电力电子专业技术课程设计任务大全
电力电子类课程设计
电力电子类课程设计一、课程目标知识目标:1. 理解电力电子器件的基本原理,掌握各类电力电子器件的构造、工作原理及应用场合。
2. 掌握电力电子变换器的基本电路拓扑,了解其功能、性能及在实际应用中的优缺点。
3. 学会分析电力电子电路的静态和动态特性,能够对简单电路进行设计和计算。
技能目标:1. 培养学生运用所学知识分析和解决实际电力电子问题的能力。
2. 提高学生动手实践能力,能够正确搭建和调试基本的电力电子实验电路。
3. 培养学生团队协作能力和沟通表达能力,能够就电力电子技术问题进行有效讨论。
情感态度价值观目标:1. 激发学生对电力电子技术领域的兴趣,培养其探索精神和创新意识。
2. 培养学生严谨、认真、负责的学习态度,使其养成良好的学习习惯。
3. 增强学生的环保意识,认识到电力电子技术在节能减排方面的重要作用,培养其社会责任感。
课程性质:本课程为电力电子类课程的实践性教学环节,旨在培养学生的实际操作能力和创新能力。
学生特点:学生已具备一定的电力电子基础知识,对实际应用有较高的兴趣,动手实践能力较强。
教学要求:结合课本内容,注重理论与实践相结合,强调学生的主体地位,充分调动学生的积极性,提高其分析和解决问题的能力。
将课程目标分解为具体的学习成果,便于后续教学设计和评估。
二、教学内容1. 电力电子器件:包括二极管、晶体管、晶闸管、场效应晶体管等基本器件的原理、特性及应用。
2. 电力电子变换器:介绍升压、降压、逆变、斩波等基本变换器的工作原理、电路拓扑及控制方法。
3. 电力电子电路分析与设计:学习静态和动态分析方法,对简单电力电子电路进行设计和计算。
4. 电力电子技术应用:分析电力电子技术在电力系统、新能源、电力传动等领域的应用实例。
教学大纲安排如下:第一周:电力电子器件原理与特性第二周:电力电子器件的应用及选型第三周:电力电子变换器的工作原理及电路拓扑第四周:电力电子变换器的控制方法第五周:电力电子电路的静态分析第六周:电力电子电路的动态分析第七周:电力电子电路设计与计算第八周:电力电子技术应用及发展趋势教学内容与课本关联性:参照教材《电力电子技术》相关章节,结合课程目标,对教学内容进行选择和组织,确保科学性和系统性。
电力电子课程设计任务书
《电力电子技术》课程设计任务书一、课程设计的性质和目的性质:是电气信息专业的必修实践性环节。
目的:1、培养学生综合运用知识解决问题的能力与实际动手能力;2、加深理解《电力电子技术》课程的基本理论;3、初步掌握电力电子电路的设计方法。
二、课程设计的题目(一)10KW直流电动机不可逆调速系统技术数据:直流电动机:型号:Z3—71 额定功率P N=10KW额定电压U N=220V 额定电流I N =55A转速n N =1000r/min 极数2P=4电枢电阻R N =0.5Ω 电枢电感L D =7mH励磁电压U L=220V 励磁电流I L=1.6A要求:调速范围D=10(二)单相双半波晶闸管整流电路的设计(纯电阻负载)设计条件:1、电源电压:交流100V/50Hz2、输出功率:500W3、移相范围0º~180º(三)单相双半波晶闸管整流电路的设计(阻感负载)设计条件:1、电源电压:交流100V/50Hz2、输出功率:500W3、移相范围0º~90º(四)单相双半波晶闸管整流电路的设计(反电势、电阻负载)设计条件:1、电源电压:交流100V/50Hz2、输出功率:500KW3、移相范围30º~150º4、反电势:E=70V(五)单相全控桥式晶闸管整流电路的设计(纯电阻负载)设计条件:1、电源电压:交流100V/50Hz2、输出功率:500W3、移相范围0º~180º(六)单相全控桥式晶闸管整流电路的设计(阻感负载)设计条件:1、电源电压:交流100V/50Hz2、输出功率:500W3、移相范围0º~90º(七)单相全控桥式晶闸管整流电路的设计(反电势、电阻负载)设计条件:1、电源电压:交流100V/50Hz2、输出功率:500KW3、移相范围30º~150º4、反电势:E=70V(八)单相半控桥式晶闸管整流电路的设计(阻感负载)设计条件:1、电源电压:交流100V/50Hz2、输出功率:500W3、移相范围0º~180º(九)单相半控桥式晶闸管整流电路的设计(反电势、电阻负载)设计条件:1、电源电压:交流100V/50Hz2、输出功率:500KW3、移相范围30º~150º4、反电势:E=70V(十)单相半控桥式晶闸管整流电路的设计(带续流二极管)(阻感负载)设计条件:1、电源电压:交流100V/50Hz2、输出功率:500W3、移相范围0º~180º(十一)单相半控桥式晶闸管整流电路的设计(带续流二极管)(反电势、电阻负载)设计条件:1、电源电压:交流100V/50Hz2、输出功率:500KW3、移相范围30º~150º4、反电势:E=70V(十二)MOSFET降压斩波电路设计(纯电阻负载)设计条件:1、输入直流电压:Ud=100V2、输出功率:300W3、开关频率5KHz4、占空比10%~90%5、输出电压脉率:小于10%(十三)IGBT降压斩波电路设计(纯电阻负载)设计条件:1、输入直流电压:Ud=100V2、输出功率:300W3、开关频率5KHz4、占空比10%~90%5、输出电压脉率:小于10%(十四)MOSFET升压斩波电路设计(纯电阻负载)设计条件:1、输入直流电压:Ud=50V2、输出功率:300W3、开关频率5KHz4、占空比10%~50%5、输出电压脉率:小于10%(十五)IGBT升压斩波电路设计(纯电阻负载)设计条件:1、输入直流电压:Ud=50V2、输出功率:300W3、开关频率5KHz4、占空比10%~50%5、输出电压脉率:小于10%(十六)MOSFET单相桥式无源逆变电路设计(纯电阻负载)设计条件:1、输入直流电压:Ud=100V2、输出功率:300W3、输出电压波形:1KHz方波(十七)IGBT单相桥式无源逆变电路设计(纯电阻负载)设计条件:1、输入直流电压:Ud=100V2、输出功率:300W3、输出电压波形:1KHz方波(十八)MOSFET单相半桥无源逆变电路设计(纯电阻负载)设计条件:1、输入直流电压:Ud=100V2、输出功率:300W3、输出电压波形:1KHz方波(十九)IGBT单相半桥无源逆变电路设计(纯电阻负载)设计条件:1、输入直流电压:Ud=100V2、输出功率:300W3、输出电压波形:1KHz方波(二十)单相交流调压电路(反并联)设计(纯电阻负载)设计条件:1、电源电压:交流100V/50Hz2、输出功率:500W3、移相范围0º~180º(二十一)单相交流调压电路(混合反并联)设计(纯电阻负载)设计条件:1、电源电压:交流100V/50Hz2、输出功率:500W3、移相范围0º~180º(二十二)单相桥式晶闸管有源逆变电路设计(反电势阻感负载)设计条件:1、电源电压:交流50V/50Hz2、逆变功率:200W3、反电势:E=70V4、逆变角:β=35º(二十三)UPS电源设计三相380V交流市电转换为恒压恒频的三相380V交流电,为重要负荷供电。
