高岭土的论文

高岭土的论文
高岭土的论文

学号:20105053051

学院化学化工学院

专业化学工程与工艺

年级2010级

姓名卢明莉

论文题目国内外高岭土的发展现状及存在问题指导教师余晟职称副教授成绩

2013年12月1日

国内外高岭土的发展现状及存在问题

学生姓名:卢明莉学号:20105053051

化学化工学院化学工程与工艺

指导教师:余晟职称:副教授

摘要:阐述了国内外高领土的储量和生产概括与发展现状以及应用范围等情况,指出了世界高岭土行业在发展,我国的高岭土要重点发展深加工,开发新产品,尽快改变目前产品结构不合理的状况,从传统的应用领域转向高科技、新技术、高效益领域,把我国高岭土工业办成既满足国内需要、又力争多出口创汇的产业。

关键词:高岭土国内外发展现状应用范围存在问题展望

1 国内外高岭土的储量和生产概况

世界上高岭土资源极为丰富,五大洲60多个国家和地区均有分布,但主要集中在欧洲、北美洲、亚洲和大洋洲。目前全世界高岭土的探明储量约242.3亿吨。储量较大的地区有美国佐治亚州、巴西的亚马逊盆地、英国的康沃尔和德文郡、中国的广东、福建、广西、江西和江苏等;此外,还有独联体国家、捷克、德国和韩国等,上述国家总储量约占世界总储量的68%。

美国高岭土矿产资源十分丰富,居世界首位,主要来自佐治亚州、南卡罗来纳州,亚拉巴马州、阿肯色州、加里福尼亚州,佛罗里达州、北卡罗来纳州及得克萨斯州等130 多个矿山。佐治亚州高岭土矿床是世界最大的高岭土矿床,储量达79亿吨。

巴西高岭土矿床主要分布在亚马孙盆地,据报道,已查明资源量达13亿吨以上,在世界高岭土矿物储量方面,将取代英国的地位。矿床大多为残积型,产于风化的花岗岩、伟晶岩及其他结晶岩中,有价值的矿床是沿帕腊河—(亚马逊河支流)的费利佩高岭土矿,矿床产于上新世巴雷拉斯统,后来在沿雅里河地区又发现大规模的次生矿床,绵延几公里,储量较大。主要用于造纸及陶瓷工业。

我国非煤建造型高岭土,资源储量居世界第五位。截至2003年底,对我国21个省市232处产地统计,基础储量为5.46亿吨。而我国含煤建造沉积型高岭土资源储量占世界首位,探明远景储量及推算储量180.5亿吨,主要分布在东北、西北和石炭-二叠纪煤系中,以煤层中夹矸、顶底板或单独形成矿层独立存在,其中以内蒙古准格尔煤田的资源最为丰富,达8.1亿吨.

2 高岭土的发展现状及应用现状

目前世界上有60多个国家和地区生产高岭土。美国和欧洲以及巴西曾是世界高岭土主要生产国家,其中,巴西高岭土生产增加速度很快。目前,根据USGS的统计,美国、英国、巴西、独联体和中国等是世界上最主要的高岭土生产国,其产量占世界总产量78%。

美国有21家公司在10个州开采78个矿点,2006年美国全年生产高岭土774万吨,与2005年有所减少,幅度不大。在2006年高岭土的产量中,其中有426万吨是水洗土,155万吨是煅烧土,107万吨是分离剥片的,18.5万吨未经加工。在煅烧高岭土中,有82.6万吨是颜料级高岭土,其他高岭土为耐火级。

巴西有三家公司生产高岭土,其中一家为Imerys所控制,其他为CVRD和其伙伴公司所有。巴西高岭土的生产增长速度较快,从1990~2002年每年平均增加10.1%。

日本高岭土矿床在全岛普遍分布,主要在木宫、柿野、御作等矿区,大部分用于国内陶瓷、耐火材料和填料、涂料。

我国主要高岭土矿区有广东茂名、福建龙岩、江西贵溪、江苏苏州和湖南醴陵等。据2004年资料,中国主要的生产厂家有:

(1)广东茂名高岭土科技有限公司:1997年建成投产,以生产造纸涂料、油漆涂陶瓷釉料三大系列产品为主,目前深加工企业的年生产能力已达到90万吨,实际生产25万吨。茂名高岭土是当前造纸涂布的理想材料,全国造纸企业使用的高岭土有80%来自茂名市茂南矿区,该区已成为全国造纸涂料高岭土最大的生产供应基地和亚洲超细粉体高岭土产品的最大供应基地,并形成一批享誉国内外的品牌,高岭土产品正进入国际市场,也是某些精细化工产品、高级耐火材料、特种陶瓷、建筑新材料、橡胶和塑料的填料,石油催化剂、日用化工品及化妆品的主要原料,在电子信息、国防军工、医疗、新一代功能材料、纳米材料等方面也有广阔的应用前景。2004年10月,联合国工业发展组织与广东茂名市签订了开发合作备忘录,共同开发茂名高岭土资源。(2) 江苏苏州中国高岭土公司,位于苏州阳山,1975年建成投产,年生产能力25万吨, 2006年实际产量20万吨,其中部分为水洗土。

(3) 福建龙岩高岭土有限公司,年产高岭土原矿60万吨,精矿50多万吨;主要生产优质陶瓷原料。经加工改性后,还可用于造纸、橡胶、油漆、涂料等。

(4) 广西兖矿北海高岭土有限公司,大型国有矿山企业,2001年建成,年生产能力55万吨, 2006年实际产量约30万吨,主要用于陶瓷生产国内高岭土应用现状。

国内市场随着工农业和科学技术的发展,高岭土应用范围也日益扩大。市场覆盖面从单一日用、建筑、陶瓷、电瓷、耐火材料,发展到造纸、石油化工、橡胶、塑料、涂料等几十个行业。高岭土和碳酸钙是造纸工业中使用量最大的原料,主要作纸张的涂料和填充料,它们的功能除可取代钛白粉降低成本外,还可提高纸张的白度、不透明度、光滑度、光泽度及可印刷性,极大地改善纸张的质量。对这类原料的基本要求是,白度高、不透明度达标、粒度分布和颗粒形状合适、磨耗及粘度低。

目前,我国造纸工业用填涂料(含高岭土、碳酸钙、滑石等)的总量在每年150万吨左右。到2010年,国内纸和纸板的消费量若能达到预测的6000-7000万吨的话,相应的填料用量将达到300-400万吨;在涂料、颜料方面,如已实施和正在实施的年产120万吨的轻量涂布纸都能达到,仅此一项可用填涂料20万吨;近5年内,预计铜版纸产量将达到100万吨,年耗填涂料将为30万吨以上;再加上正在稳定发展的白板纸,到2005年为150万吨,填涂料的年需求将达到70吨80万吨。预计造纸级高岭土的年需求量仍在35-40万吨。但值得一提的是,随着造纸企业规模的大型化,填涂料的后加工也将逐步趋于和纸厂一体化。在塑料、橡胶、胶粘剂、高压电缆、电线等现代高分子材料中添加高岭土、碳酸钙、滑石等非金属矿填料,不仅可降低塑料等高分子材料的成本,更重要的是能够提高材料的刚性、尺寸稳定性,并赋予材料某些特殊的物化性能,如抗压、抗冲击、耐腐蚀、阻燃、绝缘等。

1996年,我国塑料制品(塑料编织袋、编织布、打包带、塑料地板、地板革、人造革、钙型瓦楞箱、管材、异形材、聚乙烯薄膜、汽车、家用电器配套件、电线电缆、绝缘材料等)产量为716.9万吨,需使用各种非金属矿填料80万吨左右,消费量最大是细磨重质、轻质碳酸钙约70万吨,高岭土0.5-0.6万吨。到2000年,预计该行业高岭土的消费量,填料为1.9-2.0万吨,表面活性填料2.5万吨。

