数学物理定解问题
什么是定解问题
§1.2 什么是定解问题1. 定解问题定解问题是根据已知物理规律求解特定物理过程的数学条件,它由泛定方程和定解条件两个部分组成,泛定方程也称为数学物理方程。
2. 泛定方程泛定方程是待解物理过程所遵循的物理规律的数学表达式,具体表现为某物理量关于时间和空间变量的偏微分方程,同一类物理过程遵循相同的物理规律,因此泛定方程反映一类物理过程的共性。
方程中物理量对时间变量的偏微分项反映物理过程的因果关联。
方程中物理量对空间变量的偏微分项反映物理过程的内部作用,或内在关联。
例1. 质点运动状态的演化问题在质点动力学问题中常求质点的运动轨迹,一旦求出运动轨迹,则一切与质点运动有关的物理量(如动能、动量、角动量等)都可求出。
质点的运动状态是由质点的位矢和动量完全确定,求质点运动轨迹的方法就是求解质点的运动状态随时间演变的过程,即由前一时刻的位矢和动量推算出下一时刻位矢和动量,从物理上看前后二时刻质点的运动状态的联系为dt t p m t r dt t r t r dt t r )(1)()()()(K K K K K +=+=+, dt t F t p dt t p t p dt t p )()()()()(K K K K K +=+=+ 因此,只要知道质点的受力情况就能由前一时刻的运动状态求出下一时刻的运动状态,这样的推演过程就是求解常微分方程F t r m K K =)(满足初始条件“0000)(,)(v t r r t r K K K K ==”的解。
§1.3 定解条件。
一、初始条件初始条件描述特定物理过程的起因,就t 这个自变数而言,如果泛定方程中物理量u 对t 最高阶偏导数是n 阶偏导数n n tu ∂∂,则要确定具体的定解问题,需要n 个初始条件。
例1:均匀细杆的导热问题满足的泛定方程为02=−xx t u a u ,则要确定具体的导热问题的解只需一个初始条件:)(0x u t ϕ==,即要已知初始温度分布。
第11章:数学物理方程的定解问题
25
令 得到 通解
ξ = x − t ;η = x + t
∂ 2u =0 ∂ξ∂η
u = G (ξ ) + F (η )
波动方程的通解
u ( x, t ) = F ( x + t ) + G ( x − t )
u |t =0 = f ( x); u t |t =0 = g ( x)
两个任意函数:初始条件决定——Cauchy问题
1 1 x +t u ( x, t ) = [ f ( x − t ) + f ( x + t )] + ∫ g ( s)ds 2 2 x −t
26
定解问题 偏微分方程:求通解没必要、意义不大 求给定条件的特解 ——定解问题 边界条件 —系统与外部的相互作用 初始条件 —系统过去的历史
——五个未知数:ρ、 P、vx、vy、vz, 现有四 个方程。
14
(3)介质本构方程:描述压强 P=p+P0、密度 ρ (体积)和 熵 s 的关系,由热力学决定
P = P( ρ , s )
一般假定,声波振动是等熵过程,则 P = P( ρ ) 其中: ρ = ρ 0 + ρ ′ 。这三个方程是声波过程的基 本方程。 在无限小振动近似下
电磁波方程 描述参量:电场强度矢量 E; 磁感应强度矢量 B; 磁场强度矢量 H; 电位移矢量 D。 满足 Maxwell 方程组(无源情况)
∇ ⋅ B = 0; ∇ ⋅ D = 0; ∇ × E + ∂B ∂D = 0; ∇ × H − =0 ∂t ∂t
17
介质本构方程
B = µH ; D = εE
数学物理方程_定解问题
根据边界条件确定任意函数 f:
令 故
规定,当
时
4、定解问题是一个整体
达朗贝尔公式的求解过程,与大家熟知的常 微分方程的求结果成完全类似。
但遗憾的是,绝大多数偏微分方程很难求出 通解;即是求出通解,用定解条件确定其中待 定函数往往更为困难。这说明,达朗贝尔公式 不适用于普遍的数学物理定解问题的求解?
(7.1.8)
称式(7.1.8)为弦的自由振动方程。
(2) 如果在弦的单位长度上还有横向外力 作用,则式(7.1.8)应该改写为
(7.1.9)
式中
称为力密度,为 时刻作用于
处单位质量上的横向外力
式(7.1.9)称为弦的受迫振动方程.
2、 均匀杆的纵振动
一根杆,只要其中任一小段做纵向移动,必然使 它的邻段压缩或伸长,这邻段的压缩或伸长又使 它自己的邻段压缩或伸长。这样,任一小段的纵 振动必然传播到整个杆,这种振动的传播是纵波.
泊松方程和拉普拉斯方程的定解条件不包含初始条件, 而只有边界条件. 边界条件分为三类:
1、在边界上直接给定未知函数 , 即为第一类边界条件.
2、在边界上给定未知函数导数的值,即为第二类边界条件.
3、在边界上给定未知函数和它的导数的某种线性组合, 即第三类边界条件.
