北师大实验中学一元一次不等式单元试卷
北师大八年级下《一元一次不等式与一元一次不等式组》单元检测卷含答案
单元检测卷:一元一次不等式与一元一次不等式组(基础卷)一、选择题(每小题3分,共30分)1.不等式2x>﹣3的解是()A.x<32-B.x>﹣32-C.x<﹣23D.x>﹣23【答案】B【解析】不等式两边除以2变形即可求出x>﹣32,故选B2.已知a>b,下列不等式中正确的是()A.a+3<b+3 B.C.﹣a>﹣b D.a﹣1<b﹣1【答案】B3.已知x>y,则下列不等式1)x-5<y-5,2)3x>3y,3)-3x>-3y,4)-x<-y,其中一定成立的有()A、1个B、2个C、3个D、4个【答案】B.【解析】由不等式的加法和乘法性质可得,(2)(4)正确,(1)(3)错误,所以总共只有两个成立,故选:B 4.下列不等式中,正确的是()A.m与4的差是负数,可表示为m﹣4<0B.x不大于3可表示为x<3C.a是负数可表示为a>0D.x与2的和是非负数可表示为x+2>0【答案】A5.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1 C.x>3 D.x≥3【答案】C.【解析】一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>3.故选C.6.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤0【答案】D【解析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D.7.如果不等式组无解,那么m的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤5【答案】B8.不等式组24,241x xx x+⎧⎨+<-⎩≤的正整数解的个数有( )A.1个B.2个C.3个D.4个【答案】C【解析】解不等式①可得:x≤4,解不等式②可得:x>1,则不等式组的解为1<x≤4,则整数解为x=2、3、4共3个.9.将不等式组的解集在数轴上表示出来,应是()A .B .C .D .【答案】A10.根据下图所示,对a、b、c三种物体的质量判断正确的是()A.a<c B.a<b C.a>c D.b<c【答案】C二、填空题(每小题3分,共30分)11.写出一个解集为x>1的一元一次不等式_________.【答案】答案不唯一,如:2x ﹣2>0.【解析】答案不唯一,如:2x ﹣2>0的解集为x >1.故答案为2x ﹣2>0.12.绝对值大于1而小于4的整数有 个.【答案】413.不等式3x+1<-2的解集是________.【答案】x <-1.【解析】3x+1<-2,3x <-3,x <-1.故答案为x <-1.14.足球比赛中,每队上场队员人数n 不超过11,这个数量关系用不等式表示: .【答案】n ≤11.【解析】根据题意,可得:n ≤11.15.由x <y 得到ax >ay ,则a 的取值范围是 .【答案】a <0.【解析】∵x <y ,ax >ay ,∴a <0.故答案为:a <0.16.当x 时,式子523--x 的值是非正数。
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)考试范围:第二单元; 考试时间:120分钟;总分:120分,第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. x 与1的和是非负数,用不等式表示为.( ) A. x +1<0B. x +1≤0C. x +1≥0D. x +1>02. 下列式子: ①x +y =1; ②x >y; ③x +2y; ④x −y ≥1; ⑤x <0中,属于不等式的有( )A. 2个B. 3个C. 4个D. 5个3. 由ax >b 得到x <ba ,则a 应满足的条件是.( ) A. a ≤0B. a >0C. a ≥0D. a <04. 已知实数a 、b ,若a >b ,则下列结论正确的是( ) A. a −5<b −5B. 2+a <2+bC. −a4>−b4D. 3a >3b5. 下列不等式的一个解是x =3的是.( ) A. x +3>5B. x +3>6C. x +3>7D. x +3>86. 下列各数中,是不等式2(x −5)<x −8的解的是.( ) A. 4 B. −5C. 3D. 57. 解不等式2+x3>2x−15的过程中,下列错误的一步是.( ) A. 5(2+x)>3(2x −1) B. 10+5x >6x −3 C. 5x −6x >−3−10D. x >138. 不等式4x −a >7x +5的解集是x <−1,则a 的值为.( ) A. −2B. 2C. 5D. 89. 如图,直线y =x +32与y =kx −1相交于点P ,点P 的纵坐标为12,则关于x 的不等式x +32>kx −1的解集是( )A. x >−1B. x <−1C. x>12D. x<1210. 如图是一次函数y1=kx+b与y2=x+a的图象,则不等式kx+b<x+a的解集是( )A. x<3B. x>3C. x>a−bD. x<a−b11. 定义新运算“☆”如下:当a>b时,a☆b=ab+b;当a<b时,a☆b=ab−b.若3☆(x+2)>0,则x的取值范围是.( )A. −1<x<1或x<2B. x<−2或1<x<2C. −2<x<1或x>1D. x<−2或x>212. 一个关于x的一元一次不等式组的解集在数轴上的表示如图所示,则该不等式组的解集是.( )A. x>1B. x≥1C. x>3D. x≥3第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 某生物兴趣小组要在温箱里培养A,B两种菌苗,A种菌苗的生长温度x(℃)的范围是35≤x≤38,B种菌苗的生长温度y(℃)的范围是34≤y≤36.那么温箱里的温度t(℃)的范围是____.14. 若a>b,则ac2_______bc2.15. 如图,函数y=3x+b和y=ax−3的图像交于点P(−2,−5),则不等式3x+b>ax−3的解集是.16. 一元一次不等式组中各个不等式解集的,叫做这个一元一次不等式组的解集.三、解答题(本大题共9小题,共72.0分。
最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试卷(含答案详解)