3 高岭土的应用范围与贸易市场

质纯的高岭土具有白度和亮度高,质软(硬度1~2.5),强吸水性,易于分散悬浮于水中,良好的可塑性和高的粘接性,优良的电绝缘性,良好的抗酸碱性,强的离子吸附性和弱的阳离子交换性质以及良好的烧结性和较高的耐火度(约1800℃)等性能.高岭土的可塑性、粘结性、一定的干燥强度、烧结性及烧成白度等特殊性能,使其成为陶瓷生产的主要原料;洁白、柔软、高度分散性、吸附性及化学惰性,使其在造纸、橡胶、塑料等工业部门广泛应用.高岭土还广泛应用于耐火材料、石油油精制、农业、国防尖端技术等领域.此外,高档化妆品粉料、洗涤剂助剂和污水净化剂的材料亦可由

高岭土产品中开发出来。

我国煅烧高岭土主要应用于:(1)造纸工业。造纸用煅烧高岭土仍将以进口产品为主,造纸涂布用高岭土的市场需求量已达到35万吨,而国内只能生产25万吨,一般是用来满足中低档纸品的要求。从2000年开始,我国从国外每年进口造纸涂布用高岭土10万吨。(2)涂料工业。据专家分析预测,涂料行业的需求增势仍将继续扩大,煅烧高岭土的市场需求也将得到拉动。据预测,今明两年高档煅烧高岭土部分取代钛白粉的现状不会改变。涂料对煅烧高岭土的消费需求领域变化会随着涂料生产重心的变化而变化。(3)塑料工业农膜。我国目前国内农膜耗用量已达70万吨,农膜覆盖面积在1400万hm2以上。2010年,全国园艺设施面积将增加到253万hm2左右,占适宜推广面积的50%以上,耐候功能膜的年需求量将增加到30万吨左右,约占棚膜年销量的40%,棚膜的年需求量保持在70万吨左右的水平上;地膜覆盖栽培面积将扩大到2000万hm2,推广普及率达到41.3%,地膜的年耗用量将增加到78万吨左右。(4)电缆。生产高绝缘性能电缆无疑需要超量加入电性能改良剂。高岭土作为唯一能制成电性能改良剂的产品,自然前景看好,趋势很好。在要求电绝缘性能较高的塑料电缆及绝缘材料中,需填充改性煅烧高岭土。(5)橡胶工业。我国橡胶工业中使用的补强剂是炭黑,浅色橡胶中使用的是白炭黑。以高岭土制作的硅铝炭黑,随着研究和开发的不断提高,在功能上尤其是在价格上,将具有极大的竞争优势。国产炭黑:4300元/吨,国产白炭黑:7200元/吨。 (6)其它。搪瓷用粘土主要还依赖进口,供应国是美国、德国、日本,国内约有10000 t/a的市场。催化剂用高岭土,国内已有较多的研究。粘浓度大于68%,白度大于88%,粒度、磨耗符合要求的高岭土产品,国内市场供不应求。

世界高岭土产量约4000万吨,但精制高岭土不到50%,其中30%由美、英、巴西、澳大利亚等国生产。进入国际市场的正是这些精制高岭土。

美国:是世界高岭土消耗量、出口量最大的国家。其产量的1/3约350万吨用于出口,主要销往欧洲(挪威、意大利、比利时、芬兰、瑞典)、亚洲(日本、台湾、韩国、印尼)、加拿大和墨西哥。出口中80%是造纸涂料级,少量为填料级和陶瓷级。英国:是欧洲最大的高岭土生产商和出口商,出口的95%进入欧洲市场。随着美国和巴西的进入,英国的出口量逐年减少,产量也逐渐下降。巴西:1997年出口90万吨,全是精制土。主要出口欧洲、日本、台湾、韩国,有少量进入美国市场。澳大利亚:共生产18万吨精制土,70%出口到日本,其余到印尼、韩国、新西兰和芬兰。综上所

述,上述四国是精制高岭土的主要输出国。精制土的市场除美、英外,欧洲有芬、挪、意、比和瑞典,亚洲主要有日本、韩国、台湾和印尼。各国也对中国市场给予了高度关注。

4 我国高岭土产业发展趋势

高岭土深加工是指在一定物化条件下,对高岭土进行全部破坏,并使之变成结晶的或无定形的单相或多相新产品,它与基本不改变高岭石的化学成分和结晶结构的粉化、分解、改性的精加工不同。

(1)利用优质高岭土生产硫酸铝、碱式聚合铝、铵明矾、氧化铝等

生产硫酸铝(用于造纸和水处理絮凝剂)

Al 2O 3·2SiO 2·2H 2O+3H 2SO 4→Al 2(SO 4)3·18H 2O+2SiO 4↓

生生产氢氧化铝和铵明矾

Al 2(SO 4)3·18H 2O+6NH 4HCO 3→Al 2(OH)3↓+3(NH 4)2SO 4+6CO 2↑+18H 2O

A 2(SO 4)3·18H 2O+(NH 4)2SO 4→2NH 4Al(SO 4)2·12H 2O+6H 2O

(2)利用优质高岭土制造化妆品及改性高档填充料。

化妆品要求颗粒细,白度高,分散性好,化学稳定性好,能与水和甘油均匀混合,有害元素含量:Pb<30×10-6,重金属<30×10-6,氯化物<250×10-6,砷<2×10-6,可制成质地细腻润滑乳液,膏霜、朴粉等高级填充料。

高岭石(<5μm)粉经表面改性,可生产出代替钛白作防晒化妆品眼影膏和特种塑料容器填料。若质纯粒细,白度高,有害元素含量符合英国药典BP 标准,(Pb ≤10×10-6,重金属≤25×10-6,砷≤2×10-6,氯化物≤250×10-6)的高岭石,可做医学药片填充剂,粘结剂。

5 我国高岭土所存在的问题

(1)从产量上看,我国目前的产品仅占世界的4%左右,且多为原料或低级加工产品。

(2)从产业结构上看,明显与国外不一致,西欧各国用于造纸的高岭土80%,美国70%,日本50%,中国八十年代占1%,90年代5%~6%,用耐火材料占61%,并且产品质量也明显低于国际相应产品质量。

(3)从加工工艺设备上看,对高岭土漂白除碳、除铁、除钛等工艺技术,国外已基本成熟.并有相应配套机械设备。我国目前尽管已研制出各种型号规格超细粉碎设备,但在结构设计、材质、加工精度等方面与国外先进设备相比还有较大差距,尤其缺少

高效超细分级设备与粉碎设备。在工艺上尚不成熟,许多厂家建厂都处于低水平重复,没有形成强有力的有权威的技术研究设计机构和全国统一的管理机构。

(4)在深加工产品研究方面,我国开展了一些研究工作,如锻烧高岭土产品,合成0.4 nm分子筛、碱式聚合铝、硫酸铝、高温特种陶瓷等开发研究,但有些还处于实验室水平,离工业生产还有一定距离。国外产品则涉及面很广,包括陶瓷建材、化工、填料、环保、纺织、玩具、原子反应堆、喷气飞机等高温耐火材料工业等。

(5)国家对矿产资源的管理力度不够,以至乱采乱挖破坏了矿产开采条件,造成资源浪费。

(6)理论研究工作做得不够,尤其在高岭土物化性质与结构特征方面研究不足。如:①高岭石脱羟基作用的研究;②高岭石有序一无序及缺陷结构,微结构的研究;③高岭石插入层间结构的研究;④高岭石成因方面的研究;⑤高岭石微细结构的研究;⑥高岭石中铁的存在状态及除铁研究等。国内学者近几年来也正在加紧进行这方面的研究工作。

6 高岭土的展望

今后若干年,国内外高岭土市场将保持健康发展,贸易量呈不断增长的态势,尤其是优质土。因而我国高岭土工业应着眼于国内外两大市场,把丰富的资源同引进外资、引进技术相结合,重点发展深加工,开发新产品,尽快改变目前产品结构不合理的状况,从传统的应用领域转向高科技、新技术、高效益领域。而在当前,则应重点研制生产造纸涂料级高岭土、煅烧高岭土、超细和提纯高岭土以及其它高精尖产品,把我国高岭土工业办成既满足国内需要、又力争多出口创汇的产业。

学年论文(设计)成绩评定表

评语

成绩:

指导教师(签字):

