永磁耦合器、永磁调速器全解

合集下载

永磁耦合器、永磁调速器ppt课件

永磁耦合器、永磁调速器ppt课件
,并延长设备使用寿命
7
永磁驱动产品
•永磁耦合器
•永磁调速器
想象
永磁耦合技术 “绿色 / Green” 无机械连结的创新扭传动技术
降低维护成本,操作成本, 增加运行可控性,提高系统可靠度
达成最低之拥有者总成本
9
永磁耦合器说明
• 耦合器利用磁感原理传输扭矩 • 2个独立组件,没有物理接触 • 磁转子组件安装在负载轴上 • 导体组件安装在电机轴上 • 永磁体和导体之间的相对运
18
永磁调速节能技术十大优点
高效节能 (无级调速,节能率10~50%) 简单 (构造简单,本身无需电源) 可靠 (容易安装,不怕恶劣环境,寿命长达 30 年) 柔性启动 (电机完全在空载下启动,大幅降低启动电流) 适应脉冲型负载 (保护电机,机械密封,etc.) 容忍对心误差,隔离并减少振动 延长设备寿命,增长MTBF (故障周期) 无谐波 (不伤害电机,不影响电网功因) 无 EMI (电磁波干扰) 降低拥有者总成本
2
国家政策
• 节能减排“十二五”规划中明确提出“电机系统 节能。采用高效节能电动机、风机、水泵、变压 器等更新淘汰落后耗电设备。对电机系统实施变 频调速、永磁调速、无功补偿等节能改造,优化 系统运行和控制,提高系统整体运行效率。”
• 发改委《国家重点节能技术推广目录》第五批第 28项中明确提到:永磁涡流柔性传动节能技术 预 计到2015年 该技术在行业内的推广比例达到8% ,总投入45亿元,节能能力200万吨标煤/年。
15
永磁调速技术
最简单、可靠的调速节能装置
16
想象
调速节能
缓冲启动
缓冲脉冲式冲击
对中不准下运转
一个纯机械装置 .. 安装简便 无需用电, 无机械连结 构造简单

永磁调速器工作原理

永磁调速器工作原理

永磁调速器工作原理永磁调速器是一种常见的电机调速器,通过利用永磁体产生的磁场和电流之间的相互作用,实现对电机的调速控制。

在现代工业中,永磁调速器被广泛应用于各种领域,如风力发电、电动汽车、电梯等。

下面将介绍永磁调速器的工作原理。

1. 磁场产生永磁调速器中通常采用永磁体来产生磁场。

永磁体是一种能够持续产生磁场的材料,常见的有钕铁硼、钴磁体等。

当永磁体被加热或外界磁场作用时,就会产生一个稳定的磁场。

2. 电流控制在永磁调速器中,通过控制电流的大小和方向,可以改变电机中的磁场分布,从而实现电机的调速。

通常采用功率半导体器件,如晶闸管、IGBT等来实现电流控制。

3. 磁场与电流的相互作用当电流通过电机绕组时,会产生一个磁场。

这个磁场与永磁体产生的磁场相互作用,产生磁力,驱动电机运转。

通过控制电流的大小和方向,可以调节电机的转速。

4. 调速控制永磁调速器通过控制电流的大小和方向,可以实现对电机的调速控制。

当需要提高电机转速时,增大电流;当需要降低电机转速时,减小电流。

通过精确控制电流,可以实现电机平稳、高效地运行。

5. 特点与应用永磁调速器具有响应速度快、效率高、体积小、结构简单等优点,适用于对转速要求高、精度要求高的场合。

在风力发电、电动汽车、电梯等领域都有广泛的应用。

总的来说,永磁调速器利用永磁体和电流之间的相互作用,实现对电机的调速控制。

通过精确控制电流的大小和方向,可以实现电机的平稳、高效运行,满足不同场合的需求。

在未来,随着技术的不断进步,永磁调速器将在更多领域展现出其巨大的应用潜力。

永磁调速器汇总

永磁调速器汇总

永磁调速器无连接调速节能技术永磁调速器是通过调节导磁体和永磁体之间的相互磁力耦合作用大小来传递扭矩,同时实现负载调速和电机节能。

是一种无机械连接的软启动设备,传递效率能达到95%以上,实现电机节能30%以上。

主要应用设备为泵、风机、离心负载、皮带运输机及其它机械装置,应用广泛。

永磁调速器一:产品工作原理永磁调速器(筒式/盘式):一般由三个部分组成,一是和电机连接的导体转子,二是与负载连接的永磁转子,永磁转子在导体转子内,其间由空气隙分开,并随各自安装的旋转轴独立转动,三是一个调速机构,调速机构包括手动控制和信号电控两种。