第二章一元一次不等式和一元一次不等式组章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣42、下列说法中,正确的是( )A .x =3是不等式2x >1的解B .x =3是不等式2x >1的唯一解C .x =3不是不等式2x >1的解D .x =3是不等式2x >1的解集3、一次函数y =mx ﹣n (m ,n 为常数)的图象如图所示,则不等式mx ﹣n ≥0的解集是( )A .x ≥2B .x ≤2C .x ≥3D .x ≤34、在数轴上表示不等式1x >-的解集正确的是( )A.B.C.D.5、已知a>b,下列变形一定正确的是()A.3a<3b B.4+a>4﹣b C.ac2>bc2D.3+2a>3+2b6、设m为整数,若方程组3131x y mx y m+=-⎧⎨-=+⎩的解x、y满足175x y+>-,则m的最大值是()A.4 B.5 C.6 D.77、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A.关于x的不等式ax+b>0的解集是x>2B.关于x的不等式ax+b<0的解集是x<2C.关于x的方程ax+b=0的解是x=4D.关于x的方程ax+b=0的解是x=28、一次函数y=kx+b的图象如图所示,则下列说法错误的是()A.y随x的增大而减小B.k<0,b<0C.当x>4时,y<0x的图象D.图象向下平移2个单位得y=﹣129、一个不等式的解集为x≤1,那么在数轴上表示正确的是()A.B.C.D.10、下列说法正确的是()A.若a<b,则3a<2b B.若a>b,则ac2>bc2 C.若﹣2a>2b,则a<b D.若ac2<bc2,则a<b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某种药品的说明书上贴有如下的标签,一次服用这种药品的剂量范围是_________mg .2、如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围为_____________.3、当|x ﹣4|=4﹣x 时,x 的取值范围是___.4、如果a >b ,那么﹣2﹣a ___﹣2﹣b .(填“>”、“<”或“=”)5、已知点M (-6,3-a )是第二象限的点,则a 的取值范围是________.三、解答题(5小题,每小题10分,共计50分)1、学校计划购买甲、乙两种品牌的羽毛球拍若干副.已知购买3副甲种品牌球拍和2副乙种品牌球拍共需230元;购买2副甲种品牌球拍和1副乙种品牌球拍共需140元.(1)甲、乙两种品牌球拍的单价分别是多少元?(2)学校准备购买这两种品牌球拍共100副,要求乙种品牌球拍数量不超过甲种品牌球拍数量的3倍,那么购买多少副甲种品牌球拍最省钱?2、人和人之间讲友情,有趣的是,数与数之间也有相类似的关系.若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”.例如:18的正因数有1、2、3、6、9、18,它的真因数之和为1236921++++=;51的正因数有1、3、17、51,它的真因数之和为131721++=,所以称18和51为“亲和数”.又如要找8的亲和数,需先找出8的真因数之和为1247++=,而7133=++,所以8的亲和数为1339⨯⨯=,数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.例如:121、1351等.(1)10的真因数之和为_______;(2)求证:一个四位的“两头蛇数”11ab 与它去掉两头后得到的两位数的3倍的差,能被7整除;(3)一个百位上的数为4的五位“两头蛇数”,能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”.3、解不等式组求它的整数解:()202131x x x ->⎧⎪⎨+≥-⎪⎩ 4、解不等式(组)(1)3(1)5x x -≤+(2)4614312163x x x x +>-⎧⎪++⎨-≤⎪⎩ 5、为做好“园林城市创建”工作,打造美丽城市,达州市绿化提质改造工程正如火如荼地进行.某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某桥标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?-参考答案-一、单选题1、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.2、A【分析】对A 、B 、C 、D 选项进行一一验证,把已知解代入不等式看不等式两边是否成立.【详解】解:A 、当x =3时,2×3>1,成立,故A 符合题意;B 、当x =3时,2×3>1成立,但不是唯一解,例如x =4也是不等式的解,故B 不符合题意;C 、当x =3时,2×3>1成立,是不等式的解,故C 不符合题意;D 、当x =3时,2×3>1成立,是不等式的解,但不是不等式的解集,其解集为:x >12,故D 不符合题意;故选:A .【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题.3、D【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.4、A【分析】根据在数轴上表示不等式的解集的方法进行判断即可.【详解】在数轴上表示不等式1x>-的解集如下:故选:A.【点睛】本题考查不等式在数轴上的表示,掌握不等式在数轴上的画法是解题的关键.5、D【分析】根据不等式的基本性质逐项排查即可.【详解】解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;B.无法证明,故B选项不正确,不符合题意;C .当c =0时,不等式不成立,故C 选项不正确,不符合题意;D .不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D 选项正确,符合题意. 故选:D .【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.6、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=, 把25m x -=代入①得6315m y m -+=-,解得125m y --=, ∵175x y +>-, ∴21217555m m ---+>-,即131755m ->-, 解得6m <,∵m 为整数,∴m 的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.7、D【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.8、B【分析】由一次函数的图象的走势结合一次函数与y轴交于正半轴,可判断A,B,由图象可得:当x>4时,函数图象在x轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.【详解】解:一次函数y=kx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;k b故B符合题意;一次函数y=kx+b, y随x的增大而减小,与y轴交于正半轴,所以0,0,由图象可得:当x >4时,函数图象在x 轴的下方,所以y <0,故C 不符合题意;由函数图象经过0,2,4,0,240b k b ,解得:1,22k b 所以一次函数的解析式为:12,2y x 把122y x =-+向下平移2个单位长度得:12y x =-,故D 不符合题意; 故选B 【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.9、C【分析】根据数轴上数的大小关系解答.【详解】解:解集为x ≤1,那么在数轴上表示正确的是C ,故选:C .