电力电子技术课程设计完整
课程设计名称:.... 电力电子技术题目:专业:自动化班级:自动化12-2班姓名:王军学号:1205010219精品文本课程设计任务书间:2014年12月30日辽宁工程技术大学课程设计成绩评定表第一章主要技术数据和可控整流电路的选择1.1主要技术数据输入交流电源:三相380V 10%、f=50Hz、直流输出电流连续的最小值为5A。
电动机额定参数:额定功率P N =10kw、磁极对数P=2、额定转速n N=1000r/min,额定电压U MN=220V、额定电流I MN=54.8A、过载倍数151.2可控整流电路的选择晶闸管可控整流电路型式较多,各种整流电路的技术性能和经济性能个不相同。
单相可控整流电路电压脉动大、脉动频率低、影响电网三相平衡运行。
三相半波可控整流电路虽然对影响电网三相平衡运行没有影响,但其脉动仍然较大。
此外,整流变压器有直流分量磁势,利用率低。
当整流电压相同时,晶闸管元件的反峰压比三相桥式整流电路高,晶闸管价格高三相半波可控整流电路晶闸管数量比三相桥式可控整流电路少,投资比三相桥式可控整流电路少。
三相桥式可控整流电路它的脉动系数比三相半波可控整流电路少一半。
整流变压器没有直流分量磁势,变压器利用率高,晶闸管反峰压低。
这种可控整流电路晶闸管数量是三相半波可控整流电路的两倍。
总投资比三相半波可控整流电路多。
从上面几种可控整流电路比较中可以看到:三相桥式可控整流电路从技术性能和经济性能两项指标综合考虑比其它可控整流电路优越,故本设计确定选择三相桥式可控整流电路。
如图(1-1)所示图1—1三相桥式可控整流电路第二章可控整流电路的波形图图1 —2三相桥式全控整流电路带电阻负载a0。
时的波形第三章整流电路参数计算和元件选择3.1整流变压器的计算整流变压器的作用是给晶闸管整流电路提供所需电源电压,同时将整流电路与交流电源隔离,增强安全性并减小整流电路对请其他用电设备的干扰。
(1) 整流变压器的接线变压器采用D,Y nii接线一次侧采用D接线的目的是个电流中三的整数倍高次谐波提供通路,以保证磁通和电压为正弦波,避免在变压器每相绕组中产生尖顶波电势。
电力电子课程设计任务书
课程设计任务书
一、课题
晶闸管直流电动机不可逆调速系统设计
二、设计意义及目的
通过课程设计,一方面是学生对本课程所学内容加深理解,另一方面让学生熟悉工程设计的过程、规范和方法,能正确查阅技术资料、技术手册和标准,培养学生工程设计能力。
三、设计技术数据及要求
1. 直流电动机额定数据:P N=3KW,U N=220V,I N=17.5A,
n N=1500r/min。
2. 主电路中,晶闸管要有过电压、过电流及抑制其正向电压上升率、正向电流上升率的保护电路。
3.选择合适的晶闸管触发电路。
四、设计内容
1.系统调速方案的确定。
2.主电路的选择与计算:
a.整流变压器次级电压的计算,整流变压器次级电流及变压器容量的计算;
b.电枢整流桥路中晶闸管额定电压和额定电流的计算,以及晶闸管型号的确定。
C.电枢电感
L的计算,整流变压器漏电感B L的计算。
M
3.主电路中各种保护电路的选用及元件参数计算。
五、设计任务
1、设计任务书
2、摘要
3、目录
4、整流装备方案的选择
5、系统设备(元件)的选择与效验
6、参考文献
7、后记(收获和体会)
六、主要参考资料
《电力电子技术》黄家善机械工业出版社
《电力拖动自动控制系统》陈伯时机械工业出版社七、时间:二周。
电力电子技术的课程设计
电力电子技术的课程设计一、课程目标知识目标:1. 掌握电力电子器件的基本工作原理,如二极管、晶体管、晶闸管等;2. 了解电力电子电路的基本类型,如整流电路、斩波电路、逆变电路等;3. 学会分析简单电力电子电路的性能、特点及应用场合;4. 掌握电力电子设备在实际应用中的参数计算和选型方法。
技能目标:1. 能够正确使用实验设备搭建简单的电力电子电路;2. 学会运用电路分析方法,对电力电子电路进行性能分析和故障排查;3. 能够根据实际需求设计简单的电力电子系统,并进行参数计算和选型。
情感态度价值观目标:1. 培养学生对电力电子技术的兴趣,激发学习热情;2. 增强学生的团队合作意识,提高沟通与协作能力;3. 培养学生严谨的科学态度,树立工程伦理观念。
课程性质:本课程为电力电子技术的基础课程,旨在使学生掌握电力电子器件、电路及其应用,培养实际操作能力和工程素养。
学生特点:学生具备一定的电子技术基础,具有较强的学习能力和动手能力,但对电力电子技术尚处于入门阶段。
教学要求:结合学生特点,注重理论与实践相结合,强调动手实践和实际应用,提高学生的综合能力。
通过本课程的学习,使学生能够达到上述课程目标,为后续相关课程和实际工作打下坚实基础。
二、教学内容1. 电力电子器件:介绍二极管、晶体管、晶闸管等基本器件的结构、工作原理及特性,重点讲解其在电力电子电路中的应用。
教材章节:第一章至第三章内容安排:2学时2. 电力电子电路:讲解整流电路、斩波电路、逆变电路等基本电路的类型、工作原理及性能特点。
教材章节:第四章至第六章内容安排:4学时3. 电力电子电路分析:教授电路分析方法,如平均值法、等效电路法等,分析典型电力电子电路的性能和应用。
教材章节:第七章内容安排:3学时4. 电力电子设备设计:介绍参数计算和选型方法,结合实际案例进行设备设计。
教材章节:第八章内容安排:3学时5. 实践操作:安排学生进行电力电子电路搭建、性能测试和故障排查,提高动手能力。
电力电子的课程设计
电力电子的课程设计一、课程目标知识目标:1. 理解电力电子器件的基本原理和分类,掌握其工作特性和应用范围。
2. 学习电力电子变换器的基本电路拓扑,理解其工作原理和转换过程。
3. 掌握电力电子器件的驱动与保护方法,了解其在实际电路中的应用。
技能目标:1. 能够运用电力电子器件设计简单的电力变换电路,并进行仿真分析。
2. 学会使用相关软件工具对电力电子电路进行性能评估和故障诊断。
3. 培养动手实践能力,能搭建简单的电力电子实验装置,并进行调试。
情感态度价值观目标:1. 培养学生对电力电子技术的好奇心和探索精神,激发学习兴趣。
2. 增强学生的团队合作意识,培养在小组讨论和实验中积极沟通、协作的能力。