通过调节永磁磁力耦合有效面积(筒式)或永磁磁力耦合间隙(盘式)的方式来调整负载速度而电机转速不变,实现负载调速和电机节能。

调速机构调节筒形永磁转子与筒形导体转子在轴线方向的相对耦合面积,或调节盘式永磁转子与盘式导体转子在轴线方向的相对间隙,实现改变导体转子与永磁转子之间传递转矩的大小。

导体转子安装在输入轴上,永磁转子安装在输出轴上,当导体转子转动时,导体转子与永磁转子产生相对运动,永磁场在导体转子上产生涡流,同时涡流又产生感应磁场与永磁场相互作用,从而带动永磁转子沿与导体转子相同的方向转动,结果是将输入轴的转矩传递到输出轴上;输出转矩的大小与相互作用的面积(或相互作用的间隙)相关,作用面积越大(作用间隙小),扭矩越大,负载转速高.反之亦然。

永磁转子与导体转子完全脱开,作用面积为零(或作用间隙最大),永磁转子转速为零,即负载转速为零。

能实现可重复的、可调整的、可控制的输出扭矩和转速。

永磁调速器是通过调节扭矩来实现速度控制,电机输出到永磁调速器的扭矩和永磁调速器输出到负载的扭矩是相等的。

当永磁调速器接到一个控制信号后,如压力,水流量,液面高度等信号传到永磁调速器的调速机构,调速机构对信号进行识别和转换后,产生一个机械操作指令,来调节导体转子与永磁转子之间的耦合面积大小(筒式),或导体转子与永磁转子之间的耦合间隙大小(盘式),根据适时的负载输入扭矩的要求,调节永磁调速器输入端的扭矩大小,负载要求扭矩小,电机输出扭矩小,相应电机输出功率也小。

永磁调速器

永磁调速器

永磁调速器无连接调速节能技术永磁调速器是通过调节导磁体和永磁体之间的相互磁力耦合作用大小来传递扭矩,同时实现负载调速和电机节能。

是一种无机械连接的软启动设备,传递效率能达到95%以上,实现电机节能30%以上。

主要应用设备为泵、风机、离心负载、皮带运输机及其它机械装置,应用广泛。

永磁调速器一:产品工作原理永磁调速器(筒式/盘式):一般由三个部分组成,一是和电机连接的导体转子,二是与负载连接的永磁转子,永磁转子在导体转子内,其间由空气隙分开,并随各自安装的旋转轴独立转动,三是一个调速机构,调速机构包括手动控制和信号电控两种。

通过调节永磁磁力耦合有效面积(筒式)或永磁磁力耦合间隙(盘式)的方式来调整负载速度而电机转速不变,实现负载调速和电机节能。

调速机构调节筒形永磁转子与筒形导体转子在轴线方向的相对耦合面积,或调节盘式永磁转子与盘式导体转子在轴线方向的相对间隙,实现改变导体转子与永磁转子之间传递转矩的大小。

导体转子安装在输入轴上,永磁转子安装在输出轴上,当导体转子转动时,导体转子与永磁转子产生相对运动,永磁场在导体转子上产生涡流,同时涡流又产生感应磁场与永磁场相互作用,从而带动永磁转子沿与导体转子相同的方向转动,结果是将输入轴的转矩传递到输出轴上;输出转矩的大小与相互作用的面积(或相互作用的间隙)相关,作用面积越大(作用间隙小),扭矩越大,负载转速高.反之亦然。

永磁转子与导体转子完全脱开,作用面积为零(或作用间隙最大),永磁转子转速为零,即负载转速为零。

能实现可重复的、可调整的、可控制的输出扭矩和转速。

永磁调速器是通过调节扭矩来实现速度控制,电机输出到永磁调速器的扭矩和永磁调速器输出到负载的扭矩是相等的。

当永磁调速器接到一个控制信号后,如压力,水流量,液面高度等信号传到永磁调速器的调速机构,调速机构对信号进行识别和转换后,产生一个机械操作指令,来调节导体转子与永磁转子之间的耦合面积大小(筒式),或导体转子与永磁转子之间的耦合间隙大小(盘式),根据适时的负载输入扭矩的要求,调节永磁调速器输入端的扭矩大小,负载要求扭矩小,电机输出扭矩小,相应电机输出功率也小。