【点睛】此题考查利用数轴表示不等式的解集,正确掌握数轴上数的大小关系及表示解集的方法是解题的关键.10、D【分析】利用不等式的性质,即可求解.【详解】解:A、若a<b,则3a<3b,故本选项错误,不符合题意;B、若a>b,当c=0时,则ac2=bc2,故本选项错误,不符合题意;C、若﹣2a>﹣2b,则a<b,故本选项错误,不符合题意;D、若ac2<bc2,则a<b,故本选项正确,符合题意;故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键.二、填空题1、20~45【分析】根据60≤2次服用的剂量≤90,60≤3次服用的剂量≤90,列出两个不等式组,求出解集,再求出解集的并集即可.【详解】解:设一次服用的剂量为x mg,根据题意得;60≤2x≤90或60≤3x≤90,解得30≤x≤45或20≤x≤30,则一次服用这种药品的剂量范围是:20~45mg.故答案为:20~45.【点睛】此题考查一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键.2、1<m<2【分析】根据左右两个天平的倾斜得出不等式即可;【详解】由第一幅图得m >1,由第二幅图得m <2,故1<m <2;故答案是:1<m <2.【点睛】本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键.3、4x ≤【分析】根据绝对值的意义进行分析解答【详解】解:∵ |4|4x x =-=-,∴40x -≥,故答案为:4x ≤.【点睛】本题考查绝对值的意义,解一元一次不等式,熟练掌握基础知识即可.4、<【分析】根据不等式的基本性质:不等式的两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加上同一个数,不等式的方向不变.【详解】解:∵a >b ,∴﹣a <﹣b ,∴﹣2﹣a <﹣2﹣b ,故答案为:<.【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键.5、a<3【分析】根据第二象限的符号特点(-,+),建立不等式解答即可.【详解】∵M(-6,3-a)是第二象限的点,∴3-a>0,解得a<3,故答案为:a<3.【点睛】本题考查了坐标与象限,不等式的解法,根据点的位置,正确建立不等式求解是解题的关键.三、解答题1、(1)甲种品牌球拍的单价是50元,乙种品牌球拍的单价是40元(2)购买25副甲种品牌球拍最省钱【分析】(1)设甲种品牌球拍的单价是x元,乙种品牌球拍的单价是y元,根据“购买3副甲种品牌球拍和2副乙种品牌球拍共需230元;购买2副甲种品牌球拍和1副乙种品牌球拍共需140元”,即可得出关于x,y的二元一次方程组,解之即可得出甲、乙两种品牌球拍的单价;(2)设购买m副甲种品牌球拍,则购买(100﹣m)副乙种品牌球拍,根据乙种品牌球拍数量不超过甲种品牌球拍数量的3倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设学校购买100副球拍所需费用为w元,利用总价=单价×数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.(1)解:设甲种品牌球拍的单价是x 元,乙种品牌球拍的单价是y 元,依题意得:{3x +2x =2302x +x =140, 解得:5040x y =⎧⎨=⎩. 答:甲种品牌球拍的单价是50元,乙种品牌球拍的单价是40元.(2)解:设购买m 副甲种品牌球拍,则购买(100﹣m )副乙种品牌球拍,依题意得:100﹣m ≤3m ,解得:m ≥25.设学校购买100副球拍所需费用为w 元,则w =50m +40(100﹣m )=10m +4000.∵10>0,∴w 随m 的增大而增大,∴当m =25时,w 取得最小值,∴购买25副甲种品牌球拍最省钱.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.2、(1)8;(2)见解析;(3)10461,11451,12441.【分析】(1)先求出10的真因数,再求10的真因数之和即可;(2)先把给出的数用代数式表示111001+10010ab a b =+,10ab a b =+,根据要求列代数式得1121001100103(10)ab ab a b a b -=++-+=7(10143)a b ++,说明括号中的数为整式即可;(3)设五位“两头蛇数”为141x y (x y <),先求出16的真因数之和15,找到16的亲和数为131133⨯⨯= ,根据能被16的“亲和数”整除,将五位数写成33的倍数与剩余部分为14133315333010106x y x x y =⨯+⨯+++,可得553x y ++能被33整除,根据08x ≤≤,19y ≤≤且x y <,得出555388x y ≤++≤能被33整除得出6x y +=即可.【详解】.解:(1)10的真因数为1,2,5,10的真因数之和为1+2+5=8,故答案为8;(2)11100010010+1=1001+10010ab a b a b =+++,10ab a b =+, ∵1131001100103(10)ab ab a b a b -=++-+,=7071001a b ++,=7(10143)a b ++,又因为09a ≤≤,09b ≤≤的整数,∴10143a b ++为整数,∴一个四位“两头蛇数”与它去掉两头后得到的两位数的3倍的差能被7整除;(3)设五位“两头蛇数”为141x y (x y <),∵末位数为1,∴不能被2(真因数)整除,∵16的真因数之和1248151311=+++==++,∴16的亲和数为131133⨯⨯= ,1411040110001033315633301010x y x y x x y =++=⨯++⨯++能被33整除,101062(553)x y x y ∴++=++能被33整除,又2不能被33整除,553x y ∴++能被33整除,08x ≤≤又,19y ≤≤且x y <,∴555388x y ≤++≤,55333x y ∴++=或66.5530x y ∴+=或5563x y +=(舍去),6x y ∴+=,09x y ≤≤<,∴06x y ==,或1,5x y ==或2,4x y ==,所以五位“两头蛇数”为10461,11451,12441.【点睛】本题考查数字之间的新定义,仔细阅读题目,把握实质,明确真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解,掌握真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解是解题关键.3、不等式组的解集为23x <≤,不等式组的整数解为3.【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求出不等式组的整数解即可.【详解】解:()202131x x x ->⎧⎪⎨+≥-⎪⎩①② 解不等式①得:2x >,解不等式②得:3x ≤,∴不等式组的解集为23x <≤,∴不等式组的整数解为3.【点睛】本题主要考查了解一元一次不等式组和求一元一次不等式组的整数解,解题的关键在于能够熟练掌握解不等式组的方法.4、(1)4x ≤;(2)1x >-【分析】(1)根据解不等式的基本步骤求解即可;(2)先求得每一个不等式的解集,后确定出解集即可.