第一、二、三类边界条件可以统一地写成
第二类边界条件 规定了所研究的物理量在边界外法线方向上方向导数 的数值
u n
x0 , y0 ,z0
f (x0, y0, z0,t)
(7.2.3)
第三类边界条件 规定了所研究的物理量及其外法向导数的线性组合在 边界上的数值
(7.2.4)
其中 是时间 的已知函数, 为常系数.
7.2.2 泊松方程和拉普拉斯方程的定解条件
数学物理方程及其定解问题
3.定解问题的整体性(除上述两种类型外的 数学物理方程)
4.定解问题的适定性
4
一. 无界弦的自由振动
1. 无界弦的自由振动 (1)无界弦的含义:无界弦不是指无限长的弦,是指所关 心的那一段弦远离两端,在所讨论的时间内,弦两端的影响来 不及传到这段弦上,因而认为弦的两端在无限远,就不必给弦 的两端提出边界条件。 定解问题 初值问题
x at, x at
得方程的通解
u f1 ( x at) f 2 ( x at)
通解的物理意义: f2 ( x at ) 正行波, f2 ( x at ) 反行波
6
⑵ 利用定解条件来确定函数 f1 ( x), f 2 ( x)
由初始条件得
u ( x, 0) f1 ( x) f 2 ( x) ( x) ut ( x, 0) af1 ( x) af 2 ( x) ( x)
数学物理方程及其定解问题数学物理方程习题解答数学物理方程数学物理方程谷超豪数学物理方程pdf数学物理方程试卷数学物理方程视频数学物理方程答案数学物理方程第三版数学物理方程讲义
第七章 数学物理方程及其定解问题
1.数学物理方程的导出 2.定解条件 3.数学物理方程的分类 4.达朗贝尔公式 定解问题
1
3.数学物理方程的分类
15
三. 一般情况下的数学物理方程
一般情况下,无法像对无限长弦那样,先求通解,然后用定解条件 求特解。
定解问题的整体性
物理问题
数学问题
定解问题是一个整体
四 . 定解问题的适定性
如定解问题满足 (1) 有解 (2) 解是唯一的 (3) 解是稳定的 则称此定解问题是适定的。 因为定解问题来自实际。
数学物理方程及定解问题
这个初始问题有解
u( x, y) n2 sinh ny sin nx
数学物理方法2015.02
D 为扩散系数
数学物理方法2015.02
第三节 位势方程
稳定的温度场
a2u f ( x, y, z)
膜平衡方程
2u 2u a 2 2 f ( x, y ) x y
2
数学物理方法2015.02
第三节 位势方程
定解条件与定解问题的提法
第一类边界条件: u( x, y, z) g( x, y, z)
b u t2 b t2 u dx dx dt f0dx T0 ux (b, t ) ux (a, t ) dt a a t1 a t1 t t t2 t t t1 b
dt
t1
t2
b
a
数学物理方法2015.02
物理模型 在三维空间中,考虑均匀的、各向同性的物体。 假定它的内部有热源或汇,并且与周围的介质 有热交换,来研究物体内部温度的分布规律。 均匀物体: 物体的密度为常数 各向同性: 物体的比热和热传导系数均为常数
数学物理方法2015.02
第二节 热传导方程与扩散方程
数学模型的建立 设: u(x,y,z,t)表示物体于时刻 t 在位置 x,y,z 处的温度 C 表示是比热 (焦耳/度· 千克) 表示密度 (千克/米3), k 表示导热系数 f 0(x,y,z,t)表示热源强度(焦耳/千克· 秒)
数学物理方法2015.02
第一节 波动方程及定解条件
三维波动方程或声波方程
2 2u 2u 2u 2 u a 2 2 2 f ( x, y , z , t ) 2 t z x y
第1章 数学物理方程及定解问题
2
T
ρ
, f (x, t) =
F(x, t)
ρ
, 得 力 用 ,弦 动 程 外 作 下 振 方 为
一维非齐次波动方程
∂ 2 u( x , t ) ∂ 2 u( x , t ) − a2 = f ( x , t ). 2 2 ∂t ∂x
二维波动方程或膜振动方程
一块均匀的紧张的薄膜,离开静止水平位置作垂直 于水平位置的微小振动,其运动规律满足
2 ∂ 2u ∂ 2u 2∂ u = a 2 + 2 + f ( x, y , t ) 2 ∂t ∂y ∂x
在时刻t , 弦段[ x , x + ∆x ]的动量为 x + ∆x ∂u( x , t ) ∫x ρ ∂t dx;
x + ∆x x
在时刻t + ∆t , 弦段[ x , x + ∆x ]的动量为 x + ∆x ∂u( x , t + ∆t ) dx . ∫x ρ ∂t
∫
=∫
∂u( x , t + ∆ t ) ∂u( x , t ) − ρ dx . ∂t ∂t
第一节 波动方程及定解条件
1.一维波动方程或弦振动方程 一维波动方程或弦振动方程
物理模型
一长为 l 的柔软、均匀的细弦,拉紧以后,让它离 的柔软、均匀的细弦,拉紧以后, 开平衡位置在垂直于弦线的外力作用下作微小横振 求弦上个点的运动规律。 动,求弦上个点的运动规律。