永磁调速器工作原理及特点

永磁调速器工作原理及特点

>>>永磁调速器(PMD)的工作原理及特点2007年永磁耦合与调速驱动器从美国引进我国,在美国已大量应用于冶金、石化、采矿、发电、水泥、纸浆、海运、军舰等行业,国内现在应用案例主要有浙江嘉兴电厂,山东海化自备热电厂, 华电东华电厂, 华能南京电厂, 中石化北京燕山石化, 枣庄煤业集团蒋庄煤矿等大型企业集团。

永磁磁力驱动技术首先由美国MagnaDrive公司在1999年获得了突破性的发展。

该驱动方式与传统的同步式永磁磁力驱动技术有很大的区别,其主要的贡献是将永磁驱动技术的应用大大拓宽。

它不解决密封的问题,但是它解决了旋转负载系统的对中、软启动、减震、调速及过载保护等问题,并且使永磁磁力驱动的传动效率大大提高,可达到%。

该技术现已在各行各业获得了广泛的应用。

该技术将对传统的传动技术带来了崭新的概念,必将为传动领域带来一场新的革命。

该产品已经通过美国海军最严格的9-G抗震试验。

同时,该产品在美国获得17项专利技术,在全球共获得专利一百多项。

目前,由MagnaDrive公司和美国西北能效协会组成专门小组对该技术设备进行商业化推广。

由于该技术创新,使人们对节能概念有了全新的认识。

在短短的几年中,MagnaDrive获得了很大的发展,现已经渗透到各行各业,在全球已超过6000套设备投入运行。

(一) 系统构成与工作原理永磁磁力耦合调速驱动(PMD)是通过铜导体和永磁体之间的气隙实现由电动机到负载的转矩传输。

该技术实现了在驱动(电动机)和被驱动(负载)侧没有机械链接。

其工作原理是一端稀有金属氧化物硼铁钕永磁体和另一端感应磁场相互作用产生转矩,通过调节永磁体和导体之间的气隙就可以控制传递的转矩,从而实现负载速度调节。

由下图所示,PMD主要由导体转子、永磁转子和控制器三部分组成。

导体转子固定在电动机轴上,永磁转子固定在负载转轴上,导体转子和永磁转子之间有间隙(称为气隙)。

这样电动机和负载由原来的硬(机械)链接转变为软(磁)链接,通过调节永磁体和导体之间的气隙就可实现负载轴上的输出转矩变化,从而实现负载转速变化。

永磁耦合器简介

永磁耦合器简介
制造工艺与流程包括材料加工、装配、检测等环节,这些环节需要严格按照工艺要 求进行操作,以保证耦合器的质量和性能。
制造工艺与流程需要运用先进的制造技术和设备,以提高生产效率和产品质量。
03
永磁耦合器的性能参数
传递功率与效率
传递功率
永磁耦合器能够传递的功率范围广泛 ,从小型电机驱动到大型工业设备都 能适用。其传递功率的大小取决于耦 合器内部磁路的设计和磁钢的配置。
市场需求
随着工业自动化和智能制造的快速发展,永磁耦合器市场需求不断增长,特别是在能源、化工、电力、交通等高 能耗和高风险领域,对永磁耦合器的需求尤为迫切。
竞争格局
目前,永磁耦合器市场主要由几家大型企业占据主导地位,但随着技术的不断进步和市场需求的多样化,越来越 多的中小企业开始进入这一领域,市场竞争日趋激烈。
新能源
随着新能源技术的不断发展,永磁耦 合器在风力发电、太阳能发电等领域 的应用也越来越广泛,能够提高发电 效率并降低能源损失。
永磁耦合器的优势与局限性
优势
永磁耦合器具有高效、稳定、安 全可靠、节能环保等优点,能够 提高系统的稳定性和可靠性,降 低能源损失和维护成本。
局限性
永磁耦合器的制造成本较高,且 在传递大功率能量时需要解决散 热问题,同时需要控制磁路的通 断,对控制系统的要求较高。
高效稳定
由于其具有较高的传递效率和较长的使用寿命,永磁耦 合器在工业领域中得到了广泛应用。
永磁耦合器在工业传动系统中主要用于连接电动机和减 速机等设备,实现高效稳定的动力传输。
案例分析:某工厂采用永磁耦合器替代传统的皮带传动, 实现了更稳定的动力传输和更高的生产效率。
应用案例二:新能源汽车驱动系统
品质管理
建立严格的质量管理体系,确保产品 的一致性和可靠性,提升竞争力。

永磁耦合器、永磁调速器(10.13)

永磁耦合器、永磁调速器(10.13)