【详解】(1)∵3(1)5x x -≤+ ,∴335x x -≤+,∴28x ≤,∴4x ≤;(2)4614312163x x x x +>-⎧⎪⎨++-≤⎪⎩①② 由①:1x >-,由②:4x ≥-,1x ∴>-.【点睛】本题考查了一元一次不等式和一元一次不等式组的解法,熟练掌握解题的基本步骤是解题的关键.5、(1)购买甲种树苗300棵,则购买乙种树苗100棵;(2)至少应购买甲种树苗240棵【分析】(1)设购买甲种树苗x棵,则购买乙种树苗(400-x)棵,根据购买两种树苗的总金额为90000元建立方程求出其解即可;(2)设应购买甲种树苗a棵,则购买乙种树苗(400-a)棵,根据购买甲种树苗的金额不少于购买乙种树苗的金额建立不等式求出其解即可.【详解】解:(1)设购买甲种树苗x棵,则购买乙种树苗(400-x)棵,由题意得200x+300(400-x)=90000,解得:x=300,∴购买乙种树苗400-300=100棵,答:购买甲种树苗300棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a棵,则购买乙种树苗(400-a)棵,由题意,得200a≥300(400-a),解得:a≥240.答:至少应购买甲种树苗240棵.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次不等式的解法的运用,解答时建立方程和不等式是关键.。
最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组同步练习试题(含详细解析)
第二章一元一次不等式和一元一次不等式组同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣42、下列选项正确的是( )A .a 不是负数,表示为0a >B .a 不大于3,表示为3a <C .x 与4的差是负数,表示为40x -<D .x 不等于34,表示为34x > 3、如图,一次函数y =kx +b (k ,b 为常数,k ≠0)经过点A (-3,2),则关于x 的不等式中k (x -1)+b <2的解集为( )A .x >-2B .x <-2C .x >-3D .x <-34、不等式3+2x ≥1的解在数轴上表示正确的是( )A .B .C .D .5、设m 为整数,若方程组3131x y m x y m +=-⎧⎨-=+⎩的解x 、y 满足175x y +>-,则m 的最大值是() A .4 B .5 C .6 D .76、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n> C .1﹣m >1﹣n D .m 2<n 27、下列变形中,错误的是( )A .若3a +5>2,则3a >2-5B .若213x ->,则23x <-C .若115x -<,则x >﹣5 D .若1115x >,则511x >8、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a+1<3b+19、一次函数y =kx +b (k ≠0)的图象如图所示,当x >2时,y 的取值范围是( )A .y <0B .y >0C .y <3D .y >310、已知一次函数y 1=kx +1和y 2=x ﹣2.当x <1时,y 1>y 2,则k 的值可以是( )A .-3B .-1C .2D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)14≥-的解集是_________.2、已知关于x 的一元一次不等式20212021x a x +>的解集为2021x <,那么关于y 的一元一次不等式12021(1)2021y y a -<-+的解集为___________. 3、如图直线y =x +b 和y =kx +4与x 轴分别相交于点A (﹣4,0),点B (2,0),则040x b kx +>⎧⎨+>⎩解集为_____________.4、若关于x 的不等式组9210x x a ->-⎧⎨-≥⎩的整数解共有5个,则a 的取值范围_________. 5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、解不等式(组)(1)3(1)5x x -≤+(2)4614312163x x x x +>-⎧⎪++⎨-≤⎪⎩2、解不等式3x﹣1≤x+3,并把解在数轴上表示出来.3、某校为了丰富学生的业余生活,组织了一次棋类的比赛,准备购买若干跳棋和军棋作为奖品,若购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元.(1)求购买一副跳棋和一副军棋各需要多少钱?(2)学校准备购买跳棋与军棋共80副作为奖品,根据规定购买的总费用不能超过600元,则学校最多可以购买多少副军棋?4、下列各式哪些是不等式2(2x+1)>25的解?哪些不是?(1)x=1.(2)x=3.(3)x=10.(4)x=12.5、某公司销售A、B两种型号教学设备,每台的销售成本和售价如表:已知每月销售两种型号设备共20台,设销售A种型号设备x台,A、B两种型号设备全部售完后获得毛利润y万元(毛利润=售价-成本)(1)求y关于x的函数关系式(不要求写自变量的取值范围);(2)若销售两种型号设备的总成本不超过80万元,那么公司如何安排销售A、B两种型号设备,售完后毛利润最大?并求出最大毛利润.-参考答案-一、单选题1、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.2、C【分析】由题意先根据非负数、负数及各选项的语言表述列出不等式,再与选项中所表示的进行比较即可得出答案.【详解】解:A .a 不是负数,可表示成0a ,故本选项不符合题意;B .a 不大于3,可表示成3a ,故本选项不符合题意;C .x 与4的差是负数,可表示成40x -<,故本选项符合题意;D .x 不等于34,表示为34x ≠,故本选项不符合题意; 故选:C .【点睛】本题考查不等式的定义,解决本题的关键是理解负数是小于0的数,不大于用数学符号表示是“≤”.3、A【分析】根据一次函数图象平移规律可得函数y =kx +b 图像向右平移1个单位得到平移后的解析式为y =k (x -1)+b ,即可得出点A 平移后的对应点,根据图象找出一次函数y=k (x -1)+b 的值小于2的自变量x 的取值范围,据此即可得答案.【详解】解:∵函数y =kx +b 图像向右平移1个单位得到平移后的解析式为y =k (x -1)+b ,∴A (−3,2)向右平移1个单位得到对应点为(−2,2),由图象可知,y 随x 的增大而减小,∴关于x 的不等式(1)2k x b 的解集为2x >-,故选:A .【点睛】本题考查一次函数的性质、一次函数图象的平移及一次函数与不等式,正确理解函数的性质、会观察图象,熟练掌握平移规律是解题的关键.4、B【分析】不等式移项,合并同类项,把x 系数化为1求出解集,表示在数轴上即可.【详解】解:不等式3+2x ≥1,移项得:2x ≥1﹣3,合并同类项得:2x ≥﹣2,解得:x ≥﹣1,数轴表示如下:.