空气中PM2.5问题的研究数学建模论文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

承诺书

我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛规则》(一下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):

我们的参赛报名号为(如果赛区设置报名号的话):

所属学校(请填写完整的全名):重庆师范大学

参赛队员(打印并签名) :1. 毛申申

2. 马甜甜

3. 安兴雪

指导教师或指导教师组负责人(打印并签名):张新功

(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格)。

日期: 2014年 9 月 2 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页

赛区评阅编号(由赛区组委会评阅前进行编号):

全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

空气中PM2.5问题的研究

摘要新鲜的空气是生命繁衍和人类发展的理想环境,因此,空气质量的监测对地球村民的生活与发展具有重要的意义.本文采用相关系数分析法和多元回归分析法,建立微分方程扩散模型和费用最小化模型对空气中PM2.5浓度进行了一系列的研究.

对于问题(1),应用相关系数分析法和逐步回归分析法,对AQI中6个基本监测指标的相关与独立性进行定量分析,可得出大气中的臭氧与其它检测指标之间的相关系数较低,具有较强的独立性,CO的含量对PM2.5含量具有较大的影响,并采用逐步回归法分析与其它指标之间的相关关系.

对于问题(2),利用Matlab2012a软件,可得出该地区内PM2.5的时空分布及规律。建立微分方程扩散模型,采用多元回归分析法,可得该地区PM2.5的发生和演变(扩散与衰减等)规律.经过计算,草滩,临潼区、广运潭、纺织城和阎良区是可能的安全区域,而其它地区是重度污染区域.

对于问题(3),按照每年减少相等的PM2.5比例,求出年减少量,并根据问

SO 题(1)求解出的PM2.5与其它地区的检测指标之间的相关性及其关系,求出

2 NO每年减少4.45%,PM10每年减少8.9%.建立费用最小化模型,每年减少3.3%,

2

利用Lingo11.0软件经过计算,可得该地区五年的总投入经费为305.025百万元,每年的投资金额为61.005百万元,其中专项治理费用为12.005百万元,综合治理费用为49百万元.

关键词相关系数分析;逐步回归分析;多元回归分析;微分方程扩散模型;费用最小化模型;MATLAB2012a;Lingo11.0

1 问题重述

大气为地球上生命的繁衍与人类的发展提供了理想的环境.它的状态和变化,直接影响着人类的生产、生活和生存.空气质量问题始终是政府、环境保护部门和全国人民关注的热点问题.

在《环境空气质量标准》(GB3095—2012)的规定中,启用空气质量指数AQI 作为空气质量监测指标,以代替原来的空气质量监测指标――空气污染指数API (Air Pollution Index).原监测指标API为无量纲指数,它的分项监测指标为3

个基本指标(二氧化硫SO

2、二氧化氮NO

2

和可吸入颗粒物PM10).AQI也是无量

纲指数,它的分项监测指标为6个基本监测指标(二氧化硫SO

2、二氧化氮NO

2

可吸入颗粒物PM10、细颗粒物PM2.5、臭氧和一氧化碳CO等6 项).新标准中,首次将产生灰霾的主要因素——对人类健康危害极大的细颗粒物PM2.5的浓度指标作为空气质量监测指标.新监测标准的发布和实施,将会对空气质量的监测,改善生存环境起到重要的作用.

由于细颗粒物PM2.5进入公众视线的时间还很短,在学术界也是新课题,尤其是对细颗粒物PM2.5及相关的因素的统计数据还太少,对细颗粒物PM2.5的客观规律也了解得很不够.但是相关研究人员绝不能因此而放慢前进的脚步,不能“等”数据,因为全国人民等不起.

我们必须千方百计利用现有的数据开展研究,同时新课题、探索性研究、“灰箱问题”也有可能成为数学建模爱好者的用武之地,据数据研究以下问题.

(1)请依据附件1或2中的数据或自行采集数据,利用或建立适当的数学模型,对AQI中6个基本监测指标的相关与独立性进行定量分析,尤其是对其中PM2.5(含量)与其它5项分指标及其对应污染物(含量)之间的相关性及其关系进行分析.

(2)请依据附件2和3中的数据或自行采集某地区的数据,描述该地区内PM2.5的时空分布及其规律,并结合环境保护部新修订的《环境空气质量标准》分区进行污染评估.

建立能够刻画该地区PM2.5的发生和演变(扩散与衰减等)规律的数学模型,合理考虑风力、湿度等天气和季节因素的影响,并利用该地区的数据进行定量与定性分析.

假设该地区某监测点处的PM2.5的浓度突然增至数倍,且延续数小时,请建立针对这种突发情形的污染扩散预测与评估方法.并以该地区PM2.5监测数据最高的一天为例,在全地区PM2.5浓度最高点处的浓度增至2倍,持续2小时,利用你们的模型进行预测评估,给出重度污染和可能安全区域.

采用适当方法检验你们模型和方法的合理性,并根据已有研究成果探索PM2.5 的成因、演变等一般性规律.

(3)该地区目前PM2.5的年平均浓度估计为280(单位为3m / g μ),要求未来五年内逐年减少PM2.5的年平均浓度,最终达到年终平均浓度统计指标,即35(单位为3m / g μ),请给出合理的治理计划,即给出每年的全年年终平均治理指标.

据估算,综合治理费用,每减少一个PM2.5浓度单位 ,当年需投入一个费用单位(百万元),专项治理投入费用是当年所减少 PM2.5浓度平方的0.005倍(百万元).请你为数据1所在地区设计有效的专项治理计划,使得既达到预定PM2.5减排计划,同时使经费投入较为合理,要求你给出五年投入总经费和逐年经费投入预算计划,并论述该方案的合理性.

2 模型假设

(1)假设附件中所给数据真实可靠. (2)假设PM2.5含量分布与温度无关.

(3)假设问题一中PM2.5含量只与题目中考虑的另外5项监测指标有关. (4)气体的扩散看作空中某一连续点源向四周等强度的瞬时气体的释放. (5)忽略PM2.5的垂直分布.

(6)假设PM2.5扩散过程中风力大小稳定.

相关文档
最新文档