张紧的、静止的弦是一直线,该直线是弦的 平衡位置,以此为 x 轴。振动总是传播到整 根弦,横振动就是弦中的质点离开平衡位置 的位移垂直于 x 轴, 可用 t 时刻弦上各质点 x 离开平衡位置的横向位移 u ( x, t ) 来描述弦的 状态, 某一时刻 u ( x, t ) 的分布代表弦的形状, 称为位形。由于弦中质点的位移不同导致弦 的形变,形变产生应力,为了便于应力的描 述,不妨假定所研究的弦为“柔软的”弦。
第九章:数学建模--数学物理定解问题
常见问题第九章 数学建模--数学物理定解问题 问题一; 设一长为l 的杆,两端受压从而长度缩为(12)l ε-,放手后自由振动,写出此定解问题.【解】 (1)泛定方程:因杆作自由纵振动,自由即无外力作用,所以泛定方程为20tt xx u a u -= (2)边界条件:原来杆受压,放手后作自由振动,即这时两端无外力作用,这意味着杆的两端自由.“自由”表示在两端点处张应力为零.如果杆的材料的杨氏模量是Y ,根据胡克定律,而张应力等于杨氏模量Y 与相对伸长x u 的乘积,故 0|0, |0x x x x l Yu Yu ====即 0|0, |0x x x x l u u ====(3)初始条件:杆由长l 压缩为(12)l ε-,共缩短了2l ε,压缩率为22l l εε=,又杆的中点2l 压缩前后不变,即位移2|0l x u ==,以中点2l 为标准,左边位移为正,右边位移为负.根据上述分析,初始时刻0t =时的位移为2(,0)()2l l u x x l ε=-,初始速度为零,即(,0)0t u x =.综上所述:定解问题为20 (0,0) (0,)0,0 (0)(,0)2(),(,0)0 ( 2,)tt xx x x t u a u x l t u t u t l u x t x u x l ε-=<<>==≥=-= (0)x l ⎧⎪⎪⎨⎪⎪≤≤⎩问题二; 设有一长为l 的理想传输线,远端开路. 先把传输线充电到电位为0v ,近端短路,试写出其定解问题.【解】 (1)泛定方程:由于理想传输线仍然满足波动方程(数学物理方程)类型.20xx a -=tt v v(2)边值条件:至于边界条件,远端开路,即意味着x l =端电流为零,即|0x l i ==,根据(9.1.13)公式得到 0i L Ri x t ∂∂++=∂∂v且注意到理想传输线0G R ≈≈,故i L xt ∂∂=-∂∂v ,代入条件|0x l i ==有 (,)||0x x l x l i i l t L L t t ==∂∂=-=-=∂∂v而近端短路,即意味着0x =端电压为零,即0|(0,)0x t ===v v (3)初始条件:而开始时传输线被充电到电位为0v ,故有初始条件0(,0)x =v v ,且此时的电流0|0t i ==,根据(9.1.14)公式, 0i C G x t ∂∂++=∂∂v v且注意到理想传输线0G R ≈≈,故 1i tC x ∂∂=-⋅∂∂v ,因而有 0011(,0)||0t t i i x t C x C x ==∂∂∂=-⋅=-⋅=∂∂∂v 综上所述,故其定解问题为200000 (0,0)|0,0 (0) |,0 (0) xx x x x l t t t a x l t t x l ====⎧-=<<>⎪=≥⎨⎪=≤≤⎩tt v v v v |=v v v |=。
第七章 数学物理定解问题习题 数学物理方法梁昆淼
第七章 数学物理定解问题1. 一根两端(左端为坐标原点而右端l x =)固定的弦,用手在离弦左端长为5/1处把弦朝横向拨开距离h ,然后放手任其振动。
横向位移),(t x u 的初始条件为⎩⎨⎧≤<-≤≤==)5/()4/()(5)5/0(/5,0l x l l x l h l x l hx u u t 。
2.数学物理方程定解问题的适定性是指解的_存在性__,__唯一性__,__稳定性_。
3.一根两端(左端为坐标原点而右端l x =)固定的弦,用手在离弦左端长为3/l 处把弦朝横向拨开距离h ,然后放手任其振动。
横向位移),(t x u 的初始条件为.0)0,(u ; )3/( ,2/)(3)0,( )3/0( ,/3)0,(t =≤≤-=≤≤=x l x l l x l h x u l x l hx x u 和4. 一根两端(左端为坐标原点而右端l x =)固定的弦,用手在离弦左端长为5/9处把弦朝横向拨开距离h ,然后放手任其振动。
横向位移),(t x u 的初始条件为、95,[0,]59(,)9()5,[,]49t hx l x l u x t h l x l x l l =⎧∈⎪⎪=⎨-⎪∈⎪⎩。
5. 一根两端(左端为坐标原点而右端l x =)固定的弦,用手在离弦左端长为3/2处把弦朝横向拨开距离h ,然后放手任其振动。
