导数证明和不等式综合典型

合集下载

2020高考冲刺数学总复习压轴解答:函数、不等式与导数的综合问题(附答案及解析)

2020高考冲刺数学总复习压轴解答:函数、不等式与导数的综合问题(附答案及解析)

专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <.方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-.(1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值; (3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈.【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑.方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在012x ⎡⎤∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围.【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围.【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥.3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值.5.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围.6.(2020·江西高三)已知函数()()2xf x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值; (2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围.11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈. (1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值.14.(2020·河北高三期末)已知函数()f x 满足:①定义为R ;①2()2()9xx f x f x e e+-=+-. (1)求()f x 的解析式;(2)若12,[1,1]x x ∀∈-;均有()()21122(2)61x a x x f x -+-+-…成立,求a 的取值范围;(3)设2(),(0)()21,(0)f x x g x x x x >⎧=⎨--+≤⎩,试求方程[()]10g g x -=的解.15.(2020·湖南高三月考)已知函数2()()af x x ax a R x=+-∈. (1)当1a =且1x >-时,求函数()f x 的单调区间;(2)当21e a e ≥+时,若函数2()()ln g x f x x x =--的两个极值点分别为1x 、2x ,证明12240()()1g x g x e <-<+.16.(2020·江西高三期末)已知函数2()x f x e ax x =--(e 为自然对数的底数)在点(1,(1))f 的切线方程为(3)y e x b =-+. (1)求实数,a b 的值;(2)若关于x 的不等式4()5f x m >+对于任意(0,)x ∈+∞恒成立,求整数m 的最大值.17.(2020·江西高三期末)已知函数()()()2,xf x x m e nxm n R =--∈在1x =处的切线方程为y ex e =-.(1)求,m n 的值;(2)当0x >时,()3f x ax -…恒成立,求整数a 的最大值.18.(2020·河南高三期末)已知函数()()ln 1mxf x x x m=+-+,()1,0x ∈-. (1)若1m =,判断函数()f x 的单调性并说明理由; (2)若2m ≤-,求证:关于x 的不等式()()()21xx m f x e x-+⋅<-在()1,0-上恒成立.19.(2020·江西高三月考)已知函数32()32f x x x x =-+,()g x tx t R =∈,,()xe x xφ=. (1)求函数()()y f x x φ=⋅的单调增区间;(2)令()()()h x f x g x =-,且函数()h x 有三个彼此不相等的零点0m n ,,,其中m n <. ①若12m n =,求函数()h x 在x m =处的切线方程; ①若对[]x m n ∀∈,,()16h x t ≤-恒成立,求实数M 的取值范围.专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【答案】(1)()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2(2)存在,724a ≥ 【解析】(1)当1a =时,21()2ln 3(0)2f x x x x x =+->. 所以2()3f x x x '=+-=232(2)(1)x x x x x x-+--=令()0f x '≥,则01x <≤或2x ≥,令()0f x '<,则12x <<, 所以()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2 (2)存在724a ≥,满足题设,因为函数34()()9g x f x ax x =++=23142ln 229x a x x x +-+所以224()23a g x x x x '=+-+,要使函数()g x 在0,∞(+)上单调递增,224()20,(0,)3a g x x x x x '=+-≥+∈+∞,即3243660x x x a +-+≥,(0,)x ∈+∞⇔324366x x xa +-≥-,(0,)x ∈+∞ 令32436()6x x x h x +-=,(0,)x ∈+∞,则2()21(21)(1)h x x x x x '=+-=-+,所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 在10,2⎛⎫⎪⎝⎭上单调递减,当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0h x '>,()h x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 所以12x =是()h x 的极小值点,也是最小值点,且17224h ⎛⎫=- ⎪⎝⎭,∴324366x x x+--在(0,)+∞上的最大值为724.所以存在724a ≥,满足题设.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <. 【答案】(1)1a =;(2)证明见解析. 【解析】(1)因为()()ee 10xxf x ax =--≥,且e0x>,所以e 10x ax --≥,构造函数()e 1xu x ax =--,则()'e xu x a =-,又()00u =,若0a ≤,则()'0u x >,则()u x 在R 上单调递增,则当0x <时,()0u x <矛盾,舍去;若01a <<,则ln 0a <,则当ln 0a x <<时,'()0u x >,则()u x 在(ln ,0)a 上单调递增,则()()ln 00u a u <=矛盾,舍去;若1a >,则ln 0a >,则当0ln x a <<时,'()0u x <,则()u x 在(0,ln )a 上单调递减,则()()ln 00u a u <=矛盾,舍去;若1a =,则当0x <时,'()0u x <,当0x >时,'()0u x >, 则()u x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 故()()00u x u ≥=,则()()e 0xf x u x =⋅≥,满足题意;综上所述,1a =.(2)证明:由(1)可知()()2e 1e xxf x x =-+⋅,则()()'e2e 2xxf x x =--,构造函数()2e 2xg x x =--,则()'2e 1xg x =-,又()'g x 在R 上单调递增,且()'ln20g -=,故当ln2x <-时,)'(0g x <,当ln 2x >-时,'()0g x >, 则()g x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,又()00g =,()2220e g -=>,又33233332223214e 16e 022e 2e 8e 2e g --⎛⎫-=-==< ⎪⎝⎭+, 结合零点存在性定理知,在区间3(2,)2--存在唯一实数0x ,使得()00g x =, 当0x x <时,()'0f x >,当00x x <<时,()'0f x <,当0x >时,()'0f x >, 故()f x 在()0,x -∞单调递增,在()0,0x 单调递减,在()0,∞+单调递增,故()f x 存在唯一极大值点0x ,因为()0002e 20xg x x =--=,所以00e 12xx =+, 故()()()()022200000011e1e 11112244x x x x f x x x x ⎛⎫⎛⎫=-+=+-++=-+ ⎪ ⎪⎝⎭⎝⎭,因为0322x -<<-,所以()201133144216f x ⎛⎫<--+<⎪⎝⎭. 方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-. (1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值;(3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈. 【答案】(1)sin1a ≤.(2)max ()(1)0h x h ==.(3)见解析.【解析】(1)由()0f x >,得:sin 0x ax ->,因为01x <<,所以sin xa x<, 令sin ()x g x x=,()2cos sin 'x x xg x x -=, 再令()cos sin m x x x x =-,()'cos sin cos sin 0m x x x x x x x =--=-<, 所以()m x 在()0,1上单调递减, 所以()()0m x m <,所以()'0g x <,则()g x 在()0,1上单调递减, 所以()(1)sin1g x g >=,所以sin1a ≤. (2)当1a =时,()sin f x x x =-, ①()ln 1h x x x =-+,()11'1x h x x x-=-=, 由()'0h x =,得:1x =,当()0,1x ∈时,()'0h x >,()h x 在()0,1上单调递增; 当()1,x ∈+∞时,()'0h x <,()h x 在()1,+∞上单调递减; ①()max (1)0h x h ==.(3)由(2)可知,当()1,x ∈+∞时,()0h x <, 即ln 1x x <-, 令1n x n +=,则11ln1n n n n ++<-,即()1ln 1ln n n n+-<, 分别令1,2,3,,n n =L 得,()11ln 2ln11,ln 3ln 2,,ln 1ln 2n n n-<-<+-<L ,将上述n 个式子相加得:()()*111ln 1121n n N n n+<++++∈-L . 【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 【答案】(1)1;(2)12S S S <<,证明见解析;(3)见解析 【解析】(1)由已知得0a ≤时,不合题意,所以0a >.()ln 11axx x <++恒成立,即()()()1ln 10ax x x x <++>恒成立. 令()()()1ln 1m x x x ax =++-,()()'ln 11m x x a =++-. 当1a ≤时,()m x 在()0,∞+上为增函数,此时()0m x >成立.当1a >时,()m x 在()10,1a e --上为减函数,不合题意,所以1a ≤.令()()ln 1n x ax x x =-+,()1'1n x a x =-+,当1a ≥时,()n x 在()0,∞+上为增函数,此时()0n x >,()ln 1x ax +<恒成立.当01a <<时,()n x 在10,1a ⎛⎫- ⎪⎝⎭上为减函数,不合题意,所以1a ≥.综上得1a =. (2)由(1)知()()ln 101x x x x x <+<>+.令1x i =,得111ln 11i i i⎛⎫<+< ⎪+⎝⎭, 从而11111111ln 112321n i n i n -=⎛⎫+++<+<+++ ⎪-⎝⎭∑L L ,又因为11ln nS dx n x==⎰,则12S S S <<. (3)由已知111232313ni i i i =⎛⎫+- ⎪--⎝⎭∑1111111123323n n ⎛⎫⎛⎫+++⋅⋅⋅+-++++ ⎪ ⎪⎝⎭⎝=⎭L 111123n n n =++⋅⋅⋅+++,因为111ln 11i i i⎛⎫<+< ⎪+⎝⎭,所以 111111ln 1ln 1ln 1123123n n n n n n ⎛⎫⎛⎫⎛⎫+++>++++++ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭L L 31ln1n n +=+, 111123ln ln ln 123131n n n n n n n n n ++⎛⎫⎛⎫⎛⎫+++<+++ ⎪ ⎪ ⎪+++-⎝⎭⎝⎭⎝⎭L L ln 3=.从而131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在0122x ⎡⎤∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围. 【答案】(1)322ln 220x y +-+=(2)()1,2(3)1,4⎛⎤-∞- ⎥⎝⎦【解析】()1当1a =时,()()12ln ,'2h x x x h x x=-+=-+2x =时,()()3'2,24ln 22h h =-=-+()h x ∴在()()2,2h 处的切线方程为()34ln 222y x +-=--,化简得:322ln 220x y +-+= ()2对函数求导可得,()()221'0ax ax f x x x-+=>,令()'0f x =,可得2210ax ax -+=20440112a a a a ⎧⎪≠⎪∴->⎨⎪⎪>⎩,解得a 的取值范围为()1,2 ()3由2210ax ax -+=,解得1211x x ==+而()f x 在()10,x 上递增,在()12,x x 上递减,在()2,x +∞上递增12a <<Q211x ∴=+<()f x ∴在122⎡⎤+⎢⎥⎣⎦单调递增 ∴在1,22⎡⎤+⎢⎥⎣⎦上,()()max 22ln 2f x f a ==-+012x ⎡⎤∴∃∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对a M ∀∈恒成立等价于不等式2(2ln 2ln 1112))()n (l 2a a m a a -+++>--++恒成立 即不等式2()ln 1ln 210a ma a m +--+-+>对任意的()12a a <<恒成立令()()2ln 1ln 21g a a ma a m =+--+-+,则()()121210,'1ma a m g g a a ⎛⎫-++ ⎪⎝⎭==+ ①当0m ≥时,()()'0,g a g a <在()1,2上递减()()10g a g <=不合题意①当0m <时,()1212'1ma a m g a a ⎛⎫-++ ⎪⎝⎭=+ 12a <<Q若1112m ⎛⎫-+> ⎪⎝⎭,即104m -<<时,则()g a 在()1,2上先递减 ()10g =Q12a ∴<<时,()0g a >不能恒成立若111,2m ⎛⎫-+≤ ⎪⎝⎭即14m ≤-,则()g a 在()1,2上单调递增 ()()10g a g ∴>=恒成立m ∴的取值范围为1,4⎛⎤-∞- ⎥⎝⎦【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围. 【答案】(1)2y x =-,8833918y e x e =-.(2)8319a e ≤≤.(3)345[,1)(7,5]3a e e e∈⋃. 【解析】(1)设切点为()00,x y ,()()'31xf x e x =+,则切线斜率为()0031x e x +,所以切线方程为()()000031x y y e x x x -=+-,因为切线过()2,0,所以()()()000032312x x ex e x x --=+-,化简得200380x x -=,解得080,3x =. 当00x =时,切线方程为2y x =-, 当083x =时,切线方程为8833918y e x e =-. (2)由题意,对任意x R ∈有()()322xe x a x -≥-恒成立,①当(),2x ∈-∞时,()()323222x x maxe x e x a a x x ⎡⎤--≥⇒≥⎢⎥--⎣⎦,令()()322x e x F x x -=-,则()()()2238'2x e x xF x x -=-,令()'0F x =得0x =,()()max 01F x F ==,故此时1a ≥.①当2x =时,恒成立,故此时a R ∈. ①当()2,x ∈+∞时,()()min323222x x e x e x a a x x ⎡⎤--≤⇒≤⎢⎥--⎣⎦,令()8'03F x x =⇒=,()83min 893F x F e ⎛⎫== ⎪⎝⎭,故此时839a e ≤.综上:8319a e ≤≤.(3)因为()()f x g x <,即()()322xex a x -<-,由(2)知()83,19,a e ⎛⎫∈-∞⋃+∞ ⎪⎝⎭,令()()322x e x F x x -=-,则当(),2x ∈-∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x -<-存在唯一的整数0x 成立,因为()01F =最大,()513F e -=,()11F e =-,所以当53a e<时,至少有两个整数成立, 所以5,13a e ⎡⎫∈⎪⎢⎣⎭. 当()2,x ∈+∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x ->-存在唯一的整数0x 成立,因为83893F e ⎛⎫= ⎪⎝⎭最小,且()337F e =,()445F e =,所以当45a e >时,至少有两个整数成立,所以当37a e ≤时,没有整数成立,所有(347,5a e e ⎤∈⎦.综上:(345,17,53a e e e ⎡⎫⎤∈⋃⎪⎦⎢⎣⎭. 【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <. 【答案】(1)见解析(2)见解析【解析】(1)由题意()f x 的定义域为()0,∞+,且()()()222222x a x a a x ax a f x x a x x x--+--+'=--+==, 当0a =时,()20f x x '=-<; 当0a >时,2a x >时,()0f x '<;02ax <<时,()0f x '>; 当0a <时,x a >-时,()0f x '<;0x a <<-时,()0f x '>;综上所述,当0a =时,()f x 在()0,∞+上为减函数; 当0a >时,()f x 在0,2a ⎛⎫ ⎪⎝⎭上为增函数,在,2a ⎛⎫+∞ ⎪⎝⎭上为减函数; 当0a <时,()f x 在()0,a -上为增函数,在(),a -+∞上为减函数. (2)要证()()f x g x <,即证()21ln 0x x x -+>,当12x =时,不等式显然成立; 当12x >时,即证ln 021x x x +>-;当102x <<时,即证ln 021xx x +<-; 令()ln 21x F x x x =+-,则()()()()()22411112121x x F x x x x x ---'=+=--, 当12x >时,在1,12⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数;在()1,+∞上()0F x '>,()F x 为增函数,①()()min 110F x F ==>,①ln 021xx x +>-.当102x <<时,在10,4⎛⎫ ⎪⎝⎭上()0F x '>,()F x 为增函数;在11,42⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数, ①()max 111ln 0442F x F ⎛⎫==-<⎪⎝⎭,①ln 021x x x +<-, 综上所述,当0x >时,()()f x g x <成立.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥. 【答案】(1)见解析;(2)证明见解析【解析】(1)22121(2)()()a x a x a f x x x a ax+-'=-+= 当0a >时,()0f x x a '>⇒>,()00f x x a '<⇒<<当0a <时,()002f x x a '>⇒<<-,()02f x x a '<⇒>- ①0a >时,()f x 在(0,)a 上递减,在(,)a +∞递增 0a <时,()f x 在(0,2)a -上递增,在(2,)a -+∞递减(2)设1()()()ln 2a F x f x g x x x a=-=++- 则221()(0)a x aF x x x x x-'=-=> Q 0a >,(0,)x a ∴∈时,()0F x '<,()F x 递减(,)x a ∈+∞,()0,F x '>()F x 递增,1()()ln 1F x F a a a∴≥=+-设1()ln 1h x x x =+-,(0)x >,则22111()(0)x h x x x x x-'=-=>1x >时,()0,h x '>时,()h x 递增, 01x <<时,()0h x '<,∴()h x 递减()(1)0h x h ∴≥=,()()0F a h a ∴=≥()0F x ∴≥,即()()f x g x ≥3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.【答案】(①)()11f =-;(①)(①)1; (①)()34 ,2ln31,3⎛⎤-∞-+⋃+∞ ⎥⎝⎦. 【解析】(1)22(1)(1)()2(0)x x f x x x x x+-'=-+=->, 由()0{0f x x >>'得01x <<,由()0{0f x x <>'得1x >,①()f x 在(0,1)上为增函数,在(1,)+∞上为减函数, ①函数()f x 的最大值为(1)1f =-; (2)①()a g x x x=+,①2()1a g x x =-',(①)由(1)知,1x =是函数()f x 的极值点,又①函数()f x 与()ag x x x=+有相同极值点, ①1x =是函数()g x 的极值点,①(1)10g a =-=',解得1a =, 经检验,当1a =时,函数()g x 取到极小值,符合题意;(①)①211()2f e e =--,(1)1f =-,(3)92ln 3f =-+, ①2192ln 321e -+<--<-, 即1(3)()(1)f f f e <<,①1[,3]x e∀∈,min max ()(3)92ln 3,()(1)1f x f f x f ==-+==-,由(①)知1()g x x x =+,①21()1g x x =-',当1[,1)x e∈时,()0g x '<,当(1,3]x ∈时,()0g x '>,故()g x 在1[,1)e 为减函数,在(1,3]上为增函数,①11110(),(1)2,(3)333g e g g e e =+==+=,而11023e e <+<,①1(1)()(3)g g g e <<,①1[,3]x e ∀∈,min max 10()(1)2,()(3)3g x g g x g ====,①当10k ->,即1k >时,对于121,[,3]x x e ∀∈,不等式12()()11f xg x k -≤-恒成立12max 1[()()]k f x g x ⇔-≥-12max [()()]1k f x g x ⇔≥-+,①12()()(1)(1)123f x g x f g -≤-=--=-,①312k ≥-+=-,又①1k >,①1k >, ①当10k -<,即1k <时,对于121,[,]x x e e ∀∈,不等式12()()11f xg x k -≤-,12min 1[()()]k f x g x ⇔-≤-12min [()()]1k f x g x ⇔≤-+,①121037()()(3)(3)92ln 32ln 333f x g x f g -≥-=-+-=-+,①342ln 33k ≤-+,又①1k <, ①342ln 33k ≤-+.综上,所求的实数k 的取值范围为34(,2ln 3](1,)3-∞-+⋃+∞. 4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值. 【答案】(1)1a =,0b =;(2)3【解析】(1)由()()ln f x x x a b =++得:()ln 1f x x a '=++ 由切线方程可知:()1211f =-=()112f a '∴=+=,()11f a b =+=,解得:1a =,0b =(2)由(1)知()()ln 1f x x x =+则()1,x ∈+∞时,()()1f x m x ≥-恒成立等价于()1,x ∈+∞时,()ln 11x x m x +≤-恒成立令()()ln 11x x g x x +=-,1x >,则()()2ln 21x x g x x --'=-. 令()ln 2hx x x =--,则()111x h x x x-'=-=∴当()1,x ∈+∞时,()0h x '>,则()h x 单调递增()31ln30h =-<Q ,()422ln20h =-> ()03,4x ∴∃∈,使得()00h x =当()01,x x ∈时,()0g x '<;()0,x x ∈+∞时,()0g x '>()()()000min0ln 11x x g x g x x +∴==-()000ln 20h x x x =--=Q 00ln 2x x ∴=- ()()()()0000min 0213,41x x g x g x x x -+∴===∈-()03,4m x ∴≤∈,即正整数m 的最大值为35.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围. 【答案】(1)y x =-;(2)[2,)+∞【解析】(1)因为1m =,所以()e 21xf x x =--,所以()e 2xf x '=-,则(0)0,(0)1f f '==-,故曲线()y f x =在点(0,(0))f 处的切线方程为y x =-.(2)因为()e 2x f x m x m =--,所以()e 2xf x m '=-,①当2m ≥时,()0f x '>在(0,)+∞上恒成立,则()f x 在(0,)+∞上单调递增,从而()(0)0f x f >=成立,故2m ≥符合题意; ①当02m <<时,令()0f x '<,解得20lnx m <<,即()f x 在20,ln m ⎛⎫ ⎪⎝⎭上单调递减,则2ln(0)0f f m ⎛⎫<= ⎪⎝⎭,故02m <<不符合题意; ①当0m ≤时,0()e 2x f x m '-<=在(0,)+∞上恒成立,即()f x 在(0,)+∞上单调递减,则()(0)0f x f <=,故0m ≤不符合题意.综上,m 的取值范围为[2,)+∞. 6.(2020·江西高三)已知函数()()2x f x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.【答案】(1)单调递增区间为()1,+?,单调递减区间为(),1-∞(2)证明见解析【解析】(1)因为()()2x f x x e =-,所以()()1x f x x e '=-,令()0f x ¢>,解得1x >;令()0f x ¢<,解得1x <.故()f x 的单调递增区间为()1,+?,单调递减区间为(),1-∞.(2)要证()2ln 6xf x x x >-,只需证()ln 32x f x x>-.由(1)可知()()min 1f x f e ==-.令()ln 3(0)2x h x x x =->,则()21ln 2xh x x -'=, 令()21ln 0ln 102xh x x x e x-'=>⇒<⇒<<, 所以当()0,x e ∈时,()0h x '>,()h x 单调递增;当(),x e ∈+∞时,()0h x '<,()h x 单调递减, 则()()max 132h x h e e==-. 因为 2.71828e =⋅⋅⋅,所以 2.75e ->-,所以1133 2.7524e -<-=-, 从而132e e->-,则当0x >时,()()min max f x h x >.故当0x >时,()()f x h x >恒成立,即对任意的()0,x ∈+∞,()2ln 6xf x x x >-.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.【答案】(1)当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减;(2)2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 【解析】(1)()(32)xf x m e x '=--,因为0x =是函数()f x 的一个极值点,则(0)320f m '=-=,所以23m =,则21()ln (0)2h x b x x x =->,当2()b b x h x x x x-'=-=,当0b …时,()0h x '…恒成立,()h x 在(0,)+∞上单调递减,当0b >时,2()000h x b x x '>⇒->⇒<<所以()h x 在上单调递增,在)+∞上单调递减. 综上所述:当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减. (2)()f x 在R 上有且仅有一个零点,即方程2322x x m e -=有唯一的解,令2()2xx g x e=, 可得(2)()0,()2xx x g x g x e -'>=, 由(2)()02xx x g x e -'==, 得0x =或2x =,(1)当0x …时,()0g x '…,所以()g x 在(,0]-∞上单调递减,所以()(0)0g x g =…,所以()g x 的取值范围为[0,)+∞. (2)当02x <<时,()0g x '>,所以()g x 在(0,2)上单调递增, 所以0()(2)g x g <<,即220()g x e<<, 故()g x 的取值范围为220,e ⎛⎫ ⎪⎝⎭. (3)当2x …时,()0g x '…,所以()g x 在[2,)+∞上单调递减, 所以(0)()(2)g g x g <…,即220()g x e <…, 即()g x 的取值范围为220,e ⎛⎤ ⎥⎝⎦. 所以,当320m -=或2232m e ->, 即23m =或22233m e >+时,()f x 在R 上有且只有一个零点,故m 的取值范围为2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.【答案】(1)答案不唯一,具体见解析(2)[1,)+∞ 【解析】(1)()f x 的定义域为(0,)+∞,2'()2af x x=-, ①当0a ≤时,'()0f x <,所以()f x 在(0,)+∞上是减函数,()f x 无极值. ①当0a >时,令'()0f x =,得x a =,在(0,)a 上,'()0f x >,()f x 是增函数;在(,)a +∞上,'()0f x <,()f x 是减函数. 所以()f x 有极大值()2ln 21f a a a a =-+,无极小值.(2)由(1)知,①当0a ≤时,()f x 是减函数,令2a x e =,则0(0,1]x ∈,222220()(2)21(2)320a a f x a a e a e --=-+--=->,不符合题意,①当0a >时,()f x 的最大值为()2ln 21f a a a a =-+, 要使得对任意0x >,2()(1)f x a ≤-恒成立, 即要使不等式22ln 212a a a a -+≤-成立, 则22ln 230a a a a --+≤有解.令2()2ln 23(0)g a a a a a a =--+>,所以'()2ln 2g a a a =-令()'()2ln 2h a g a a a ==-,由22'()0ah a a-==,得1a =. 在(0,1)上,'()0h a >,则()'()h a g a =在(0,1)上是增函数; 在(1,)+∞上,'()0h a <,则()'()h a g a =在(1,)+∞上是减函数. 所以max ()(1)20h a h ==-<,即'()0g a <, 故()g a 在(0,)+∞上是减函数,又(1)0g =,要使()0g a ≤成立,则1a ≥,即a 的取值范围为[1,)+∞. 9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.【答案】(1)增区间为(),2-∞-,()0,∞+,单调减区间为()2,0-;(2)三条切线,理由见解析;(3)0,2⎡+⎣ 【解析】(1)()()()222xxf x x x e x x e '==++,()0f x '>得,2x <-或0x >;()0f x '<得,20x -<<;所以()f x 的单调增区间为(),2-∞-,()0,∞+;单调减区间为()2,0-; (2)过()1,0P 点可做()f x 的三条切线;理由如下:设切点坐标为()0200,x x x e,所以切线斜率()()00002xx x k x e f '=+= 所以过切点的切线方程为:()()002200002x x x e x x e x y x -=+-,切线过()1,0P 点,代入得()()0022*******x x x e x x e x -=+-,化简得(0000x x x x e=,方程有三个解,00x =,0x =0x 所以过()1,0P 点可做()f x 的三条切线. (3)设()()21xg x x e k x -=-,①0k =时,因为20x ≥,0x e >,所以显然20x x e ≥对任意x ∈R 恒成立; ①k 0<时,若0x =,则()()0001f k k =>-=-不成立, 所以k 0<不合题意.①0k >时,1x ≤时,()()210xg x x e k x -=->显然成立,只需考虑1x >时情况;转化为21xx e k x ≥-对任意()1,x ∈+∞恒成立令()21xx e h x x =-(1x >),则()min k h x ≤,()()()(()2222(2)111xx xx x x ex x e x x e h x x x +--'==--,当1x <<时,()0h x '<,()h x 单调减;当x >()0h x '>,()h x 单调增;所以()(min 2h x h==+=所以(2k ≤+综上所述,k 的取值范围(0,2+⎡⎣. 10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值;(2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围. 【答案】(1)13a =,403=-b ;(2)2642ln 2<-m【解析】(1)()()23114310f f x ax x''=--, 因为()f x 在()()1,1f 处的切线方程为100++=x y b ,即10y x b =--,此时切线斜率10k =-,则()3(1)13141010f f a k ''=--==-,解得13a =,所以()()333101114ln 314ln 3103f x x x x x x x ⨯-=--=+-, 所以()31110113114ln13333f =⨯+⨯-=+=,则10103b =--,解得403=-b(2)由(1)知()31314ln 3f x x x x =+-, ()32143143x x f x x x x+-'=+-=, 设函数()()33140g x xx x =+->,则()2330g x x '=+>,所以()g x 在()0,∞+为增函数,因为()20g =,令()0g x <,得02x <<;令()0g x >,得2x >, 所以当02x <<时,()0f x '<;当2x >时,()0f x '>, 所以()()3min 126223214ln 214ln 233f x f ==⨯+⨯-=-, 从而12614ln 233<-m ,即2642ln 2<-m 11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈.(1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.【答案】(1)答案见解析(2)15,2ln 28⎛⎤-∞- ⎥⎝⎦【解析】(1)由()ln 1f x ax x =--,(0,)x ∈+∞, 则11()ax f x a x x'-=-=, 当0a ≤时,则()0f x '≤,故()f x 在(0,)+∞上单调递减;当0a >时,令1()0f x x a'=⇒=, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述:当0a ≤时,()f x 在(0,)+∞上单调递减; 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增. (2)①21()ln (1)2g x x x a x =+-+, 21(1)1()(1)x a x g x x a x x-++'=+-+=, 由()0g x '=得2(1)10x a x -++=,①121x x a +=+,121=x x ,①211x x =①32a ≥①111115210x x x x ⎧+≥⎪⎪⎨⎪<<⎪⎩解得1102x <≤.①()()()()222112121211221111ln(1)2ln 22x g x g x x x a x x x x x x ⎛⎫-=+--+-=-- ⎪⎝⎭. 设22111()2ln 022h x x x x x ⎛⎫⎛⎫=--<≤ ⎪⎪⎝⎭⎝⎭,则()2233121()0x h x x x x x '--=--=<,①()h x 在10,2⎛⎤ ⎥⎝⎦上单调递减;当112x =时,min 115()2ln 228h x h ⎛⎫==- ⎪⎝⎭. ①152ln 28k ≤-,即所求k 的取值范围为15,2ln 28⎛⎤-∞- ⎥⎝⎦.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.【答案】(1)证明见解析(2)(i )证明见解析(ii )证明见解析 【解析】(1)由题意知,()1cos 1f x x x x'=+-+,()1,x ∈-+∞, 当()1,0x ∈-时,()1101f x x x x'<+-<<+,所以()f x 在区间()1,0-上单调递减, 当()0,x ∈+∞时,()()g x f x '=,因为()()()22111sin 011g x x x x '=+->>++所以()g x 在区间()0,∞+上单调递增,因此()()00g x g >=,故当()0,x ∈+∞时,()0f x '>,所以()f x 在区间()0,∞+上单调递增, 因此当()1,x ∈-+∞时,()()00f x f ≥=,所以()0f x ≥ (2)(①)()f x 在区间10,2⎛⎫ ⎪⎝⎭上单调递增,()()00f x f >=,因为881288311111C C 147122224e ⎛⎫⎛⎫=+=+++>++=> ⎪ ⎪⎝⎭⎝⎭L , 故83318ln ln ln 022e ⎛⎫-=-< ⎪⎝⎭,所以()1113131131sin ln sin ln 18ln 22826822822f x f π⎛⎫⎛⎫<=+-<+-=+-<⎪ ⎪⎝⎭⎝⎭因此当10,2x ⎛⎫∈ ⎪⎝⎭时,()01f x <<,又因为110,2a ⎛⎫∈ ⎪⎝⎭,所以()()()()()()12110,2n n n a f a ff a f f f a --⎛⎫====∈ ⎪⎝⎭LL L(①)函数()()h x f x x =-(102x <<),则()()11cos 11h x f x x x x''=-=+--+, 令()()x h x ϕ=',则()()0x g x ϕ''=>,所以()x ϕ在区间10,2⎛⎫ ⎪⎝⎭上单调递增;因此()()111217cos 1cos 0222326h x x ϕϕ⎛⎫'=≤=+--=-<⎪⎝⎭, 所以()h x 在区间10,2⎛⎫ ⎪⎝⎭上单调递减,所以()()00h x h <=, 因此()()10n n n n n a a f a a g a +-=-=<, 所以x *∀∈N ,1n n a a +<13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值. 【答案】(1)极小值为1a e-+;无极大值(2)证明过程见解析;(3)2. 【解析】(1)函数()f x 的定义域为0x >,因为()ln f x x x a =+,所以()ln 1f x x =+‘,当1x e >时,()0f x >‘,所以函数()f x 单调递增;当10x e<<时,()0f x <‘,所以函数()f x 单调递减,因此1e是函数()f x 的极小值,故函数()f x 的极值为极小值,值为11()f a e e =-+;无极大值(2)函数()g x 的定义域为0x >,因为()ln ,g x x ax =-所以'1()g x a x=-,因为10a e <<,所以当1x a >时,'()0g x <,因此函数()g x 是递减函数,当10x a<<时,'()0g x >,。