3. 培养学生的节能环保意识,理解电力电子技术在节能减排中的重要作用。
分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握电力电子基础知识的同时,提高实践操作能力,培养创新思维和团队协作精神。
通过具体的学习成果分解,教师可进行针对性的教学设计和评估,确保课程目标的实现。
二、教学内容本章节教学内容围绕以下三个方面展开:1. 电力电子器件:- 基本原理与分类:讲解电力电子器件的工作原理,如晶闸管、IGBT等,并介绍各类器件的应用范围。
- 工作特性:分析电力电子器件的主要参数,如静态特性、动态特性等。
2. 电力电子变换器:- 基本电路拓扑:介绍常用的电力电子变换器拓扑结构,如AC-DC、DC-AC、DC-DC等,并分析其工作原理。
- 转换过程:讲解不同变换器的工作过程,包括能量转换、电压电流波形等。
3. 器件驱动与保护:- 驱动方法:介绍电力电子器件的驱动技术,如光耦隔离驱动、磁隔离驱动等。
- 保护方法:分析器件保护措施,如过压保护、过流保护等。
教学内容安排与进度:1. 第一周:电力电子器件基本原理与分类,工作特性分析。
2. 第二周:电力电子变换器基本电路拓扑,工作原理讲解。
3. 第三周:器件驱动与保护方法,实际应用案例分析。
电力电子方向课程设计
电力电子方向课程设计一、课程目标知识目标:1. 理解电力电子器件的基本工作原理,掌握其特性参数及应用场合;2. 掌握基本的电力电子变换电路,如整流、逆变、斩波和调压电路;3. 了解电力电子装置的设计原则和调试方法;4. 掌握电力电子装置在能源转换、电力系统和电力调节中的应用。
技能目标:1. 能够运用所学知识分析和设计简单的电力电子电路;2. 能够利用仿真软件对电力电子电路进行仿真测试,验证设计方案的可行性;3. 能够根据实际需求,选择合适的电力电子器件和变换电路,进行系统集成;4. 能够通过实际操作,对电力电子装置进行调试和故障排查。
情感态度价值观目标:1. 培养学生对电力电子技术的兴趣,激发其创新意识和探索精神;2. 增强学生的团队合作意识,使其在项目实施过程中学会相互协作、共同解决问题;3. 培养学生严谨的科学态度和良好的工程素养,注重实践操作的安全性和环保意识;4. 引导学生关注电力电子技术在新能源、节能减排等领域的应用,提高其社会责任感。
课程性质:本课程为电力电子方向的实践性课程,注重理论知识与实际应用的学生特点:学生具备一定的电子技术基础,具有较强的动手能力和求知欲。
教学要求:结合课本内容,以实际项目为载体,注重培养学生的实践能力和创新能力。
在教学过程中,分解课程目标为具体的学习成果,以便进行教学设计和评估。
二、教学内容1. 电力电子器件原理与特性:包括半导体器件的工作原理、电力电子器件的分类及特性参数,重点介绍晶闸管、IGBT等常用器件。
相关教材章节:第一章《电力电子器件》2. 电力电子变换电路:讲解整流、逆变、斩波和调压电路的工作原理、电路拓扑及控制策略。
相关教材章节:第二章《电力电子变换技术》3. 电力电子装置设计:介绍电力电子装置的设计原则、电路设计方法、器件选型和系统调试。
相关教材章节:第三章《电力电子装置设计》4. 电力电子技术应用:分析电力电子技术在新能源、电力系统和电力调节等领域的应用案例。
电力电子技术课程设计范例
电力电子技术课程设计范例电力电子技术课程设计是电气工程专业的一门重点课程,该课程设计主要涉及到电力电子变流器的设计、控制和应用。
此外,该课程还包括功率半导体器件的选型、电路设计、控制系统设计以及电磁兼容等方面的内容。
本文主要介绍一种电力电子技术课程设计的范例,以期为电力电子技术课程设计的读者提供一些参考和借鉴。
1. 课程设计目标电力电子技术课程设计的主要目标是培养学生的电气设计能力、模拟仿真能力、实验操作能力和团队合作意识,以及使学生掌握电力电子变流器的设计和控制技术。
2. 课程设计主题设计具有稳定输出电压的电力电子变流器。
具体包括:(1)设计一个交流输入、直流输出的电力电子变流器。
(2)根据实际需要选择并计算所需的功率半导体装置。
(3)设计适当的电路保护和故障检测系统。
(4)编写控制程序实现变流器的开关控制。
(5)进行电路仿真和实验验证。
其中,电力电子变流器可以采用全桥式、半桥式、双向直流-直流变换器等常用拓扑结构。
3. 课程设计步骤(1)确定项目的范围和目标。
明确所需完成的技术任务和各个环节的时间计划,提前预估和解决可能遇到的技术问题。
(2)收集相关的技术资料。
包括相关电路设计资料和器件规格书等。
(3)根据设计需求进行选型计算,选择满足要求的元器件。
(4)进行电路仿真验证。
采用MATLAB/Simulink软件搭建电路模型,对所设计的电路进行仿真,进一步验证电路的性能和可靠性。
(5)设计控制系统。
采用单片机或FPGA等控制芯片,编写控制程序实现变流器的开关控制,并对控制程序进行仿真和验证。
(6)进行实验验证。
制作样品电路,进行实际测试和验证。
实验过程中,需要注意电路稳定性和安全性,防止短路等电路故障。
(7)编写课程设计报告。
对整个设计过程进行总结和评估,包括设计思路、设计过程、实验结果等方面内容。
4. 课程设计评分电力电子技术课程设计评分主要包括以下几个方面:(1)方案设计(20分)。
设计方案的完备性、实现难度、适用性和创新性等方面考虑。
电力电子毕业课程设计
电力电子毕业课程设计一、课程目标知识目标:1. 学生能理解电力电子技术的基本原理,掌握常见电力电子器件的工作原理及应用。
2. 学生能掌握电力电子装置的设计方法,包括器件选型、参数计算和电路搭建。
3. 学生了解电力电子技术在新能源、电力系统和工业控制中的应用。
技能目标:1. 学生具备分析和解决实际电力电子工程问题的能力,能运用所学知识进行电路设计与调试。
2. 学生能运用相关软件(如PSPICE、MATLAB等)进行电力电子电路的仿真分析,提高实际操作能力。
3. 学生具备查阅相关技术文献、资料的能力,提高自学能力和团队协作能力。
情感态度价值观目标:1. 学生通过课程学习,培养对电力电子技术的兴趣,激发创新意识和探索精神。
2. 学生能够关注电力电子技术的发展趋势,认识到其在国家能源战略和节能减排中的重要性。
3. 学生在课程实践中,培养严谨、负责的工作态度,提高沟通与协作能力。
本课程针对电力电子专业毕业生,结合学生特点和教学要求,注重理论与实践相结合,提高学生的实际操作能力和工程素养。
通过课程学习,使学生具备电力电子技术的基本知识和技能,为未来的职业发展打下坚实基础。
同时,培养学生对电力电子技术的兴趣和责任感,为我国电力电子行业的发展贡献力量。