横向位移),(t x u 的初始条件为⎩⎨⎧≤<-≤≤==)3/2(/)(3)3/20(2/3,0l x l l x l h l x l hx u u t 。
6.一根两端(左端为坐标原点而右端l x =)固定的弦,用手在离弦左端长为6/l 处把弦朝横向拨开距离h ,然后放手任其振动。
横向位移),(t x u 的初始条件为 。
7. 一根两端(左端为坐标原点而右端l x =)固定的弦,用手在离弦左端四分之一处把弦朝横向拨开距离h ,然后放手任其振动。
横向位移),(t x u 的初始条件为 0)0,(u ; )4/( ,3/)(4)0,( )4/0( ,/4)0,(t =≤≤-=≤≤=x l x l l x l h x u l x l hx x u 和。
数学物理方法中无界区域的定解问题
无界区域的定解问题前言:对于定义在整个空间或半空间的偏微分方程的定解问题,原则上可以用分离变量法求解,另外还有一些专门的方法来解决这类问题,本章就讨论这些解法。
含两个自变量x 和y 的二阶线性偏微分方程的一般形式为:),(22122222122211y x f cu y ub x u b yu a y x u a x u a =+∂∂+∂∂+∂∂+∂∂∂+∂∂其中11a ,12a ,22a ,1b ,2b 和c 都只是x 和y 的函数。
根据判别式2211212a a a -=∆符号的不同可如下来划分偏微分方程的类型⎪⎩⎪⎨⎧<-=∆=-=∆>-=∆椭圆型,抛物型,双曲型,000221121222112122211212a a a a a a a a a 定解问题: ⎪⎪⎩⎪⎪⎨⎧>>∞<<-∞=∂∂==∂∂-∂∂==)0,0,(,)(),(),(),(00022222a t x x t x u t x t x u x u a t u t t ψϕ由于111=a ,012=a ,222a a -=,则0)(222211212>=-->-=∆a a a a a 。
令at x t x +=),(ζ,at x t x -=),(η,),(),(ηζv t x u =,可化为:02=∂∂∂ηζv通解为:)()(),(21ηζηζf f v +=,其中)(1ζf ,)(2ηf 为任意函数。
通解为:)()(),(21at x f at x f t x u -++= 代入初始条件可得:⎪⎩⎪⎨⎧-+=-⇒='-'⇒=∂∂=+⇒=⎰==)()()(1)()()()()()(),()()()()(),(0201212102100x f x f d a x f x f x x f a x f a x t x u tx x f x f x t x u x x t t ζζψψψϕϕ由上式可推出:⎪⎩⎪⎨⎧---=-++=⎰⎰)]()([21)(21)(21)()]()([21)(21)(21)(020*******00x f x f d a x x f x f x f d a x x f x x x x ζζψϕζζψϕ 特解: ⎰+-+-++=atx at x d aat x at x t x u ζζψϕϕ)(21)]()([21),(达朗贝尔公式的物理意义: 初位移)(x ϕ分成两半,各为2)(x ϕ,经过时间t 分别向左移动at 变成2)(at x +ϕ,向右移动at 变成2)(at x -ϕ,移动的速度均为a ,弦的总位移),(t x u 为2)(at x +ϕ和2)(at x -ϕ的叠加。
求定解问题数学物理方法例题
求定解问题数学物理方法例题1. 一辆汽车从A点出发,经过2小时行驶到B点,然后再经过3小时回到A点。
假设这两段行驶均在同一条直线上,求这辆车的平均速度。
答:假设AB之间的距离为d,时间 t1=2 小时,时间 t2=3 小时。
根据平均速度的定义,平均速度 = 总路程 / 总时间。
总路程 = 2d (从A到B)+ 2d (从B到A)。
总时间 = t1 + t2 = 5小时。
所以平均速度 = 总路程 / 总时间 = (2d + 2d) / 5 = 4d / 5。
2. 一个投掷物从地面上以速度 v0 垂直向上抛出,忽略空气阻力。
求物体到达最高点的时间和最大高度。
答:假设加速度 g = 9.8 m/s²是重力加速度,v0 是初始速度。
根据运动学公式,物体到达最高点时,垂直速度为 0,所以 v = v0 - gt = 0。
解出时间 t = v0 / g。
最大高度为 h = v0 * t - 1/2 * g * t² = v0² / (2g)。
3. 一个弹簧常数为 k 的弹簧,两端有各自质量为 m1 和 m2 的物体。
当这两个物体振动时,求两个物体的共同频率。
答:假设物体1的振动频率为 f1,物体2的振动频率为 f2。
根据振动的基本原理,弹簧的劲度系数k = m1 * (2πf1)² = m2 * (2πf2)²。
解方程组可以得到f1 = sqrt(k / (4π²m1)),f2 = sqrt(k /(4π²m2))。