最新高中数学不等式证明的常用方法经典例题优秀名师资料

最新高中数学不等式证明的常用方法经典例题优秀名师资料

关于不等式证明的常用方法重难点归纳(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证(2)综合法是由因导果,而分析法是执果索因 2 不等式证明还有一些常用的方法换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性放缩性是不等式证明中最重要的变形方法之一.有些不等式,从正面证如果不易说清楚,可以考虑反证法凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法典型题例例1证明不等式n n 2131211<++++ (n ∈N *) 知识依托本题是一个与自然数n 有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等例2求使y x+≤a y x +(x >0,y >0)恒成立的a 的最小值知识依托该题实质是给定条件求最值的题目,所求a 的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a 呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值例3已知a >0,b >0,且a +b =1 求证(a +a 1)(b +b 1)≥425 证法一 (分析综合法) 证法二 (均值代换法) 证法三 (比较法) 证法四 (综合法) 证法五 (三角代换法) 巩固练习 1 已知x 、y 是正变数,a 、b 是正常数,且y b x a +=1,x +y 的最小值为 _ 2 设正数a 、b 、c 、d 满足a +d =b +c ,且|a -d |<|b -c |,则ad 与bc 的大小关系是_________ 3 若m <n ,p <q ,且(p -m )(p -n )<0,(q -m )(q -n )<0,则m 、n 、p 、q 的大小顺序是__________ 4 已知a ,b ,c 为正实数,a +b +c =1 求证(1)a 2+b 2+c 2≥31 (2)232323+++++c b a ≤6 5 已知x ,y ,z ∈R ,且x +y +z =1,x 2+y2+z 2=21,证明x ,y ,z ∈[0,32] 6 证明下列不等式 (1)若x ,y ,z∈R ,a ,b ,c ∈R +,则cb a y b ac x a c b +++++22z 2≥2(xy +yz +zx ) (2)若x ,y ,z ∈R +,且x +y +z =xyz ,则z y x y x z x z y +++++≥2(z y x 111++) 7 已知i ,m 、n 是正整数,且1<i ≤m <n(1)证明 n i A im <m i A in (2)证明 (1+m )n >(1+n )m8 若a >0,b >0,a 3+b 3=2,求证 a +b ≤2,ab ≤1不等式知识的综合应用典型题例例1用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h 米,盖子边长为a 米,(1)求a 关于h 的解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V 的最大值(求解本题时,不计容器厚度)知识依托本题求得体积V 的关系式后,应用均值定理可求得最值例2已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时|f (x )|≤1(1)证明|c |≤1;(2)证明当-1 ≤x ≤1时,|g (x )|≤2;(3)设a >0,有-1≤x ≤1时, g (x )的最大值为2,求f (x )知识依托二次函数的有关性质、函数的单调性,绝对值不等式例3设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0的两个根x 1、x 2满足0<x 1<x 2<a1 (1)当x ∈[0,x 1)时,证明x <f (x )<x 1;(2)设函数f (x )的图象关于直线x =x 0对称,证明 x 0<21x 巩固练习1 定义在R 上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a >b >0,给出下列不等式,其中正确不等式的序号是( )①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f(a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A ①③B ②④C ①④D ②③2 下列四个命题中①a +b ≥2ab ②sin 2x +x2sin 4≥4 ③设x ,y 都是正数,若y x 91+=1,则x +y 的最小值是12 ④若|x -2|<ε,|y -2|<ε,则|x -y |<2ε,其中所有真命题的序号是__________4 已知二次函数 f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两实数根为x 1,x 2(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证x 0>-1; (2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围6 设函数f (x )定义在R 上,对任意m 、n 恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1(1)求证 f (0)=1,且当x <0时,f (x )>1;(2)求证 f (x )在R 上单调递减;(3)设集合A ={ (x ,y )|f (x 2)·f (y 2)>f (1)},集合B ={(x ,y )|f (ax -g +2)=1,a ∈R },若A ∩B =?,求a 的取值范围7 已知函数f (x )=1222+++x cbx x (b <0)的值域是[1,3], (1)求b 、c 的值;(2)判断函数F (x )=lg f (x ),当x ∈[-1,1]时的单调性,并证明你的结论;(3)若t ∈R ,求证 lg57≤F (|t -61|-|t +61|)≤lg 513 数列与不等式的交汇题型分析及解题策略【命题趋向】数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识数列的通项公式、前n 项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用. 【典例分析】题型一求有数列参与的不等式恒成立条件下参数问题求得数列与不等式结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D ,则当x ∈D 时,有f(x)≥M 恒成立?f(x)min ≥M ;f(x)≤M 恒成立?f(x)max ≤M ;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得. 【例1】等比数列{a n }的公比q >1,第17项的平方等于第24项,求使a 1+a 2+…+a n >1a 1+1a 2+…+1a n 恒成立的正整数n 的取值范围.【例2】(08·全国Ⅱ)设数列{a n }的前n 项和为S n .已知a 1=a ,an+1=S n +3n ,n ∈N*.(Ⅰ)设b n =S n -3n ,求数列{b n }的通项公式;(Ⅱ)若a n+1≥a n ,n∈N*,求a 的取值范围.【点评】一般地,如果求条件与前nABCDS项和相关的数列的通项公式,则可考虑S n 与a n 的关系求解题型二数列参与的不等式的证明问题此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.【例3】已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S4=24.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设p 、q 都是正整数,且p ≠q ,证明:S p+q <12(S 2p +S 2q ).【点评】利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.【例4】(08·安徽高考)设数列{a n }满足a 1=0,a n+1=ca n 3+1-c ,c∈N*,其中c 为实数.(Ⅰ)证明:a n ∈[0,1]对任意n ∈N*成立的充分必要条件是c ∈[0,1];(Ⅱ)设0<c <13,证明:a n ≥1-(3c)n -1,n ∈N*;(Ⅲ)设0<c <13,证明:a 12+a 22+…+a n 2>n +1-21-3c,n ∈N*.题型三求数列中的最大值问题求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.【例5】(08·四川)设等差数列{a n }的前n 项和为S n ,若S 4≥10,S5≤15,则a 4的最大值为______.【例6】等比数列{a n }的首项为a 1=2002,公比q =-12.(Ⅰ)设f(n)表示该数列的前n 项的积,求f(n)的表达式;(Ⅱ)当n取何值时,f(n)有最大值.题型四求解探索性问题数列与不等式中的探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.【例7】已知{a n }的前n 项和为S n ,且a n +S n =4.(Ⅰ)求证:数列{a n }是等比数列;(Ⅱ)是否存在正整数k ,使S k+1-2S k -2>2成立. 【点评】在导出矛盾时须注意条件“k ∈N *”,这是在解答数列问题中易忽视的一个陷阱.【例8】(08·湖北)已知数列{a n }和{b n }满足:a 1=λ,a n+1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数. (Ⅰ)对任意实数λ,证明数列{a n }不是等比数列;(Ⅱ)试判断数列{b n }是否为等比数列,并证明你的结论;(Ⅲ)设0<a <b,S n 为数列{b n }的前n 项和.是否存在实数λ,使得对任意正整数n ,都有a <S n <b?若存在,求λ的取值范围;若不存在,说明理由.数列与不等式命题新亮点例1 把数列一次按第一个括号一个数,按第二个括号两个数,按第三个括号三个数,按第四个括号一个数…,循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(23) …,则第50个括号内各数之和为_____.点评:恰当的分组,找到各数之间的内在联系是解决之道.此外,这种题对观察能力有较高的要求. 例2 设{}n a 是由正数构成的等比数列, 12n n n b a a++=+,3n n n c a a +=+,则( )A. nn b c > B. n n b c < C. n n b c ≥ D. n n b c ≤点评:此题较易入手,利用作差法即可比较大小,考察数列的递推关系. 例3 若对(,1]x ∈-∞-,不等式21()2()12x x mm --<恒成立,则实数m 的取值范围( )A. (2,3)-B. (3,3)-C. (2,2)-D. (3,4)-例4四棱锥S-ABCD 的所有棱长均为1米,一只小虫从S 点出发沿四棱锥的棱爬行,若在每一顶点处选择不同的棱都是等可能的.设小虫爬行n 米后恰好回到S 点的概率为n P (1)求2P 、3P 的值; (2)求证: 131(2,)n nP P n n N ++=≥∈(3)求证: 2365>(2,)24n n P P P n n N -+++≥∈…例5 已知函数()2f x x x =+.(1)数列{}n a 满足: 10a >,()1n n a f a +'=,若11112ni ia =<+∑对任意的n N ∈恒成立,试求1a 的取值范围; (2)数列{}n b 满足: 11b =,()1n n b f b +=()n N ∈,记11n nc b =+,k S 为数列{}n c 的前k 项和, k T 为数列{}n c 的前k 项积,求证1710nk k k kT S T =<+∑. 例6 (1)证明: ()ln1(0)x x x +<> (2)数列{}n a 中. 11a =,且()11211122n n n a a n n --??=++≥ ???; ①证明: ()724n a n ≥≥ ②()21n a e n <≥ 【专题训练】1.已知无穷数列{a n }是各项均为正数的等差数列,则有( )A .a 4a 6<a 6a 8B .a 4a 6≤a 6a 8C .a 4a 6>a 6a 8D .a 4a 6≥a 6a 82.设{a n }是由正数构成的等比数列,b n =a n+1+a n+2,c n =a n +a n+3,则( ) A .b n >c nB .b n <c nC .b n ≥c nD .b n ≤c n3.已知{a n }为等差数列,{b n }为正项等比数列,公比q≠1,若a 1=b 1,a 11=b 11,则( )A .a 6=b 6B .a 6>b 6C .a 6<b 6D .a 6>b 6或a 6<b 6 4.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =( ) A .9 B .8 C .7 D .6 5.已知等比数列{a n }的公比q >0,其前n 项的和为S n ,则S 4a 5与S 5a 4的大小关系是( )A .S 4a 5<S 5a 4B .S 4a 5>S 5a 4C .S 4a 5=S 5a 4D .不确定 6.设S n =1+2+3+…+n ,n ∈N*,则函数f(n)=S n(n +32)S n+1的最大值为( )A .120B .130C .140D .1507.已知y 是x 的函数,且lg3,lg(sinx -12),lg(1-y)顺次成等差数列,则( )A .y 有最大值1,无最小值B .y 有最小值1112,无最大值C .y 有最小值1112,最大值1D .y 有最小值-1,最大值1 8.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( )A.(-∞,-1]B.(-∞,-1)∪(1,+∞)C.[3,+∞)D.(-∞,-1]∪[3,+∞)9.设3b 是1-a 和1+a 的等比中项,则a +3b 的最大值为( )A .1B .2C .3D .410.设等比数列{a n }的首相为a 1,公比为q ,则“a 1<0,且0<q <1”是“对于任意n ∈N*都有a n+1>a n ”的( )A .充分不必要条件B .必要不充分条件C .充分比要条件D .既不充分又不必要条件11.{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最小值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .2112.设f(x)是定义在R 上恒不为零的函数,对任意实数x 、y ∈R ,都有f(x)f(y)=f(x +y),若a 1=12,a n =f(n)(n ∈N*),则数列{a n }的前n 项和S n 的取值范围是 ( ) A .[12,2)B .[12,2]C .[12,1)D .[12,1]13.等差数列{a n }的前n 项和为S n ,且a 4-a 2=8,a 3+a 5=26,记T n =S nn2,如果存在正整数M ,使得对一切正整数n ,T n ≤M 都成立.则M 的最小值是__________.14.无穷等比数列{a n }中,a 1>1,|q|<1,且除a 1外其余各项之和不大于a 1的一半,则q 的取值范围是________. 15.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b)2cd的最小值是________.A.0B.1C.2D.416.等差数列{a n }的公差d 不为零,S n 是其前n 项和,给出下列四个命题:①A .若d <0,且S 3=S 8,则{S n }中,S 5和S 6都是{S n }中的最大项;②给定n ,对于一定k ∈N*(k <n),都有a n -k +a n+k =2a n ;③若d >0,则{S n }中一定有最小的项;④存在k ∈N*,使a k -a k+1和a k -a k -1同号其中真命题的序号是____________.17.已知{a n }是一个等差数列,且a 2=1,a 5=-5.(Ⅰ)求{a n }的通项na ;(Ⅱ)求{a n }前n 项和S n 的最大值.18.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n}满足b 1=1,b n +1=b n+2a n ,求证:b n·b n +2<b 2n +1.19.设数列{a n }的首项a 1∈(0,1),a n =3-a n -12,n =2,3,4,…. (Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =a n 3-2a n ,证明b n <b n+1,其中n 为正整数. 20.已知数列{a n }中a 1=2,a n+1=(2-1)( a n+2),n =1,2,3,….(Ⅰ)求{a n }的通项公式;(Ⅱ)若数列{a n }中b 1=2,b n+1=3b n +42b n +3,n =1,2,3,….证明:2<b n ≤a 4n -3,n =1,2,3,… 21.已知二次函数y=f(x)的图像经过坐标原点,其导函数为f '(x)=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N*)均在函数y =f(x)的图像上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N*都成立的最小正整数m22.数列{}n a 满足11a =,21()n n a n n a λ+=+-(12n = ,,),λ是常数.(Ⅰ)当21a =-时,求λ及3a 的值;(Ⅱ)数列{}n a 是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;(Ⅲ)求λ的取值范围,使得存在正整数m ,当n m >时总有0n a <.利用导数处理与不等式有关的问题一、利用导数证明不等式(一)、利用导数得出函数单调性来证明不等式。

导数与不等式的证明及函数零点、方程根的问题

导数与不等式的证明及函数零点、方程根的问题

05 总结与展望
导数与不等式证明及函数零点、方程根问题的总结
导数与不等式证明
导数是研究函数性质的重要工具,通过导数可以研究函数的单调性、极值和最值等。不等 式证明则是数学中常见的题型,利用导数可以证明不等式,如AM-GM不等式、CauchySchwarz不等式等。
函数零点问题
函数的零点是指满足$f(x)=0$的$x$值。研究函数的零点对于理解函数的性质和解决方程 的根的问题具有重要意义。通过导数可以研究函数的零点个数和位置,以及零点附近的函 数性质。
感谢您的观看
• 应用领域的拓展:导数与不等式证明及函数零点、方程根的问题不仅在数学领 域有广泛应用,在其他学科和工程领域也有着重要的应用价值。例如,在经济 学、物理学和社会科学等领域,这些问题都可能成为重要的研究课题。
• 与其他数学分支的交叉融合:随着数学各分支之间的交叉融合,导数与不等式 证明及函数零点、方程根的问题可能会与其他数学分支产生更多的交叉点。例 如,与概率论、统计学和复分析等领域的结合可能会产生新的研究方向和应用 场景。
导数在求解函数零点、方程根中的注意事项
注意定义域
在使用导数研究函数性质 时,需要注意函数的定义 域,确保导数在定义域内 连续。
考虑多解情况
在求解函数零点或方程根 时,需要注意多解情况, 全面考虑所有可能的解。
注意函数的奇偶性
在利用导数研究函数性质 时,需要注意函数的奇偶 性,以便更准确地判断函 数的性质。
不等式
不等式是表示两个数或两个量之 间大小关系的数学表达式。
导数与不等式的性质
01
导数大于零,函数在该区间内单 调递增;导数小于零,函数在该 区间内单调递减。
02
不等式的基本性质包括传递性、 加法性质、乘法性质等。

考点20利用导数证明不等式(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版

考点20利用导数证明不等式(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版

考点20利用导数证明不等式(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】导数中的不等式证明是高考的常考题型,常与函数的性质、函数的零点与极值、数列等相结合,虽然题目难度较大,但是解题方法多种多样,如构造函数法、放缩法等,针对不同的题目,灵活采用不同的解题方法,可以达到事半功倍的效果【核心题型】题型一 将不等式转化为函数的最值问题待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.【例题1】(2024·陕西咸阳·模拟预测)已知1201x x <<<,下列不等式恒成立的是( )A .1221e e x xx x <B .2112ln ln x x x x >C .1122ln ln x x x x <D .11e ln x x >【变式1】(2024·全国·模拟预测)下列正确结论的个数为( )①13sin1010π> ②141sin sin 334< ③16tan 16> ④()tan π3sin 3->A .1B .2C .3D .4【变式2】(2024·四川成都·三模)已知函数2()ln ,f x ax x a =-ÎR .(1)讨论函数()f x 的单调性;(2)设0,()()a g x f x bx >=+,且1x =是()g x 的极值点,证明:2+ln 12ln 2b a £-.【变式3】(2024·四川成都·三模)已知函数()()()e sin 1,0,πxf x ax x x x =---Î.(1)若12a =,证明:()0f x >;(2)若函数()f x 在()0,π内有唯一零点,求实数a 的取值范围.题型二 将不等式转化为两个函数的最值进行比较若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.【例题2】(2023·河南开封·模拟预测)已知13a =,13e 1b =-,4ln 3c =,则( )A .a b c <<B .a c b <<C .c<a<bD .b<c<a【变式1】(2024·全国·模拟预测)已知1e 1ln ,0aa b =+>,则下列结论正确的是( )A .e 2a b<-B .1lna b<C .1a b<-D .1e lnba<【变式2】(2024·浙江杭州·模拟预测)已知函数()()1122e ,e e e 1xxx x f x m m g x -=+-=++.(1)当0m =时,证明:()e xf x -<;(2)当0x <时,()g x t ³,求t 的最大值;(3)若()f x 在区间()0,¥+存在零点,求m 的取值范围.【变式3】(2024·贵州黔西·一模)已知函数29()ln 22f x x x x x =--.(1)判断()f x 的单调性;(2)证明:1352193ln(21)35721n n n n -æö++++>-+ç÷+èøL .题型三 适当放缩证明不等式导数方法证明不等式中,最常见的是e x 和ln x 与其他代数式结合的问题,对于这类问题,可以考虑先对e x 和ln x 进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号;(2)ln x ≤x -1,当且仅当x =1时取等号.【例题1】(2024·河北沧州·一模)已知等比数列{}n a 的前n 项和为413,1,e Sn S a S >=,则数列{}n a 的公比q 满足( )A .01q <£B .10q -<<C .1q >D .1q £-【变式1】(2024·广东·模拟预测)令()sin 0.5cos1cos 2cos ,N n a n n °°°°+=+++ÎL .则n a 的最大值在如下哪个区间中( )A .(0.49,0.495)B .(0.495,0.5)C .(0.5,0.505)D .(0.505,0.51)【变式2】(2024·全国·模拟预测)设整数1p >,1x >-且0x ¹,函数()(1)1p f x x px =+--.(1)证明:()0f x >;(2)设0x >,证明:ln(1)x x +<;(3)设*n ÎN ,证明:111321232ln(1)n n n n ++++<-+L .【变式3】(23-24高三下·河南·阶段练习)已知函数()(1)1(1)r f x x rx x =+-->-,0r >且1r ¹.(1)讨论()f x 的单调性;(2)6332的大小,并说明理由;(3)当*n ÎN时,证明:2sin 176n kk n =<+å.【课后强化】基础保分练一、单选题1.(22-23高三上·四川绵阳·开学考试)若1201x x <<<,则( )A .2121e e ln ln x xx x ->-B .2121e e ln ln x xx x -<-C .1221e e x xx x >D .1221e e x xx x <2.(2023·陕西咸阳·三模)已知12023a =,20222023eb -=,1cos 20232023c =,则( )A .a b c >>B .b a c >>C .b c a>>D .a c b>>3.(23-24高三上·云南保山·期末)已知16a =,7ln 6b =,1tan 6c =,则( )A .b a c <<B .a b c <<C .a c b<<D .c<a<b4.(2024·全国·模拟预测)设13ln4,tan tan1,22a b c ==+=,则( )A .a b c <<B .b c a<<C .c<a<bD .a c b<<二、多选题5.(23-24高三上·广西百色·阶段练习)函数()21ln 2f x x ax a x =-+的两个极值点分别是12,x x ,则下列结论正确的是( )A .4a >B .22128x x +<C .1212x x x x +=D .()()()221212164f x f x x x +<+-6.(2023·福建·模拟预测)机械制图中经常用到渐开线函数inv tan x x x =-,其中x 的单位为弧度,则下列说法正确的是( )A .inv x x ×是偶函数B .inv x 在ππ(π,π)22k k --+上恰有21k +个零点(N k Î)C .inv x 在ππ(π,π)22k k --+上恰有41k +个极值点(N k Î)D .当π02x -<<时,inv sin x x x <-三、填空题7.(2023·海南·模拟预测)已知函数()1ln e x x af x --=,()1x a g x x--=,若对任意[)1,x ¥Î+,()()f x g x £恒成立,则实数a 的取值范围是 .8.(2023·河南开封·模拟预测)实数x ,y 满足()23e 31e x y x y -£--,则3xy -的值为 .四、解答题9.(2023·吉林长春·模拟预测)已知函数()21()1ln 2f x x x =--.(1)求()f x 的最小值;(2)证明:47ln332>.10.(2024·广东佛山·二模)已知()21e 4e 52x xf x ax =-+--.(1)当3a =时,求()f x 的单调区间;(2)若()f x 有两个极值点1x ,2x ,证明:()()12120f x f x x x +++<.11.(2023·四川成都·二模)已知函数()e sin xf x x -=.(1)求()f x 在()()0,0f 处的切线方程;(2)若0x 是()f x 的最大的极大值点,求证:()01f x <<综合提升练一、单选题1.(22-23高三上·河南·阶段练习)若32e 3ln 22x yx y +-=+,其中2,2x y >>,则( )A .e x y<B .2x y>C .24e xy>D .2e x y>2.(2023·福建·模拟预测)已知ln 2a =,1e b a=-,2a c a =-,则( )A .b c a>>B .b a>C .c a b>>D.c b a>>3.(2023·河北衡水·三模)若a =1b =-,c =则( )A .c a b <<B .c b a <<C .b c a<<D .a c b<<4.(2023·新疆·三模)已知数列{}n a 中,11a =,若1nn nna a n a +=+(N n *Î),则下列结论中错误的是( )A .325a =B .1111n na a +-£C .1ln 1nn a <-(2,N n n *³Î)D .2111112n n a a ++-<5.(2023·河南·模拟预测)设a ,b 为正数,且2ln ab a b=-,则( ).A .112a b<<B .12a b<<C .112ab <<D .12ab <<6.(2024·上海虹口·二模)已知定义在R 上的函数()(),f x g x 的导数满足()()f x g x ¢£¢,给出两个命题:①对任意12,x x ÎR ,都有()()()()1212f x f x g x g x -£-;②若()g x 的值域为[]()(),,1,1m M f m f M -==,则对任意x ÎR 都有()()f x g x =.则下列判断正确的是( )A .①②都是假命题B .①②都是真命题C .①是假命题,②是真命题D .①是真命题,②是假命题7.(2024·四川泸州·三模)已知0x >,e ln 1x y +=,给出下列不等式①ln 0x y +<;②e 2x y +>;③ln e 0y x +<;④1x y +>其中一定成立的个数为( )A .1B .2C .3D .48.(2024·四川攀枝花·三模)已知正数,,a b c 满足ln e c a b b ca ==,则( )A .a b c >>B .a c b>>C .b a c>>D .b c a>>二、多选题9.(2023·福建龙岩·二模)已知函数()ln n f x x n x =-(*n ÎN )有两个零点,分别记为n x ,n y (<n n x y );对于0a b <<,存在q 使)()()(()n n n f f f a q b a b -=-¢,则( )A .()n f x 在()1,+¥上单调递增B .e n >(其中e 2.71828=L 是自然对数的底数)C .11n n n n x x y y ++-<-D .2q a b<+10.(2023·河南信阳·模拟预测)已知,,,a b c d ÎR ,满足0a b c d >>>>,则( )A .sin sin a b >B .sin sin a a b b ->-C .a bd c>D .ad bc ab cd+>+11.(2024·河北沧州·一模)已知函数()e xf x =与函数()211g x x =+-的图象相交于()()1122,,,A x y B x y 两点,且12x x <,则( )A .121y y =B .211exy =C .21211y y x x ->-D .221x y =三、填空题12.(2023·四川成都·三模)已知函数()2()2ln 32f x x a x x =+-+,a ÎR .当1x >时,()0f x >,则实数a 的取值范围为.13.(23-24高三下·广东云浮·阶段练习)若实数a ,b 满足()()221ln 2ln 1a b a b -³+-,则a b += .14.(2024·全国·模拟预测)若实数a ,b ,c 满足条件:()2e e 2e 1a b ca b c a -++-+=-,则444abca b c ++的最大值是 .四、解答题15.(2024·青海西宁·二模)已知函数()()()2222ln R f x x a x a x a =+--Î.(1)若2a =,求()f x 的极值;(2)若()()2222ln g x f x a x x =+-+,求证:()12g x ³.16.(2024·山东济南·二模)已知函数()()()22l ,n 1e x f x ax x g x x ax a =--=-ÎR .(1)讨论()f x 的单调性;(2)证明:()()f x g x x +³.17.(2024·上海松江·二模)已知函数ln y x x a =×+(a 为常数),记()()y f x x g x ==×.(1)若函数()y g x =在1x =处的切线过原点,求实数a 的值;(2)对于正实数t ,求证:()()()ln 2f x f t x f t t a +-³-+;(3)当1a =时,求证:e ()cos x g x x x+<.18.(2024·上海嘉定·二模)已知常数m ÎR ,设()ln mf x x x=+,(1)若1m =,求函数()y f x =的最小值;(2)是否存在1230x x x <<<,且1x ,2x ,3x 依次成等比数列,使得()1f x 、()2f x 、()3f x 依次成等差数列?请说明理由.(3)求证:“0m £”是“对任意()12,0,x x Î+¥,12x x <,都有()()()()1212122f x f x f x f x x x ¢¢+->-”的充要条件.19.(2024·全国·模拟预测)已知函数()()2e ln 1xf x a x =-+.(1)若2a =,讨论()f x 的单调性.(2)若0x >,1a >,求证:()1ln 2f x a a >-.拓展冲刺练一、单选题1.(2023·上海奉贤·二模)设n S 是一个无穷数列{}n a 的前n 项和,若一个数列满足对任意的正整数n ,不等式11n n S S n n +<+恒成立,则称数列{}n a 为和谐数列,有下列3个命题:①若对任意的正整数n 均有1n n a a +<,则{}n a 为和谐数列;②若等差数列{}n a 是和谐数列,则n S 一定存在最小值;③若{}n a 的首项小于零,则一定存在公比为负数的一个等比数列是和谐数列.以上3个命题中真命题的个数有( )个A .0B .1C .2D .32.(2023·新疆乌鲁木齐·三模)已知0.19e a -=,0.9b =,2ln0.91c =+,则( )A .b c a>>B .a c b>>C .c b a>>D .b a c>>3.(2023·湖南长沙·一模)已知()e 0.1e 0.1a +=-,e e b =,()e 0.1e 0.1c -=+,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b a c<<D .a c b<<4.(2024·青海·二模)定义在R 上的函数()f x 满足()()2231218f x f x x x --=-+,()f x ¢是函数()f x 的导函数,以下选项错误的是( )A .()()000f f ¢+=B .曲线()y f x =在点()()1,1f 处的切线方程为210x y --=C .()()f x f x m -¢³在R 上恒成立,则2m £-D .()()74ee xf x f x -³-¢-二、多选题5.(2024·全国·模拟预测)已知n S 为正项数列{}n a 的前n 项和,且221n n n a S a -=,则( )A .=n aB .1n na a +>C .1ln n nS n S -³D .212n n n S S S +++>6.(2024·全国·模拟预测)已知1e 1ln ,0aa b=+>,则下列结论正确的是( )A .e 2a b >-B .1lna b<C .1e lnb a<D .1a b>-三、填空题7.(2023·浙江温州·二模)已知函数e e()ln ln f x x x x x=++-,则()f x 的最小值是 ;若关于x 的方程()22f x ax =+有1个实数解,则实数a 的取值范围是.8.(2023·福建福州·模拟预测)已知定义在()0,¥+上函数()f x 满足:()()ln 1x f x x +<<,写出一个满足上述条件的函数()f x = .四、解答题9.(2024·辽宁·模拟预测)已知函数()()sin ln sin f x x x =-,()1,2x Î(1)求()f x 的最小值;(2)证明:()sin sin eln sin 1x xx x -×->.10.(2024·四川攀枝花·三模)已知函数()()ln 1R af x x a x=+-Î.(1)当2a =时,求函数()f x 在1x =处的切线方程;(2)设函数()f x 的导函数为()f x ¢,若()()()1212f x f x x x ¢¢=¹,证明:()()1211f x f x a++>.11.(2024·山西晋城·二模)已知函数()()e x f x x a x a =-++(a ÎR ).(1)若4a =,求()f x 的图象在0x =处的切线方程;(2)若()0f x ³对于任意的[)0,x Î+¥恒成立,求a 的取值范围;(3)若数列{}n a 满足11a =且122nn n a a a +=+(*n ÎN ),记数列{}n a 的前n 项和为n S ,求证:[]1ln (1)(2)3n S n n +<++.。