201 年月日学院意见:

学院院长(签名):

201 年月日

关于高岭土的基本常识

关于高岭土的基本常识 高岭土矿是高岭石亚族粘土矿物达到可利用含量的粘土或粘土岩。高岭土(Kaolin)‖一词来源于中国江西景德镇高岭村产的一种可以制瓷的白色粘土而得名。高岭土因具有许多优良的工艺性能,广泛用于造纸、陶瓷、涂料、橡胶、塑料、耐火材料、化工、农药、医药、纺织、石油、建材及国防等部门。随着工业技术的发展和科技水平的提高,陶瓷制品的种类愈来愈多,它不仅与人们日常生活密切相关,而且在国防尖端技术方面的应用也很广泛,如电气、原子能、喷气式飞机、火箭、人造卫星、半导体、微波技术、集成电路、广播、电视及雷达等方面几乎都需要陶瓷制品。可见高岭土矿产在国民经济和国防建设中所占的重要地位。 资源状况: 目前世界上有60多个国家和地区拥有高岭土资源,美国、英国、巴西、乌克兰、中国是世界最主要的高岭土生产国,其产量占世界总产量的78%。2002年全世界高岭土的探明储量大约在320亿t左右,其中美国以86亿t居第一位,主要是佐治亚州的一条绵延800km矿带,其含矿量超过70%—90%,资源非常丰富。美国是全球最大的高岭土生产国,2002年生产高岭土1 080万t,占全球总产量的25.60%;其中煅烧高岭土240万t,占全球总产量的68%。 世界高岭土储量不小,但大多只适合于制造陶瓷或填料,真正适合用于纸和纸板涂布颜料的天然单片状高岭土资源并不多见。有资料表明,全世界目前造纸涂料用高岭土资源十分紧缺,原最著名的英国ECC公司在英国本土康沃尔郡已基本无矿可采。 近几年来,巴西高岭土的发展势头十分迅猛,其储量据报道为23亿t。储量虽然不是很大,但因矿山集中,含矿量高,矿物天然品质好,享有―21世纪的佐治亚州‖之称,在国际市场上渐有取代英国成为世界第二号强国之势。

高岭土生产工艺标准技术

1.1.1.产品规模 一级高岭土:12万吨/年;二级高岭土:8万吨/年 建筑用砂:5万吨/年;黄铁矿:1万吨/年。 工艺技术方案目前国内高岭土湿法深加工技术比起传统技术有所提高,但在关键技术和关键工艺方面仍然落后国外,特别在自动化程度、成套技术、生产效率和工艺稳定性等方面与欧美、日本还有较大差距。随着石化、造纸、陶瓷、耐火材料等行业的发展,这些行业对高档高岭土的需求在不断地上升,市场不断扩大。高档高岭土行业的发展瓶颈已经显现,需要更加先进的技术、工艺、装备,更加稳定的产品性能、高产能、高效率。 本项目采用自主研发的新技术、新工艺、新装备,淘汰落后的技术、工艺、装备和产能。本项目开发的新型捣浆机用于原料制浆过程中矿物的分散,比原来的制浆时间短,矿物与杂质分离的更完全,有助于后道工序的分选作业。新的分选装备小口径高压旋流器的开发,提高了更细粒级矿物的分级。高档高岭土生产线将采用新的干燥技术比原干燥节约用地70%,干燥效率提高了50%。整条生产线自动化程度提高了,降低了生产和管理成本,同时提高了生产流程的稳定性。项目使用自主开发专利技术 依据流程先后矿浆自流原则,依次布置。原料预处理车间布置在最高处,然后依次为制浆车间、分选车间、超细磨车间、超导磁选车间、压滤车间、干燥车间、轧粒包装车间、中尾矿处理车间。具体详见总平面布置图。

1.1. 2.主流程工艺流程主流程工艺详见附图2“主流程数质量流程图”,进料总量24.22万吨,生产 一级高岭土系列产品10.4万吨,二级高岭土系列产品8万吨,一级品三氧化二铝含量大于35%,铁含量小于0.5%,-2um以下88%,二级品三氧化二铝含量大于30%,铁含量小于0.8%,-2um以下75%。 1.1. 2.1.原料预处理系统运送至原料仓库的原料需要进行破碎至5cm以下。破碎后的原料再通过振动 筛给到皮带输送机,由皮带输送机输送至原料储存料仓。 1.1. 2.2.高浓度制浆系统原料储存料仓中的原料通过板式给料机按一定的给料量加入至捣浆池中,同时 加入水和能使矿浆分散的分散药剂,配制矿浆浓度30%左右,进行高速搅拌打散。 超细磨剥系统浓缩后的精矿矿浆加入混合分散剂,使矿浆完全分散,具有良好的流动性,控制矿浆浓度在45%左右,由变频螺杆泵输送至超细磨剥机进行研磨剥片。 1.1. 2. 3.分选、分级系统高速分散后的矿浆首先进入粗选作业,经过水力旋流器?200、?150,粗选后的 溢流矿浆再进入精选作业,分别经过?75、?25,最后经过超细分级高压旋流器?10。 1.1. 2.4.压滤系统经过分选后的精矿矿浆由柱塞泵输送至大型自动压滤机进行压滤脱水,把浓度为8% 的矿浆压滤成含水30%的半成品。 1.1. 2.5.干燥系统 经过压滤脱水后的半成品送至干燥架进行自然干燥,干燥后成品含水为15%左右。 1.1. 2.6.轧粒、包装系统干燥后的成品运送至轧粒、包装车间,经过破碎机把干燥后的高岭土泥饼破碎 机至3cm~5cm粒径大小的粒状,再经过提升机提升至成品缓冲料仓,然后通过自动卸料方式进入自动包装机进行包装。 1.1. 2.7.中尾矿处理系统经分选系统中粗选作业处理后得到的尾矿以及由?25水利旋流器分选后的尾 矿再经过堆放、风化、解离后加水、分散剂进行二次三次选别,浓缩、压滤、干燥、轧粒包装。 最终产生的粗尾矿再次经过摇床等粗选设备进行粗尾矿的选别作业,分选出石英砂、黄铁矿、高岭土。 1.1. 2.8.选矿废水净化系统主流程和中尾矿系统中压滤机排出的含酸性比较强的废水、浓缩过程中排出 的废水、清洗压滤布产生的废水均排到废水处理系统,通过加入混合药剂,中和掉多余的硫酸根离子等,净化水质,净化后的水进入到循环水池再利用。在制浆过程中需要加入碱性分散剂,而处理后的水偏碱性,这样可以节约大量的药剂。 1.1. 2.9.超细改性系统为开拓占领高端市场,项目设计充分利用公司取得的超细改性工艺技术,建设一 条利用本项目生产的一级高岭土为原料,通过超细改性工艺的2000吨/年的改性高岭土生产线。 1.1. 2.10.破碎系统、原料储存系统原料从公司厂矿或车站码头用自卸车、集装箱货车或农用货车等 运至原料仓库储存。原料棚建在主流程原料棚的北侧山坡上,面积约350m2。根据需要对原料进行

高岭土矿开采设计方案

目录 1.概述 (2) 1.1.矿山位置与交通 (2) 1.2.矿区自然地理、气象条件 (2) 1.3.矿山概况 (2) 2.设计编制依据和编制原则 (6) 2.1.编制依据 (6) 2.2.编制原则 (6) 3.地质资源概况 (8) 3.1.矿床地质特征 (8) 3.2.矿山开采技术条件 (10) 4.开采方案 (11) 4.1.开采境界及储量计算 (11) 4.2.矿山工作制度、生产能力及服务年限 (14) 4.3.矿床开采、开拓方式和采矿方法 (15) 5.精选 (21) 6.总图运输 (23) 6.1.概况 (23) 6.2.总平面布置 (23) 6.3.道路及运输设备 (24) 6.4.绿化 (24) 6.5矿区主要工程量 (24) 7.生产辅助设施 (26) 7.1.供电与通讯 (26) 7.2.给排水及消防 (26) 7.3.机修 (27) 8.安全专篇 (28) 8.1.设计依据 (28) 8.2.工程概况 (28) 8.4.采矿作业安全措施 (29) 8.5.采矿场防排水措施 (30) 8.6防尘与噪声 (30) 8.7.运输安全措施 (31) 8.8.用电设备安全及采场的防雷电 (32) 8.9.泥石流的防治措施 (32) 8.10.矿山防火 (33) 8.11.防高温中暑措施 (33) 9.劳动安全与工业卫生机构 (34)