二、教学内容1. 电力电子器件原理及特性:包括二极管、晶体管、晶闸管、场效应晶体管等常见器件的工作原理、特性参数和应用领域。
教材章节:第1章 电力电子器件2. 电力电子变换电路:介绍AC-DC、DC-AC、DC-DC等基本电力电子变换电路的原理、拓扑结构及其应用。
教材章节:第2章 电力电子变换电路3. 电力电子装置设计:讲解装置设计方法、步骤,包括器件选型、参数计算、电路搭建等。
教材章节:第3章 电力电子装置设计4. 电力电子电路仿真:运用PSPICE、MATLAB等软件进行电力电子电路的仿真分析,提高学生实际操作能力。
教材章节:第4章 电力电子电路仿真5. 电力电子技术在新能源、电力系统和工业控制中的应用:分析各类应用实例,让学生了解电力电子技术的实际应用。
电力电子课程设计任务书
电力电子课程设计任务书一、课程目标知识目标:1. 理解电力电子器件的基本原理、分类及其在电路中的应用;2. 掌握电力电子变换器的工作原理、电路构成及其控制方法;3. 了解电力电子技术在能源转换、电机调速等领域的应用。
技能目标:1. 能够分析并设计简单的电力电子电路,进行电路仿真与实验操作;2. 学会使用相关软件(如PSPICE、MATLAB等)对电力电子电路进行性能分析与优化;3. 能够针对实际问题,运用电力电子技术提出解决方案,并进行初步设计与评估。
情感态度价值观目标:1. 培养学生热爱科学、积极探索电力电子技术发展的精神;2. 增强学生的环保意识,认识到电力电子技术在节能减排方面的重要性;3. 培养学生的团队协作能力和沟通表达能力,使其在学术交流中能够积极参与、互相学习。
课程性质:本课程为高年级专业课程,旨在帮助学生将理论知识与实际应用相结合,提高解决实际问题的能力。
学生特点:学生具备一定的电子技术基础,具有较强的学习能力和动手实践能力,但可能对电力电子技术在实际应用中的具体问题缺乏深入了解。
教学要求:结合课本内容,注重理论与实践相结合,强调实际操作能力的培养。
通过课程学习,使学生能够将所学知识应用于实际工程问题,提高其创新能力和实践能力。
在此基础上,分解课程目标为具体的学习成果,以便进行后续的教学设计和评估。
二、教学内容根据课程目标,教学内容主要包括以下几部分:1. 电力电子器件原理及其特性- 教材章节:第一章- 内容:晶闸管、GTO、MOSFET、IGBT等器件的工作原理、特性参数及选型。
2. 电力电子变换器及其控制技术- 教材章节:第二章- 内容:AC-DC、DC-AC、DC-DC等变换器的工作原理、电路拓扑及其控制策略。
3. 电力电子技术应用- 教材章节:第三章- 内容:电力电子技术在电力系统、新能源、电机调速等领域的应用案例。
4. 电力电子电路设计与仿真- 教材章节:第四章- 内容:电路设计方法、仿真软件使用及电路性能分析。
大学生电力电子课程设计
大学生电力电子课程设计一、课程目标知识目标:1. 理解电力电子器件的基本工作原理及其在电力转换中的应用;2. 掌握电力电子电路的拓扑结构及其转换控制方法;3. 掌握电力电子器件的选择、电力电路的设计及系统性能分析;4. 了解电力电子技术在新能源领域的应用及其发展趋势。
技能目标:1. 能够运用所学知识进行电力电子器件的选型和电力电路的设计;2. 能够分析并解决电力电子电路在实际应用中遇到的问题;3. 能够运用仿真软件对电力电子电路进行仿真分析,提高实际操作能力;4. 能够通过小组合作,完成电力电子课程设计项目,提高团队协作能力。
情感态度价值观目标:1. 培养学生热爱专业、严谨治学的态度,增强其对电力电子技术的兴趣;2. 培养学生独立思考、敢于创新的精神,提高解决实际问题的能力;3. 增强学生的环保意识,使其认识到电力电子技术在节能减排方面的重要性;4. 培养学生的团队协作精神,提高沟通与交流能力。
本课程针对大学生电力电子课程设计,结合课程性质、学生特点和教学要求,明确了具体、可衡量的课程目标。
通过本课程的学习,旨在使学生在掌握电力电子技术基础知识的基础上,提高实际操作能力和团队协作能力,培养具有创新精神和环保意识的高级专业人才。
二、教学内容1. 电力电子器件原理及其特性- 硅控整流器件、晶体管、场效应晶体管等基本电力电子器件的工作原理和特性;- 教材第1章、第2章内容。
2. 电力电子电路拓扑结构- 单相、三相可控整流电路,逆变电路,直流-直流转换电路等拓扑结构;- 教材第3章内容。
3. 电力电子电路的控制技术- 脉冲宽度调制(PWM)技术;- 教材第4章内容。
4. 电力电子器件的选型和电路设计- 依据实际应用需求,选择合适的电力电子器件;- 教材第5章内容。
5. 电力电子技术在新能源领域的应用- 风能、太阳能发电系统中的电力电子技术;- 教材第6章内容。
6. 电力电子电路仿真分析- 使用相关仿真软件进行电力电子电路的仿真分析;- 教材第7章内容。
电力电子技术课程设计
电力电子技术课程设计一、课程目标知识目标:1. 让学生掌握电力电子器件的基本原理、分类及功能,理解不同器件在电力转换中的应用。
2. 使学生了解电力电子电路的基本拓扑结构,掌握常见电力电子电路的原理及分析方法。
3. 帮助学生掌握电力电子装置的控制策略,了解电力电子技术在节能、环保等方面的应用。
技能目标:1. 培养学生运用所学知识分析、设计简单电力电子电路的能力。
2. 提高学生动手实践能力,能正确搭建、调试和优化电力电子实验装置。
3. 培养学生运用电力电子技术解决实际问题的思维方法和创新能力。
情感态度价值观目标:1. 激发学生对电力电子技术学科的兴趣,培养其探索精神和求知欲。
2. 培养学生具备良好的团队合作意识,学会在团队中沟通交流,共同解决问题。
3. 增强学生的节能环保意识,使其认识到电力电子技术在未来可持续发展中的重要性。
课程性质:本课程为专业核心课程,旨在让学生掌握电力电子技术的基本理论和实践技能,培养学生具备分析和解决实际问题的能力。
学生特点:学生具备一定的电子技术基础,具有较强的学习能力和实践操作能力,对新技术和新事物充满好奇心。
教学要求:注重理论与实践相结合,强调学生的主体地位,鼓励学生主动参与、积极思考,提高其分析问题和解决问题的能力。
通过课程学习,使学生达到预定的学习成果,为后续相关课程的学习和实际工作打下坚实基础。
二、教学内容1. 电力电子器件原理及分类:包括半导体器件、二极管、晶体管、晶闸管等基本原理、特性及应用。
教材章节:第一章《电力电子器件》2. 电力电子电路拓扑结构:分析常见电力电子电路如整流电路、斩波电路、逆变电路的原理及性能。
教材章节:第二章《电力电子电路拓扑》3. 电力电子装置控制策略:学习PID控制、PWM控制等在电力电子装置中的应用。