根据导数定义证明不等式的例题

根据导数定义证明不等式的例题

根据导数定义证明不等式的例题导数是微积分中的重要概念之一,它描述的是函数在某一点处的变化率。

我们可以利用导数的定义来证明一些不等式,以下是一个例题:证明:对于任意正整数n,有如下不等式成立:1 + 2x + 3x^2 + … + nx^(n-1) < (1 + x)^(n+1) / (1 + x)其中x>0。

解:我们可以根据导数的定义来证明这个不等式。

首先,我们考虑左边的求和式,将它表示成一个函数f(x)的形式:f(x) = 1 + 2x + 3x^2 + … + nx^(n-1)我们可以对f(x)求导数,得到:f’(x) = 2 + 6x + 12x^2 + … + n(n-1)x^(n-2)接下来,我们考虑右边的分式,将它表示成一个函数g(x)的形式:g(x) = (1 + x)^(n+1) / (1 + x)我们同样可以对g(x)求导数,得到:g’(x) = (n+1)(1+x)^n / (1+x)^2 - (1+x)^(n+1) / (1+x)^2 = n(1+x)^(n-1) / (1+x)^2= n(1+x)^(n-3) * (1+x)^2 / (1+x)^2= n(1+x)^(n-3)接下来,我们证明f’(x) < g’(x) 对于所有的x>0都成立。

首先,当x=0时,f’(x)=2,g’(x)=n。

显然,当n>2时,f’(x)<g’(x)。

接着,我们假设对于某个x>0,不等式f’(x) < g’(x)成立,即:2 + 6x + 12x^2 + … + n(n-1)x^(n-2) < n(1+x)^(n-3)我们希望证明对于x的任意增加,上述不等式仍然成立。

为此,我们考虑不等式两边同时乘以x:2x + 6x^2 + 12x^3 + … + n(n-1)x^(n-1) < nx(1+x)^(n-3) 现在我们将右边的式子扩展一下:nx(1+x)^(n-3) = (n-2)x(1+x)^(n-2) + (2x)(n-2)(1+x)^(n-2) 显然,右边的式子可以表示为两个小于g’(x)的项之和。

专题一 第5讲 导数与不等式的证明

专题一 第5讲 导数与不等式的证明
设 h(x)=x-1-ln x,则 h′(x)=1-1x=0⇒x=1,
可得h(x)在(0,1)上单调递减,在(1,+∞)上单调递增, 所以h(x)=x-1-ln x≥h(1)=0,即x-1≥ln x.
于是,当a≤1时,ex-a≥x-a+1≥x+a-1≥ln(x+a), 注意到以上三个不等号的取等条件分别为x=a,a=1,x+a=1,它 们无法同时取等, 所以当a≤1时,ex-a>ln(x+a),即f(x)>0.
12
当a=e时,f(x)=ln(e-x)-x+e,
要证 f(e-x)<ex+2xe,即证 ln x+x<ex+2xe,即证lnxx+1<exx+21e.

g(x)=lnx
x+1(x>0),则
1-ln g′(x)= x2
x ,
所以当0<x<e时,g′(x)>0,当x>e时,g′(x)<0,
所以g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,
当t∈(0,1)时,g′(t)<0,g(t)单调递减, 假设g(1)能取到, 则g(1)=0,故g(t)>g(1)=0; 当t∈(1,+∞)时,g′(t)>0,g(t)单调递增, 假设g(1)能取到,则g(1)=0,故g(t)>g(1)=0,
x+ln1-x 综上所述,g(x)= xln1-x <1 在 x∈(-∞,0)∪(0,1)上恒成立.
方法二 f(x)=ln ex=1-ln x. 欲证 f(x)<1+1x-x2ex,只需证1-elxn x+x2-1x<1,
因为x∈(0,1),所以1-ln x>0,ex>e0=1,
则只需证 1-ln x+x2-1x<1, 只需证 ln x-x2+1x>0, 令 t(x)=ln x-x2+1x,x∈(0,1),

利用导数证明不等式的常见题型及解题技巧

利用导数证明不等式的常见题型及解题技巧

利用导数证明不等式的常见题型及解题技巧利用导数证明不等式的常见题型及解题技巧趣题引入已知函数x x x g ln )(= 设b a <<0, 证明:2ln )()2(2)()(0a b b a b g a g -<+-+< 分析:主要考查利用导数证明不等式的能力。

证明:1ln )(+='x x g ,设)2(2)()()(x a g x g a g x F +-+= 2ln ln )2()(21)2(2)()(''''x a x x a g x g x a g x g x F +-=+-=⨯+-=' 当a x <<0时 0)(<'x F ,当a x >时 0)(>'x F ,即)(x F 在),0(a x ∈上为减函数,在),(+∞∈a x 上为增函数∴0)()(min ==a F x F ,又a b > ∴0)()(=>a F b F , 即0)2(2)()(>+-+b a g b g a g 设2ln )()2(2)()()(a x x a g x g a g x G --+-+= )ln(ln 2ln 2ln ln )(x a x x a x x G +-=-+-='∴ 当0>x 时,0)('<x G ,因此)(x G 在区间),0(+∞上为减函数;因为0)(=a G ,又a b > ∴0)()(=<a G b G ,即 02ln )()2(2)()(<--+-+a x x a g x g a g 故2ln )()2(2)()(a x x a g x g a g -<+-+ 综上可知,当 b a <<0时,2ln )()2(2)()(0a b b a b g a g -<+-+< 本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。

导数与不等式综合应用

导数与不等式综合应用

导数与不等式综合应用在数学中,导数是指函数在某一点上的变化率。

而不等式则是用于比较两个数或者两个函数之间的关系。

导数与不等式的综合应用则指的是利用导数的性质来解决不等式问题。

本文将探讨导数与不等式的综合应用,为读者提供相关知识与解决问题的方法。

一、导数与单调性导数可以表示函数在某一点上的变化趋势,从而可以帮助我们确定函数的单调性。

对于一个定义在区间(a, b)上的函数f(x),如果在该区间的每个点x处,f'(x)>0,那么我们可以得出函数f(x)是递增的结论。

如果在该区间的每个点x处,f'(x)<0,那么函数f(x)是递减的结论。

利用这个性质,我们可以解决一些不等式问题。

例如,对于不等式f(x)>0,我们可以通过求解方程f(x)=0找出函数的零点,再根据导数的正负来确定函数在零点两侧的正负号,从而判断不等式的解集。

二、导数与最值对于一个定义在闭区间[a, b]上的函数f(x),如果在开区间(a, b)内,f(x)的导数存在且在x=c处导数为零,那么点c就是函数f(x)的一个临界点。

根据函数的单调性,我们可以得知,在c的左侧,f(x)是递增的,在c的右侧,f(x)是递减的。

利用这个性质,我们可以解决求最值的问题。

例如,对于一个定义在闭区间[a, b]上的连续函数f(x),要求其在该区间上的最大值或最小值,我们可以进行以下步骤:1. 求出函数f(x)的导数f'(x);2. 求出导数f'(x)的零点,即f'(x)=0的解;3. 将求得的零点与区间的端点a、b比较,求出最值。

三、导数与不等式导数还可以帮助我们解决不等式问题。

根据导数的符号,我们可以确定函数的增减性质。

例如,如果在一个区间内,f'(x)>0,那么可以得出函数f(x)在该区间上是递增的。

如果在一个区间内,f'(x)<0,那么可以得出函数f(x)在该区间上是递减的。

导数及不等式综合题集锦

导数及不等式综合题集锦

导数及不等式综合题集锦1.已知函数()ln ,f x x a x =+其中a 为常数,且1a ≤-.(Ⅰ)当1a =-时,求()f x 在2[e,e ](e=2.71828…)上的值域; (Ⅱ)若()e 1f x ≤-对任意2[e,e ]x ∈恒成立,求实数a 的取值范围. 2.已知函数.,1ln )(R ∈-=a xx a x f (I )若曲线)(x f y =在点))1(,1(f 处的切线与直线02=+y x 垂直,求a 的值; (II )求函数)(x f 的单调区间;(III )当a=1,且2≥x 时,证明:.52)1(-≤-x x f 3.已知322()69f x x ax a x =-+(a ∈R ).(Ⅰ)求函数()f x 的单调递减区间;(Ⅱ)当0a >时,若对[]0,3x ∀∈有()4f x ≤恒成立,求实数a 的取值范围. 4.已知函数).,()1(31)(223R ∈+-+-=b a b x a ax x x f (I )若x=1为)(x f 的极值点,求a 的值;(II )若)(x f y =的图象在点(1,)1(f )处的切线方程为03=-+y x ,(i )求)(x f 在区间[-2,4]上的最大值;(ii )求函数)(])2()('[)(R ∈+++=-m e m x m x f x G x 的单调区间5.已知函数.ln )(xa x x f += (I )当a<0时,求函数)(x f 的单调区间;(II )若函数f (x )在[1,e]上的最小值是,23求a 的值.6.已知函数∈-++=b a m x b ax mx x f ,,,)1(3)(223R (1)求函数)(x f 的导函数)(x f ';(2)当1=m 时,若函数)(x f 是R 上的增函数,求b a z +=的最小值;(3)当2,1==b a 时,函数)(x f 在(2,+∞)上存在单调递增区间,求m 的取值范围.7.已知函数()2ln .pf x px x x=-- (1)若2p =,求曲线()(1,(1))f x f 在点处的切线;(2)若函数()f x 在其定义域内为增函数,求正实数p 的取值范围; (3)设函数2(),[1,]eg x e x=若在上至少存在一点0x ,使得00()()f x g x >成立,求实数p 的取值范围。

导数综合不等式恒成立问题主参换位法

导数综合不等式恒成立问题主参换位法

导数综合不等式恒成立问题主参换位法
当我们在解题时,经常会遇到需要证明一些不等式的问题。

而对于仅包含导数的不等式,我们可以使用主参换位法来进行求解。

主参换位法是一种基于函数的单调性来推导不等式的方法。

它的基本思想是通过构造一个合适的函数作为主参,在这个函数上进行主参换位,然后通过对比这个函数与原函数的大小关系,来得到原不等式的结论。

具体的步骤如下:
1. 将原不等式表示成导数的形式,即将不等式两边求导。

2. 构造一个主参函数,使其在有关区间上的导数始终大于等于原函数的导数。

3. 对主参函数进行主参换位,即将主参函数表示出关于原函数的形式。

4. 比较主参函数与原函数的大小关系,得到原不等式的结论。

下面以一个例子来说明主参换位法的应用:
例:证明对于任意实数x,有x^2 + 3 >= 4x。

解:首先将原不等式表示成导数的形式,即求导。

导数的形式为:2x >= 4。

然后我们构造主参函数,使其在有关区间上的导数始终大于等于原函数的导数。

主参函数的形式为:2x。

接下来我们对主参函数进行主参换位,即将主参函数表示出关于原函数的形式。

主参换位得到:2x - 4 >= 0。

最后我们比较主参函数与原函数的大小关系,得到原不等式的结论。

原不等式的结论为:2x - 4 >= 0,即 x^2 + 3 >= 4x。

专题15 利用导数证明多元不等式(解析版)

专题15 利用导数证明多元不等式(解析版)