9.1.建立和健全矿山安全生产管理制度 (34) 9.2.建立和健全应急预案制度 (34) 9.3.建立和健全安全生产岗位责任制 (35) 9.4.建立和健全各工种安全技术操作规程 (35) 9.5.建立和健全安全救护组织措施 (35) 9.6.劳动定员与培训 (36) 9.7.安全专项资金 (37) 10.开采方案简要结论 (38) 10.1.开采矿量、设计规模及服务年限 (38) 10.2.开采方式及开拓运输方案 (38) 10.3.采剥工艺方案 (38) 10.4.粗选工艺 (38) 10.5.综合利用 (38) 10.6.总平面布置 (39) 10.7.技术经济 (39) 10.8.评价与结论 (40) 10.9.综合技术经济指标 (40) 附件: 1、企业营业执照 2、采矿许可证 3、设计委托书 附图: 1、总平面布置图 2、地形地质图、采场现状图 3、开拓终了图、采场防、排水系统图 4、开采终了图 5、A—A′开采终了剖面图 6、采矿工艺示意图

高岭土指标及应用

高岭土指标及应用 高龄土的用途质纯的高岭土具有白度高、质软、易分散悬浮于水中、良好的可塑性和高的粘结性、优良的电绝缘性能;具有良好的抗酸溶性、很低的阳离子交换量、较好的耐火性等理化性质。因此高岭土已成为造纸、陶瓷、橡胶、化工、涂料、医药和国防等几十个行业所必需的矿物原料。有报道称,日本还有将高岭土用于代替钢铁制造切削刀具、车床钻头和内燃机外壳等方面应用。特别是最近几年,现代科学技术飞速发展,使得高岭土的应用领域更加广泛,一些高新技术领域开始大量运用高岭土作为新材料,甚至原子反应堆、航天飞机和宇宙飞船的耐高温瓷器部件,也用高岭土制成。 目前,全球高岭土总产量约为4000万吨(该数据属于简单的国与国产量的相加,其中没有统计原矿的贸易量,包含较多的重复计算),其中精制土约为2350万吨。造纸工业是精制高岭土最大的消费部门,约占高岭土总消费量的60%。据加拿大Temanex咨询公司提供的数据,2000年全球纸和纸板总产量约为31900万吨,全球造纸涂料用高岭土总用量为约1360万吨。 高岭土在造纸工业的应用十分广泛。主要有两个领域,一个是在造纸(或称抄纸)过程中使用的填料,另一个是在表面涂布过程中使用的颜料。对于一般文化纸,填料量占纸重量的10-20%。对于涂布纸和纸板(主要包括轻量涂布纸、铜版纸和涂布纸板),除了需要填料外,还需要颜料,填、颜料用的高岭土所占比重为纸重的20-35%。高岭土应用于造纸,能够给予纸张良好的覆盖性能和良好的涂布光泽性能,还能增加纸张的白度、不透明度,光滑度及印刷适性,极大改善纸张的质量。

高龄土的工艺特性 1.白度和亮度 白度是高岭土工艺性能的主要参数之一,纯度高的高岭土为白色。高岭土白度分自然白度和煅烧后的白度。对陶瓷原料来说,煅烧后的白度更为重要,煅烧白度越高则质量越好。陶瓷工艺规定烘干105℃为自然白度的分级标准,煅烧1300℃为煅烧白度的分级标准。白度可用白度计测定。白度计是测量对3800—7000 ?波长光的反射率的装置。在白度计中,将待测样与标准样(如BaSO4、MgO等)的反射率进行对比,即白度值(如白度90即表示相当于标准样反射率的90%)。 亮度是与白度类似的工艺性质,相当于4570 ?波长光照射下的白度。 高岭土的颜色主要与其所含的金属氧化物或有机质有关。一般含Fe2O3呈玫瑰红、褐黄色;含Fe2+呈淡蓝、淡绿色;含MnO2呈淡褐色;含有机质则呈淡黄、灰、青、黑等色。这些杂质存在,降低了高岭土的自然白度,其中铁、钛矿物还会影响煅烧白度,使瓷器出现色斑或熔疤。 2.粒度分布 粒度分布是指天然高岭土中的颗粒,在给定的连续的不同粒级(以毫米或微米筛孔的网目表示)范围内所占的比例(以百分含量表示)。高岭土的粒度分布特征对矿石的可选性及工艺应用具有重要意义,其颗粒大小,对其可塑性、泥浆粘度、离子交换量、成型性能、干燥性能、烧成性能均有很大影响。高岭土矿都需要进行技术加工处理,是否易于加工到工艺所要求的细度,已成为评价矿石质量的标准之一。各工业部门对不同用途的高岭土都有具体的粒度和细度要求。如美国对

驷马山分洪道膨胀土特性及其滑坡治理

驷马山分洪道膨胀土特性及其滑坡治理 吴彩虹 (安徽省水利水电勘测设计院,安徽蚌埠 233000) 摘要:本文以安徽省滁河驷马山分洪道膨胀土为研究对象,对分洪道不同河段的膨胀土边坡进行取样,开展了膨胀土在不同工况条件下的物理力学试验。通过室内试验和现场监测,获得了膨胀土膨缩变形与土体抗剪强度变化等特征参数。经过对分洪道边坡滑动形成机理和变化规律的调查和分析,提出了膨胀土边坡稳定计算中强度取值的建议和边坡滑动的治理措施,为分洪道扩大工程及其同类工程设计提供了地质依据。 关键词:膨胀土;胀缩变形;边坡稳定;浅层滑动 中图分类号: P64213+ 9;TU443 文献标识码: B Properties of the expansi ve soil along Si m ashan fl ood -diversion channel and the landsli de correction W u Ca i h ong (A nhui Survey and D es i gn Instit u te of W a ter Conservancy &H ydrop o w er,Bengbu 233000,Ch i na) Abstract :The m echan ica l pr operties of t h e expansive so il sa m pled fro m d ifferent slopes along Si m ashan fl o od-diversion channe l of Chu R i v er are studied under differentw orking cond itions .Based on the results o f t h e i n door experi m en ts and the field m on itori n g ,the corresponding para m eters for the s w elli n g and shrinking defor m ation and the shear strength of the so il are obtained.The m echanis m for slope sliding is discussed and t h e correspond i n g m easures to con tro l the landsli d e are a lso suggested ,w hich pr ov i d e the geo l o g ica lbasis for t h e project and o ther si m ilar projects .Key w ords :expansi v e so i;l s w elli n g and shrinking defor m ati o n ;slope stab ility ;sha ll o w sli d i n g 收稿日期: 2009-03-20;修订日期: 2009-07-29 作者简介:吴彩虹(1975-),男(汉族),安徽巢湖人, 大学本科,高级工程师. 1 工程概况 驷马山分洪道是一条跨苏、皖两省的人工开挖河道,位于滁河南岸,上起滁河干流右岸和县的金银浆,向东南穿过驷马山切岭,经石桥镇、乌江镇,至驻马河口汇入长江,河道全长2714km 。分洪道于1969年底开工建设,1971年竣工通水,是当地农业灌溉、滁河分洪和航运的一条重要水道。 分洪道自1974年至2008年间先后发生大的滑坡8次,小的滑坡30多次,上述滑坡并不都发生在边坡较陡的切岭段,有一些是在1B 5或更平缓边坡上出现。2008年汛期滁河发生大洪水,给沿河两岸造成巨大的经济损失,严重威胁了南京市的防洪安全。分洪道右岸扩挖,将分洪道分洪流量由目前的500m 3 /s 扩大到1000m 3 /s 的设计方案已获国家发改委的批准,工程即将进入实施阶段。如何解决膨胀土地区边坡稳定问题成为该工程的重要课题。 2 膨胀土的矿物成分与化学成分 膨胀土是一种含有大量亲水性矿物,湿度变化时有较大体积变化,变形受约束时产生较大内应力的特殊土。为了解本地区膨胀土的矿物成分,我们对这一地区进行分区取样,对试样进行X 射线衍射与电镜扫描试验。 试验结果表明:测区内土样的矿物成分差别不大,主要由碎屑矿物和粘土矿物组成。碎屑矿物中石英占18%~28%,钠长石占8%~10%,钾长石占2%~6%;粘土矿物中蒙脱石占31%~36%,伊利石占18%~28%,高岭土占6%~13%,各类 矿物成分统计情况见图1。 测区土样的主要化学成分是S i O 2、A l 2O 3和