17
永磁调速节能技术十大优点
高效节能 (无级调速,节能率10~50%)
简单 (构造简单,本身无需电源) 可靠 (容易安装,不怕恶劣环境,寿命长达 30 年) 柔性启动 (电机完全在空载下启动,大幅降低启动电流) 适应脉冲型负载 (保护电机,机械密封,etc.) 容忍对心误差,隔离并减少振动 延长设备寿命,增长MTBF (故障周期) 无谐波 (不伤害电机,不影响电网功因) 无 EMI (电磁波干扰) 降低拥有者总成本
• 当两者有相对运动时,导体切割磁力线,在 导体中产生感应涡电流,进而产生感应磁场, 两者交互作用,产生扭距 • 越靠近时磁力线密度越密集,产生效应越强, 扭距越大; 有效耦合面积越大,穿过导体的 磁力线越多,产生的涡电流越大,传递的扭 矩越大
磁力线
价值主张
安全: 创新、无机械连结的永磁驱动技
术,无谐波
维护简单量少,费用低
空穴气旋,振动、耗 消除了空穴气旋、减振,节 能 能 有调节滞后与死区 快速且无级调速
操作范围不佳
维持最佳效率点操作
空载启动 增加了MTBF,25年
永磁调速驱动器应用场合
• • • • • • • • • 节能需求 可靠度要求高 环境对谐波或电磁波要求高 调速,控制需求 环境恶劣 难以排除之震动 脉冲型负载 热胀冷缩,对中不易 …
改造后效果图
永磁调速器 竞争力分析
其它控制/调速方式 • 阀/风门节流系统 • 液力耦合器 • 变频器
传统~阀/风门节流系统
• 所有联轴器都有以下问题:
Misalignment
Parallel / Offset Misalignment
Axial
Misalignment
12
传统联结

永磁传动装置

永磁传动装置

永磁传动装置(永磁调速器/永磁耦合器)节能解决方案一、永磁传动装置(永磁调速器/永磁耦合器)1)永磁调速器2)永磁耦合器永磁调速技术是利用磁力驱动负载工作,实现了电机与负载之间非接触的扭力传递。

电机驱动的主动转子高速旋转,在从动转子产生的磁场中切割磁力线,从而产生感应磁场,通过磁场之间相互作用力,驱动负载工作,实现扭力的传递。

主动转子与从动转子之间的气隙越小,永磁传动传递的扭力越大,负载转速越高;气隙越大,永磁传动传递的扭力越小,负载转速越低。

通过调整气隙的大小,可实现对负载的无级调速。

是在永磁耦合器的基础上加入调节机构,调节器调节筒形永磁转子与筒形导体转子在轴线方向的相对位置,以改变永磁转子和导体转子耦合的有效部分,即可改变两者之间传递的扭矩,能实现可重复的、可调整的、可控制的输出扭矩和转速,实现调速节能的目的。

3)永磁调速器空冷装置空冷永磁可调速器传动装置利用导体上方空气的旋转运动,驱散永磁转子与导体之间的“滑差”产生的热量。

这种滑差与永磁可调速传动装置(永磁调速器)装置的扭力传递量直接相关,可以通过改变转子与导体之间的气隙进行调节。

一般而言,空冷永磁可调速传动装置(永磁调速器)在电机功率范围介于10~500Hp之间的应用条件下使用。

当电机功率高于500Hp或者电机转速较低时,建议采用水冷传动装置。

4)永磁调速器水冷装置永磁可调速传动装置(永磁调速器)水冷装置利用永磁转子和导体的相对运动,以离心方式引导稳定的冷却水经过传动元件,发挥传导冷却功能,驱散热量。

一般而言,水冷永磁可调速传动装置(永磁调速器)空冷装置用于电机功率高于500马力、永磁转子和导体的转动速度低到不足以对这些元件进行空气冷却等应用情况。

公司已经将其水冷可调速传动装置成功的安装于供水泵站、引风机、冷却塔风机和其它设备上。

二、永磁调速器的工作原理永磁可调速传动装置(永磁调速器)的工作原理是通过气隙将扭力从电机端传向负载端,设备传动侧与负载侧之间无连接。

永磁耦合器

永磁耦合器

永磁耦合器工作原理●永磁耦合技术(涡流式磁力驱动技术)是美国能源部出资为海军舰艇开发的一项新的驱动连接技术,在2004年3月,美国海军经过两年多的验证后,对该技术产品实现了批量采购。

●永磁耦合器的工作原理是通过气隙将扭力从电机端传向负载端,设备传动侧与负载侧之间无物理连接。

位于传动装置一侧的永磁体和位于另一侧的导体产生的感应电流在交互作用下产生扭力。

只需通过改变气隙间距可以实现扭力的精确控制,从而达到速度控制。

●永磁耦合器由三个部分组成:1)永磁转子组件内含永磁体,与负载连接;2)导体转子组件与电机连接;3)执行组件,用于控制永磁转子与导体转子之间的气隙间距;●导体转子与永磁转子组件之间的相对运动在气隙内产生强劲的磁耦合力。