专题15 利用导数证明多元不等式【热点聚焦与扩展】利用函数性质、导数证明不等式,是导数综合题常涉及的问题,多元不等式的证明则是导数综合题的一个难点,其困难之处是如何构造、转化合适的一元函数,本专题拟通过一些典型模拟习题为例介绍常用的处理方法.1、在处理多元不等式时起码要做好以下准备工作: (1)利用条件粗略确定变量的取值范围(2)处理好相关函数的分析(单调性,奇偶性等),以备使用2、若多元不等式是一个轮换对称式(轮换对称式:一个元代数式,如果交换任意两个字母的位置后,代数式不变,则称这个代数式为轮换对称式),则可对变量进行定序3、证明多元不等式通常的方法有两个(1)消元:① 利用条件代入消元 ② 不等式变形后对某多元表达式进行整体换元(2)变量分离后若结构相同,则可将相同的结构构造一个函数,进而通过函数的单调性与自变量大小来证明不等式(3)利用函数的单调性将自变量的不等关系转化为函数值的不等关系,再寻找方法.【经典例题】例1.(2020·江西南昌二中高三三模)已知函数()f x kx lnx =-,()k R ∈. (1)讨论函数()f x 的单调性;(2)若()f x 有两个零点1x ,212()x x x <,证明:121ek x e x ->. 【答案】(1)答案不唯一,具体见解析;(2)证明见解析. 【解析】(1)由题设可得定义域(0,)x ∈+∞,11()kx f x k x x-'=-=, ①当0k ,1()0f x k x'=-<恒成立,()f x 在(0,)+∞上单调递减; ②当0k >,1()1()k x k f x k x x-'=-=, 当1(0,)x k ∈,()0f x '<,故()f x 在1(0,)k 单调递减;当1(,)x k ∈+∞,()0f x '>,故()f x 在1(,)k+∞单调递增.n(2)证明:由(1)知,()f x 有两个零点1x ,2x ,则0k >且1()10f lnk k =+<,得1k e <<0,则1e k>, 又12x x <,∴21x e k>>, 又11ekee k<<,且()()0ek ek ekf e ke ek k e e =-=-<, 又1()0f x =,即1()()ekf e f x <,又()f x 在1(0,)k 上单调递减,111(0,),(0,)eke x k k∈∈∴10ek x e <<,又2x e >,∴121ekekx e e x e ->=,所以原命题成立. 例2.(2020·安徽高三三模)已知点()()00,P x f x 是曲线()()211ln 2f x x a x a x =-++上任意一点,a R ∈. (1)若在曲线()y f x =上点P 处的切线的斜率恒大于23331a a a x +---,求实数a 的取值范围. (2)点()()11,A x g x 、()()22,B x g x 是曲线()()212g x x f x =-上不同的两点,设直线AB 的斜率为k .若1a =-,求证:()122k x x +>.【答案】(1)32a <-或3a ≥;(2)证明见解析. 【解析】(1)由()()211ln 2f x x a x a x =-++得()()()()()2111a a x x a x f a x a x x x x x-+-+'=-++-==, 由题意得,当00x >时,()22000013331x a x a a a a x x -+++->--恒成立, 即当00x >时,22002230x ax a a ++-->恒成立,设函数()()222230F x x ax a a x =++-->,则其对称轴方程为x a =-,()0F x >在()0,∞+上恒成立.若0a -≤,即0a ≥,则()F x 在()0,∞+上单调递增, ∵()0F x >在()0,∞+上恒成立,∴2 230a a --≥,解得3a ≥;若0a <,则()0F a ->,即230a -->,解得32a <-. 综上可得32a <-或3a ≥. (2)若1a =-,则()()21ln 2g x x f x x =-=,由于12x x ≠,不妨先设120x x >>, 令12x t x =,()()2ln 112tf t t t =+>+,()()()()()()22222411210212121t t t f t t t t t t t -++--'=+==>+++, 故()2ln 12t f t t =++在()1,+∞上单调递增, 所以()()11f t f >=,即1212ln 2121x x x x +>+,∴121212ln ln 2x x x x x x -->+,∴()()()1212122g x g x x x x x -+⎡⎤⎣⎦>-,∴()122k x x +>得证. 综上可知,原命题得证.例3.(2020·四川高三三模)已知函数()ln 13xf x a x =--. (1)讨论函数()f x 的单调性;(2)若函数()f x 有两个零点1x 、2x ,且12x x >,求证:211111x x a +>. 【答案】(1)答案见解析;(2)证明见解析. 【解析】(1)()f x 的定义域为()0,∞+,()1333a x a f x x x-'=-= 当0a ≤时,()0f x '>,则()f x 在()0,+∞上是增函数 当0a >时,()03f x x a '>⇔>;()003f x x a '>⇔<<, 所以()f x 在()0,3a 上是减函数,在()3,a +∞上是增函数综上,当0a ≤时,()f x 在()0,∞+上是增函数;当0a >时,()f x 在()0,3a 上是减函数,在()3,a +∞上是增函数 (2)若函数()f x 有两个零,点1x ,2x ,根据(1),可得0a >. 不妨设210x x <<,由()()120f x f x ==,得11223ln 30,3ln 30,x a x x a x --=⎧⎨--=⎩两式相减,得11223ln x x x a x -=,解得12123ln x x ax x -=, 要证明211111x x a +>,即证()12211211113ln x x x x x x -+>即证()()12122111ln311x x x x x x ->+, 设()121x u u x =>,则()()111ln 311u u u ->+ 则()()()()111ln 1311u g u u u u -=->+,则()()()()2221114401111u g u u u u u -'=-=≥++,所以()g u 在()1,+∞上为增函数,从而()()10g u g >=,即()()111ln 311u u u ->+成立,因此,()21110x a x -+>成立.即211111x x a +>例4.(2020·宜宾市叙州区第二中学校高三三模)已知函数()()1ln f x x a ax=+∈R 在1x =处的切线与直线210x y -+=平行.(1)求实数a 的值,并判断函数()f x 的单调性;(2)若函数()f x m =有两个零点1x ,2x ,且12x x <,求证:121x x +>. 【答案】(1)2a =;()f x 在10,2⎛⎫ ⎪⎝⎭上是单调递减;()f x 在1,2⎛⎫+∞ ⎪⎝⎭上是单调递增;(2)证明见解析. 【解析】(1)函数()f x 的定义域:()0,∞+,()11112f a =-=',解得2a =,()1ln 2f x x x ∴=+, ()22112122x f x x x x-'∴=-= 令()0f x '<,解得102x <<,故()f x 在10,2⎛⎫⎪⎝⎭上是单调递减; 令()0f x '>,解得12x >,故()f x 在1,2⎛⎫+∞ ⎪⎝⎭上是单调递增. (2)由12,x x 为函数()f x m =的两个零点,得121211ln ,ln 22x m x m x x +=+= 两式相减,可得121211ln ln 022x x x x -+-= 即112212ln 2x x x x x x -=,1212122ln x x x x x x -=, 因此1211212lnx x x x x -=,2121212ln x x x x x -= 令12x t x =,由12x x <,得01t <<. 则121111+=2ln 2ln 2ln t t t t x x t t t---+=, 构造函数()()12ln 01h t t t t t =--<<, 则()()22211210t h t t t t-=+-=>'所以函数()h t 在()0,1上单调递增,故()()1h t h <, 即12ln 0t t t--<,可知112ln t t t->.故命题121x x +>得证.例5.(2020·江西景德镇一中高三三模)已知函数()2()ln f x x ax x a R =++∈.(1)当3a =-时,判断函数()f x 的单调性;(2)若函数()f x 有两个极值点12,x x ,且12x x <,证明:12()()3ln 2f x f x +<--. 【答案】(1)递增区间1(0,),(1,)2+∞,递减区间1(,1)2(2)证明见解析 【解析】(1)3a =-时,2()3ln (0)f x x x x x =-+>,21231(21)(1)()23x x x x f x x x x x-+--'=+-==,所以当12x <或1x >时,()0f x '<,当112x <<时,()0f x '>,所以函数在1(0,),(1,)2+∞上单调递增,在1(,1)2上单调递减.(2)2121()2x ax f x x a x x++'=++=,因为函数()f x 有两个极值点12,x x ,所以只需212128010202a x x a x x ⎧⎪∆=->⎪⎪=>⎨⎪⎪+=->⎪⎩,解得a <-,12()()f x f x + 22212121212121212()ln ()2()ln x x a x x x x x x x x a x x x x =++++=+-+++2211ln 422a a =--+ 21ln 24a =---81ln 23ln 24<---=--例6.(2020·南昌县莲塘第一中学高三三模)已知函数()ln ,af x x a R x=+∈,且曲线()y f x =在1x =处的切线平行于直线20x y +=. (1)求a 的值;(2)求函数()f x 的单调区间; (3)已知函数3()()g x f x x x =--图象上不同的两点()()1122,,,A x y B x y ,试比较2121y y x x --与122x x g '+⎛⎫⎪⎝⎭的大小. 【答案】(1)3a =;(2)函数()f x 的单调增区间是(3,)+∞,单调减区间是(0,3);(3)2112212y y x x g x x '-+⎛⎫> ⎪-⎝⎭【解析】(1)()f x 的定义域为21(0,),()af x x x '+∞=-. 曲线()f x 在1x =处的切线平行于直线20x y +=,(1)12f a '∴=-=-,3a ∴=.(2)3()ln f x x x =+,22133()x f x x x x'-∴=-=. ∴当3x >时,()0,()f x f x '>是增函数;当03x <<时,()0,()f x f x '<是减函数. ∴函数()f x 的单调增区间是(3,)+∞,单调减区间是(0,3).(3)3()ln f x x x =+,1()ln ,()1g x x x g x x '∴=-=-,1212212x x g x x '+⎛⎫∴=- ⎪+⎝⎭. 又()()22112121212121ln ln ln ln 1x x x x y y x x x x x x x x -----==----,()212112212212112211122ln ln 21ln 2x x y y x x x x x g x x x x x x x x x x x ⎡⎤--+-⎛⎫∴-=-=-⎢⎥ ⎪--+-+⎝⎭⎣⎦' 2122222112111121114ln ln 211x x x x x x x x x x x x x x ⎡⎤⎛⎫⎡⎤-⎢⎥ ⎪⎢⎥⎝⎭⎢⎥⎢⎥=-=+-⎢⎥--⎢⎥++⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦.设4()ln 21h x x x =+-+,则22214(1)()0(1)(1)x h x x x x x '-=-=≥++, ()h x ∴在(0,)+∞上是增函数.令21x t x =,不妨设120x x <<,211x x ∴>,()(1)0h t h ∴>=, 即22114ln201x x x x +->+.又210x x ->,21122102y y x x g x x '-+⎛⎫∴-> ⎪-⎝⎭,2112212y y x x g x x '-+⎛⎫∴> ⎪-⎝⎭. 例7.(2020·湖南常德市一中高三三模)设关于x 的方程210x mx --=有两个实根,αβ,且αβ<.定义函数()221x mf x x -=+. (1)求()()ff ααββ+的值;(2)若()12,,x x αβ∈,求证:()()12f x f x αβ-<-. 【答案】(1)2;(2)证明详见解析. 【解析】(1),1,m αβαβ+==-()()()()222211m m f f ααββααββαβ--∴+=+++ 222222(2)(1)(2)(1)(1)(1)m m ααβββααβ-++-+=++ 22222222222222221m m m m αβαβααβαβαββαββα--+--+++=++ 222222222242()()()42()212()m m αβαβαβαβαββαβα++++-+++===+++++.(2)()12,,x x αβ∈,()222222222(1)2(2)2(1)2()()0(1)(1)(1)x x x m x xm x x f x x x x αβ+---++--'===->+++, 所以()f x 在(,)αβ上是单调递增函数,所以()()()1f f x f αβ<<,()()()2f f x f αβ<<,所以()()()()()()12ff f x f x f f αββα-<-<-,()()222121,1()1()m m f f ααβββααβαααβαβββαβ----======+-+-,1,αβ=- ()()11||||||||f f βααβαβαβαβ-∴-=-==-, 所以()()12f x f x αβ-<-成立.例8.(2020·全国高三三模)已知函数()xx f x e e ax -=-+,a ∈R .(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,12x x <,证明:()()()()12122xx f x f x a e e->--.【答案】(1)答案见解析;(2)证明见解析.【解析】(1)()()211()x x xxx xxe aef x e e a e a e e--+'=--+=-++=-.因为112,()2xxx xe e e e +≥∴-+≤-. 当2a ≤时,()0f x '≤,此时()f x 在R 上单调递减;当2a >时,由0f x解得x =或ln x =,∵xy e =是增函数,∴此时()f x 在,ln2a ⎛-∞ ⎪⎝⎭和ln 2a ⎛⎫++∞ ⎪ ⎪⎝⎭单调递减,在⎛ ⎝⎭单调递增.(2)由(1)知2a >,∴121x x e e ⋅=,所以120x x +=,所以12x x =-, ∵12x x <,∴10x <,()()()()12122x x f x f x a e e ----()()()()112211122x x x x x x e e ax e e ax a e e ---=-+--+--- ()()()()111111112x x x x x x e e ax e e ax a e e ---=-+------ ()1112x x a e e x -=-+,令()()20ttg t e e t t -=-+<,∴()12220t t t t g t e e e e -⎛⎫'=--+=-++≤-= ⎪⎝⎭, ∴g t 在,0上是减函数,()()00g t g >=,∴()11120x x a ee x --+>,即()()()()12122x xf x f x a e e ->--.所以原不等式得证.【精选精练】1.(2020·陕西高三三模)已知函数()ln 13xf x a x =--. (1)讨论函数()f x 的单调性;(2)若函数()f x 有两个零点1x ,2x ,求证:()21110x a x -+>. 【答案】(1)答案见解析;(2)证明见解析.【解析】(1)()f x 的定义域为()0,∞+,()1333a x af x x x-'=-=. 当0a ≤时,()0f x '>,则()f x 在()0,∞+上是增函数. 当0a >时,()03f x x a '>⇔>;()003f x x a '>⇔<<, 所以()f x 在()0,3a 上是减函数,在()3,a +∞上是增函数. 综上,当0a ≤时,()f x 在()0,∞+上是增函数;当0a >时,()f x 在()0,3a 上是减函数,在()3,a +∞上是增函数. (2)若函数()f x 有两个零,点1x ,2x ,根据(1),可得0a >.不妨设210x x <<,由()()120f x f x ==,得11223ln 30,3ln 30,x a x x a x --=⎧⎨--=⎩两式相减,得11223ln x x x a x -=,解得12123ln x x ax x -=, 要证明211111x x a +>,即证()12211211113ln x x x x x x -+>, 即证()()12122111ln311x x x x x x ->+, 设()121x u u x =>,则()()111ln 311u u u ->+. 则()()()()111ln 1311u g u u u u -=->+,则()()()()2221114401111u g u u u u u -'=-=≥++,所以()g u 在()1,+∞上为增函数,从而()()10g u g >=,即()()111ln 311u u u --+成立,因此,()21110x a x -+>成立.即证.2.(2020·福建高三三模)已知函数3()(1)ln f x mx m x x e=--+-.(1)当0m =时,求()f x 的最值;(2)当0m >时,若()f x 的两个零点分别为()1212 ,x x x x <,证明:211x x e e-<-. 【答案】(1)min 3()1f x e=-,无最大值(2)证明见解析【解析】(1)解:当0m =时,3()ln f x x x e =-+-,定义域为(0,)+∞,11()1x f x x x-'=-+=,当1x >时,()0f x '>;当01x <<时,()0f x '<. 可知()f x 在(0,1)上单调递减,在(1,)+∞上单调递增, 所以min 3()(1)1f x f e==-,无最大值.(2)证明:11()1ln 1f x m x x x ⎛⎫'=+-+- ⎪⎝⎭,因为0m >,所以()f x '在(0,)+∞上单调递增,又因为()01f '=,所以当01x <<时,()0f x '<,当1x 时,()0f x '.所以()f x 的最小值为3(1)10f e=-<,因为1(1)20m e e f e e -+-⎛⎫=> ⎪⎝⎭,所以()f x 在1,1e ⎛⎫ ⎪⎝⎭上存在一个零点1x ; 因为3()(1)10f e m e e e=-+-->,可知()f x 在()1,e 上也存在一个零点2x ;所以1211x x e e <<<<,故211x x e e-<-.3.(2020·全国高三三模)已知函数()()2ln 2f x a x x x x =-+-.(1)当2a e =-(e 为自然对数的底数)时,求函数()f x 的极值; (2)()f x '为()y f x =的导函数,当0a >,120x x >>时,求证:()()1212112222x x x x f x f x f x f x ++⎛⎫⎛⎫''-<- ⎪ ⎪⎝⎭⎝⎭.【答案】(1)极大值21e --,极小值2e -;(2)详见解析. 