所以两个物体的共同频率为sqrt(k / (4π²m1)) = sqrt(k / (4π²m2))。
希望以上例题能对您有帮助!请注意,这些例题仅供参考,并不代表所有数学和物理的定解问题。
数学建模--数学物理定解问题
第九章 数学建模——数学物理定解问题习题及解答 长为l 的均匀细弦,两端固定于0,x x l ==,弦中的张力为. 在点处,以横向力拉弦,达到稳定后放手任其自由振动,写出初始条件.【答案 00000(), [0,]|(), [,]t F l h x x h T l u F h l x x h l T l =-⎧∈⎪⎪=⎨-⎪∈⎪⎩】长为l 的均匀杆两端受拉力作用而作纵振动,写出边界条件.【答案000|, |x x x x l YSu F YSu F ====】 长为的均匀杆,两端有恒定热流进入,其强度为,写出这个热传导问题的边界条件.【答案 000|,|x x x x L ku q ku q ==-==】一根长为的均匀细弦,两端固定于0,x x L ==,用手将弦于处朝横向拉开距离h ,然后放手任其振动,试写出其定解问题.【答案 20;(0,)0(,);(,0)0,(0)(,0)() ()tt xx t u a u u t L t u x h x x l l u x H L x l x L L l -====⎧≤≤⎪⎪=⎨⎪-≤≤⎪-⎩】有一均匀细杆,一端固定,另一端受到纵向力0()sin F t F t ω=作用,试写出其纵振动方程与定解条件.【答案 20sin 0;(0,)0,(,);(,0)0,(,0)0tt xx x t t u a u u t u l t F u x u x Ys ω-=====】有一均匀细杆,一端固定,另一端沿杆的轴线方向被拉长ε而静止(设拉长在弹性限度内).突然放手任其振动,试推导其其纵振动方程与定解条件.【答案 20;(0,)0(,);(,0),(,0)0tt xx x t u a u u t u l t u x x u x l ε-=====】长为l 的理想传输线,一端接于交流电源,其电动势为0sin E t ω,另一端开路。
试写出线上的稳恒电振荡方程和定解条件.【答案22i 0010,(),|,|0t tt xx x x l a a E e i LC ω==-====v v v 】研究细杆导热问题,初始时刻杆的一端温度为零度,另一端温度为,杆上温度梯度均匀,零度的一端保持温度不变,另一端与外界绝热,试写出细杆上温度的变化所满足的方程,及其定解条件.【答案 2200,(/);(0,)0,(,)0;(,0)/,(0,)t xx x u a u a k c u t u l t u x T x l x l ρ-=====∈】9.9试推导均匀弦的微小横振动方程.【答案 具有类型:2tt xx u a u f -=,详细自行讨论】9.10 试推导出一维和三维热传导方程.【答案 具有类型:22;()t xx t xx yy zz u a u f u a u u u f -=-++=,详细自行讨论】9.11 试推导静电场的电势方程.【答案 具有类型:xx yy u u f +=,详细自行讨论】9.12 推导水槽中的重力波方程. 水槽长为l ,截面为矩形,两端由刚性平面封闭.槽中的水在平衡时深度为h .【提示:取x 沿槽的长度方向,取u 为水的质点的x 方向位移】【答案 取x 沿槽的长度方向,u 为水的质点的x 方向位移,则tt xx u ghu =】9.11. 有一长为l 的均匀细弦,一端固定,另一端为弹性支撑,设弦上各点受有垂直于平衡位置的外力,外力线密度已知,开始时.弦12处受到冲量I 作用,试写出其定解问题. 答 ()()()()()()()[]22222,0,,0,0.,00,00,00,2t u u a f x t x l t t x u l t u t hu l t t x u x I l u x x x l δρ⎧∂∂=+∈>⎪∂∂⎪∂⎪=+=≥⎪∂⎨⎪=⎪⎛⎫⎪=-∈ ⎪⎪⎝⎭⎩9.14由一长为l 的均匀细杆,侧面与外界无热交换,杆内有强度随时间连续变化的热源,设在同一截面上具有同一热源强度及初始温度,且杆的一端保持零度,另一端绝热,试推导定解问题.(答()()()()()()[]222,,0,,0,0,0,0,0,0,u u a f x t x l t t x u l t u t t x u x x x l ϕ⎧∂∂=+∈>⎪∂∂⎪∂⎪==≥⎨∂⎪=∈⎪⎪⎩) 9.15 设有高为h 半径为R 的圆柱体,圆柱体内有稳恒热源,且上下底面温度已知,圆柱侧面绝热,写出描述稳恒热场分布的定解问题.答 ()[)[)()2222222011,, 0,,0,2,0,, 0z z h r R u u u u f r z r R z h r r r r z u A u B ur θθπθ===⎧∂∂∂∂+++=∈∈∈⎪∂∂∂∂⎪⎪==⎨⎪∂⎪=⎪∂⎩9.16 设有定解问题()()222222000,0,0;00,0,0,,,,0,0x x a y y b t t t u u u x a y b t t x y u u u u t u x y u x y x a y b ϕψ======⎧∂∂∂=+<<<<>⎪∂∂∂⎪⎪==⎪⎨==≥⎪⎪=⎪⎪=<<<<⎩给出与其对应的物理模型.答 边界固定的矩形膜的自由振动,其初始位移于初始速度已知本章计算机仿真编程实践9.18 试求泊松方程2223y xy x u ++=∆的一般解,并尝试用计算机仿真的方法求解。