故选:B .【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.5、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=, 把25m x -=代入①得6315m y m -+=-,解得125m y --=, ∵175x y +>-, ∴21217555m m ---+>-,即131755m ->-, 解得6m <,∵m 为整数,∴m 的最大值为5,故选B .【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.6、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.7、B【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、不等式的两边都减5,不等号的方向不变,故A 不符合题意;B 、不等式的两边都乘以32-,不等号的方向改变得到32x <-,故B 符合题意; C 、不等式的两边都乘以(﹣5),不等号的方向改变,故C 不符合题意;D 、不等式的两边都乘以同一个正数,不等号的方向不变,故D 不符合题意;故选:B .【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题.8、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b , ∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.9、A【分析】观察图象得到直线与x 轴的交点坐标为(2,0),根据一次函数性质得到y 随x 的增大而减小,所以当x >2时,y <0.【详解】∵一次函数y =kx +b (k ≠0)与x 轴的交点坐标为(2,0),∴y 随x 的增大而减小,∴当x >2时,y <0.故选:A .【点睛】本题考查了一次函数的性质:一次函数y =kx +b (k 、b 为常数,k ≠0)的图象为直线,当k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0,图象经过第二、四象限,y 随x 的增大而减小;直线与x 轴的交点坐标为(,0)b k-.10、B【分析】先求出不等式的解集,结合x <1,即可得到k 的取值范围,即可得到答案.【详解】解:根据题意,∵y 1>y 2,∴12kx x +>-,解得:(1)3k x ->-,∴10k -<,∴1k <;31x k <--, ∵当x <1时,y 1>y 2, ∴311k -<- ∴2k >-,∴21k -<<;∴k 的值可以是-1;故选:B .【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.二、填空题1、≤x 【分析】根据不等式的性质进行求解,根据二次根式的运算法则进行化简即可.【详解】4≥-4≥-,4x ≥-,x≤x故答案为:≤x【点睛】本题考查了解一元一次不等式,二次根式的混合运算,熟练掌握相关运算法则是解本题的关键. 2、2022y <【分析】设1,x y =-则20212021x a x +>化为:()120211,2021y a y -+->整理可得:12021(1)2021y y a -<-+,从而可得12021(1)2021y y a -<-+的解集是不等式12021y -<的解集,从而可得答案. 【详解】解: 关于x 的一元一次不等式20212021x a x +>的解集为2021x <, 设1,x y =- 则20212021x a x +>化为:()120211,2021y a y -+-> 两边都乘以1-得:()120211,2021y a y ---< 即12021(1)2021y y a -<-+ ∴ 12021(1)2021y y a -<-+的解集为:12021y -<的解集, 2022.y ∴<故答案为:2022.y <【点睛】本题考查的是求解一元一次不等式的解集,掌握“整体法求解不等式的解集”是解本题的关键. 3、42x -<<【分析】观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,从而得到0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,从而得到40kx +> 的解集为2x <,即可求解.【详解】解:观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,∴0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,∴40kx +> 的解集为2x <,∴040x b kx +>⎧⎨+>⎩解集为42x -<<. 故答案为:42x -<<【点睛】本题主要考查了一次函数与不等式的关系,观察图象得到当4x >- 时,y x b =+的图象位于x 轴的上方,当2x < 时,4y kx =+的图象位于x 轴的上方是解题的关键.4、﹣1<a ≤0【分析】先求出不等式组的解集,再根据已知条件得出−1<a ≤0即可.【详解】解:9210x x a --⎧⎨-≥⎩>①②, 解不等式①,得x <5,解不等式②,得x ≥a ,所以不等式组的解集是a ≤x <5,∵关于x 的不等式组9210x x a ->-⎧⎨-≥⎩的整数解共有5个, ∴−1<a ≤0,故答案为:−1<a ≤0.【点睛】本题考查了解一元一次不等式组的整数解和解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、(1)4x ≤;(2)1x >-【分析】(1)根据解不等式的基本步骤求解即可;(2)先求得每一个不等式的解集,后确定出解集即可.【详解】(1)∵3(1)5x x -≤+ ,∴335x x -≤+,∴28x ≤,∴4x ≤;(2)4614312163x x x x +>-⎧⎪⎨++-≤⎪⎩①②由①:1x >-,由②:4x ≥-,1x ∴>-.【点睛】本题考查了一元一次不等式和一元一次不等式组的解法,熟练掌握解题的基本步骤是解题的关键.2、x ≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.3、(1)购买一副跳棋和一副军棋各需要6元、10元;(2)学校最多可以买30副军棋【分析】(1)设购买一副跳棋和一副军棋各需要x 元、y 元,然后根据购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元,列出方程求解即可;(2)设购买m 副军棋,则购买()80m -副跳棋,然后根据购买的总费用不能超过600元,列出不等式求解即可.【详解】解:(1)设购买一副跳棋和一副军棋各需要x 元、y 元,由题意得:2342540x y x y +=⎧⎨+=⎩, 解得610x y =⎧⎨=⎩, ∴购买一副跳棋和一副军棋各需要6元、10元,答:购买一副跳棋和一副军棋各需要6元、10元;(2)设购买m 副军棋,则购买()80m -副跳棋,由题意得:()68010600m m -+≤,即4480600m +≤,解得30m ≤,∴学校最多可以买30副军棋,答:学校最多可以买30副军棋.