高岭土的高温改性

高岭土的高温改性 1.文献综述 质纯的高岭土具有白度高、质软、易分散悬浮于水中、良好的可塑性和高的粘结性、优良的电绝缘性能;具有良好的抗酸溶性、很低的阳离子交换量、较好的耐火性等理化性质。因此高岭土已成为造纸、陶瓷、橡胶、化工、涂料、医药和国防等几十个行业所必需的矿物原料。高岭土在造纸工业的应用十分广泛。主要有两个领域,一个是在造纸(或称抄纸)过程中使用的填料,另一个是在表面涂布过程中使用的颜料。 原子反应堆、航天飞机和宇宙飞船的耐高温瓷器部件,也用高岭土制成。目前,全球高岭土总产量约为4000万吨(该数据属于简单的国与国产量的相加,其中没有统 计原矿的贸易量,包含较多的重复计算),其中精制土约为2350万吨。造纸工业是精 制高岭土最大的消费部门,约占高岭土总消费量的60%。据加拿大Temanex咨询公司 提供的数据,2000年全球纸和纸板总产量约为31900万吨,全球造纸涂料用高岭土总 用量为约1360万吨。对于一般文化纸,填料量占纸重量的10-20%。对于涂布纸和板( 主要包括轻量涂布纸、铜版纸和涂布纸板),除了需要填料外,还需要颜料,填、颜 料用的高岭土所占比重为纸重的20-35%。高岭土应用于造纸,能够给予纸张良好的覆 盖性能和良好的涂布光泽性能,还能增加纸张的白度、不透明度,光滑度及印刷适性,极大改善纸张的质量。 高岭土与水结合形成的泥料,在外力作用下能够变形,外力除去后,仍能保持这 种形变的性质即为可塑性。可塑性是高岭土在陶瓷坯体中成型工艺的基础,也是主要 的工艺技术指标。通常用可塑性指数和可塑性指标来表示可塑性的大小。可塑性指数 是指高岭土泥料的液限含水率减去塑限含水率,以百分数表示,即W塑性指数=100(W 液性限度-W塑性限度)。可塑性指标代表高岭土泥料的成型性能,用可塑仪直接测定 泥球受压破碎时的荷重及变形大小可得,以kg·cm表示,往往可塑性指标越高,其 成型性能越好。高岭土的可塑性可分为四级。 可塑性强度可塑性指数可塑性指标 强可塑性>153.6 中可塑性7—152.5—3.6 弱可塑性1—7<2.5 非可塑性<1 结合性指高岭土与非塑性原料相结合形成可塑性泥团并具有一定干燥强度的性

高岭土的矿山开采方法

高岭土的矿山开采方法 中国所产高岭土70%~80%用于陶瓷及耐火材料,大部分直接利用原矿,低档的作耐火材料。江苏苏州高岭土矿为软质高岭土,品位高,可直接在工业上利用,其手选1号泥比手选4号泥价格高10多倍,因此开采时要求保护优质土,保护原矿的纯度并使其不变成碎屑状,过去多在回采工作面进行人工选别回采,现在开采规模大了,但为与手选厂的衔接,仍然要注意选别回采。高岭土的原矿价格相差较大,例如:苏州中国高岭土原矿价为230元/t,福建龙岩高岭土公司原矿价为90元/t,吴县青山白泥矿原矿价为203.5元/t,原矿售价影响采矿方法和开采工艺的选择。广东茂名高岭土为砂性高岭土,水采水运,主要生产造纸涂料级高岭土,不存在原矿出售问题,其低档产品作陶瓷用、填料用。近年来煅烧高岭土在国内外市场很受欢迎,国内一般是煤系硬质高岭岩(土)经深加工处理而得,硬质高岭岩(土)由于是和煤共伴生,其开采是按煤的开采情况及其本身的赋存情况来定,现由煤炭部综合利用部门管理,国内尚未单独开采,以下将不述及。 (一)开采方法和开采规模的划分 高岭土矿的开采方法有露天开采和地下开采。风化残积型高岭土矿多露天开采,如茂名的砂性高岭土。其他热液蚀变型和沉积型矿床浅部用露天开采,深部用地下开采。 采用露天开采的矿点多,但多数是中小型矿山,大型的有福建龙岩高岭土公司、广东茂名高岭土公司、广东茂名南方高岭土公司。原苏州中国高岭土公司所属阳西矿区、阳东矿区都曾用过露天开采。地下开采规模较大的有:江苏苏州阳西竖井、观山

竖井、阳东的白善岭矿和吴县青山白泥矿等。 开采规模的划分,采用二种办法:一是按矿石量计;二是按精矿量计。 (二)开拓运输 高岭土矿露天开采的开拓运输用得较多的有3种:一为铁路窄轨开拓,用7t,或10t,或14t电机车牵引1m3矿车。原苏州中国高岭土公司所属阳东、阳西的露天开采都曾用过。二是配合水枪开采用砂泵进行水力输送,将矿浆从设于矿块中的集浆池用砂泵输送至精选厂,如广东茂名高岭土公司和广东茂名南方高岭土公司。三是公路开拓汽车运输,如福建龙岩高岭土矿,是风化残积型高岭土矿砂性高岭土,但由于水资源不丰富,因此仍用一般露天开采方法公路开拓,用17t自卸汽车将矿石由回采工作面运至选矿厂。又如广东潮州飞天燕瓷土矿也是用公路开拓汽车运输。 地下开采的开拓运输按主要开拓巷道的类型来划分:一是竖井开拓,如苏州中国高岭土公司所属阳西竖井是采用下盘竖井,正在建设中的观山矿是采用上盘竖井;吴县青山白泥矿的深部开采是采用下盘竖井。二是斜井开拓如苏州中国高岭土公司原阳西主斜井工程采用底盘斜井开拓;吴县青山白泥矿的浅部开采也用底盘斜井。三是联合开拓,如苏州中国高岭土公司所属阳东白善领矿采用平硐-盲斜井联合开拓。 地下开采主运输巷道通常设于底板内,离矿体20~40m,矿体边部设通风斜井,形成对角式通风系统,阶段高度一般为25~40m。 地下开采的井巷工程高岭土矿山有很大的特殊性,矿石坚固性系数f=1~2,软松易碎,具有可塑性,自然状态时塑性指数较大,遇水后有吸水性和膨胀性,同时还具有隔水性,是典型的塑性介质,属塑性体。地下开采活动基本上是在塑性区和似塑性区范围内进行。矿体中巷道开掘后的地压特征。