通过改变永磁转子与导体转子之间的气隙间隔可以调节输出速度。

磁感应原理离不开永磁体与导体之间的相对运动。

●永磁耦合器的输出扭力始终与输入扭力相等。

电机只需输出负载所需要的扭力即可。

●永磁耦合器传递扭力或控制速度的能力不会因为电机与负载之间轻微的角度失准或偏移失准受到影响。

实际上永磁耦合器可以消除因失准造成的振动。

由于气隙的存在,可以消除通过传动装置产生的振动传递。

当安装在某个系统内时,永磁耦合器均可接收和调整压力、流量、液位或其它过程控制信号,进而发信号给执行器调整气隙,从而调节负载的速度,满足控制需要。

永磁耦合器的优势永磁耦合器的主要优势有以下:•节约能源;•可无极调速,调速范围为0~98%;•允许存在轴对中偏差,能最大限度隔离并减少振动,从而延长轴承和密封件寿命;•纯机械设备,可靠性增强,降低了设备维护成本;•可以实现缓冲和延时启动,允许存在冲击负载;•不存在谐波失真或能源质量问题;•能够在恶劣的环境下运行;永磁耦合器专门为使用传统可调速产品中总成本较高的设备用户设计。

我们创新性地应用电磁耦合新技术:通过降低维护成本、增强过程可用性、提高能源效率,为我们的客户节约使用成本。

永磁耦合器

永磁耦合器

永磁耦合器一、背景当前,国内的企业的风机和水泵所采用的调速方式大部分是变频调速。

鉴于变频调速器在生产运行中所出现的问题,尤其是变频设备故障的不确定性,给企业生产上带来了隐患,直接影响了生产运行的连续性、稳定性以及可靠性;也给企业带来了较大的经济损失,这种损失通常是因为电气设备故障时,造成停机。

而采用大功率调速型永磁耦合器调速方案取代目前的变频器调速方案(即改变间接控制到直接控制形式),则可获得使用变频器调速方案所无可比拟的绝对优势。

二、分析比较我们就企业最为关心的以下四个方面来进行分析比较:(一) 系统的可靠性永磁耦合器永磁耦合器是一个纯机械的产品,性能稳定,对供电电源没有任何要求,且使用中不会对电网产生高次谐波污染(高次谐波的污染对电网产生的危害众所周知,这里不再赘述)。

因为不用电,所以不存在电磁干扰问题。

高压变频器尽管变频器目前技术比较过关,但是作为一个高度复杂的电子设备而言,其运行中故障的不可预见性、不确定性还是有目共睹的。

首先对环境的要求十分苛刻,专用房间要密封、防尘,夏季要有空调来保持设备正常运行所要求的温度,辅助设施投入较大。

其次对供电电源有一定的要求,电子设备易受电磁干扰会造成变频器设备运行的不可靠。

同时在变频器运行时,对电源系统也会产生高次谐波污染,破坏电网的质量,严重时甚至影响电子设备的稳定运行,需要用户采用其他设备(滤波器)来消除。

另外,由于采用变频器时,电机与负载之间的轴连接是接触式的,不具备减少轴承、密封损坏的优点。

(二) 长期运行的稳定性永磁耦合器永磁耦合器具有机械结构简单,一旦安装完成投入使用,基本不受使用环境的干扰和影响,运行稳定可靠。

因为不用电,所以不存在电磁干扰问题。

由于采用永磁耦合器时,电机与负载之间的轴连接是非接触式的,因此,负载的震动不会传递到电机上;也正是由于轴连接是非接触式的,所以带来了两方面的好处,一是安装时“对中”要求低;二是在长期运行中不会产生因为直接的轴连接而带来的轴承、密封的损坏,保证设备的使用。

永磁耦合调速技术简介

永磁耦合调速技术简介

永磁耦合调速技术的工业化应用一、项目技术概况本项目所推荐的新技术产品——感应式异步永磁耦合调速器,属于国内外技术领先的高效节能型永磁驱动新技术产品,本项目产品通过稀土永磁材料将传统的机械传动技术和电机技术融合,开创性地提出了感应式异步永磁耦合技术原理,并设计出无机械接触、无摩擦、低噪音、高可靠性且具有高效节能特征的动力连接、调速、变速传动结构——感应式异步永磁耦合调速器、新型磁性齿轮变速器和直驱式复合永磁电机,彻底解决了许多工业应用领域大量依赖机械式刚性连接和机械齿轮变速传动的效率低下、摩擦损耗、震动冲击、噪音、污染严重等问题。