教材章节:第三章《电力电子装置的控制》4. 电力电子技术应用:介绍电力电子技术在工业、家电、新能源等领域的应用案例。
教材章节:第四章《电力电子技术的应用》5. 实践教学:组织学生进行电力电子电路搭建、调试和优化实验,提高学生动手能力。
电力电子技术课程设计任务书
电力电子技术课程设计任务书1、电力电子技术课程设计目的:本课程设计是在学习完《电力电子技术》课程之后进行的一个重要的实践性教学环节,是工程技术应用型人才培养目标的重要组成部分。
在教师指导下让学生独立完成,一方面巩固课程知识,加深对理论知识的理解,一方面训练学生综合运作所学的理论知识,掌握一定的设计方法和设计思想,能初步解决一些实际问题;培养学生查阅资料,独立获取新知识、新信息的能力。
2、设计题目及要求:可从以下题目中任选一题,也可以自选,但内容必须与本课程相关,每组2--3人。
设计题目(参考):1、设计声光双控延迟节电灯2、设计一个晶闸管交流调速系统3、设计一个晶闸管直流调速系统4、设计一个逆变电路5、设计一个稳压电路6、设计一个气体点火电路7、设计一个过压保护电路3、设计任务及要求:在规定时间内通过分析任务书、查阅收集资料,充分发挥主动性与创造性,在老师的指导下联系实际、掌握正确的方法,理清思路,独立完成课程设计,撰写设计说明书,其格式和字数应符合规定。
根据要求设计出实际可行的电路,并计算电路中所用元器件的参数,确定其规格型号;课程设计说明书要求整洁、完备、内容正确、概念清楚、文字通畅,并绘制出相应的电路图,符合规范。
1)理论设计:根据所选题目,设计出完整电路, 要求画出电路图。
2)课程设计说明书内容如下:a、本次课程设计的目的和意义。
b、设计报告:字数约2000~3000字,内容包括:○1设计题目;○2系统的主要功能、作用以及主要技术性能指标;○3总体设计方案、工作和组成原理(框图)或设计说明、采用的技术路线等;○4其他有关的理论分析和计算;○5设计总结:对整个设计工作过程进行归纳和综合,对设计中所存在的问题和不足进行分析和总结,提出解决的方法、措施、建议和对这次设计实践的认识、收获和提高。
c、作品的使用或操作说明。
d、设计图纸和实验数据图表。
3)设计内容不允许抄袭和复印,否则取消设计成绩。
电力电子的课程设计报告
电力电子的课程设计报告一、课程目标知识目标:1. 让学生掌握电力电子器件的基本原理、分类及特性,了解其在电力转换中的应用。
2. 使学生了解电力电子电路的基本拓扑结构,能分析简单电力电子电路的工作原理。
3. 引导学生理解电力电子装置的控制策略,了解不同控制方法对电力转换性能的影响。
技能目标:1. 培养学生运用电力电子器件和电路知识,解决实际电力转换问题的能力。
2. 提高学生分析、设计和调试简单电力电子电路的能力。
3. 培养学生运用电力电子控制策略,优化电力转换系统性能的技能。
情感态度价值观目标:1. 培养学生对电力电子技术的兴趣和热情,激发学生学习主动性和创新精神。
2. 培养学生严谨的科学态度,注重实践操作的安全性和可靠性。
3. 引导学生关注电力电子技术在节能减排、可持续发展等方面的应用,培养环保意识和责任感。
本课程针对高年级学生,结合电力电子学科特点,注重理论与实践相结合,旨在提高学生的专业知识水平和实践能力。
课程目标具体、可衡量,便于教师进行教学设计和评估,同时充分考虑学生的认知特点,使学生在掌握电力电子技术基本原理的基础上,能够解决实际问题,培养创新精神和实践操作能力。
二、教学内容本章节教学内容主要包括以下三个方面:1. 电力电子器件原理与特性- 基本电力电子器件(如:二极管、晶体管、晶闸管等)的工作原理、特性参数及应用。
- 教材章节:第1章《电力电子器件》。
2. 电力电子电路拓扑结构与分析- 常见电力电子电路拓扑(如:整流电路、逆变电路、斩波电路等)的组成、工作原理及性能分析。
- 教材章节:第2章《电力电子电路》。
3. 电力电子装置控制策略与应用- 电力电子装置控制策略(如:相控、PWM控制等)的原理、实现方法及其对电力转换性能的影响。
- 教材章节:第3章《电力电子装置的控制》。
教学进度安排:1. 课时分配:共12课时,每个部分各4课时。
2. 教学内容逐步深入,从基本器件原理到电路拓扑分析,最后探讨控制策略及其应用。
电力电子课程设计完整版
电力电子课程设计完整版一、教学目标本课程旨在电力电子领域提供一个全面的学习框架,通过深入理解电力电子的基本原理、关键技术和应用实践,使学生能够:1.知识目标:–描述电力电子的基本概念、发展和分类。
–解释电力电子器件的工作原理和特性,包括二极管、晶闸管、GTO、IGBT等。
–阐述电力电子电路的控制策略和设计方法。
–分析电力电子系统的效率、损耗和稳定性问题。
2.技能目标:–能够识别和分析不同类型的电力电子器件和电路。
–设计简单的电力电子转换电路,如AC-DC、DC-DC和DC-AC 转换器。
–运用仿真软件对电力电子系统进行模拟和优化。
–进行电力电子设备的故障诊断和维护。
3.情感态度价值观目标:–培养对电力电子技术在现代社会应用重要性的认识。
–强化节能减排和绿色技术的意识,在设计中考虑可持续性。
–激发对电力电子领域创新的兴趣,以促进技术进步和社会发展。
二、教学内容本课程的教学内容围绕电力电子的基本理论、器件结构、电路设计及其应用展开,具体包括:1.电力电子导论:电力电子的历史、发展趋势和其在现代电力系统中的应用。
2.电力电子器件:各类电力电子器件的结构、工作原理和特性分析。
3.电力电子电路:常用电力电子电路的拓扑结构、控制策略及其性能分析。
4.功率因数校正:功率因数的概念、功率因数校正电路的设计与应用。
5.变频技术:变频器的工作原理、变频技术的应用领域。
6.电力电子仿真:使用仿真工具对电力电子电路进行模拟和分析。
三、教学方法为了提高学生的综合能力和实践技能,本课程将采用多种教学方法:1.讲授法:用于基础理论知识和关键概念的传授。
2.案例分析法:分析具体的电力电子应用案例,加深对理论的理解。
3.实验法:通过实验操作,培养学生的动手能力和问题解决能力。
4.讨论法:分组讨论,促进学生之间的交流与合作,激发创新思维。
四、教学资源为确保高质量的教学效果,将充分利用以下教学资源:1.教材:《电力电子学》及相关辅助教材。
电力电子技术课程设计任务大全
《电力电子技术》课程设计任务书〔一〕小功率晶闸管整流电路设计一、设计的技术数据及要求1、电路输出的直流电压和电流应满足负载要求;2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力;3、触发电路满足要求;4、电网供电电压:三相380V,电动机负载,工作于电动状态。