高岭土和膨胀土特性

高岭土与膨胀土特性 一、高岭土: 质纯的高岭土具有白度高、质软、易分散悬浮于水中、良好的可塑性和高的粘结性、优良的电绝缘性能;具有良好的抗酸溶性、很低的阳离子交换量、较好的耐火性等理化性质。因此高岭土已成为造纸、陶瓷、橡胶、化工、涂料、医药和国防等几十个行业所必需的矿物原料。高岭土在造纸工业的应用十分广泛。主要有两个领域,一个是在造纸(或称抄纸)过程中使用的填料,另一个是在表面涂布过程中使用的颜料。 1. 化学式 Al2O3-2SiO2-2H2O 2.粒度分布 粒度分布是指天然高岭土中的颗粒,在给定的连续的不同粒级(以毫米或微米筛孔的网目表示)范围内所占的比例(以百分含量表示)。高岭土的粒度分布特征对矿石的可选性及工艺应用具有重要意义,其颗粒大小,对其可塑性、泥浆粘度、离子交换量、成型性能、干燥性能、烧成性能均有很大影响。高岭土矿都需要进行技术加工处理,是否易于加工到工艺所要求的细度,已成为评价矿石质量的标准之一。各工业部门对不同用途的高岭土都有具体的粒度和细度要求。如美国对用作涂料的高岭土要求小于2μm的含量占90—95%,造纸填料小于2μm的占78—80%。 3.可塑性 高岭土与水结合形成的泥料,在外力作用下能够变形,外力除去后,仍能保持这种形变的性质即为可塑性。可塑性是高岭土在陶瓷坯体中成型工艺的基础,也是主要的工艺技术指标。通常用可塑性指数和可塑性指标来表示可塑性的大小。可塑性指数是指高岭土泥料的液限含水率减去塑限含水率,以百分数表示,即W塑性指数=100(W液性限度-W塑性限度)。可塑性指标代表高岭土泥料的成型性能,用可塑仪直接测定泥球受压破碎时的荷重及变形大小可得,以kg·cm表示,往往可塑性指标越高,其成型性能越好。高岭土的可塑性可分为四级。 可塑性强度可塑性指数可塑性指标 强可塑性>153.6 中可塑性7—152.5—3.6 弱可塑性1—7<2.5 非可塑性<1 4.结合性 结合性指高岭土与非塑性原料相结合形成可塑性泥团并具有一定干燥强度的性能。结合能力的测定,是在高岭土中加入标准石英砂(其质量组成0.25—0.15粒级占70%,0.15—0.09mm粒级占30%)。以其仍能保持可塑泥团时的最高含砂量及干燥后的抗折强度来判断其高低,掺入的砂越多,则说明这种高岭土结合能力就越强。通常凡可塑性强的高岭土结合能力也强。 5.粘性和触变性 粘性是指流体内部由于内摩擦作用而阻碍其相对流动的一种特征,以粘度来表示其大小(作用于1单位面积的内摩擦力),单位是Pa·s。粘度的测定,一般采用旋转粘度计,以在含70%固含量的高岭土泥浆中的转速来衡量。在生产工艺中,粘度具有重要意义,它不仅是陶瓷工业的重要参数,对造纸工业影响也很大。据资料表明,国外用高岭土作涂料,在低速涂布时要求粘度约0.5Pa·s,高速涂布时要求小于1.5Pa·s。

高岭土基本常识

书山有路勤为径,学海无涯苦作舟 高岭土基本常识 于中国江西景德镇高岭村产的一种可以制瓷的白色粘土而得名。高岭土矿是高岭石亚族粘土矿物达到可利用含量的粘土或粘土岩。高岭土因具有许多优良的工艺性能,广泛用于造纸、陶瓷、涂料、橡胶、塑料、耐火材料、化工、农药、医药、纺织、石油、建材及国防等部门。随着工业技术的发展和科技水平的提高,陶瓷制品的种类愈来愈多,它不仅与人们日常生活密切相关,而且在国防尖端技术方面的应用也很广泛,如电气、原子能、喷气式飞机、火箭、人造卫星、半导体、微波技术、集成电路、广播、电视及雷达等方面几乎都需要陶瓷制品。可见高岭土矿产在国民经济和国防建设中所占的重要地位。资源状况: 目前世界上有60 多个国家和地区拥有高岭土资源,美国、英国、巴西、乌 克兰、中国是世界最主要的高岭土生产国,其产量占世界总产量的78%。2002 年全世界高岭土的探明储量大约在320 亿t 左右,其中美国以86 亿t 居第一位,主要是佐治亚州的一条绵延800km 矿带,其含矿量超过70%90%,资源非常丰富。美国是全球最大的高岭土生产国,2002 年生产高岭土1 080 万t,占全球总产量的25.60%;其中煅烧高岭土240 万t,占全球总产量的68%。 近几年来,巴西高岭土的发展势头十分迅猛,其储量据报道为23 亿t。储量虽然不是很大,但因矿山集中,含矿量高,矿物天然品质好,享有21 世纪的 佐治亚州之称,在国际市场上渐有取代英国成为世界第二号强国之势。 世界高岭土储量不小,但大多只适合于制造陶瓷或填料,真正适合用于纸和 纸板涂布颜料的天然单片状高岭土资源并不多见。有资料表明,全世界目前造纸涂料用高岭土资源十分紧缺,原最著名的英国ECC 公司在英国本土康沃尔 郡已基本无矿可采。

高岭土选矿技术

高岭土选矿技术,高岭土除铁技术,高岭土除铁设备,高岭土除铁工艺 高岭土是一族粘土矿物的总称,其基本组成为高岭石组和多水高岭石组,主要由高岭石、埃洛石组成,含量可达90%以上,其次还有水云母,常混有黄铁矿、褐铁矿、锐钛矿、石英、玉髓、明矾等,有时还有少量的有机质。高岭土具有可塑性、粘结性、烧结性及耐火性等优良的工艺特性,所以被广泛应用于陶瓷、造纸、橡胶、塑料和耐火材料等工业。高岭土矿床的成因类型主要有三类:风化型、沉积型和热液蚀变型。 高岭土原矿的加工工艺取决于原矿的性质及产品的最终用途。在工业生产中应用的工艺有两种:干法工艺和湿法工艺,通常硬质高岭土采用干法生产,软质高岭土采用湿法生产。 2 干法选矿工艺 干法工艺是一种简单经济的加工工艺。采出的原矿经过锤式破碎机碎至25.4mm后,给入笼式破碎机,使粒度减小到6.35mm,笼式破碎机内的热空气将高岭土的水分由采出的20%降至10%左右。碎后的矿石则经配有离心分离机和旋风除尘器的吹气式雷蒙磨进一步磨细[2]。该工艺可将大部分砂石除去,产品通常用于橡胶、塑料及造纸工业的低价填料。用于造纸工业时,该产品可作为填料层灰分含量小于10%或12%处的填料,此时产品的亮度要求不高。 当干法对产品的白度等要求较高时,必须对雷蒙磨产出的产品进行干式除铁。干法工艺的优点是可省掉产品脱水和干操过程,减少灰粉流失,工艺流程短,生产成本低,适宜于干旱和缺水地区。但要得到高纯优质高岭土还得靠湿法工艺。 3 湿法选矿工艺 湿法工艺包括矿石准备、选矿加工和产品处理三个阶段。准备阶段包括配料、破碎和捣浆等作业。捣浆是将高岭土原矿与水、分散剂混合在捣浆机内制浆,捣浆作业可使原矿分散,为选别作业制备适当细度的高岭土矿浆,并同时去掉大粒的砂石。选矿阶段可能包括水力分级、浮选、选择性絮凝、磁选、化学处理(漂白)等作业,以除去不同的杂质。准备好的矿浆先经耙式洗箱、浮槽分级机或旋流器除砂,然后用连续式离心机、水力旋流器、水力分选器或振动细筛(325目)将其分为粗细两个粒级。分级机的细粒级送入HGMS(高梯度磁选机)除去铁钛杂质,产品经搅拌擦洗剥离后进行氧化铁浸出,对亮度已足够高并具有良好涂层性能的粘土可不经磁选和剥离而直接送至浸出作业。浸出后,在矿浆中添加明矾使粘土矿物凝聚而便于脱水。漂白的粘土用高速离心机,旋转式真空过滤机或压滤机脱水。过滤机或压滤机脱水。滤饼经再分散成55%~65%固体的矿浆,然后喷雾干燥制成松散的干品。部分干品被混入到分散的矿浆中制成70%固体,用船运至造纸厂。