系列化生产可广泛应用于钢铁冶金、矿山机械、石油钻踩、化工水泥、火力发电、风力发电、电动汽车、船舰驱动等需要直接驱动、启动隔离和变速、调速的动力传动领域。

其中,感应式异步永磁耦合调速器是一种从交流电动机输出端隔离起动冲击负荷、并随负载自动调节转速的高效节能型传动轴永磁耦合连接调速装置,是取代复杂的变频调速装置理想的动力传递连接装置。

本项目产品符合低炭环保经济特点,具有低噪音、无污染、高效率、高可靠性等特征,广泛推广应用可极大地节省能源,降低CO排放,有利于国家减排目标的实现;本项目产品2是具有完全自主知识产权的创新型产品,其中部分专利属于国内外首次提出,具有原创性创新特点和极高的工业应用价值,产业化实现将使我国处于磁性传动领域的国际领先水平。

本项目产品属于全新类别新技术产品,目前国内少有或根本就没有竞争对手,不存在与竞争对手技术竞争的风险。

随着国家推进环保节能、绿色经济可持续发展战略的深入,在工业应用的许多高端行业里本项目产品比传统技术的产品具有无可比拟的技术经济优势。

二、项目技术方案及产品介绍——感应式异步永磁耦合调速器产品系列1、应用领域及行业现状:a. 永磁耦合调速器的应用市场及领域b. 几种常规的交流电动机节能调速方式图1 永磁耦合调速器的应用领域及行业现状2、工作原理:针对现有交流电机拖动在动力耦合连接上存在着过于简单的连接方式无法缓冲满负载起动冲击及恒功率调速的问题,本技术发明提供了一种可隔离冲击负荷并具有一定随负载自动调速功能的、高效节能、结构简单、安装便捷的传动轴永磁耦合调速装置新结构,可系列化地广泛应用于中小型电机拖动和动力传动领域。

永磁调速器概况

永磁调速器概况

永磁调速器无连接调速节能技术永磁调速器是通过调节导磁体和永磁体之间的相互磁力耦合作用大小来传递扭矩,同时实现负载调速和电机节能。

是一种无机械连接的软启动设备,传递效率能达到95%以上,实现电机节能30%以上。

主要应用设备为泵、风机、离心负载、皮带运输机及其它机械装置,应用广泛。

永磁调速器一:产品工作原理永磁调速器(筒式/盘式):一般由三个部分组成,一是和电机连接的导体转子,二是与负载连接的永磁转子,永磁转子在导体转子内,其间由空气隙分开,并随各自安装的旋转轴独立转动,三是一个调速机构,调速机构包括手动控制和信号电控两种。

通过调节永磁磁力耦合有效面积(筒式)或永磁磁力耦合间隙(盘式)的方式来调整负载速度而电机转速不变,实现负载调速和电机节能。

调速机构调节筒形永磁转子与筒形导体转子在轴线方向的相对耦合面积,或调节盘式永磁转子与盘式导体转子在轴线方向的相对间隙,实现改变导体转子与永磁转子之间传递转矩的大小。

导体转子安装在输入轴上,永磁转子安装在输出轴上,当导体转子转动时,导体转子与永磁转子产生相对运动,永磁场在导体转子上产生涡流,同时涡流又产生感应磁场与永磁场相互作用,从而带动永磁转子沿与导体转子相同的方向转动,结果是将输入轴的转矩传递到输出轴上;输出转矩的大小与相互作用的面积(或相互作用的间隙)相关,作用面积越大(作用间隙小),扭矩越大,负载转速高.反之亦然。

永磁转子与导体转子完全脱开,作用面积为零(或作用间隙最大),永磁转子转速为零,即负载转速为零。

能实现可重复的、可调整的、可控制的输出扭矩和转速。

永磁调速器是通过调节扭矩来实现速度控制,电机输出到永磁调速器的扭矩和永磁调速器输出到负载的扭矩是相等的。

当永磁调速器接到一个控制信号后,如压力,水流量,液面高度等信号传到永磁调速器的调速机构,调速机构对信号进行识别和转换后,产生一个机械操作指令,来调节导体转子与永磁转子之间的耦合面积大小(筒式),或导体转子与永磁转子之间的耦合间隙大小(盘式),根据适时的负载输入扭矩的要求,调节永磁调速器输入端的扭矩大小,负载要求扭矩小,电机输出扭矩小,相应电机输出功率也小。