【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意,列出式子求解.4、(1)不是(2)不是(3)是(4)是【分析】把未知数的值代入计算,比较后,判断即可(1)把x=1代入不等式2(2x+1)>25,因为:左边=2×(2×1+1)=6<25,所以x=1不是不等式2(2x+1)>25的解.(2)把x=3代入不等式2(2x+1)>25,因为:左边=2×(2×3+1)=14<25,所以x=3不是不等式2(2x+1)>25的解.(3)把x=10代入不等式2(2x+1)>25,因为:左边=2×(2×10+1)=42>25,所以x=10是不等式2(2x+1)>25的解.(4)把x=12代入不等式2(2x+1)>25,因为:左边=2×(2×12+1)=50>25,所以x=12是不等式2(2x+1)>25的解.【点睛】本题考查了不等式的解即使不等式左右两边成立的未知数的值,正确理解不等式的解是解题的关键.5、(1)y=-2x+60;(2)公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【分析】(1)设销售A种品牌设备x台,B种品牌设备(20-x)台,算出每台的利润乘对应的台数,再合并在一起即可求出总利润;(2)由“生产两种品牌设备的总成本不超过80万元”,列出不等式,再由(1)中的函数的性质得出答案.【详解】解:(1)设销售A种型号设备x台,则销售B种型号设备(20-x)台,依题意得:y=(4-3)x+(8-5)×(20-x),即y=-2x+60;(2)3x+5×(20-x)≤80,解得x≥10.∵-2<0,∴当x=10时,y最大=40万元.故公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【点睛】本题考查了一次函数的应用,一元一次不等式的应用,注意题目蕴含的数量关系,正确列式解决问题.。
北师大版八年级数学下册《第2章 一元一次不等式与一元一次不等式组》单元测试题(含答案)
第二章 一元一次不等式(组) 单元检测卷(全卷满分100分 限时90分钟) 一.选择题:(每小题3分共36分)1. 若b a <,则下列各不等式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac < 2.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -<3.已知x y >,则下列不等式不成立的是( ).A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+ 4. 如果1-x 是负数,那么x 的取值范围是( )A .x >0B .)x <0C .x >1D .x <1 5. 若1-=aa ,则a 只能是:( ) ( )A .1-≤aB .0<aC .1-≥aD .0≤a6. 某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.一次函数y =2x -4与x 轴的交点坐标为(2,0),则一元一次不等式2x -4≤0的解集应是( )A .x ≤2B .x <2C .x ≥2D .x >28. 小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每个笔记本2元,那么小明最多能买______支钢笔.A.12B.13C.14D.159.已知关于x 的不等式组0220x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是A. 65a -<<-B. 65a -≤<-C. 65a -<≤-D. 65a -≤≤- 10. 不等式2(1)3x x +<的解集在数轴上表示出来应为 ( )11.给出四个命题:①若a>b ,c=d , 则ac>bd ;②若ac>bc ,则a>b ;③若a>b 则ac 2>bc 2;④若ac 2>bc 2,则a>b 。
数学:《一元一次不等式和一元一次不等式组》单元练习(北师大版八年级下)
课题单元练习题习题内容A组一、选择题(每题10分)1.x与y的差的5倍与2的和是一个非负数,可表示为()(A)()025>+-yx(B)()025≥+-yx(C)025≥+-yx(D)0225≤+-yx2.下列说法中正确的是()(A)3=x是32>x的一个解. (B)3=x是32>x的解集.(C)3=x是32>x的唯一解. (D)3=x不是32>x的解.3.不等式组()()⎪⎪⎩⎪⎪⎨⎧->+<-2.351,062xx的解集是()(A)32<<x(B)38-<<-x(C)38<<-x(D)8-<x或3>x4.若4224-=-mm,那么m的取值范围是()(A)不小于2 (B)不大于2 (C)大于2 (D)等于2二、填空题(每题10分)5. 当x___ __时,代数式43+-x的值是非正数.6..若x同时满足不等式032>+x与02<-x,则x的取值范围是___ __.三、解答题7.(10分)解不等式3223->+xx8.解不等式组(各15分)(1)⎩⎨⎧-<-<-2235xx(2)⎪⎩⎪⎨⎧+<-≤+--)1(3151215312xxxxB 组1.x 与y 的差的5倍与2的和是一个非负数,可表示为( )(A )()025>+-y x (B )()025≥+-y x (C )025≥+-y x (D )0225≤+-y x2.下列说法中正确的是( )(A )3=x 是32>x 的一个解. (B )3=x 是32>x 的解集.(C )3=x 是32>x 的唯一解. (D )3=x 不是32>x 的解.3. 不等式()222-≤-x x 的非负整数解的个数是( )(A )1 (B )2 (C )3 (D )44.若,0<+b a 且0>b ,则b a b a --,,,的大小关系是( )(A )b a b a -<-<<(B ) b a a b <-<<-(C )b a b a <-<-<(D )a b b a -<<-<5.若不等式()33->-a x a 的解集是1<x ,则a 的取值范围是( )(A ) 3>a (B )3->a (C ) 3<a (D )3-<a6.若4224-=-m m ,那么m 的取值范围是( )(A )不小于2 (B )不大于2 (C )大于2 (D )等于27.两个代数式1-x 与3-x 的值的符号相同,则x 的取值范围是( )(A )3>x (B )1<x (C ) 21<<x (D )1<x 或3>x8.如果方程组⎩⎨⎧=++=+.33,13y x k y x 的解为x 、y ,且42<<k ,则y x -的取值范围是( ) (A ) 10<-<y x (B ) 210<-<y x (C )11<-<-y x (D )13-<-<-y x 9.若方程()()x x m x m 53113--=++的解是负数,则m 的取值范围是( )(A )45->m (B )45-<m (C )45>m (D )45<m 10.已知x 关于的不等式组⎩⎨⎧>--≥-.0,125a x x 无解,则a 的取值范围是_____.11.如果关于x 的不等式()51+<-a x a 和42<x 的解集相同,则a 的值为_____.12.解不等式3225332x x x x --≥+--,并把它的解集在数轴上表示出来.13.已知关于y x ,的方程组⎩⎨⎧=--=+m y x m y x 232的解y x ,均为负数,求m 的取值范围.。