膨胀土路基施工有关研究

《铁道工程学报》2004年04期 浅谈膨胀土路基施工 孙继伟,王军 膨胀土具有吸水膨胀软化,失水收缩开裂及反复变化的特点,易形成路基病害。路堤在降雨后沉降、变形较大和边坡坍肩、路肩开裂以及造成发生路堑堑坡冲蚀、剥蚀、溜坍及滑坡等现象。结合西安~南京铁路施工实践,本文从确定施工 参数入手,着重阐述了控制膨胀土路基病害的施工方法。 【作者单位】:华铁工程咨询公司北京100037 (孙继伟);华铁工程咨询公司北京100037(王军) 【关键词】:膨胀土;施工参数;控制病害;施工方法 【分类号】:U213.1 隧道建设>> 2006年26卷2期>> 摘要 膨胀土路基施工技术 堤(堑),膨胀土浸水路堤、水塘路堤(堑)、软土路堤等。主要介绍该标段膨胀土水塘路堤、 软土路堤基底处理技术和膨胀土路堤(堑)的施工及边坡、基床防护技术。(共4页) 膨胀土路基施工工艺 王佃军 膨胀土是一种除具有一般粘性土所共有的物理、化学性质外,主要是由亲水性粘土矿物成份 —蒙脱石、伊利石和高岭土所组成,同时具有吸水显著膨胀软化和失水收缩硬裂的变形特征。 根据膨胀土的物理、化学特性,膨胀土分强膨胀土、中等膨胀土和弱膨胀土三类。 类别工程地质特征粘土矿物成分粘粒含量% 液限WL% 塑限WP% 自由膨胀率% 胀缩 总率% 强膨胀土灰白色,灰绿色,粘土细腻、滑感特强,网状裂隙发育,有蜡面,易风化,呈细

状。蒙脱石为主>50 >48 >25 >90 >4 中等膨胀土以棕、红、灰色为主,粘土中含少量粉砂,滑感较强,裂隙较发育,易风化,呈碎粒状,含钙质结核。蒙脱石伊利石35-50 40-48 18-25 65-90 2-4 弱膨胀土黄褐色为主,粘土中含较多粉砂,有滑感,裂隙发育,易风化,呈碎粒状,含较多钙质或铁锰结核伊利石 高岭石 蒙脱石<35 <40 <8 40-65 0.7-2.0 很显然,强膨胀土的土质特性最差,中等膨胀土次之,弱膨胀土较好一点。 我国是一个强膨胀土区域分布较广的一个国家,随着我国国民经济的高速发展,我国的公路建设进入了以高速公路为标志的快速发展阶段,为减少资源的浪费和人为地破坏生态环境,在我国高速公路的施工建设中根据施工环境采用就地取土的原则。根据膨胀土的特性及高速公路建设的需要,强膨胀土不能够作为路基填料,中、弱膨胀土必须经改性后方可作为路基填料使用,现结合本工程路基中、弱膨胀土改性施工工艺以供探讨和商榷。 一、原材料要求 石灰:必须具有三级及三级以上要求,并做好每批次的等级抽查工作及施工现场堆放工作。土料:在取土坑应清除表层有机土层,对有机质含量超过5%的土和强膨胀土不能作为路基填料。 二、施工工艺 1、根据膨胀土的本身特性,在进行膨胀土路基施工时应尽可能地避开雨季施工,对因工期要求不可能避免时必须采取有效措施。 2、根据地形特点做好路基施工前的清表,碾压和原地翻松处理工作,挖排截水沟,增大路基表面横坡。 3、根据土场料源做好取土坑击实,试验绘制石灰剂量标准曲线,因料源不同土的最佳含水量和最大干密度存在较大差异。不同的取土坑对应不同的击实标准。因膨胀土的特殊性宁淮高速公路施工时结合现场碾压情况,在膨胀土改性路基施工中在90区、93区采用“干法”标

高岭土对钙离子的吸附特性研究

高岭土对钙离子的吸附特性研究 宋玲玲,冯 莉,苟远诚,阮继政 (中国矿业大学化工学院,江苏徐州 221008) 摘 要:采用静态吸附的方法考查了吸附时间、温度、Ca2+浓度、吸附剂浓度和振荡强度等因素对高岭土吸附Ca2+的影响,研究了Ca2+在粘土颗粒表面的吸附特性。研究表明:高岭土对的Ca2+吸附过程分2个阶段,快速吸附和缓慢吸附,并且随温度的升高吸附平衡时间缩短;该吸附过程的最适温度在20 ℃左右;随吸附剂浓度升高,平衡吸附量减小,直至达到平衡;实验范围内,随振荡速度增大,平衡吸附量增加。 关键词:高岭土;钙离子;吸附 中图分类号:X703文献标识码:A 文章编号:1673-7180(2009)12-0864-4 Adsorption prorerties of Ca2+ kaolin Song Lingling,Feng li,Gou Yuancheng,Ruan Jizheng (School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China) Abstract: The adsorption properties of calcium ions on kaolin under the influences of adsorption time, temperature, calcium ions concentration, adsorbent concentration, and surging intensity were studied by static experiments. The result indicates that the adsorption process was departed into two stages , rapid and slow adsorptions, and the adsorption equilibrium time was shortened with the temperature rising; the optimum temperature of this process was around 20 ℃;the adsorption equilibrium capacity was reduced with the concentration of adsorbent rising, until up to an equilibrium; in the experimental context, the adsorption equilibrium capacity increases with the Rotate-speed rising. Key words: kaolin;calcium ions;adsorption 0引 言 高岭土等粘土矿物是造成煤泥水难沉降的主要原因,而添加混凝剂是最常用的煤泥水处理方法[1],以无机钙盐类为主[2]。因此,粘土跟Ca2+的吸附过程的相关研究对煤泥水处理的实际生产具有一定的指导意义。各种吸附剂对不同重金属离子的吸附过程的研究已有不少报道[3-6],但是粘土对钙离子的吸附研究不多。本文研究了吸附时间、吸附剂的浓度、混凝剂的浓度、温度、振动强度等因素对粘土矿物吸附钙离子过程的影响,该研究未见报道。 1原料和方法 1.1药品和仪器 基金项目:创新研究群体科学基金(50921002);教育部重大项目(308011);创新学者攀登计划(BK2008006);江苏省青蓝工程作者简介:宋玲玲(1984-),女,硕士研究生 通信联系人:冯莉,教授,cumthgfl@https://www.360docs.net/doc/349969308.html,

高岭土的工艺特性及主要用途

高岭土的工艺特性及主要用途 (一)、工艺特性 1.白度和亮度 白度是高岭土工艺性能的主要参数之一,纯度高的高岭土为白色。高岭土白度分自然白度和煅烧后的白度。对陶瓷原料来说,煅烧后的白度更为重要,煅烧白度越高则质量越好。陶瓷工艺规定烘干105℃为自然白度的分级标准,煅烧1300℃为煅烧白度的分级标准。白度可用白度计测定。白度计是测量对3800— 7000 ?波长光的反射率的装置。在白度计中,将待测样与标准样(如BaSO4、MgO等)的反射率进行对比,即白度值(如白度90即表示相当于标准样反射率的 90%)。 亮度是与白度类似的工艺性质,相当于4570 ?波长光照射下的白度。 高岭土的颜色主要与其所含的金属氧化物或有机质有关。一般含 Fe2O3呈玫瑰红、褐黄色;含Fe2+呈淡蓝、淡绿色;含MnO2呈淡褐色;含有机质则呈淡黄、灰、青、黑等色。这些杂质存在,降低了高岭土的自然白度,其中铁、钛矿物还会影响煅烧白度,使瓷器出现色斑或熔疤。 2.粒度分布 粒度分布是指天然高岭土中的颗粒,在给定的连续的不同粒级(以毫米或微米筛孔的网目表示)范围内所占的比例(以百分含量表示)。高岭土的粒度分布特征对矿石的可选性及工艺应用具有重要意义,其颗粒大小,对其可塑性、泥浆粘度、离子交换量、成型性能、干燥性能、烧成性能均有很大影响。高岭土矿都需要进行技术加工处理,是否易于加工到工艺所要求的细度,已成为评价矿石质量的标准之一。各工业部门对不同用途的高岭土都有具体的粒度和细