直流电机参数:1、方案论证及选择;2、主电路设计〔包括整流变压器电压及容量计算,晶闸管元件选择,电抗器容量等计算〕;3、控制电路设计〔触发电路的选择与设计〕;4、保护电路设计〔包括过流和过压保护等〕;5、总结及心得体会;6、参考文献设计;7、完成电路原理图1份。
《电力电子技术》课程设计任务书〔二〕小功率晶闸管整流电路设计一、设计的技术数据及要求1、电路输出的直流电压和电流应满足负载要求;2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力;3、触发电路满足要求。
4、电网供电电压:单相220V,电动机负载,工作于电动状态。
二、设计内容及要求1、方案论证及选择;2、主电路设计〔包括整流变压器电压及容量计算,晶闸管元件选择,电抗器容量等计算〕;3、控制电路设计〔触发电路的选择与设计电路〕;4、保护电路设计〔包括过流和过压保护等〕;5、总结及心得体会;6、参考文献;7、完成课程设计的电路原理图1份。
《电力电子技术》课程设计任务书〔三〕三相相控变流器的设计一、设计的技术数据及要求1、输入电源:三相380V;2、采用三相相控整流电路,电阻-电感性〔大电感〕负载;3、直流输出电压0~200V;4、最大输出电流I d=35A。
二、设计内容及要求1、三相可控主电路设计及参数计算(包括计算整流变压器参数,选择整流元件的定额等),讨论晶闸管电路对电网的影响及其功率因数;2、触发电路设计〔触发电路的选型与设计〕;3、保护电路设计〔包括过电压保护与过电流保护电路等〕;4、总结及心得体会;5、参考文献;6、完成课程设计的电路原理图1份。
电力电子技术课程设计
参考教材附录及推荐阅读材料,开展以下拓展活动:
1.阅读电力电子技术领域内的经典论文或最新研究报告,了解行业发展趋势;
2.分析电力电子器件在不同应用领域(如电动汽车、轨道交通、可再生能源等)的发展前景;
3.探索新型电力电子器件(如宽禁带半导体器件)的技术特点及其在电力电子技术中的应用潜力;
6.实施交流调压器和调功器实验,观察电压调节效果;
7.结合实际案例,开展电力电子变换器在特定应用场景的综合性实验,提升学生的实际操作能力和问题解决能力。
4、教学内容
《电力电子技术》课程设计评价与反思
依据教材第十二章“电力电子技术的应用与发展”,进行以下教学评价与反思:
1.组织学生对课程设计过程中的理论知识掌握、实践操作技能、问题解决能力等方面进行自我评价;
2.引导学生对比仿真结果与实验数据,分析差异产生的原因,并探讨改进措施;
3.对课程设计项目进行小组讨论,分享经验,互相学习,提高团队协作能力;
4.教师针对学生在课程设计中的表现给予评价,指出优点与不足,提出改进建议;
5.结合电力电子技术的最新发展动态,引导学生思考如何将所学知识应用于未来职业发展;
6.反思课程设计的教学过程和方法,为后续课程的教学提供改进方向和参考。
4.研究电力电子电路在不同国家和地区的标准和规范,了解国际差异;
5.调研电力电子技术在节能减排、提高能源利用效率方面的作用和贡献;
6.鼓励学生提出创新性想法,设计并探讨可能的电力电子技术应用方案,培养学生的创新意识和科研兴趣。
电力电子技术课程设计
一、教学内容
《电力电子技术》课程设计
本课程设计基于教材第九章“电力电子器件及其应用”,内容包括:
1.晶闸管(SCR)的工作原理及其在电力电子装置中的应用;
《电力电子技术》课程设计任务书
《电力电子技术》课程设计任务书电气工程及其自动化专业一、课程设计的目的1、培养文献检索的能力,特别是如何利用Internet检索需要的文献资料。
2、培养综合分析问题、发现问题和解决问题的能力。
3、培养运用知识的能力和工程设计的能力。
4、提高课程设计报告撰写水平。
二、课程设计的要求1. 自立题目题目方向1:单相、三相可控整流技术的工程应用题目方向2:降压斩波变换技术的工程应用题目方向3:升压斩波变换技术的工程应用题目方向4:交流调压或交流调功技术的工程应用题目方向5:变频技术的工程应用题目方向6:有源、无源逆变技术的工程应用2、固定课题(1)单相半控桥式晶闸管整流电路的设计设计要求:1、电源电压:交流220V/50Hz2、输出电压范围:20V~50V3、最大输出电流:10A4、具有过流保护功能,动作电流:12A5、具有稳压功能6、电源效率不低于70%(2)三相桥式晶闸管整流电路的设计设计要求:1、电源电压:交流220V/50Hz2、输出电压范围50V~100V3、最大输出电流:10A4、具有过流保护功能,动作电流:12A5、具有稳压功能6、效率不低于70%(3)降压斩波电路设计设计要求:1、输入直流电压:U d=100V2、开关频率40KHz3、输出电压范围50V~80V4、输出电压纹波:小于1%5、最大输出电流:5A6、具有过流保护功能,动作电流:6A7、具有稳压功能8、效率不低于70%(4)升压斩波电路设计设计要求:1、输入直流电压:U d=40V2、开关频率100KHz3、输出电压范围80V~120V4、输出电压纹波:小于1%5、最大输出电流:5A6、具有过流保护功能,动作电流:6A7、具有稳压功能8、效率不低于70%(5)单相桥式变频电路设计设计要求:1、输入电压:单相交流300v/100Hz2、输出电压波形:交流方波220v/50Hz3、最大输出电流:5A4、具有过流保护功能,动作电流:6A5、具有稳压功能6、效率不低于70%(6)单相桥式变频电路设计设计要求:1、输入电压:单相交流300v/100Hz2、输出电压波形:交流正弦波220v/50Hz3、最大输出电流:5A4、具有过流保护功能,动作电流:6A5、具有稳压功能6、效率不低于70%三、设计任务1、进行设计方案的比较,并选定设计方案;2、完成控制电路设计、原理分析和主要元器件、参数选择;3、完成主电路的设计、原理分析,各主要元器件、参数选择;4、保护电路的设计;四、设计工作内容1、按要求完成设计任务,写出设计说明书;2、计算机绘制主电路、控制电路、保护电路原理图,印刷电路版图;五、时间安排工作项系统设计PROTEL制图整理说明书目4天2天1天预计时间注:答辩时间另行安排六、提交文件1.设计说明书一份(统一纸张——图文并茂,0.8万字左右); 2.电路图、PCB图(A4纸张)3.元器件清单一份七、课程设计报告基本格式1、封面2、目录3、正文:1)设计的基本要求(给出所要设计的装置的主要技术数据和设计装置要达到的要求(包括性能指标),最好简述所设计装置的主要用途)2)总体方案的确定;3)主电路、控制电路原理说明(绘出主电路典型波形、触发信号(驱动信号)波形);4)电路参数计算和元件选取;5)保护电路工作原理;4、元器件清单5、参考文献6、附图注意:课程设计用纸和格式统一①A4纸打印(页边距:上下左右各留2cm);②大标题:3号字,宋体加粗;③小标题:4号字,宋体加粗;④正文:小4号字,宋体,固定间距20磅;⑤页眉:电力电子技术课程设计,5号宋体;⑥页脚:页码居中;⑦要求图表规范,文字通顺,逻辑性强;⑧报告字数不少于8000字。