数学物理方程:第1章 数学物理方程的定解问题
第1章 数学物理方程的定解问题§1.1 数学物理方程的一般概念本节讨论:①数学物理方程的基本概念,②三类基本方程的数学表示,③一些简单解法▲数学物理方程的任务与特点 数学物理方程(亦称数理方程)在数学上为二阶偏微分方程。
它的任务有两个方面:①寻找数学定解问题的求解方法,给出解的表达式和计算方法;②通过理论分析得出问题的通解或某些特解的一般性质。
数学物理方程有如下特点:①它紧密地、直接地联系物理学、力学与工程技术中的许多问题。
②它广泛地运用数学物理中许多的技术成果。
如:数学中的复变函数、积分变换、常微分方程、泛函分析、广义函数等等,物理学中的力学、电学、磁学、热力学、原子物理学、振动与波、空气动力学等等。
⒈ 一些基本概念数学物理方程是物理过程中的一些偏微分方程。
由于物理过程是十分复杂的,故它们的数学表达式也是十分广泛的。
本书不能将众多的数学物理方程一一讨论,仅讨论一些常用的二阶线性微分方程。
一般而言,二阶线性偏微分方程可写为2,11nn ij i i j i i j i u u Lu a b cu f x x x ==∂∂=++=∂∂∂∑∑ (1.1.1) 式中:自变量),,(1n x x x ⋅⋅⋅=,系数ij a 、i b 、c 为x 的函数或为常数,并且ji ij a a =。
由于式中关于未知函数u 的导数最高为二阶导数,故方程称为二阶微分方程;同样,由于x 为n 维向量,方程也称为n 维方程;由于方程中对u 的各阶偏导数为线性的,故称为线性方程,否则就称为非线性方程。
若系数ij a 、i b 、c 均为常数,则称为常系数方程,否则称为变系数方程;若0≡f ,则称为齐次方程,反之称为非齐次方程。
▲方程的数学形式 在所有的自变量i x 中,时间变量t 常常被使用,由于它的独特性,人们常常直接用t 表示而不置于i x 之中,关于t 的导数式为:22u u L u a b t t t∂∂=+∂∂ (1.1.2) 故上述方程可改写为:f Lu u L t += (1.1.3)上述方程习惯上也称为n 维方程。
数学物理方法课件:第7章 数学物理方程定解问题
第七章 数学物理方程定解问题
§7.1 三类数学物理方程的导出 §7.2 定解条件 §7.3 数学物理方程的分类(自学) §7.4 达朗贝公式、定解问题
§7.1 三类数学物理方程的导出
(一)、梯度矢量
i
j
k
x y z
(i
j
k
) (i
j
k
)
x y z x y z
2 x2
2 y 2
2 z 2
令
2 2 2 x2 y2 z2
2 2 2 x2 y2 z2
记
utt
2u t 2
ut
u t
有时记
2
2 x2
2 y 2
u xx
2u x 2
2 2 2 3 x2 y2 z2
(二)、三类数学物理方程的导出
1、弦的横振动
弦的横向位移为 u(x,t)
dm ds T2 cos2 T1 cos1 0
(qx xdx qx x )dydzdt
qx dxdydzdt x
z
dx
y
dz
dy
(x, y, z)
x
x 方向净流入量为
qx dxdydzdt x
(D u )dxdydzdt x x
y 方向净流入量为
(D u )dxdydzdt y y
z 方向净流入量为 (D u )dxdydzdt z z
y
F (x,t)
M2
M1
1
T2
2
T2 sin 2 T1 sin 1 dmutt
T1
x
x+x
x
T2 sin 2 T1 sin 1 dsutt
T2 cos2 T1 cos1 0
数学物理方法课件:7-数学物理定解问题
,a是弦的振动传播速度,则
utt a2uxx 0 (7.1.6)
如果,弦受到线密度为F(x,t) 的横向 力作用,弦 y方向方程应为:
T2ux xdx T1ux x F(x,t)dx (dx)utt
则弦的受迫振动方程为:
u
T2
B
α2
α1
C
T1 A
o x x+dx x
utt
a2uxx
F ( x, t )
y,
z, t )dxdydzdt
所以三维热传导方程为
cut
x
k
u x
y
k
u y
z
k
u z
F ( x,
y,
z,t)
17
三维 热传导方程
cut
x
k
u x
y
k
u y
z
k
u z
F ( x,
y,
z,t)
➢对于均匀物体,k、c、 ρ是常数