【解析】由题意得:()f x 定义域为()0,∞+,()()()121122x x a f x a x x x-+⎛⎫'=-+-= ⎪⎝⎭, (1)当2a e =-时,()()()21x x e f x x--'=,∴当()0,1x ∈和(),e +∞时,()0f x '>;当()1,x e ∈时,()0f x '<,()f x ∴在()0,1,(),e +∞上单调递增,在()1,e 上单调递减,()f x ∴极大值为()121221f e e =-+-=--,极小值为()()22212f e e e e e e =--+-=-.(2)要证:()()1212112222x x x x f x f x f x f x ++⎛⎫⎛⎫''-<-⎪ ⎪⎝⎭⎝⎭,即证:()()()1212122x x f x f x f x x '+⎛⎫-<-⎪⎝⎭, 即证:()()2211222211ln 2ln 2a x x x x a x x x x -+----+()12121222a x x a x x x x ⎛⎫<++--- ⎪+⎝⎭,化简可得:()1212122ln a x x x a x x x ->+.0a >,()1212122ln x x x x x x -∴>+,即证:12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+, 设121x t x =>,令()()21ln 1t h t t t -=-+,则()()()22101t h t t t -'=>+, ()h t ∴在()1,+∞上单调递增,()()10h t h ∴>=,则由12112221ln 1x xx x x x ⎛⎫- ⎪⎝⎭>+,从而有:()()1212112222x x x x f x f x f x f x ++⎛⎫⎛⎫''-<-⎪ ⎪⎝⎭⎝⎭.4.(2020·河南高三三模)已知函数()ln 1f x x x =-,()()22g x ax a x =--. (1)设函数()()()H x f x g x '=-,若4a =-,求()H x 的极值;(2)设函数()()()2G x g x a x =+-,若()f x 的图象与()G x 的图象有()11A x y ,,()22B x y ,两个不同的交点,证明:()12ln 2ln 2x x >+. 【答案】(1)极大值为12ln 24--,极小值为ln21--;(2)证明见解析.【解析】(1)因为4a =-,所以()()()()2ln 4610H x f x g x x x x x =-=+-+>',()()()()21411860x x H x x x x x'--=+-=>. 令()0H x '>,得11024x ⎛⎫⎛⎫∈+∞⋃ ⎪ ⎪⎝⎭⎝⎭,,, 所以()H x 在104⎛⎫ ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增; 令()0H x '<,得1142x ⎛⎫∈ ⎪⎝⎭,,所以()H x 在1142⎛⎫ ⎪⎝⎭,上单调递减.故()H x 的极大值为112ln244H ⎛⎫=--⎪⎝⎭, 故()H x 的极小值为1ln212H ⎛⎫=-- ⎪⎝⎭.(2)证明:()()()22G x g x a x ax =+-=,因为函数()f x 的图象与()G x 的图象有两个不同的交点, 所以关于x 的方程2ln 1ax x x =-,即1ln ax x x=-有两个不同的根. 由题知1111ln x ax x -=①,2221ln x ax x -=②, ①+②得()()12121212ln x x x x a x x x x +-=+③, ②-①得()22121112ln x x x a x x x x x ⎛⎫-+=-⎪⎝⎭④. 由③,④得()()1212212122112ln ln x x x x x x x x x x x x ++-=-,不妨设120x x <<,记211x t x =>. 令()()()21ln 11t F t t t t -=->+,则()()()2101t F t t t '-=>+, 所以()F t 在()1+∞,上单调递增, 所以()()10F t F >=,则()21ln 1t t t ->+,即()2121122lnx x x x x x ->+,所以()()1212212122112ln ln 2x x x x x x x x x x x x ++-=>-.因为()()()()1212121212122ln ln x x x x x x n x x x x +-<==所以2>,即1>. 令()2ln x x xφ=-, 则()x φ在()0+∞,上单调递增.又)1lnln2112e =+-<,所以)1ln >>,即)φφ>,所以2122x x e >.两边同时取对数可得()12ln 2ln2x x >+,得证.5.(2020·四川省绵阳南山中学高三三模)已知函数()()22ln f x x a x a x =---.(1)求函数()f x 的单调区间;(2)设函数()2324=--+-a g x x ax a ,若(][]0,,0,∃∈∈αa βa ,使得()()-<f αg βa 成立,求实数a 的取值范围;(3)若方程()f x c =有两个不相等的实数根12,x x ,求证:1202x x f +⎛⎫'> ⎪⎝⎭.【答案】(1)答案不唯一,具体见解析(2)2a e>(3)证明见解析 【解析】(1)()()()21x a x f x x-+'=(0x >)当0a ≤时,()0f x '>,函数()f x 在()0,∞+上单调递增; 当0a >时,由()0f x '>得2a x >; 由()0f x '<得02a x <<,函数()f x 在,2a ⎛⎫+∞ ⎪⎝⎭上递增,在0,2a ⎛⎫ ⎪⎝⎭上递减 (2)当(]0,x a ∈时,()min2ln 242⎛⎫==-- ⎪⎝⎭a a f a a f a x ,令()2320'=--=x g ax x 得20,3==-ax x (舍去), 当(]0,x a ∈时,()()2max04==-a g x g a ,()()min max ln 2a f x g x a -=-①当ln 02-≤aa 时,则()()min 0-=<f αg βa 显然成立,即2a ≥ ②当ln 02->a a 时,则()()()()min max min ln 2-=-=-<af αg βf αg βa a ,即22a e <<,综上2a e>.(3)要证12022+⎛⎫⎛⎫'>= ⎪ ⎪⎝'⎭⎝⎭x x a f f ,由(1)知由()0f x '>得2a x >; 只要证明1222+>x x a即可 ∵12,x x 是方程()f x c =的两个不等实根,不妨设120x x <<∴()22111222(2)ln ,2ln ---=---=x a x a x c x a x a x c ,∴()()221112222ln 2ln 0⎡⎤-------=⎣⎦x a x a x x a x a x ,即221122112222ln ln +--=+--x x x x a x x x x ,∴02⎛⎫'= ⎪⎝⎭a f即证22112212112222ln ln +--+>+--x x x x x x x x x x即证11221222lnx x x x x x -<+, 设()120,1x t x =∈ 令()()()()22122ln ,011--'=-=≥++t t g t t g t t t t , 则()g t 在()0,1上单调递增,()()10g t g <=恒成立,得证.6.(2020·辽宁大连·高三三模)已知a R ∈,函数2()x f x e ax =+.(1)()f x '是函数数()f x 的导函数,记()()g x f x '=,若()g x 在区间(,1]-∞上为单调函数,求实数a 的取值范围;(2)设实数0a >,求证:对任意实数12,x x ()12x x ≠,总有()()121222f x f x x x f ++⎛⎫<⎪⎝⎭成立. 附:简单复合函数求导法则为[()]()f ax b af ax b ''+=+. 【答案】(1)[),0,2e ⎛⎤-∞-+∞ ⎥⎝⎦(2)证明见解析【解析】(1)由已知得()2xf x e ax '=+,记()2xg x e ax =+,则()2xg x e a '=+. ①若0a ≥,()0g x '>,()g x 在定义域上单调递增,符合题意; ②若0a <,令()0g x '=解得()ln 2x a =-,()g x '自身单调递增, 要使导函数()g x 在区间(],1-∞上为单调函数, 则需()ln 21a -≥,解得2ea ≤-,此时导函数()g x 在区间(],1-∞上为单调递减函数.综合①②得使导函数()f x '在区间(],1-∞上为单调函数的a 的取值范围是[),0,2e ⎛⎤-∞-+∞ ⎥⎝⎦.(2)因为12x x ≠,不妨设12x x <,取1x 为自变量构造函数,()()()1212122f x f x x x F x f ++⎛⎫=- ⎪⎝⎭,则其导数为()()11211222f x x x F x f '+⎛⎫''=- ⎪⎝⎭()121122x x f f x ⎡+⎤⎛⎫''=- ⎪⎢⎥⎝⎭⎣⎦0a >()2xf x e ax ∴'=+在R 上单调递增而且12211022x x x xx +--=>, 所以()1212x x f f x +⎛⎫''>⎪⎝⎭,即()10F x '>.故关于1x 的函数()1F x 单调递增,()()120F x F x <=即()()121222f x f x x x f ++⎛⎫<⎪⎝⎭证得. 7.(2020·甘肃高三三模)已知函数()()()2ln 2x a f x x a R +=+∈的导函数为()'f x .(1)若曲线()y f x =在1x =处的切线与直线310x y ++=垂直,求a 的值; (2)若()'f x 的两个零点从小到大依次为1x ,2x ,证明:()122x f x >. 【答案】(1)1a = (2)证明见解析 【解析】(1)因为()()()2ln 02x a f x x x +=+>,所以()()1'0f x x a x x=++>. 因为直线310x y ++=的斜率为13-,曲线()y f x =在1x =处的切线与直线310x y ++=垂直,所以()1'113f ⎛⎫⨯-=- ⎪⎝⎭,即113a ++=,所以1a =.(2)因为()()21'0x ax f x x x++=>,且()'f x 的两个零点从小到大依次为1x ,2x ,所以1x ,2x 是方程210x ax ++=的两个根, 所以12x x a +=-,121=x x ,又1>0x ,20x >,12x x <,所以1201x x <<<且221a x x =--, 欲证()122x f x >,只需证()2112f x x >, 而()()2222221221ln 12ln 12x a x f x x x x x x ++==+,令()()1ln 12x g x x x x =+>,则()2'1ln 102x xg x =-++>, 所以()g x 在()1,+∞上单调递增,()121g =所以()12g x >, 所以()122xf x >成立.8.(2020·内蒙古乌兰察布·三模)已知()2ln f x x mx x =++.(1)若()f x 在1,12⎛⎫⎪⎝⎭上单调递减,求m 的取值范围;(2)当1m =-时,若正数1x ,2x 满足()()121ln 2f x f x +=-,求证:122x x +≥. 【答案】(1)3m ≤-;(2)证明见解析. 【解析】(1)()12f x x m x '=++,由题意()f x 在1,12⎛⎫⎪⎝⎭上单调递减知当1,12x ⎛⎫∈ ⎪⎝⎭时,120x m x ++≤恒成立,故12m x x -≥+.令()12g x x x =+,()2221x g x x -'=, 即()g x在12⎛ ⎝⎭上单调递减,在⎫⎪⎪⎝⎭上单调递增,因为132g ⎛⎫=⎪⎝⎭,()13g =,故3m -≥,即3m ≤-. (2)当1m =-时,()()()2212121212ln 1ln 2f x f x x x x x x x +=+-++=-, 即()()2121212122ln 1ln 2x x x x x x x x +-+=-+-, 令()2ln 1ln 2h x x x =-+-,()1212x h x x x-'=-=, 故()h x 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞⎪⎝⎭上单调递增,故()122h x h ⎛⎫≥= ⎪⎝⎭, 即()()212122x x x x +-+≥,即有()()1212210x x x x +-++≥, 因为12,0x x >,所以122x x +≥.9.(2020·云南师大附中高三三模)已知函数()ln 1()xa f x e a x a R x ⎛⎫=++∈ ⎪⎝⎭. (1)若曲线()f x 在1x =处的切线斜率为0,求实数a 的值; (2)记()f x 的极值点为1x ,函数()ln 1g x a x =+的零点为2x ,当1ln 2a >时,证明:12x x <. 【答案】(1)1-;(2)证明见解析.【解析】(1)解:()ln 1x a f x e a x x ⎛⎫=++⎪⎝⎭,其定义域为()0,+∞, ∵()22ln 1xa a f x e a x x x ⎛⎫=++- ⎪⎝⎭', 代入切点横坐标1x =得()()1e 210f a a +'=-=,∴1a =-.(2)证明:∵()22ln 1xa a f x e a x x x ⎛⎫=++- ⎪⎝⎭', 令()22ln 1a ah x a x x x=++-, 当1ln2a >时,()()223322220a x x a a a h x x x x x-+=-+'=>,所以()h x 在()0,+∞上单调递增. 又()110h a =+>,1ln2102h a ⎛⎫=-+<⎪⎝⎭, 所以01,12x ⎛⎫∃∈⎪⎝⎭,使得()00h x =. 当()00,x x ∈时,()0h x <,即()0f x '<,()f x 单调递减; 当()0,x x ∈+∞时,()0h x >,即()0f x '>,()f x 单调递增, 所以0x 是()f x 的极小值点,所以10x x =, 所以11,12x ⎛⎫∈⎪⎝⎭且()10h x =, 即12112ln 10a a a x x x ++-=,()112112ln 1a x a x x -+=, 因为2x 为()ln 1g x a x =+的零点,即()20g x = 所以()()()11122112ln 10a x g x a x g x x-=+=<=,又当1ln2a >时,()g x 是单调递增函数, 由()()12g x g x <可得12x x <.10.(2020·山东聊城·高考三模)已知函数22f x alnx x a x +++()=().1()讨论函数f x ()的单调性; 2()设0a <,若不相等的两个正数12x x ,满足12=f x f x ()(),证明:12'02x x f +⎛⎫⎪⎝⎭>. 【答案】(1)见解析; (2)见解析.【解析】1'22a f x x a x +++()()=()= ()222x a x a x+++=()()21x a x x ++,0x >,当0a ≥时,()'0f x f x ∴()>,在∞(0,+)单调递增, 当0a <时,02a x -当<<时,()'0f x <,当2ax ->时,()'0f x >,f x 在0,2a ⎛⎫- ⎪⎝⎭上单调递减,在,2a ⎛⎫-+∞ ⎪⎝⎭上单调递增,()122f x f x ()=(),2211122222alnx x a x alnx x a x ∴++++++()=(),()()221221212a lnx lnx x x a x x ∴--++()=﹣ ()()21212x x x x a =-+++ 212x x a ∴+++=()1221ln ln a x x x x --,()()'22af x x a x+++=,1221122'22x x a f x x a x x +⎛⎫∴=++++ ⎪+⎝⎭ ()121221ln ln 2a x x a x x x x -=++-21122121ln 2x x aa x x x x x x ⎛⎫ ⎪ ⎪=-=+-- ⎪ ⎪⎝⎭()212211212ln x x x a x x x x x ⎛⎫--=⎪+-⎝⎭ 21221121ln 1x x x x x x ⎛⎫⎛⎫- ⎪⎪⎝⎭ ⎪- ⎪+ ⎪ ⎪⎝⎭, 不妨设210x x >>,则211x x >, 所以只要证21221121ln 01x x x x x x ⎛⎫- ⎪⎝⎭-<+, 令211x t x =>,2242ln 11t g t lnt t t t -∴=---++()=t , ()()()()()2222241141'0111t t t g t t t t t t t -+-∴=-==-<+++(), g t ∴()在1(,)+∞上单调递减, ()2211011g t g ln -∴<=-+()=,21221121ln 01x x x x x x ⎛⎫- ⎪⎝⎭∴-<+,12'02x x f +⎛⎫∴ ⎪⎝⎭>.11.(2020·四川省宜宾市第四中学校高三三模)已知函数()ln 2(0)f x ax x a =+≠. (1)求函数()f x 的最值;(2)函数()f x 图象在点(1,(1))f 处的切线斜率为()1,()2f x g x x=-有两个零点12,x x ,求证:124x x +>. 【答案】(1)见解析;(2)见解析. 【详解】(1),当时,在上单调递减,在上单调递增,有最小值,无最大值; 当时,在上单调递增,在上单调递减,有最大值,无最小值.(2)依题知,即,所以,,所以在上单调递减,在上单调递增.因为是的两个零点,必然一个小于,一个大于,不妨设.因为,所以,变形为.欲证,只需证,即证.令,则只需证对任意的都成立.令,则所以在上单增,即对任意的都成立.所以.12.(2020·宁夏银川一中高三三模)已知函数()21ln 12f x x ax bx =-++的图象在1x =处的切线l 过点11,22⎛⎫ ⎪⎝⎭. (1)若函数10g xf xa x a ,求()g x 的最大值(用a 表示);(2)若()()1212124,32a f x f x x x x x =-++++=,证明:1212x x . 【答案】(1)1ln 2a a-;(2)证明见解析. 【解析】(1)由()1f x ax b x-'=+,得()11f a b ='-+,l 的方程为()()11112y a b a b x ⎛⎫--++=-+- ⎪⎝⎭,又l 过点11,22⎛⎫⎪⎝⎭,∴()111111222a b a b ⎛⎫⎛⎫--++=-+- ⎪ ⎪⎝⎭⎝⎭,解得0b =. ∵()()()()211ln 112g x f x a x x ax a x =--=-+-+, ∴()()()2111111(0)a x x ax a x a g x ax a a x x x⎛⎫--+ ⎪-+-+⎝⎭=-+-==>', 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增;当1,x a ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减. 故()()2max111111ln 11ln 22g x g a a a a a a a a ⎛⎫⎛⎫==-+-+=- ⎪ ⎪⎝⎭⎝⎭.(2)证明:∵4a =-,∴()()22121212112212123ln 21ln 213f x f x x x x x x x x x x x x x ++++=++++++++,()()212121212ln 222x x x x x x x x =++++-+=,∴()()2121212122ln x x x x x x x x +++=-令12(0)x x m m =>,()ln m m m ϕ=-,()1m m mϕ'-=,令()0m ϕ'<得01m <<;令()0m ϕ'>得1m >. ∴()m ϕ在()0,1上递减,在()1,+∞上递增,∴()()11m ϕϕ≥=,∴()2121221x x x x +++≥,120x x +>,解得:1212x x +≥.。