(北师大版)北京市八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测(包含答案解析)
一、选择题1.若点(4,12)--A a a 在第三象限,则a 的取值范围是( ).A .142a <<B .12a >C .4a <D .4a > 2.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1020x x ->⎧⎨+≤⎩B .1020x x +>⎧⎨+≤⎩C .1020x x +>⎧⎨-≤⎩D .1020x x -≤⎧⎨+<⎩ 3.三角形的两边长分别是4和11,第三边长为34m +,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .4.某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是( ).A .两胜一负B .一胜两平C .五平一负D .一胜一平一负 5.某校组织10名党员教师和38名优秀学生团干部去某地参观学习.学校准备租用汽车,学校可选择的车辆(除司机外)分别可以乘坐4人或6人,为了安全每辆车上至少有1名教师,且没有空座,那么可以选择的方案有( )A .2种B .3种C .4种D .5种 6.不等式2﹣3x≥2x ﹣8的非负整数解有( )A .1个B .2个C .3个D .4个 7.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤8.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( ) A .a <-2B .a ≤-2C .a >-2D .a ≥-2 9.若a b >,则下列不等式中,不成立的是( )A .33a b ->-B .33a b ->-C .33a b >D .22a b -+<-+10.如果不等式组5x x m <⎧⎨>⎩有解,那么m 的取值范围是( ) A .m >5 B .m≥5 C .m <5 D .m≤811.已知不等式()33a x a -<-的解集是1x >-,则a 的取值范围是( )A .3a >B .3a ≥C .3a <D .3a ≤12.已知点()1,23P a a +-在第四象限,则a 的取值范围是( )A .1a <-B .312a -<<C .312a -<<D .32a > 二、填空题13.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.14.已知a 为整数,且340218a <+<,则a 的值为____________.15.若不等式组30x a x >⎧⎨-≤⎩只有三个正整数解,则a 的取值范围为__________. 16.点()3,1m m --在第四象限,则m 的取值范围是_______.17.已知:a 、b 、c 是三个非负数,并且满足326a b c ++=,231a b c +-=,设37m a b c =+-,设s 为m 的最大值.则s 的值为__________.18.若关于x 的不等式组31123124x x x a +⎧->⎪⎪⎨+-⎪-<⎪⎩有4个整数解,那么a 的取值范围是_____. 19.若a b >,则2a _________2b (填“<”、“=”或“>”号).20.在△ABC 中,∠A 是钝角,∠B =30°, 设∠C 的度数是α,则α的取值范围是___________三、解答题21.(1)解不等式:1213x x +≤+并把解集表示在数轴上.(2)若关于x 的不等式组22x a +>的解为1x >-,求a 的值.22.解下面一元一次不等式组,并写出它的所有非负整数解.515264253(5)x x x x -+⎧+>⎪⎨⎪+≤-⎩. 23.列方程解应用题:七年级1班计划购买一批书包和词典作为“迎新知识竞赛”活动奖品,了解到每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)求每个书包和每本词典的价格;(2)若该班计划用900元购买40份(即书包、词典的总数量)奖品,设其中购买了m 个书包,请写出余下的钱的代数式,当余下的钱为最小值时,问该班购买书包和词典的数量各是多少?24.某厂贷款8万元购进一台机器生产商品.已知商品的成本每个8元,成品后售价是每个15元,应付税款和损耗总费用是销售额的20%.若每个月能生产销售1000个该商品,问至少几个月后能赚回这台机器的贷款?25.2020年新冠肺炎疫情在全球蔓延,全球疫情大考面前,中国始终同各国安危与共、风雨同舟,时至5月,中国已经向150多个国家和国际组织提供医疗物资援助.某次援助,我国组织20架飞机装运口罩、消毒剂、防护服三种医疗物资共120吨,按计划20架飞机都要装运,每架飞机只能装运同一种医疗物资,且必须装满.根据如下表提供的信息,解答以下问题:(2)若此次物资运费为W 元,求W 与x 之间的函数关系式;(3)如果装运每种医疗物资的飞机都不少于4架,那么怎样安排运送物资,方能使此次物资运费最少,最少运费为多少元?26.(1)计算:0)4π+-(2)解不等式:452(1)x x +≤+【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】结合题意,根据点的坐标、象限的性质,列一元一次不等式组并求解,即可得到答案.【详解】∵点(4,12)--A a a 在第三象限∴40a -<且120a -<∴4a <且12a > ∴142a << 故选:A .【点睛】 本题考查了直角坐标系和一元一次不等式组的知识;解题的关键是熟练掌握坐标、象限、一元一次不等式组的性质,从而完成求解.2.C解析:C【分析】由数轴可得表示的解集为12x -<≤,把各个选项求出解集,即可解答.【详解】数轴表示的解集为12x -<≤.解不等式组1020x x ->⎧⎨+≤⎩,得:12x x >⎧⎨≤-⎩,解集为空集,故A 不符合题意. 解不等式组1020x x +>⎧⎨+≤⎩,得:12x x >-⎧⎨≤-⎩,解集为空集,故B 不符合题意. 解不等式组1020x x +>⎧⎨-≤⎩,得:12x x >-⎧⎨≤⎩,解集为12x -<≤,故C 符合题意. 解不等式组1020x x -≤⎧⎨+<⎩,得:12x x ≤⎧⎨<-⎩,解集为2x <-,故D 不符合题意. 故选C .【点睛】本题考查在数轴上表示不等式的解集以及解不等式组,解决本题的关键是求出不等式组的解集. 3.A解析:A【分析】已知两边的长,第三边应该大于任意两边的差,而小于任意两边的和,列不等式进行求解后再进行判断即可.【详解】解:根据三角形的三边关系,得11-4<3+4m <11+4,解得1<m <3.故选:A .【点睛】此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.4.B解析:B【分析】根据题意,每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y (x ,y 均是非负整数),则有y =5-3x ,且0≤y ≤3,由此即可求得x 、y 的值.