电力电子技术课程设计
电力电子技术 课程设计一、课程目标知识目标:1. 让学生掌握电力电子技术的基本概念、分类及其在电力系统中的应用。
2. 使学生了解各种电力电子器件的工作原理、特性及选型方法。
3. 帮助学生掌握电力电子变换器的主电路拓扑、控制策略及其在电力系统中的应用。
技能目标:1. 培养学生运用电力电子器件和变换器解决实际问题的能力。
2. 提高学生分析、设计和调试电力电子电路的能力。
3. 培养学生运用相关软件(如PSPICE、MATLAB等)进行电力电子电路仿真分析的能力。
情感态度价值观目标:1. 培养学生对电力电子技术学科的兴趣,激发学生主动学习的积极性。
2. 培养学生严谨的科学态度,注重实践与创新能力的培养。
3. 增强学生的团队合作意识,培养学生的沟通与协作能力。
课程性质分析:本课程为专业核心课程,具有较强的理论性和实践性,旨在培养学生的电力电子技术基础知识和应用能力。
学生特点分析:学生为高中年级学生,具备一定的物理、数学基础,对电力电子技术有一定了解,但尚未系统学习。
教学要求:结合学生特点和课程性质,采用理论教学与实践教学相结合的方法,注重启发式教学,引导学生主动探究,培养实际操作能力。
1. 掌握电力电子技术的基本概念、分类和应用。
2. 熟悉各种电力电子器件的工作原理、特性和选型方法。
3. 学会分析、设计和调试电力电子电路。
4. 提高运用软件进行电力电子电路仿真分析的能力。
5. 增强团队合作意识,提高沟通与协作能力。
二、教学内容1. 电力电子技术基本概念:介绍电力电子技术的定义、分类及其在电力系统中的应用。
教材章节:第一章 电力电子技术概述内容:电力电子器件、电力电子装置、电力电子变换器等。
2. 电力电子器件:讲解各种电力电子器件的工作原理、特性及选型方法。
教材章节:第二章 电力电子器件内容:二极管、晶闸管、MOSFET、IGBT等器件的工作原理、特性参数及应用。
3. 电力电子变换器:分析电力电子变换器的主电路拓扑、控制策略及其在电力系统中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力电子技术课程设计任务大全————————————————————————————————作者:————————————————————————————————日期:《电力电子技术》课程设计任务书(一)小功率晶闸管整流电路设计一、设计的技术数据及要求1、电路输出的直流电压和电流应满足负载要求;2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力;3、触发电路满足要求;4、电网供电电压:三相380V,电动机负载,工作于电动状态。
直流电机参数:型号额定功率(KW)额定电压(V)额定电流(A)额定转速(r/min)电枢回路电感(mH)Z3-52 7.5 220 40.8 1500 4.42二、设计内容及要求1、方案论证及选择;2、主电路设计(包括整流变压器电压及容量计算,晶闸管元件选择,电抗器容量等计算);3、控制电路设计(触发电路的选择与设计);4、保护电路设计(包括过流和过压保护等);5、总结及心得体会;6、参考文献设计;7、完成电路原理图1份。
《电力电子技术》课程设计任务书(二)小功率晶闸管整流电路设计一、设计的技术数据及要求1、电路输出的直流电压和电流应满足负载要求;2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力;3、触发电路满足要求。
4、电网供电电压:单相220V,电动机负载,工作于电动状态。
直流电机参数:型号额定功率(KW)额定电压(V)额定电流(A)额定转速(r/min)电枢回路电感(mH)Z3-52 3 220 17.4 750 17.69二、设计内容及要求1、方案论证及选择;2、主电路设计(包括整流变压器电压及容量计算,晶闸管元件选择,电抗器容量等计算);3、控制电路设计(触发电路的选择与设计电路);4、保护电路设计(包括过流和过压保护等);5、总结及心得体会;6、参考文献;7、完成课程设计的电路原理图1份。
《电力电子技术》课程设计任务书(三)三相相控变流器的设计一、设计的技术数据及要求1、输入电源:三相380V;2、采用三相相控整流电路,电阻-电感性(大电感)负载;3、直流输出电压0~200V;4、最大输出电流I d=35A。
二、设计内容及要求1、三相可控主电路设计及参数计算(包括计算整流变压器参数,选择整流元件的定额等),讨论晶闸管电路对电网的影响及其功率因数;2、触发电路设计(触发电路的选型与设计);3、保护电路设计(包括过电压保护与过电流保护电路等);4、总结及心得体会;5、参考文献;6、完成课程设计的电路原理图1份。
《电力电子技术》课程设计任务书(四)三相半波相控整流电路设计一、设计的技术数据及要求1、电路输出的直流电压和电流应满足负载要求;2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力;3、触发电路满足要求;4、电网供电电压:三相380V,电动机负载,工作于电动状态。
直流电机参数:型号额定功率额定电压额定电流额定转速电枢回路电感(KW)(V)(A)(r/min)(mH)Z3-61 10 220 53.8 1500 9.18二、设计内容及要求1、三相半波相控主电路设计及参数计算(包括计算整流变压器参数,选择整流元件的定额等),讨论晶闸管电路对电网的影响及其功率因数;2、触发电路设计(触发电路的选型与设计);3、保护电路设计(包括过电压保护与过电流保护电路等);4、总结及心得体会;5、参考文献;6、完成课程设计的电路原理图1份。
《电力电子技术》课程设计任务书(五)单相相控变流器的设计一、设计的技术数据及要求1、输入电源:单相220V;2、采用单相相控整流电路,电阻-电感性(大电感)负载;3、直流输出电压0~180V;4、最大输出电流I d=40A。
二、设计内容及要求1、单相相控主电路设计及参数计算(包括计算整流变压器参数,选择整流元件的定额等),讨论晶闸管电路对电网的影响及其功率因数。
2、触发电路设计(触发电路的选型与设计);3、保护电路设计(包括过电压保护与过电流保护电路等);4、总结及心得体会;5、参考文献;6、完成课程设计的电路原理图1份。