永磁调速器工作原理及特点

永磁调速器工作原理及特点

2007年永磁耦合与调速驱动器从美国引进我国,在美国已大量应用于冶金、石化、采矿、发电、水泥、纸浆、海运、军舰等行业,国内现在应用案例主要有浙江嘉兴电厂,山东海化自备热电厂, 华电东华电厂, 华能南京电厂, 中石化北京燕山石化, 枣庄煤业集团蒋庄煤矿等大型企业集团。

永磁磁力驱动技术首先由美国MagnaDrive公司在1999年获得了突破性的发展。

该驱动方式与传统的同步式永磁磁力驱动技术有很大的区别,其主要的贡献是将永磁驱动技术的应用大大拓宽。

它不解决密封的问题,但是它解决了旋转负载系统的对中、软启动、减震、调速及过载保护等问题,并且使永磁磁力驱动的传动效率大大提高,可达到%。

该技术现已在各行各业获得了广泛的应用。

该技术将对传统的传动技术带来了崭新的概念,必将为传动领域带来一场新的革命。

该产品已经通过美国海军最严格的9-G抗震试验。

同时,该产品在美国获得17项专利技术,在全球共获得专利一百多项。

目前,由MagnaDrive公司和美国西北能效协会组成专门小组对该技术设备进行商业化推广。

由于该技术创新,使人们对节能概念有了全新的认识。

在短短的几年中,MagnaDrive获得了很大的发展,现已经渗透到各行各业,在全球已超过6000套设备投入运行。

(一) 系统构成与工作原理永磁磁力耦合调速驱动(PMD)是通过铜导体和永磁体之间的气隙实现由电动机到负载的转矩传输。

该技术实现了在驱动(电动机)和被驱动(负载)侧没有机械链接。

其工作原理是一端稀有金属氧化物硼铁钕永磁体和另一端感应磁场相互作用产生转矩,通过调节永磁体和导体之间的气隙就可以控制传递的转矩,从而实现负载速度调节。

由下图所示,PMD主要由导体转子、永磁转子和控制器三部分组成。

导体转子固定在电动机轴上,永磁转子固定在负载转轴上,导体转子和永磁转子之间有间隙(称为气隙)。

这样电动机和负载由原来的硬(机械)链接转变为软(磁)链接,通过调节永磁体和导体之间的气隙就可实现负载轴上的输出转矩变化,从而实现负载转速变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

降低拥有者总成本
通常初次购置成本 仅占全部寿命成本 50% 以内Байду номын сангаас减少能源用量 降低操作费用 减少事故发生
初次购置成本
改造 & 配套成本 仅需现场局部改造 或预留有限空间
降低运行成本
减少维护成本 增加机械寿命 减少备品备件
降低拥有者总成本
$

永磁调速驱动器应用场合
• • • • • • • • • 节能需求 可靠度要求高 环境对谐波或电磁波要求高 调速,控制需求 环境恶劣 难以排除之震动 脉冲型负载 热胀冷缩,对中不易 …
18

永磁调速节能技术十大优点
高效节能 (无级调速,节能率10~50%)

简单 (构造简单,本身无需电源) 可靠 (容易安装,不怕恶劣环境,寿命长达 30 年) 柔性启动 (电机完全在空载下启动,大幅降低启动电流) 适应脉冲型负载 (保护电机,机械密封,etc.) 容忍对心误差,隔离并减少振动 延长设备寿命,增长MTBF (故障周期) 无谐波 (不伤害电机,不影响电网功因) 无 EMI (电磁波干扰) 降低拥有者总成本
2
国家政策
• 节能减排“十二五”规划中明确提出“电机系统 节能。采用高效节能电动机、风机、水泵、变压 器等更新淘汰落后耗电设备。对电机系统实施变 频调速、永磁调速、无功补偿等节能改造,优化 系统运行和控制,提高系统整体运行效率。” • 发改委《国家重点节能技术推广目录》第五批第 28项中明确提到:永磁涡流柔性传动节能技术 预 计到2015年 该技术在行业内的推广比例达到8% ,总投入45亿元,节能能力200万吨标煤/年。
• 越靠近时磁力线密度越密集,产生效应越强, 扭距越大; 相对运动越快,效应越强,产生 扭距越大 • 有效耦合面积越大,穿过导体的磁力线越多, 产生的涡电流越大,传递的扭矩越大
磁力线
价值主张
安全: 创新、无机械连结的永磁耦合技
术,无谐波
可靠: 结构简单的机械设备,无电子器