ut a23u f (x, y, z,t)
k k
x u
y u
k ux k uy k uz
z
15
确定物理量:温度的空间和时间分布u(x, y, z, t)
确定研究微元:x, x dxy, y dyz, z dz dV
数学物理方法 第7章 定解问题
2
2
T
,
f ( x, y, t )
1
F ( x, y, t ) 。
该方程称为二维波动方程。当 F ( x , y , t ) 0 时,膜自 由振动
【小结】
均匀弦的微小振动和均匀杆的纵振动满足一维波动方 程,均匀薄膜的微小振动方程是二维波动方程
( t ) dt r ( t ) 1 p ( t ) dt , r ( t dt ) r ( t ) r m ( t ) dt p ( t ) F ( t ) dt p ( t dt ) p ( t ) p
因此,只要知道质点的受力情况就能由前一时刻的运动状态求 出下一时刻的运动状态,这样的推演过程就是求解常微分方程
2 u u xx u yy 、 u u xx u yy u zz 。常数 a 具有速度
量纲,以后将看到 a 就是波速。
二、输运方程
1.扩散方程
u t D ( u ) 0 ,或 u t a u 0 (其中 a
2
2
。 D)
2.热传导方程
u 0 ,这是拉普拉斯方程。
3.静电场方程 由麦克斯韦方程,静电场满足两方程
1 E (r )
0
E 0, 由于 E 0 ,因此存在电势函数 u ,使得 E u 。
静电势满足
u 1
0
(r )
这是一个有源稳定场方程,称为泊松方程。
u
x0
u
xl
0
t 0,
此为第一类齐次边界条件。
第九章:数学建模--数学物理定解问题
第九章 数学建模——数学物理定解问题习题及解答9.1长为l 的均匀细弦,两端固定于0,x x l ==,弦中的张力为0T . 在x h =点处,以横向力0F 拉弦,达到稳定后放手任其自由振动,写出初始条件.【答案 00000(), [0,]|(), [,]t F l h x x h T l u F h l x x h l T l =-⎧∈⎪⎪=⎨-⎪∈⎪⎩】9.2 长为l 的均匀杆两端受拉力0F 作用而作纵振动,写出边界条件.【答案 000|, |x x x x l YSu F YSu F ====】 9.3 长为L 的均匀杆,两端有恒定热流进入,其强度为0q ,写出这个热传导问题的边界条件.【答案 000|,|x x x x L ku q ku q ==-==】9.4 一根长为L 的均匀细弦,两端固定于0,x x L ==,用手将弦于x l =处朝横向拉开距离h ,然后放手任其振动,试写出其定解问题.【答案20;(0,)0(,);(,0)0,(0)(,0)() ()tt xx t u a u u t L t u x h x x l l u x H L x l x L L l -====⎧≤≤⎪⎪=⎨⎪-≤≤⎪-⎩】 9.5有一均匀细杆,一端固定,另一端受到纵向力0()sin F t F t ω=作用,试写出其纵振动方程与定解条件. 【答案20sin 0;(0,)0,(,);(,0)0,(,0)0tt xx x t t u a u u t u l t F u x u x Ys ω-=====】 9.6 有一均匀细杆,一端固定,另一端沿杆的轴线方向被拉长ε而静止(设拉长在弹性限度内).突然放手任其振动,试推导其其纵振动方程与定解条件.【答案 20;(0,)0(,);(,0),(,0)0tt xx x t u a u u t u l t u x x u x l ε-=====】9.7 长为l 的理想传输线,一端0x =接于交流电源,其电动势为0sin E t ω,另一端x l =开路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)
由于弦的振动是微小的,因此1 0 ,2 0,从而 cos1 1 , cos2 1 ,sin1 tg1 ux x ,sin2 tg2 ux xdx , ds dx.
这样,(1)式和(2)式可以简化为
T2 T1 0
(3)
F
(
x,
t
)dx
T2ux
xdx T1ux
x
( dx)utt
密度,即t时刻作用于x处单位质量上的横向外力.
由于B段是任选的,所以方程(7)适用于弦上各点,(7)式即为整 根弦的微小横振动方程,我们称之为弦的受迫振动方程
如果弦在振动过程中是自由的(即不受外力作用),,从而得到 弦的自由振动方程
utt a 2u xx 0
(8)
方程(7)与(8)的差别在于(7)的右端多了一个与未知函 数无关的项,这个项称为自由项.含有非零自由项的方程 称为非齐次方程,自由项恒等于零的方程称为齐次方程. 方程(7)为一维非齐次波动方程, 方程(8) 为一维齐次波 动方程 .
第三篇 数学物理方 程
基本概念
所谓数学物理方程,主要是指物理学和工程科 学与技术中导出的,反映物理量之间关系的偏微 分方程(和积分方程).