《电力电子技术》课程设计任务书(六)单相桥式整流电路设计一、设计的技术数据及要求1、输入电源:单相220V;2、直流电动机负载;3、直流输出电压0~110V;4、最大输出电流I d=200A。
二、设计内容及要求1、主电路设计及参数计算(包括计算整流变压器参数,选择整流元件的定额等),讨论晶闸管电路对电网的影响及其功率因数。
2、触发电路设计(触发电路的选型与设计);3、保护电路设计(包括过电压保护与过电流保护电路等);4、总结及心得体会;5、参考文献;6、完成课程设计的电路原理图1份。
《电力电子技术》课程设计任务书(七)晶闸管交流调压电路设计一、设计的技术数据1、电源为工频380V,2、阻性负载R=20Ω,3、交流输出0~220V可调。
二、设计内容及要求1、交流调压的主电路设计及参数计算,选择元件的定额;2、触发电路设计(触发电路的选型与设计);3、保护电路设计(包括晶闸管的过电压保护与过电流等);4、分析系统不同负载下的电流、电压波形及相控特性;5、总结及心得体会;6、参考文献;7、完成电路原理图1份。
《电力电子技术》课程设计任务书(八)MOSFET降压斩波电路设计一、设计的技术数据1、交流电源:单相220V;2、前级整流输出输电压:U d=50V~80V;3、输出功率:300W;4、开关频率5KHz;5、占空比10%~90%;6、输出电压脉率:小于10%。
二、设计内容及要求1、方案论证及选择;2、主电路设计(包括整流电路设计及器件的具体型号;斩波电路设计,器件选择及型号确定,电感电容估算等)3、控制电路设计(触发电路的选择与设计电路,如:PWM控制芯片SG3525等);4、驱动电路设计(如IR2110,M579系列或其他系列等);5、总结及心得体会;6、参考文献;7、完成电路原理图1份。
《电力电子技术》课程设计任务书(九)MOSFET升压斩波电路设计一、设计的技术数据1、交流电源:单相220V;2、前级整流输出输电压:U d=50V~80V;3、输出功率:300W;4、开关频率5KHz;5、占空比10%~90%;6、输出电压脉率:小于10%。
二、设计内容及要求1、方案论证及选择;2、主电路设计(包括整流电路设计及器件的具体型号;斩波电路设计,器件选择及型号确定,电感电容估算等)3、控制电路设计(触发电路的选择与设计电路,如:PWM控制芯片SG3525);4、驱动电路设计(如IR2125,三菱M579系列或其他系列等);5、总结及心得体会;6、参考文献;7、完成电路原理图1份。
《电力电子技术》课程设计任务书(十)MOSFET升降压斩波电路设计一、设计的技术数据1、交流电源:单相220V;2、前级整流输出输电压:U d=50V~80V;3、输出功率:300W;4、开关频率5KHz;5、占空比10%~90%;6、输出电压脉率:小于10%。
二、设计内容及要求1、方案论证及选择;2、主电路设计(包括整流电路设计及器件的具体型号;斩波电路设计,器件选择及型号确定,电感电容估算等)3、控制电路设计(触发电路的选择与设计电路,如:PWM控制芯片SG3525);4、驱动电路设计(如IR2125,三菱M579系列或其他系列等);5、总结及心得体会;6、参考文献;7、完成电路原理图1份。
《电力电子技术》课程设计任务书(十一)IGBT降压斩波电路设计一、设计的技术数据1、交流电源:单相220V;2、前级整流输出输电压:U d=50V~100V;3、输出功率:300W;4、开关频率5KHz;5、占空比10%~90%;6、输出电压脉率:小于10%。
二、设计内容及要求1、方案论证及选择;2、主电路设计(包括整流电路设计及器件的具体型号;斩波电路设计,器件选择及型号确定,电感电容估算等)3、控制电路设计(触发电路的选择与设计电路,如:PWM控制芯片SG3525等);4、驱动电路设计(如日本富士EXB系列或三菱M579系列等);5、总结及心得体会;6、参考文献;7、完成电路原理图1份。
《电力电子技术》课程设计任务书(十二)IGBT升压斩波电路设计一、设计的技术数据1、交流电源:单相220V;2、前级整流输出输电压:U d=50V~100V;3、输出功率:300W;4、开关频率5KHz;5、占空比10%~90%;6、输出电压脉率:小于10%。
二、设计内容及要求1、方案论证及选择;2、主电路设计(包括整流电路的设计及器件的具体型号;斩波电路设计,器件选择及型号确定,电感电容估算等)3、控制电路设计(触发电路的选择与设计电路,如:PWM控制芯片SG3525);4、驱动电路设计(如日本富士EXB系列或三菱M579系列等);5、总结及心得体会;6、参考文献;7、完成电路原理图1份。
《电力电子技术》课程设计任务书(十三)IGBT升降压斩波电路设计一、设计的技术数据1、交流电源:单相220V;2、前级整流输出输电压:U d=50V~100V;3、输出功率:300W;4、开关频率5KHz;5、占空比10%~90%;6、输出电压脉率:小于10%。
二、设计内容及要求1、方案论证及选择;2、主电路设计(包括整流电路设计及器件的具体型号;斩波电路设计,器件选择及型号确定,电感电容估算等)3、控制电路设计(触发电路的选择与设计电路,如:PWM控制芯片SG3525);4、驱动电路设计(如日本富士EXB系列或三菱M579系列等);5、总结及心得体会;6、参考文献;7、完成电路原理图1份。
《电力电子技术》课程设计任务书(十四)10~100V升降压直流斩波实验装置设计一、设计的技术数据1、交流电源:单相220V;2、前级整流输出输电压:U d=60V以内;3、斩波输出电流最大值2A;4、负载:纯电阻5、斩波输出直流电压在10~100V左右可调。
二、设计内容及要求1、方案论证及选择;2、主电路设计(包括整流电路设计及器件的具体型号;斩波电路设计,器件选择及型号确定,电感电容估算等)3、控制电路设计(触发电路的选择与设计电路,如:PWM控制芯片SG3525);4、驱动电路设计(如日本富士EXB系列或三菱M579系列等);5、总结及心得体会;6、参考文献;7、完成电路原理图1份。
《电力电子技术》课程设计任务书(十五)IGBT单相电压型逆变电路设计一、设计的技术数据1、输入电源:三相交流电380V;2、输出电压:AC:220V,50HZ;3、输出功率:150W;3、输出电压波形:1kHz方波;4、电阻性负载。
二、设计内容及要求1、方案论证及选择;2、主电路设计(包括整流电路的设计及器件选型;逆变电路开关器件型号确定等;3、控制电路设计(包括根据PWM调制原理产生所需要的PWM波形的方法选择,SPWM集成芯片等)4、驱动电路设计(驱动芯片选择,如日本富士EXB系列或三菱M579系列及电路设计)5、保护电路设计(主要包括过压和过流等)。