5用导数证明函数不等式的四种常用方法

5用导数证明函数不等式的四种常用方法

用导数证明函数不等式地四种常用方法本文将介绍用导数证明函数不等式地四种常用方法.例1 证明不等式:)0)1ln(>+>x x x (.证明 设)0)(1ln()(>+-=x x x x f ,可得欲证结论即()(0)(0)f x f x >>,所以只需证明函数()f x 是增函数.而这用导数易证:1()10(0)1f x x x '=->>+ 所以欲证结论成立. 注 欲证函数不等式()()()f x g x x a >>(或()()()f x g x x a ≥≥),只需证明()()0()f x g x x a ->>(或()()0()f x g x x a -≥≥).设()()()()h x f x g x x a =->(或()()()()h x f x g x x a =-≥),即证()0()h x x a >>(或()0()h x x a ≥≥).若()0h a =,则即证()()()h x h a x a >>(或()()()h x h a x a ≥≥).接下来,若能证得函数()h x 是增函数即可,这往往用导数容易解决.例2 证明不等式:)1ln(+≥x x .证明 设()ln(1)(1)f x x x x =-+>-,可得欲证结论即()0(1)f x x >>-.显然,本题不能用例1地单调性法来证,但可以这样证明:即证)1)(1ln()(->+-=x x x x f 地最小值是0,而这用导数易证:1()1(1)11x f x x x x '=-=>-++ 所以函数()f x 在(1,0],[0,)-+∞上分别是减函数、增函数,进而可得min ()(1)0(1)f x f x =-=>-所以欲证结论成立.注 欲证函数不等式()()()(,f x g x x I I >≥∈是区间),只需证明()()()0()f x g x x I ->≥∈.设()()()()h x f x g x x I =-∈,即证()()0()h x x I >≥∈,也即证min ()()0()h x x I >≥∈(若min ()h x 不存在,则须求函数()h x 地下确界),而这用导数往往容易解决.例3 (2014年高考课标全国卷I 理科第21题)设函数1e ()e ln x xb f x a x x -=+,曲线()y f x =在点(1,(1))f 处地切线为e(1)2y x =-+.(1)求,a b ;(2)证明:()1f x >.解 (1)112()e ln e e e x x x x a b b f x a x x x x--'=+-+. 题设即(1)2,(1)e f f '==,可求得1,2a b ==.(2)即证2ln e (0)ex x x x x ->->,而这用导数可证(请注意11e ≠): 设()ln (0)g x x x x =>,得min 11()e e g x g ⎛⎫==- ⎪⎝⎭. 设2()e (0)ex h x x x -=->,得max 1()(1)e h x h ==-. 注 i)欲证函数不等式()()(,f x g x x I I ≥∈是区间),只需证明min max ()()()f x g x x I ≥∈,而这用导数往往可以解决.欲证函数不等式()()(,f x g x x I I >∈是区间),只需证明min max ()()()f x g x x I >∈,或证明min max ()()()f x g x x I ≥∈且两个最值点不相等,而这用导数往往也可以解决.ii)例3第(2)问与《2009年曲靖一中高考冲刺卷理科数学(一)》压轴题第(3)问完全一样,这道压轴题(即第22题)是:已知函数2()ln ,()3f x x x g x x ax ==-+-.(1)求函数()f x 在[,2](0)t t t +>上地最小值;(2)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 地取值范围;(3)证明:对一切(0,)x ∈+∞,都有12ln e e x x x>-成立. 例4 (2013年高考北京卷理科第18题)设L 为曲线C :y =ln x x在点(1,0)处地切线.(1)求L 地方程;(2)证明:除切点(1,0)之外,曲线C 在直线L 地下方.解 (1)(过程略)L 地方程为y =x -1.(2)即证1ln -≤x xx (当且仅当1=x 时取等号). 设x x x x g ln 1)(--=,得g ′(x )=x 2-1+ln x x 2)0(>x . 当0<x <1时,x 2-1<0,ln x <0,所以g ′(x )<0,得g (x )单调递减;当x >1时,x 2-1>0,ln x >0,所以g ′(x )>0,得g (x )单调递增.所以0)1()(min ==g x g ,得欲证结论成立.(2)地另解 即证1ln -≤x x x (当且仅当1=x 时取等号),也即证0ln 2≥--x x x (当且仅当1=x 时取等号).设x x x x g ln )(2--=,可得)0)(1(12)(>-+='x x xx x g . 进而可得0)1()(min ==g x g ,所以欲证结论成立.(2)地再解 即证1ln -≤x xx (当且仅当1=x 时取等号),也即证x x x -≤2ln (当且仅当1=x 时取等号). 如图1所示,可求得曲线x y ln =与)0(2>-=x x x y 在公共点(1,0)处地切线是1-=x y ,所以接下来只需证明)0(1,1ln 2>-≤--≤x x x x x x (均当且仅当1=x 时取等号)前者用导数易证,后者移项配方后显然成立.所以欲证结论成立.图1例5 (2013年高考新课标全国卷II 理21(2)地等价问题)求证:e ln(2)x x >+.分析 用前三种方法都不易解决本问题,下面介绍用导数证明函数不等式地第四种常用方法.设()e (2),()ln(2)(2)xf x xg x x x =>-=+>-,我们想办法寻找出一个函数()h x ,使得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到.当然,函数()h x 越简洁越好.但()h x 不可能是常数(因为函数()ln(2)(2)g x x x =+>-地值域是R ),所以我们可尝试()h x 能否为一次函数,当然应当考虑切线.如图2所示,可求得函数()e (2)x f x x =>-在点(0,1)A 处地切线是1y x =+,进而可得()()(2)f x h x x ≥>-;还可求得函数()ln(2)(2)g x x x =+>-在点(1,0)B -处地切线也是1y x =+,进而可得()()(2)h x g x x ≥>-.图2进而可用导数证得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到,所以欲证结论成立.当然,用例2地方法,也可给出该题地证明(设而不求):设)2ln(e )(+-=x x f x ,得1()e (2)2x f x x x '=->-+. 可得()f x '是增函数(两个增函数之和是增函数),且1e 20,(1)e 102f f ⎛⎫''=<=-> ⎪⎝⎭,所以函数()g x '存在唯一地零点0x (得21e ,e 2,1e )2(000000+==+=+-x x x x x x ),再由均值不等式可得 00min 0000011()()e ln(2)ln e 22022x x f x f x x x x x -⎛⎫==-+=-=++-> ⎪++⎝⎭(因为可证01x ≠-)所以欲证结论成立.例6 求证:e ln 2x x >+.证法1 (例5地证法)用导数可证得1e +≥x x (当且仅当0=x 时取等号),2ln 1+≥+x x (当且仅当1=x 时取等号),所以欲证结论成立.证法2 (例2地证法)设x x f x ln e )(-=,得1()e (0)x f x x x'=->.可得()f x '是增函数且1110,(0)02 1.52g g ⎛⎫''-=-<=> ⎪⎝⎭,所以函数)(x g 存在唯一地零点0x (得00001e ,e x x x x -==),再由均值不等式可得 00min 0000011()()e ln ln e 2x x f x f x x x x x -==-=-=+>(因为可证01x ≠) 所以欲证结论成立.注 欲证函数不等式()()(,f x g x x I I >∈是区间),只需寻找一个函数()h x (可以考虑曲线()y h x =是函数(),()y f x y g x ==地公切线)使得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到,而这用导数往往容易解决.下面再给出例5和例6地联系.对于两个常用不等式e 1,ln 1x x x x ≥+≤-,笔者发现e xy =与ln y x =互为反函数,1y x =+与1y x =-也互为反函数,进而得到了本文地几个结论.定理 已知(),()f x g x 都是单调函数,它们地反函数分别是11(),()fx g x --. (1)若()f x 是增函数,()()f s g s ≥恒成立,则11()()ft g t --≤恒成立; (2)若()f x 是减函数,()()f s g s ≥恒成立,则11()()ft g t --≥恒成立; (3)若()f x 是增函数,()()f s g s ≤恒成立,则11()()ft g t --≥恒成立; (4)若()f x 是减函数,()()f s g s ≤恒成立,则11()()ft g t --≤恒成立. 证明 下面只证明(1),(4);(2),(3)同理可证.(1)设不等式()()f s g s ≥中s 地取值范围是A ,当s A ∈时,(),()f s g s 地取值范围分别是,A A f g ,得不等式11()()f t g t --≤中t 地取值范围是A A f g ⋂,所以1000,,(),()A A t f g x A t g x x g t -∀∈⋂∃∈==.由()()f s g s ≥恒成立,得00()()g x f x ≤.由()f x 是增函数,得1()f x -也是增函数,所以1110000(())(())(())f g x f f x x g g x ---≤==,即11()()f t g t --≤.得11,()()A A t f g f t g t --∀∈⋂≤,即欲证结论成立.(4)设不等式()()f s g s ≤中s 地取值范围是A ,当s A ∈时,(),()f s g s 地取值范围分别是,A A f g ,得不等式11()()f t g t --≥中t 地取值范围是A A f g ⋂,所以1000,,(),()A A t f g x A t g x x g t -∀∈⋂∃∈==.由()()f s g s ≤恒成立,得00()()g x f x ≥.由()f x 是减函数,得1()f x -也是减函数,所以1110000(())(())(())f g x f f x x g g x ---≤==,即11()()f t g t --≤.得11,()()A A t f g f t g t --∀∈⋂≤,即欲证结论成立.推论1 已知(),()f x g x 都是单调函数,它们地反函数分别是11(),()fx g x --. (1)若(),()f x g x 都是增函数,则()()f s g s ≥恒成立11()()ft g t --⇔≤恒成立; (2)若(),()f x g x 都是减函数,则()()f s g s ≥恒成立11()()ft g t --⇔≥恒成立. 证明 (1)由定理(1)知“⇒”成立.下证“⇐”:因为()g x 是增函数,11()()g t f t --≥恒成立,11(),()g x f x --地反函数分别是(),()g x f x ,所以由“⇒”地结论得()()g s f s ≤恒成立,即()()f s g s ≥恒成立.(2)同(1)可证.推论2 把定理和推论1中地“,≥≤”分别改为“,><”后,得到地结论均成立. (证法也是把相应结论中地“,≥≤”分别改为“,><”.)在例5与例6这一对姊妹结论“e ln(2),ln e 2x x x x >+<-”中e x y =与ln y x =互为反函数,ln(2)y x =+与e 2x y =-也互为反函数,所以推论2中地结论“若(),()f x g x 都是增函数,则()()f s g s >恒成立11()()ft g t --⇔<恒成立”给出了它们地联系.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。