最高投资效益: 维护保养简易,寿命长
优点 便宜、成本低 客户对其十分熟悉
维护频繁,费用高
维护简单量少,费用低
空穴气旋,振动、耗 消除了空穴气旋、减振,节 能 能 有调节滞后与死区 快速且无级调速
操作范围不佳
维持最佳效率点操作
空载启动 增加了MTBF,25年

液力耦合器 问题: • 较低的能源效率 • 维护要求较高 • 环境问题 • 振动问题 • 空间限制
永磁耦合器 永磁调速器
青岛斯普瑞机电科技有限公司
公司简介
• 青岛斯普瑞机电科技有限公司自成立之日起一直 专注于永磁驱动技术产品的研究、开发、生产, 目前,公司的1600Kw永磁耦合器和630Kw空冷型永 磁调速器业绩均为业内最大功率。 • 公司在永磁耦合器和永磁调速器领域已申请16项 专利,已获得一项发明专利证书和七项实用新型 专利。
永磁调速技术
最简单、可靠的调速节能装置
想象
调速节能 缓冲脉冲式冲击 安装简便 缓冲启动 对中不准下运转 构造简单
一个纯机械装置 .. 无需用电, 无机械连结
隔离震动 可靠 / 少维护 无谐波干扰
延长设备寿命
• 永磁调速器是在永磁耦合器的基础上加入调节机 构,改变永磁转子和导体转子耦合的有效部分, 即可改变两者之间传递的扭矩,能实现可重复的 、可调整的、可控制的输出扭矩和转速,实现调 速节能的目的。
永磁耦合器特点:
• • • • • • • • 高效节能 免维护(无易损件 ) 安装简单(无需准确对中) 高效扭矩传输(兼具节能效果) 允许冲击负载(负载被缓冲及滑移) 隔离震动 柔性启动 理想应用场合: - 输送带 (减少皮带冲击) - 风机、水泵(柔性启动,节能) - 脉冲型的负载 (如引擎,往复式空压机,抽油机) - 运行中容易发生偏心引发异常振动(如破碎机)
什么是永磁驱动技术
? Permanent
Magnet Drive
永 久 磁 力 驱 动
永磁驱动技术
无机械连结的创新扭矩传动技术
永磁驱动技术
• 当磁力线通过导体,静止时不会有作用
导 体
N S
• 当两者有相对运动时,导体切割磁力线,在 导体中产生感应涡电流,进而产生感应磁场, 两者交互作用,产生扭距
• 所有联轴器都有以下问题:
Misalignment
Parallel / Offset Misalignment
Axial
Misalignment
12
传统联结
永磁耦合器启动特性与节能 最大启动电流百分比 转差率
永磁耦合
节能率
时间 (秒)
13
永磁耦合器(斯普瑞产品与盘式产品结构对比)
斯普瑞永磁耦合器与盘式耦合器区别: •在传递同等功率条件下,斯普瑞产品体积更小, 重量更轻,转动惯量更小,效率更高。 •斯普瑞产品为筒形,磁力方向为径向,允许有 较大的轴向窜动,对偏心容忍度较大,偏心对设 备运行完全没有影响;而盘式结构磁力方向为轴 向,要求气隙均匀,在运行中容易出现气隙不均 导致电机和负载轴承损坏,甚至擦盘现象;对电 机和设备的轴向窜动要求很严,不能超过0.05mm; 该特点对大功率高压电机很重要,因为大功率高 压电机多为轴瓦结构,运行和停机情况下,轴向 有一定量的窜动,盘式产品很难应用。
,并延长设备使用寿命
永磁驱动产品
•永磁耦合器 •永磁调速器
想象
永磁耦合技术 “绿色 / Green” 无机械连结的创新扭矩传动技术 降低维护成本,操作成本, 增加运行可控性,提高系统可靠度 达成最低之拥有者总成本
永磁耦合器说明
• • • • • 耦合器利用磁感原理传输扭矩 2个独立组件,没有物理接触 磁转子组件安装在负载轴上 导体组件安装在电机轴上 永磁体和导体之间的相对运 动产生涡流,涡流产生感应 磁场,交互作用,通过气隙传递扭矩。 • 可实现降速节能,但需在停机状态下进行不同转速 的调节
永磁调速器 竞争力分析

其它控制/调速方式 • 阀/风门节流系统 • 液力耦合器 • 变频器

传统~阀/风门节流系统
问题:
•限制流量,耗能
•产生空穴气旋
•早期叶轮磨损
•增加机械负荷 •增加系统振动等…

永磁调速vs.阀/风门节流系统
不足 较低的能源效率 数量大,控制复杂 多个故障点 采用永磁调速的好处 节能,可高达10%~50%以上 仅对泵转速控制 单一,可靠
相关文档
最新文档