M2
M23
M3
5000kg
25000
80000
250000
500000
800000
1600000
2500000
2000kg
10000
30000
100000
200000
300000
600000
1000000
1000kg
0.3kg
1000kg
0.50g
1.6g
5g
16g
0.03kg
0.05kg
0.10kg
0.16kg
500kg
0.24g
0.8g
2.4g
8g
16g
24g
0.05kg
0.08kg
200kg
0.10g
0.3g
1.0g
砝码等级划分表
砝码等级划分表1. 天平砝码天平的游标为5g或10g,最小刻度为0.1g/0.2g,所配砝码为:1个5g、1个10g、2个20g、2个50g。
2. 铸铁砝码砝码等级:E1 E2 F1 F2 M1 M2砝码材质:JF-1无磁不锈钢砝码无磁不锈钢砝码不锈钢标准砝码钢制镀铬砝码铸铁砝码砝码外形:锁式、圆柱型、长方型,滚动型、挂勾式、板形、片形、圈(环)形、骑形、条(棒)形单个砝码规格:1000kg,500kg,200kg,100kg,50kg,25kg,20kg,10kg,5kg,2kg,1kg,500g,200g,100g,50g,20g,10g,5g,2g,1g,500mg,200mg,100mg,50mg,20mg,10mg,5mg,2mg,1mg套装砝码规格:20kg-10kg,10kg-1kg,5kg-1kg,2kg-1kg,2kg-1mg,1kg-1mg,500g-1mg,200g-1mg,100g-1mg,500mg-1mg,500mg-10mg,50mg-1mg中国在夏代即出现相当于砝码的“权”。
此后的4000多年间,不同朝代有不同形状和材质的“权”作为衡量的量具。
在现代质量计量中,砝码是质量量值传递的标准量具。
质量量值以保存在法国国际计量局的铂铱合金千克原器实物为唯一基准器。
各国均将砝码分为国家千克基准、国家千克副基准、千克工作基准,以及由千克的倍量和分量构成的工作基准组和各等工作标准砝码。
国家千克基准各国均只有一个。
中国的国家千克基准是1965年由国际计量局检定、编号为60的铂铱合金千克基准砝码。
国家千克基准与国家作证基准、国家千克副基准、千克工作基准、标准砝码组成质量量值传递系统。
为衡量各种不同质量的物体,千克工作基准配有一套由其倍量和分量组成的、质量由大到小、个数最少而又能组成任何量值的工作基准组。
工作基准组及标准砝码通常分为千克组(1-20kg)、克组(1-50g)和毫克组(1-500mg),根据需要还可以有微克组或其他种砝码组合(如在台秤上采用的增砣组)。
准确度等级和最大允许误差[1]
准确度等级和最⼤允许误差[1]电流表、电压表、功率表和电阻表准确度等级及最⼤允许误差(JJG124-2005)压⼒表允许误差计算值⼀览表(JJG52-1999)单位:MPa精密压⼒表允许误差计算值⼀览表(JJG49-1999)单位:MPa砝码最⼤允许误差的绝对值(│MPE│)(JJG99-2006)单位:mg通⽤卡尺⽰值误差(JJG30-2002 4.9)单位:mm指针式指⽰表的最⼤允许误差和回程误差(JJG34-2008 4.9 表6)单位:mm数显式指⽰表的最⼤允许误差和回程误差(JJG34-2008 4.9 表6)单位:mm外径千分尺⽰值的最⼤允许误差及两测量⾯平⾏度电⼦天平最⼤允许误差(JJG21-2008 4.11 表3)单位:g数字指⽰秤⾸次检定最⼤允许误差(JJG539-97)单位:g模拟指⽰秤⾸次检定最⼤允许误差(JJG13-97)单位:g⾮⾃⾏指⽰秤⾸次检定最⼤允许误差(JJG14-97)单位:ge = d使⽤中检验的最⼤允许误差,是⾸次检定最⼤允许误差的两倍。