高考数学导数与不等式 导数方法证明不等式

高考数学导数与不等式 导数方法证明不等式
(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构”构造辅助函数;(4)构造双函数,若直接构造函数求导,难以判断符号,导函数零点也不易求得,因此函数单调性与极值点都不易获得,则可构造函数f(x)和g(x),利用其最值求解.提示:在构造函数证明不等式时,常会用到一些放缩技巧:(1)舍去一些正项(或负项);(2)在和或积中换大(或换小)某些项;(3)扩大(或缩小)分式的分子(或分母);(4)构造基本不等式(通常结合代换法,注意对指数的变换).
探究点二 双变量不等式的证明
[思路点拨]首先求得导函数的解析式,然后结合导函数的符号即可确定函数的单调性;解: f'(x)=1-ln x-1=-ln x,x∈(0,+∞).当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
[总结反思]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,即若证明f(x)>g(x)在区间D上恒成立,则构造函数h(x)=f(x)-g(x),再根据函数h(x)的单调性,证明h(x)>0在区间D上恒成立.
课堂考点探究
课堂考点探究
变式题 [2021·云南师大附中模拟] 已知函数f(x)=aex+b,若f(x)的图像在点(0,f(0))处的切线方程为y=x+1.(1)求a,b的值;
课堂考点探究
例2 [2021·辽宁丹东二模] 已知函数f(x)=ln(ax)-x+a.(2)当0<a≤1时,证明:f(x)≤(x-1)ex-a-x+a.

导数与不等式恒成立方法归纳总结

导数与不等式恒成立方法归纳总结

导数与不等式恒成立方法归纳总结思路一:作差解恒成立构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.首先构造函数,利用导数研究函数的单调性,求出最值,进而得出相应含参不等式,从而求出参数的取值范围,也可以分离变量,构造函数,直接把问题转化为函数的最值问题.证明()()f x g x <,(),x a b ∈时,可以构造函数()()()F x f x g x =-,如果()0F x '<,则()F x 在(),a b 上是减函数,同时若()0F a ≤,由减函数的定义可知,当(),x a b ∈时,有()0F x <,即证明()()f x g x <.例、已知函数()()2112ln 2f x a x a ax x =--+,()'f x 为其导函数. (1) 设()()1g x f x x=+,求函数()g x 的单调区间; (2) 若0a >,设()()11,A x f x ,()()22,B x f x 为函数()f x 图象上不同的两点,且满足()()121f x f x +=,设线段AB 中点的横坐标为0,x 证明:01ax >.解:(1)略 (2)120121212x x ax x x a a+>⇔>⇔>- ()222121'0a f x a a x x x ⎛⎫=+-=-≥ ⎪⎝⎭,故()f x 在定义域()0,+∞上单调递增.只需证: ()122f x f x a ⎛⎫>-⎪⎝⎭,即证()2221f x f x a ⎛⎫->- ⎪⎝⎭注意到()()12111,,2f x f x f a ⎛⎫+==⎪⎝⎭ 不妨设1210x x a <<<. ()()()22221112ln 22ln 2F x f x f x a x a ax a x a axa a x xa⎛⎫⎛⎫=-+-=----+-- ⎪ ⎪⎝⎭⎝⎭-则()()()()322222241122'0222ax a a a F x x x ax ax x ax -=--+=-≤--- 1x a ∀≥,从而()F x 在1,a ⎡⎫+∞⎪⎢⎣⎭上单减,故()210F x F a ⎛⎫<= ⎪⎝⎭, 即得. 变式1、设函数. (I )时,求函数的极值点;(Ⅱ)当时,证明在上恒成立.解(Ⅱ)证明:当a=0时,f (x )=lnx+x+1令F (x )=xe x ﹣f (x )=xe x ﹣lnx ﹣x ﹣1,(x >0),则F′(x )=x+1x•(xe x ﹣1),令G (x )=xe x ﹣1, 则G′(x )=(x+1)e x >0,(x >0),∴函数G (x )在(0,+∞)递增,又G (0)=﹣1<0,G (1)=e ﹣1>0, ∴存在唯一c ∈(0,1)使得G (c )=0,且F (x )在(0,c )上单调递减,在(c ,+∞)上单调递增,故F (x )≥F (c )=c•e c ﹣lnc ﹣c ﹣1,由G (c )=0,得c•e c ﹣1=0,得lnc+c=0, ∴F (c )=0,∴F (x )≥F (c )=0,从而证得x e x ≥f (x ).变式2、设函数()()2ln 1f x x b x =++,其中0b ≠.当*n N ∈,且2n ≥时证明不等式:33311111111ln 111232321n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++++++>-⎪⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦解:当b=-1时, ()()2f x x ln x 1=-+,令()()()332h x x f x x x ln x 1=-=-++,则()()233x x 1h x x 1++'=+在[)0,∞+ 上恒正,所以, ()h x 在[)0,∞+上单调递增,当[)0,∞+时,恒有()()h x h 00=>,即当[)0,∞+时,()()3232x x ln x 10,ln x 1x x -++++>即>,对任意正整数n ,取1x n =得32111ln 1n nn ⎛⎫++ ⎪⎝⎭>,所以, 333111111ln 11123n 23n ⎡⎤⎛⎫⎛⎫⎛⎫++⋅⋅⋅++++⋅⋅⋅+⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦()21ln +12f x x ax x =++2a =-()f x 0a =()xxe f x ≥()0,+∞= 333111111ln 1ln 1ln 123n 23n ⎛⎫⎛⎫⎛⎫++++⋅⋅⋅+++++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= 333111111ln 1ln 1ln 12233n n⎛⎫⎛⎫⎛⎫++++++⋅⋅⋅+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()22211111123n 2334n n 1++⋅⋅⋅+++⋅⋅⋅+⨯⨯⨯+>> =11111111++=2334n n 12n 1--⋅⋅⋅+--++. 变式3、已知函数()21e 2x f x a x x =--(R a ∈).证明:当1x >时, 1e ln x x x x>-.解:令()1e ln xg x x x x=-+(1x >),则()10g =, ()2e 1e ln 1x xg x x x x =+--'. 令()()h x g x =',则()e e ln x xh x x x =+' 23e e 2x x x x x-++, 因为1x >,所以e ln 0xx >, e 0x x >, ()2e 10x x x ->, 320x>, 所以()0h x '>,即()()h x g x ='在1x >时单调递增,又()1e 20g ='->,所以1x >时, ()0g x '>,即函数()g x 在1x >时单调递增.所以1x >时, ()0g x >,即1x >时, 1e ln x x x x>-. 思路二:调整目标形式解恒成立观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明. 例.已知函数()()1ln ,1a x f x x a R x -=-∈+.设,m n 为正实数,且m n >,求证:ln ln 2m n m nm n -+<-. 解:要证,只需证,即证21ln .1m m n m n n ⎛⎫- ⎪⎝⎭>+只需证21ln 0.1m m n m n n⎛⎫- ⎪⎝⎭->+设()()21ln 1x h x x x -=-+,由(2)知()h x 在()1,+∞上是单调函数,又1mn>, 所以()10m h h n ⎛⎫>= ⎪⎝⎭,即21ln 01m m n m n n⎛⎫- ⎪⎝⎭->+成立,所以ln ln 2m n m n m n -+<-. 变式1、已知函数()()21x f x x x e =--.(1)若()f x 在区间(),5a a +有最大值,求整数a 的所有可能取值; (2)求证:当0x >时,()()323ln 247x f x x x x x e <-++-+. 解析:(1)f′(x )=(x 2+x -2)e x ,当x <-2时,f′(x )>0,f (x )单调递增, 当-2<x <1时,f′(x )<0,f (x )单调递减, 当x >1时,f′(x )>0,f (x )单调递增,由题知:a <-2<a +5,得:-7<a <-2, 则a =-6、-5、-4、-3,当a =-6、-5、-4,显然符合题意,若a =-3时,f (-2)=5e ―2,f (2)=e 2,f (-2)<f (2),不符合题意,舍去. 故整数a 的所有可能取值-6,―5,-4.(2)f (x )<-3ln x +x 3+(2x 2-4x )e x +7可变为(-x 2+3x -1)e x <-3ln x +x 3+7,令g (x )=(-x 2+3x -1)e x ,h (x )=-3ln x +x 3+7,g′(x )=(-x 2+x +2)e x , 0<x <2时,g ′(x )>0,g (x )单调递增, 当x >2时,g ′(x )<0,g (x )单调递减,g (x )的最大值为g (2)=e 2,h′(x )=()331x x-,当0<x <1时,h′(x )<0,h (x )单调递减,当x >1时,h′(x )>0,h (x )单调递增,h (x )的最小值为h (1)=8>e 2,g (x )的最大值小于h (x )的最小值,故恒有g (x )<h (x ),即f (x )<-3ln x +x 3+(2x 2-4x )e x +7.变式2、函数f (x )=21-lnx ax a-1x-2a 2R ++∈()()(Ⅰ)求f (x )的单调区间;(Ⅱ)若a >0,求证:f (x )≥3-2a. 解:由(Ⅰ)知()f x 在10a ⎛⎫ ⎪⎝⎭,上单调递减; ()f x 在1a⎛⎫+∞ ⎪⎝⎭,上单调递增, 则()min 11ln 12f x f a a a ⎛⎫==-- ⎪⎝⎭. 要证()f x ≥32a -,即证1ln 12a a --≥32a -,即证1ln 1a a +-≥0. 令()1ln 1a a a μ=+-,则()22111a a a a aμ'-=-=,由()0a μ'>解得1a >,由()0a μ'<解得01a <<, ∴()a μ在()01,上单调递减;()a μ在()1+∞,上单调递增;∴()()min 11ln1101a μμ==+-=,∴ 1ln 1a a +-≥0成立.从而()f x ≥32a-成立. 思路三:结论再造解恒成立利用导数证明不等式,解决导数压轴题,谨记两点: (1)利用常见结论,如:,()ln 1x x >+,等;(2)利用同题上一问结论或既得结论. 例、 已知函数()ln 1axf x x x =-+. (Ⅰ)若函数()f x 有极值,求实数a 的取值范围;(Ⅱ)()f x 有两个极值点(记为1x 和2x )时,求证:()()()1211x f x f x f x x x+⎡⎤+≥⋅-+⎣⎦. 解(Ⅱ)∵1x , 2x 是()f x 的两个极值点,故满足方程()0f x '=即1x , 2x 是()2210x a x +-+=的两个解,∴121x x =∵()()12121212ln ln 11ax ax f x f x x x x x +=-+-++ ()()12121212122ln 1a x x x x x x a x x x x ++=-=-+++ 而在()ln 1ax f x x x =-+中, ()1ln x a f x x x +⎡⎤-=⋅-⎣⎦ 欲证原不等式成立,只需证明()()11ln 1x x f x x f x x x x++⎡⎤⎡⎤⋅-≥⋅-+⎣⎦⎣⎦∵0x >,只需证明()()ln 1f x x f x x -≥-+成立 即证ln 10x x -+≤成立 令()ln 1g x x x =-+,则()111xg x x x-=-=' 当()0,1x ∈时, ()0g x '>,函数()g x 在()0,1上单调递增; 当()1,x ∈+∞时, ()0g x '<,函数()g x 在()1,+∞上单调递减; 因此()()max 10g x g ==,故()0g x ≤,即ln 10x x -+≤成立得证. 变式1、已知函数()ln .f x x kx k =-+(Ⅱ)证明:当1a ≤时,()()2 1.x x f x kx k e ax +-<-- (附: 322ln20.69,ln3 1.10, 4.48,7.39e e ≈≈≈≈) 解(Ⅱ)要证当1a ≤时, ()()1,xx f x kx k e ax +-<--即证当1a ≤时, 2ln 10x e ax x x --->,即证2ln 10x e x x x --->.由(Ⅰ)得,当1k =时, ()0f x ≤,即ln 1x x ≤-,又0x >,从而()ln 1x x x x ≤-, 故只需证2210x e x x -+->,当0x >时成立; 令()()2210xh x e x x x =-+-≥,则()41xh x e x ='-+,令()()F x h x =',则()4xF x e '=-,令()0F x '=,得2ln2x =.因为()F x '单调递增,所以当(]0,2ln2x ∈时, ()()()0,0,F x F x F x ≤'≤单调递减,即()h x '单调递减,当()2ln2,x ∈+∞时, ()()0,F x F x >''单调递增,即()h x '单调递增,且()()()2ln458ln20,020,2810h h h e =-==-'+'>',由零点存在定理,可知()()120,2ln2,2ln2,2x x ∃∈∃∈,使得()()120h x h x ''==, 故当10x x <<或2x x >时, ()()0,h x h x '>单调递增;当12x x x <<时, ()()0,h x h x '<单调递减,所以()h x 的最小值是()00h =或()2h x .由()20h x '=,2241xe x =-()()()222222221252221x h x e x x x x x =+-=-+-=---,因为()22ln2,2x ∈,所以()20h x >,故当0x >时,所以()0h x >,原不等式成立.思路四:函数单调或最值解恒成立不等式恒成立的转化策略一般有以下几种:①分离参数+函数最值;②直接化为最值+分类讨论;③缩小范围+证明不等式;④分离函数+数形结合。

利用导数证明不等式的九大题型

利用导数证明不等式的九大题型

利用导数证明不等式的九大题型
题型一:构造函数法
把不等式的证明转化为利用导数研究函数的单调性或求最值的问题,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是利用导数证明不等式的关键。

这四道题比较简单,证明过程略.概括而言,这四道题证明的过程分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论.【启示】证明分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论。

题型二:通过对函数的变形,利用分析法,证明不等式
【启示】解答第一问用的是分离参数法,解答第二问用的是分析法、构造函数,对函数的变形能力要求较高,大家应记住下面的变形:
题型三:求最值解决任意、存在性变量问题
解决此类问题,关键是将问题转化为求函数的最值问题,常见的有下面四种形式:
题型四:分拆成两个函数研究
【注意】(2)如果按题型一的方法构造函数求导,会发现做不下去,只好半途而废,所以我们在做题时需要及时调整思路,改变思考方向.
【启示】掌握下列八个函数的图像和性质,对我们解决不等式的证明问题很有帮助,这八个函数分别为
要求会画它们的图像,以后见到这种类型的函数,就能想到它们的性质.
题型五:设而不求
当函数的极值点(最值点)不确定时,可以先设出来,只设不解,把极值点代入,求出最值的表达式而证明.。