本篇主要介绍三类典型的二阶线性偏微分方程: 波动方程、热传导方程和稳定场方程及有关定解 问题的几种常见解法
第九章 数学物理定解问题
偏微分方程作为一门数学分支,它是人们在对一些 物理问题,如弹性体的振动、电磁波的传播、热的传导 等物理现象进行研究后总结出来的.
在沿x轴方向,由于弧段B没有纵向的运动,所以作用于B段的 纵向合力为零。在u方向(横向)上,弦的横向加速度记为utt,
按照F ma,弧段B的纵向和横向运动方程为
纵向: T2 cos2 T1 cos1 0
(1)
横向: F (x, t)ds T2 sin 2 T1 sin 1 ( ds)ut t
为了简化计算,我们假设弦的重量很轻,重力相对于弦 的张力来说可以忽略不计,从而将整根弦抽象为没有质量 的弦.
如图9.1.1所示,去弦的平衡位置为x轴,并以u( x, t )表示弦上任意 一点,在某个时刻t沿垂直于x方向的位移,把弦细分为许多极小 的小段,并任意选取一段区间(x, x dx)上的小段B,其长为ds,设
是弦的线密度,没单位长度弦所受横向外力为F (x,t),弧度B的
两端所受邻段的张力分别为T1和T2。
u(x,t) F(x,t)
T2 2
B
1
T1
0 x x dx x
图9.1.1 均匀弦的微小横振动
由于弦是柔软的且具有弹性,所以在任一点处,张力的方 向总是沿着弦在该点的切线方向。现在考虑弧段B在某一时 刻t的受力情况。
第一节 数学物理方程的导出
一、 波动方程
1. 均匀弦的微小横振动
假设有一根均匀且柔软的弦,沿水平方向紧绷,给它 一个很小的横向扰动,使弦在铅直平面内作微小横振 动,求弦上各点的振动情况,即弦上任意一点在任意 时刻的横向位移. 弦的振动是一种机械运动,机械运动的基本定律是质 点力学的F ma ,然而弦并不是质点,所以对整根弦 并不适用. 但是,如果我们把整根弦细分为许多极小 的小段,并将每个小段抽象为一个质点,这样我们就 可以应用质点力学的基本定律了。
人们通过研究这些物理现象,总结它们的物理规 律,并将物理规律转化为数学的形式,就得到了偏微 分方程.
由于偏微分方程是从物理问题中归结出来的,所 以也称之为数学物理方程,简称数理方程.在数学上, 也称数理方程为泛定方程.
由于偏微分方程反映的是同一类物理现象的共同规 律,所以仅仅知道这种共同规律还不足以掌握和了解具 体问题的特殊性.就物理现象来说,各个具体问题的特殊 性就在于研究对象所处的特定条件,即初始条件和边界 条件.在数学上,初始条件和边界条件合称为定解条件.
由于dx取得很小,ux xdx ux x ux x dx uxxdx,所以(5)式简化为
F (x,t) Tuxx utt
(6)
两端同时除以,并适当移项,得B段的运动方程为
utt a2uxx f (x,t)
(7)
其中,a T 表示振动在弦上的传播速度,f (x,t) F(x,t) 表示力
对B点进行受力分析:它在两端点x及处受邻段x d(x A段和C段) 张应力的作用,根据胡克定律,x端单位面积上所受张应力为: Yux |x ,x dx端单位面积上所受张应力为:Yux |xdx ,其中Y为杆 的Young模量.
于是,根据牛顿第二定律,B段的运动方程为
S dx utt Y S ux |xdx Y S ux |x F (x,t)S dx
Y S uxxdx F (x,t)S dx
其中S为杆的横截面积,为杆的密度.
上式两边同除以 S dx,并适当整理,得
utt a2uxx f (x, t),
偏微分方程用来描述同一类物理现象的共性,是解决 问题的依据,定解条件则反映了具体问题的个性,指出 了问题的具体情况. 泛定方程和定解条件合为一体,就称 为数学物理定解问题.数学物理方程这一部分的任务就是: 在定解条件下,求解泛定方程.
章节安排
§9.1 数学物理方程的导出 §9.2 定解条件 §9.3 二阶(4)
因此,T2 T1,弦中张力于点x的位置无关,另外,由于,由于弧段B在振动 过程中的每个时刻都有ds dx,即长度ds不随着时间而变,因此作用于B段 的张力与时间t无关,从而,张力只能是常数,记作T .则 (4)式化为
F(x,t)dx T(ux xdx ux x ) utt dx
(5)
2.杆的纵振动
假设有一根均匀且具有弹性的杆,杆的每单位长度上单位横截面积 所受纵向外力为F(x,t,) 杆在此力的作用下做微小纵振动,求杆上各 点的振动情况.
P( x, t )S
P(x dx,t)S
x x dx (a)
|u| u du (b)
图9.1.2 杆的纵振动
如9.1.2所示,以杆的纵向振动位移u( x, t )为研究对象,取杆长 方向为x轴,在杆上去长为dx的一个小段B,B段足够小,可看 作质点.