数字温度指⽰调节仪设定点误差Δ(JJG617-1996)1动圈式温度指⽰/指⽰位式调节仪表指⽰基本误差(JJG186-1997)卷烟/滤棒物理综合测试台(JJG(烟草)01-1998)检定环境:温度(22±2)℃,相对湿度(60±5)%RH,⼤⽓压(96±10)kPa 卷烟/滤棒压降仪(JJG(烟草)02-1998)检定环境:温度(22±2)℃,相对湿度(60±5)%RH,⼤⽓压(96±10)kPa 卷烟/滤棒圆周仪(JJG(烟草)03-1998)检定环境:温度(22±2)℃,相对湿度(60±5)%RH,⼤⽓压(96±10)kPa 全压式卷烟硬度仪(JJG(烟草)04-1998)检定环境:温度(22±2)℃,相对湿度(60±5)%RH,⼤⽓压(96±10)kPa 卷烟含末率测定仪(JJG(烟草)05-1998)检定环境:温度(22±2)℃,相对湿度(60±5)%RH,⼤⽓压(96±10)kPa 点压法卷烟/滤棒硬度仪(JJG(烟草)06-1998)检定环境:温度(22±2)℃,相对湿度(60±5)%RH,⼤⽓压(96±10)kPa 烟⽤纤维丝束线密度测定仪(JJG(烟草)07-1998)检定环境:温度(22±2)℃,相对湿度(60±5)%RH,⼤⽓压(96±10)kPa 纸张透⽓度测定仪(JJG(烟草)08-1998)检定环境:温度(22±2)℃,相对湿度(60±5)%RH,⼤⽓压(96±5)kPa卷烟纸阴燃仪(JJG(烟草)09-1998)烟⽤恒温⼲燥箱(JJG(烟草)10-1998)卷烟/滤棒重量分选仪(JJG(烟草)12-1998)A01-A06型压降测定仪(JJG(烟草)14-1998)检定环境:温度(22±2)℃,相对湿度(60±5)%RH,⼤⽓压(96±10)kPa 卷烟检测⽤测量设备的计量要求(YC/T28-1996)测试环境:温度(22±2)℃,相对湿度(60±5)%RH,⼤⽓压(96±10)kPa。
天平砝码等级怎么选
天平砝码等级怎么选砝码是一种复现质量值的实物量具。
它具有一定的物理特性和计量特性:形状、尺寸、材料、表面状况、密度、磁性、质量标称值和最大允许误差等。
全球的质量量值传递都要溯源到国际公斤原器,它保存在法国巴黎的国际计量局 (BIPM) 内。
世界各国的国家公斤原器定期要送往国际计量局,由国际公斤原器重新附值后,进行本国的质量量值传递。
我国质量国家基准砝码:国家公斤原器,编号60;国家公斤作证原器,编号64,均为直径与高是39mm的铂铱合金直圆柱体,其中:铂占90%,铱占10%。
这两个砝码的质量标称值为1kg,其真空中质量值由国际计量局给出,测量结果的合成标准不确定度为2.3mg (1989年~1992年各国原器第三次周期比对的结果)。
国家公斤作证原器,仅有在国家公斤原器送往国际计量局进行检定时,可以代为行使国家公斤原器的职能;同时,它定期与国家公斤原器进行比对,用于监视国家公斤原器量值的稳定性。
质量国家副基准砝码:为直径与高相等的无磁不锈钢直圆柱体,其质量量值同时采用真空中质量值和折算质量值表示。
每五年,由国家公斤原器通过原器天平复现其质量值。
为了确保国家公斤副基准砝码量值的稳定性和准确性,建立了与其相同的两个砝码,其职能与国家公斤作证原器相同,当国家公斤副基准砝码由国家公斤原器砝码检定时,代为行使国家公斤副基准砝码的职能,定期与国家公斤副基准进行比对,用于监控国家公斤副基准砝码的量值稳定性。
砝码的功能:对于一个砝码,它可以单独复现某一固定的质量值。
对于砝码组,它不仅可以单独单个使用,而且也可将不同的单个砝码组合在一起使用,用以复现若干个大小不同的一组质量值。
检定过程中,我们通常不会仅用一个砝码作为标准砝码,而是使用一些砝码通过组合作为标准砝码。
例如,在检定25kg的砝码时,就需要采用20kg+5kg的标准砝码与被检砝码比较;而检定天平时,测量天平的示值误差时,有时也需要一些砝码组合使用。
使用组合砝码时,应尽量采用最少砝码组合个数为原则。