导数与函数、不等式综合压轴题题型归纳

导数与函数、不等式综合压轴题题型归纳

函数与不等式相结合【典例1】 已知21()ln 2x f x x ae x =+-. (1)设12x =是()f x 的极值点,求实数a 的值,并求()f x 的单调区间: (2)0a >时,求证:()12f x >.【解析】(1)由题意,函数()f x 的定义域为()0,+∞, 又由()1xf x x ae x '=+-,且12x =是函数()f x 的极值点, 所以12112022f ae ⎛⎫=+'-= ⎪⎝⎭,解得a =,又0a >时,在()0,+∞上,()f x '是增函数,且102f ⎛⎫= ⎪⎭'⎝, 所以()0f x '>,得12x >,()0f x '<,得102x <<, 所以函数()f x 的单调递增区间为1,2⎛⎫+∞⎪⎝⎭,单调递减区间为10,2⎛⎫⎪⎝⎭. (2)由(1)知因为0a >,在()0,+∞上,()1xf x x ae x'=+-是增函数, 又()1110f ae '=+->(且当自变量x 逐渐趋向于0时,()f x '趋向于-∞), 所以,()00,1x ∃∈,使得()00f x '=,所以00010xx ae x +-=,即0001x ae x x =-, 在()00,x x ∈上,()0f x '<,函数()f x 是减函数, 在()0,x x ∈+∞上,()0f x '>,函数()f x 是增函数, 所以,当0x x =时,()f x 取得极小值,也是最小值, 所以()()022*******min 0111ln ln ,(01)22x f x f x x ae x x x x x x ==+-=+--<<, 令()211ln ,(01)2g x x x x x x=+--<<,则()()2211111x g x x x x x x+=---=--', 当()0,1x ∈时,()0g x '<,函数()g x 单调递减,所以()()112g x g >=, 即()()min 12f x f x ≥>成立, 【典例2】已知函数()ln xf x x=.(Ⅰ)求函数()f x 的极值;(Ⅰ)若0m n >>,且n m m n =,求证:2mn e >. 【解析】(Ⅰ)()ln x f x x Q =()f x ∴的定义域为()0,∞+且()21ln xf x x -'= 令()0f x '>,得0x e <<;令()0f x '<,得x e >()f x ∴在()0,e 上单调递增,在(),e +∞上单调递减∴函数()f x 的极大值为()ln 1e f e e e==,无极小值 (Ⅰ)0m n >>Q ,n m m n = ln ln n m m n ∴=l ln n m m nn∴=,即()()f m f n = 由(Ⅰ)知()f x 在()0,e 上单调递增,在(),e +∞上单调递减 且()10f =,则1n e m <<<要证2mn e >,即证2em en >>,即证()2e f m f n ⎛⎫< ⎪⎝⎭,即证()2e f n f n ⎛⎫< ⎪⎝⎭即证()22ln ln n n n n e-< 由于1n e <<,即0ln 1n <<,即证222ln 2ln e n n n n <- 令()()222ln 2ln 1G x e x x x x x e =-+<<则()()()()()2242ln 2ln 12ln 1e x e x e e G x x x x x x x x x x x x x +-⎛⎫'=-++=-+-=+- ⎪⎝⎭1x e <<Q ()0G x '∴>恒成立 ()G x ∴在()1,e 递增()()0G x G e ∴<=在()1,x e ∈恒成立2mn e ∴>【典例3】已知函数()xf x e ax b =++,曲线()y f x =在点()()1,1f 处的切线方程为20ex y --=.(1)求函数()f x 的解析式,并证明:()1f x x ≥-.(2)已知()2g x kx =-,且函数()f x 与函数()g x 的图象交于()11,A x y ,()22,B x y 两点,且线段AB 的中点为()00,P x y ,证明:()()001f x g y <<.【解析】(1)由题意得:()12f e a b e =++=-,即2a b +=- 又()xf x e a '=+,即()1f e a e '=+=,则0a =,解得:2b =-则()2xf x e =-.令()()11xh x f x x e x =-+=--,()1xh x e '=-令()0h x '=,解得:0x =则函数()h x 在(),0-∞上单调递减,在()0,∞+上单调递增()()00h x h ∴≥=,则:()1f x x ≥-(2)要证()()001f x g y <<成立,只需证:1212x 24222x x x e e ek ++--<-<即证121222x x x x e k e e++<<,即:1122122212xx x x x x e e e x e e x +-+<<- 只需证:212121221112x x x x x x e e x x e----+<<- 设210t x x =->,即证:2112tt t e e e t -+<<要证21t t e e t-<,只需证:22t t e e t -->令()22t t F t e et -=--,则()221102t tF t e e -⎛⎫'=+-> ⎪⎝⎭()F t ∴在()0,∞+上为增函数()()00F t F ∴>=,即21tt e e t -<成立;要证112t t e e t -+<,只需证明:112t t e t e -<+令()112tt e t G t e -=-+,则()()()()()()22222411210212121t t t tt tte e e e G t e e e -+--'=-==<+++()G t ∴在()0,∞+上为减函数 ()()00G t G ∴<=,即112t t e e t -+<成立 2112tt t e e e t -+∴<<,0t >成立 ()()001f x g y ∴<<成立【典例4】已知函数()()2()1ln 1(0)f x a x x x ax a =++-->是减函数.(1)试确定a 的值; (2)已知数列{}()()*123ln 11n n n n n a a T a a a a n N n +==∈+L L ,求证:()ln 212n nn T +<-⎡⎤⎣⎦. 【解析】解:(Ⅰ)()f x 的定义域为()1,-+∞,()()ln 12f x a x x +'=-.由()f x 是减函数得,对任意的()1,x ∈-+∞,都有()()ln 120f x a x x +-'=≤恒成立. 设()()ln 12g x a x x =+-.∵()2121a x g x x ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦'=+,由0a >知112a->-, ∴当1,12a x ⎛⎫∈-- ⎪⎝⎭时,()'0g x >;当1,2a x ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x '<, ∴()g x 在1,12a ⎛⎫-- ⎪⎝⎭上单调递增,在1,2a ⎛⎫-+∞ ⎪⎝⎭上单调递减, ∴()g x 在12ax =-时取得最大值.又∵()00g =,∴对任意的()1,x ∈-+∞,()()0g x g ≤恒成立,即()g x 的最大值为()0g . ∴102a-=,解得2a =. (Ⅰ)由()f x 是减函数,且()00f =可得,当0x >时,()0f x <, ∴()0f n <,即()()221ln 12n n n n ++<+.两边同除以()221n +得,()ln 1121211n n n n n n ++<⋅⋅+++,即12211n n n a n n +<⋅⋅++. 从而12311233452...............223412341n n nn n T a a a a n n +⎛⎫⎛⎫=<⋅⋅⋅⋅⋅ ⎪⎪++⎝⎭⎝⎭11221n n n ++=⋅+, 所以()()()212ln 2ln 21n n n n T n +⎡⎤+⎡⎤+<⎢⎥⎣⎦+⎢⎥⎣⎦()()()2ln 2ln 11ln2n n n =+-+-+①.下面证()()()2ln 2ln 11ln2102nn n n +-+-++-<;记()()()()2ln 2ln 11ln212xh x x x x =+-+-++-,[)1,x ∈+∞.∴()22111ln2ln2212322x h x x x x x =--+=-++'+++ 11ln2223x x=-+++,∵2y x x=+在[)2,+∞上单调递增,∴()h x '在[)2,+∞上单调递减, 而()()()()11112ln223ln22ln806233h x h ≤=-+=-=-'<', ∴当[)2,x ∈+∞时,()0h x '<恒成立, ∴()h x 在[)2,+∞上单调递减,即[)2,x ∈+∞时,()()22ln4ln33ln2ln2ln30h x h ≤=--=-<, ∴当2n ≥时,()0h n <. ∵()1912ln3ln22ln2ln 028h =---=-<, ∴当*n N ∈时,()0h n <,即()()()2ln 2ln 11ln212nn n n +-+-+<-②. 综上①②可得,()ln 212n nn T ⎡⎤+<-⎣⎦.课后训练1. 已知函数()()22122()2x f x x x e ax a R =-+-∈. (1)当a e =时,求函数()f x 的单调区间; (2)证明:当2a ≤-时,()2f x ≥.解:(1)当a e =时,()()221222xf x x x e ex =-+-, 所以()()2'xxf x x ex x x e e e =-=-,讨论:①当0x <时,0x xe e -<,有()'0f x >;②当01x <<时,由函数xy xe =为增函数,有0x xe e -<,有()'0f x <; ③当1x >时,由函数xy xe =为增函数,有0x xe e ->,有()'0f x >.综上,函数()f x 的增区间为(),0-∞,()1,+∞,减区间为()0,1. 证明:(2)当2a ≤-时,有112a -≥,所以2212ax x -≥, 所以()()2222xf x x x e x ≥-++.令()()2222xg x x x e x =-++,则()()2'22xxg x x x e e x x =+=+.令()2xh x xe =+,有()()'1xh x x e =+.令()'0h x =,得1x =-.分析知,函数()h x 的增区间为()1,-+∞,减区间为(),1-∞-.所以()()min 1120h x h e=-=->. 所以分析知,函数()g x 的增区间为()0,∞+,减区间为(),0-∞,所以()()()22min 0020202g x g e ==-⨯+⨯+=,故当2a ≤-时,()2f x ≥.2. 已知函数()ln ()af x x x a R x=++∈. (1)若函数()f x 在[1,)+∞上为增函数,求a 的取值范围;(2)若函数2()()(1)g x xf x a x x =-+-有两个不同的极值点,记作1x ,2x ,且12x x <,证明:2312x x e>(e 为自然对数).解析:(1)由题意可知,函数()f x 的定义域为()0,+∞,()22211a x x af x x x x='+-=+-,因为函数()f x 在[)1,+∞为增函数,所以()0f x '≥在[)1,+∞上恒成立, 等价于20x x a +-≥在[)1,+∞上恒成立,即()2mina x x≤+,因为2211224x x x ⎛⎫+=+-≥ ⎪⎝⎭,所以2a ≤, 故a 的取值范围为2a ≤.(2)可知()()222ln 1ln g x x x x a a x x x x ax x a =++-+-=--+,所以()ln 2g x x ax '=-,因为()g x 有两极值点12,x x ,所以1122ln 2,ln 2x ax x ax ==,欲证2312x x e ⋅>,等价于要证:()2312ln ln 3x x e ⋅>=,即12ln 2ln 3x x +>,所以12322ax ax +>,因为120x x <<,所以原式等价于要证明:12324a x x >+,① 由1122ln 2,ln 2x ax x ax ==,可得()2211ln 2x a x x x =-,则有2121ln2x x a x x =-(),② 由①②原式等价于要证明:212112ln32x x x x x x >-+,即证()2211221121313ln 212x x x x xx x x x x ⎛⎫- ⎪-⎝⎭>=++,令21x t x =,则1t >,上式等价于要证()31ln 12t t t->+, 令()()31ln 12t h t t t-=-+,则()()()()()()()223126114111212t t t t h t t t t t +----=-=++' 因为1t >,所以()0h t '>,所以()h t 在()1,+∞上单调递增, 因此当1t >时,()()10h t h >=,即()31ln 12t t t->+.所以原不等式成立,即2312x x e ⋅>.3.已知函数()x x f x e=. (1)求函数()f x 的单调区间; (2)证明:12ln xx e ex>-. 解析:(1)由题意可得()1'x xf x e-=,令()'0f x =,得1x =. 当(),1x ∈-∞时,()'0f x >,函数()f x 单调递增; 当()1,x ∈+∞时,()'0f x <,函数()f x 单调递减.所以()f x 的单调递增区间为(),1-∞,()f x 的单调递减区间为()1,+∞. (2)要证12ln x x e ex >-成立,只需证2ln x x x x e e>-成立. 令()ln g x x x =,则()'1ln g x x =+,令()'1ln 0g x x =+=,则1x e=, 当10,x e ⎛⎫∈ ⎪⎝⎭时,()'0g x <,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()'0g x >,所以()g x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,所以()11g x g e e ⎛⎫≥=- ⎪⎝⎭, 又由(1)可得在()0,+∞上()()max 11f x f e==, 所以max21x x e e e ⎛⎫-=-⎪⎝⎭,所以不等式得证. 4. 已知函数()x f x e ax a =--(其中e 为自然对数的底数). (1)讨论函数()f x 的单调性;(2)若对任意2(]0,x ∈,不等式()f x x a >-恒成立,求实数a 的取值范围; (3)设*n N ∈,证明:123()()()()1nnnnn e nnnne ++++<-L . 【解析】解:(1)因为()xf x e ax a =--,所以()xf x e a '=-,①当0a ≤时,()0f x '>,函数()f x 在区间(),-∞+∞上单调递增; ②当0a >时,()0ln xf x e a x a >⇒>⇒>',()0ln x f x e a x a <⇒<⇒<'所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)因为对任意的(]0,2x ∈,不等式()f x x a >-恒成立,即不等式()1xa x e +<恒成立.即当(]0,2x ∈时,1xe a x<-恒成立.令()(]()10,2x e g x x x =-∈,则()()21xx e g x x -'=.显然当()0,1x ∈时,()0g x '<,(]1,2x ∈时,()0g x '>, 所以()g x 在()0,1上单调递减,在(]1,2上单调递增. ∴1x =时()g x 取最小值1e -. 所以实数a 的取值范围是(),1e -∞-(3)在(1)中,令1a =可知对任意实数x 都有10x e x --≥,即1x x e +≤(等号当且仅当0x =时成立)令()11,2,3,,k x k n n +==L ,则1k n k e n -<,即nkk nn k e e n e -⎛⎫<= ⎪⎝⎭故123n n n nn n n n n ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L ()1231nn e e e e e <++++L ()()()111n ne e e e e e -=<--。

A新高考数学 高考重难专攻(一) 导数与不等式的证明

A新高考数学   高考重难专攻(一) 导数与不等式的证明

成立.
适当放缩法
已知函数f(x)=aex-ln x-1. (1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间; (2)证明:当a≥1e时,f(x)≥0. [解] (1)f(x)的定义域为(0,+∞),f′(x)=aex-1x. 由题设知,f′(2)=0,所以a=21e2. 从而f(x)=21e2ex-ln x-1,f′(x)=21e2ex-1x. 当0<x<2时,f′(x)<0;当x>2时,f′(x)>0. 所以f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).
1.待证不等式的两边含有相同的变量时,一般地,可以直接构造“左减右” 或“右减
2.利用构造差函数证明不等式的基本步骤 (1)作差或变形; (2)构造新的函数g(x); (3)利用导数研究g(x)的单调性或最值; (4)根据单调性及最值,得到所证不等式.
x=ln 2.
于是当 x 变化时,f′(x),f(x)的变化情况如下表:
x (-∞,ln 2)
ln 2
(ln 2,+∞)
f′(x)

0

f(x)
2(1-ln 2+a)
故 f(x)的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞). 所以 f(x)在 x=ln 2 处取得极小值,极小值为 f(ln 2)=2(1-ln 2+a),无极大值.
(2)证明:当a=0,x∈(0,1)时,x2-1x<fexx等价于-elnx x+x2-1x<0, ∵当x∈(0,1)时,ex∈(1,e),-ln x>0,∴-elnx x<-ln x, ∴只需要证-ln x+x2-1x<0在(0,1)上恒成立. 令g(x)=-ln x+x2-1x,x∈(0,1), ∴g′(x)=-1x+2x+x12=2x3-x2x+1>0, 则函数g(x)在(0,1)上单调递增,于是g(x)<g(1)=-ln 1+1-1=0, ∴当x∈(0,1)时,x2-1x<fexx.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用导数证明和式不等式-典型
(1)若护(工)=『J
上再減睛It求宾畫以杓取恒范

(町证明车等式t
2n 1 L 1 I
lii J J 1H^ In 4 hi(” +1)
n , 1 1 1
< —+ l + - + ——
2 2
3 n
解析:
:郭问圖利斛出
来看第二问•
1. 读者朋友们一起来思考这样一个命题逻辑:第二问单独出一道证明题行不行?
当然行•
2. 为什么不那样出呢?
因为那样出的话,难度太大.
3. 为什么出在本题的第二问的位置?
因为这样命题使得学生解题相对容易一些.
4. 为什么会容易一些呢?
因为题干和第一问,为我们顺利解决第二问提供帮助.这些内容可作为梯子,为我们搭桥、铺路.
5. 从第1问能得到什么结论呢?
'"|加 < 数特(打=—■—luz
在[人炖)上対城函
6. 这个结论对解决第 2问有什么帮助呢?
第2问是证明不等式,我们希望能够通过第 1问得到不等式•
通过函数的单调性,我们可以得到什么样的不等式呢?
di 沿-1)
小如取= 2,则鸭(.工)= -- - Inx
凶为卩(工)在仏是内诚函数,
所以貯(1)=山
即——-hi^<O b
X + 1 I 2^-11
故血兰》——.
X 十1
为了形式上和所证的不等式靠近,我们两边取对数
凶为』总(L +8).所 U In 丁 > 0, £ > 0
' * 建+】
不芳式网边同时戕讨数得:
i i + i Qr I 1
1
.1】』2(r — I j lui 2 f - J 下面对x 进行赋值,以便于进一步靠近所证不等式 •同时注意到, 需要采用累加的办法•
令雷■ n + 1. —」—r < - + -
Itifn + 1J 2 T
将上述所右不等式相加御:
111
I
hi2 Ind Ini UnZl 所证不等式的右半部分得证了,下面来看左半部分
观察这个不等式,不等号右边为和式的形式,
左边不是,为了有利于证明,我们把左边也变 为和式• 不等式为求和型的不等式
,
要证的不等式可变化为:
1 I 1
< —■+★・・・十」
In 2In3 * I)
对照发现,我们只需要证明下面这个不等式即可:
和1
、n fl +1J +
为减少运算量,一般我们把分式不等式的证明转化为整式不等式•上式可等价于:
21njn +lj < n+ 1).即证明H| m + I) - Zin (w + I) > 原卩可.
为此,我们构造函数如下:
脚讯曲+ i卜:
只需要证明g(x)恒大于零即可•简证如下:
切卷旳= j; (r + I)-2hi |_f + L)(上芒1)
因为j > L 所対(“M 故就"> j(l) = >0.
iiffUj(j + l)'2hi(j + l)>0,
面我们采用的证明方法为分析法,即寻找使结论成立的充分条件•一般用分析法来寻找思路,用综合法来书写过程•
所以,本题的左半部分的证明,还是建议大家先构造函数,得出不等式,然后对x进行赋值,接下来进行不等式累加,最后得出结论•具体的书写过程就不赘述了,读者朋友们请自
行书写•
要理解命题的逻辑
数学的特点是教材的知识点也许并不多,但是对知识的迁移能力要求较高,要求在解题中能够联想、思维能够跳跃•
但是考试是限时的,命题者要考虑的是:如何能够使一部分资优生在短时间内能够想到正确
的解法呢?
思来想去,命题者决定:给童鞋们一点提示吧•于是出现了第1问.
所以,遇到复杂的问题,尤其是最后一问,童鞋们要主动和前面的小问联系起来,建立关系•记住,人世间没有无缘无故的爱和恨,解题时没有无缘无故的第一问。

相关文档
最新文档