度要求。如美国对用作涂料的高岭土要求小于2μm的含量占90—95%,造纸填料小于2μm的占78—80%。 3.可塑性 高岭土与水结合形成的泥料,在外力作用下能够变形,外力除去后,仍能保持这种形变的性质即为可塑性。可塑性是高岭土在陶瓷坯体中成型工艺的基础,也是主要的工艺技术指标。通常用可塑性指数和可塑性指标来表示可塑性的大小。可塑性指数是指高岭土泥料的液限含水率减去塑限含水率,以百分数表示,即W塑性指数= 100(W液性限度-W塑性限度)。可塑性指标代表高岭土泥料的成型性能,用可塑仪直接测定泥球受压破碎时的荷重及变形大小可得,以kg·cm表示,往往可塑性指标越高,其成型性能越好。高岭土的可塑性可分为四级,见表7。 表7 高岭土可塑性等级 可塑性强度可塑性指数可塑性指标 强可塑性>153.6 中可塑性7—152.5—3.6 弱可塑性1—7<2.5 非可塑性<1 4.结合性 结合性指高岭土与非塑性原料相结合形成可塑性泥团并具有一定干燥强度的性能。结合能力的测定,是在高岭土中加入标准石英砂(其质量组成0.25—0.15 粒级占70%,0.15—0.09mm粒级占30%)。以其仍能保持可塑泥团时的最高含砂量及干燥后的抗折强度来判断其高低,掺入的砂越多,则说明这

古瓷器烧造工艺特点名词解释

古瓷器烧造工艺特点名词解释 三足支钉 解释 垫具的一种。使用时三足向下,托面朝上,以便上面放碗、盘等坯件。这种窑具由于自重小,可以多层叠装;但由于重量往往集中在三足尖上,会使足陷件的底部,留下深深的支钉痕。这种垫具三国时比较流行。 三角形窑具 解释 南朝时的一种窑具,用扁平形的泥条,中间作“Y”岔开;前端再转折成直角,作为支点。轻巧、省料,但由于负重力小,坯件装烧不多。 不(音敦)子 解释 用瓷石料制瓷,必须将开采来的瓷石用水碓舂细成粉末,再经过淘洗沉淀后,制成砖状的泥块,称之为“石子”或“白不子”。是瓷石制成砖状后的专用名词,中外陶瓷文献上一致的称谓。 支圈 解释 支圈窑具始创于宋代定窑,其白度为漏斗形匣钵的五分之一。用支圈窑具烧一窑瓷,无论是燃料、时间、产量要比使用漏斗形匣钵增加五倍。为其它瓷窑所仿效。 支钉迭烧 解释 用高岭土捏成“支钉”,粘于碗盘的圈足边沿,每件9~12颗,然后把瓷坯放在垫柱上,再把粘有支钉的坯件一个个迭起来,组成一柱入窑焙烧,这种方法称支钉迭烧。 支圈迭烧 解释 宋代的一种烧造方法。其方法是以泥饼为底,再把瓷泥作成一个断面呈“L”形的圈,套在碗的芒口上;再把碗坯与圈翻过来,覆放在泥饼上。这样一圈一碗的跟着覆盖,然而将圆心下凹的耐火泥饼覆盖在最后一圈上,形成上下一致的圆柱体,迭装入窑,这种方法叫支圈迭烧。

解释 是陶瓷生产中一种熔剂性原料。在成瓷过程中,长石溶融所形成的乳白色粘稠玻璃体。它在冷却后不再析晶,并能在高温下溶解一部分高岭土分解物与石英颗粒,促进成瓷反应的进行,并可降低烧成温度,减少燃料消耗,这种作用通称为助熔作用。此外,由于高温下的长石溶剂具有较大的粘度,可以起到高温热塑作用与高温胶合作用,防止高温变形。同时,冷却后的长石熔体以透明玻璃体状态存在于瓷体中,构成瓷的玻璃态基质增加透明度,提高光泽与透光度,改善瓷的外观质量与使用效能。长石在陶瓷生产中作坯料、釉料、色料熔剂等,用量很大,作用也很重要。 化妆土 解释 是一种质地细腻,呈乳白色,用于敷在胎外,以填充胎坯表面的小孔,凹点或其它病疵,使胎面变得光滑;同时能将胎的各种呈色盖住,为坯料开辟广阔的来源。瓷器上使用化妆土始于西晋。 升焰窑 解释 瓷窑的一种。这种窑温度可达1200 ℃,硬陶就是在这种窑里烧成的。因为没有烟囱,基本上还是烧氧化气氛;偶而也能烧还原气氛,原始青瓷就是在这种情况下烧成。升焰式窑炉有圆形的,椭圆形和方形的。升焰窑虽然没有烟囱,但由于窑内火焰较高,比重小而上浮,因而能把外界冷而重的空气吸进来,使火焰自然向上,这就是所谓“升焰”。 火照 解释 又称“试片”。是用来测量窑内温度的。宋代的火照是利用碗坯改做的,上平下尖,呈“”形,尖端插入盛满砂粒的匣钵内,匣钴置于窑瞠正中,在观火孔内可以看到。当窑工需要测定窑内温度时,只要将长钩伸入观火孔,将火照从匣钵内钩出。每烧一窑要验火照数次,每次钩出一个火照。火照都上半施釉,只能使用一次。 石臼 解释 粉碎瓷土时使用的工具。瓷土粉碎首先在石臼内捣细。石臼一般为圆形或长方形,中间为一圆坑。

高岭土

高岭土 1.白度和亮度 白度是高岭土工艺性能的主要参数之一,纯度高的高岭土为白色。高岭土白度分自然白度和煅烧后的白度。对陶瓷原料来说,煅烧后的白度更为重要,煅烧白度越高则质量越好。陶瓷工艺规定烘干105℃为自然白度的分级标准,煅烧1300℃为煅烧白度的分级标准。白度可用白度计测定。白度计是测量对3800—7000Å(即埃,1埃=0.1纳米)波长光的反射率的装置。在白度计中,将待测样与标准样(如BaSO4、MgO等)的反射率进行对比,即白度值(如白度90即表示相当于标准样反射率的90%)。 亮度是与白度类似的工艺性质,相当于4570Å(埃)波长光照射下的白度。 高岭土的颜色主要与其所含的金属氧化物或有机质有关。一般含Fe2O3呈玫瑰红、褐黄色;含Fe2+呈淡蓝、淡绿色;含MnO2呈淡褐色;含有机质则呈淡黄、灰、青、黑等色。这些杂质存在,降低了高岭土的自然白度,其中铁、钛矿物还会影响煅烧白度,使瓷器出现色斑或熔疤。 2.粒度分布 粒度分布是指天然高岭土中的颗粒,在给定的连续的不同粒级(以毫米或微米筛孔的网目表示)范围内所占的比例(以百分含量表示)。高岭土的粒度分布特征对矿石的可选性及工艺应用具有重要意义,其颗粒大小,对其可塑性、泥浆粘度、离子交换量、成型性能、干燥性能、烧成性能均有很大影响。高岭土矿都需要进行技术加工处理,是否易于加工到工艺所要求的细度,已成为评价矿石质量的标准之一。各工业部门对不同用途的高岭土都有具体的粒度和细度要求。如美国对用作涂料的高岭土要求小于2μm的含量占90—95%,造纸填料小于2μm的占78—80%。 3.可塑性 高岭土与水结合形成的泥料,在外力作用下能够变形,外力除去后,仍能保持这种形变的性质即为可塑性。可塑性是高岭土在陶瓷坯体中成型工艺的基础,也是主要的工艺技术指标。通常用可塑性指数和可塑性指标来表示可塑性的大小。可塑性指数是指高岭土泥料的液限含水率减去塑限含水率,以百分数表示,即W塑性指数=100(W液性限度-W塑性限度)。可塑性指标代表高岭土泥料的成型性能,用可塑仪直接测定泥球受压破碎时的荷重及变形大小可得,以kg·cm表示,往往可塑性指标越高,其成型性能越好。高岭土的可塑性可分为四级。 可塑性强度可塑性指数可塑性指标 强可塑性>153.6 中可塑性7—152.5—3.6 弱可塑性1—7<2.5 非可塑性<1 4. 化学式 Al2O3-2SiO2-2H2O

相关文档
最新文档