【详解】由已知易得:每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y ,∵该球队小组赛共积5分,∴y =5-3x ,又∵0≤y ≤3,∴0≤5-3x ≤3,∵x 、y 都是非负整数,∴x =1,y =2,即该队在小组赛胜一场,平二场,故选:B .【点睛】读懂题意,设该队在小组赛中胜x 场,平y 场,知道每支球队在小组赛要进行三场比赛,并由题意得到y=5-3x 及0≤y≤3是解答本题的关键.5.B解析:B【分析】设4人车租x 辆,6人车租y 辆,根据没有空座列出方程,结合至少有1名教师列出不等式,求解即可.【详解】解:设4人车租x 辆,6人车租y 辆,∵不得有空座,则461038x y +=+ ∴283y x =- 又∵每辆车上至少有1名教师,∴10x y +≤ 把283y x =-代入10x y +≤得,28103x x +-≤ ∴6x ≤∵x 、y 都是整数, 由283y x =-知x 是3的倍数, 因此,当x=0时,y=8;当x=3时,y=6;当x=6时,y=4;故有3种方案,故选:B .【点睛】 此题主要考查了二元一次方程与一元一次不等式的应用,关键是根据题目所提供的等量关系和不等量关系,列出方程和不等式求解.6.C解析:C【解析】试题分析:首先移项,合并同类项,然后系数化成1,即可求得不等式的解集,然后确定非负整数解即可.解:移项,得:﹣3x ﹣2x≥﹣8﹣2,合并同类项,得:﹣5x≥﹣10,则x≤2.故非负整数解是:0,1,2共有3个.故选C .点评:本题考查了一元一次不等式的解法,理解解不等式的基本依据是不等式的基本性质是关键.7.D解析:D【分析】根据运行程序,第一次运算结果小于等于75,第二次运算结果大于75列出不等式组,然后求解即可.【详解】由题意得,()2175221175x x +≤⎧⎪⎨++>⎪⎩①②,解不等式①得:37x ≤,解不等式②得:18x >,∴1837x <≤,故选:D .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.8.D解析:D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122 x ax x->⎧⎨->-⎩①②解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥-2.故选:D.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.9.A解析:A【分析】根据不等式的性质进行判断即可.【详解】解:A、根据不等式的性质3,不等式的两边乘以(-3),可得-3a<-3b,故A不成立;B、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B成立;C、根据不等式的性质2,不等式的两边乘以13,可得33a b>,故C成立;D、根据不等式的性质3,不等式的两边乘以(-1),可得-a<-b,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.10.C解析:C【解析】∵不等式组有解,∴m <5.故选C . 【方法点睛】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键. 11.C解析:C【分析】根据已知解集得到a-3为负数,即可确定出a 的范围.【详解】解:不等式(a-3)x <3-a 的解集为x >-1,∴a-3<0,解得a <3.故选:C .【点睛】本题考查不等式的解集,熟练掌握不等式的基本性质是解题关键.12.B解析:B【分析】根据第四象限内点的横坐标是正数,纵坐标是负数列不等式组求解即可.【详解】∵点P (1a +,23a -)在第四象限,∴10230a a +>⎧⎨-<⎩, ∴a 的取值范围是312a -<<. 故选:B .【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键.二、填空题13.5或4【分析】先设长度为412的高分别是ab 边上的边c 上的高为h △ABC 的面积是S 根据三角形面积公式可求结合三角形三边的不等关系可得关于h 的不等式组解即可【详解】解:设长度为412的高分别是ab 边上解析:5或4.【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可.【详解】 解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么222,,412S S S a b c h===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6,∴h=4或h=5,故答案为:5或4.【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.14.2【分析】先根据无理数的估算得出和的取值范围再解一元一次不等式组即可得【详解】即即即解得又为整数故答案为:2【点睛】本题考查了无理数的估算解一元一次不等式组熟练掌握无理数的估算方法是解题关键解析:2【分析】【详解】274064<<,<34<<,161825<<,<,即45<<,3402a <+<325a ∴<+<<,即325a <+<,解得13a <<,又a 为整数,2a ∴=,故答案为:2.【点睛】本题考查了无理数的估算、解一元一次不等式组,熟练掌握无理数的估算方法是解题关键.15.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可.【详解】30x a x >⎧⎨-≤⎩30x -≤3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 16.【分析】根据点()在第四象限列出关于m 的不等式组解之可得【详解】∵点()在第四象限∴解得故答案为:【点睛】本题考查了已知点所在的象限求参数以及求一元一次不等式组的解集正确求出每一个不等式解是基础熟知 解析:1m <【分析】根据点(3m -,1m -)在第四象限列出关于m 的不等式组,解之可得.【详解】∵点(3m -,1m -)在第四象限,∴3010m m ->⎧⎨-<⎩, 解得1m <,故答案为:1m <.【点睛】本题考查了已知点所在的象限求参数以及求一元一次不等式组的解集,正确求出每一个不等式解是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.【分析】根据题意先把看作已知数分别用表示出和让列式求出的取值范围再求得用表示的形式结合的取值范围即可求得的值【详解】解:3a+2b+c=62a+b-3c=1解得a=7c-4b=9-11c ;∵a≥0b解析:611-【分析】 根据题意先把c 看作已知数,分别用c 表示出a 和b ,让0a ≥,0b ≥列式求出c 的取值范围,再求得m 用c 表示的形式,结合c 的取值范围即可求得s 的值.【详解】解:3a+2b+c=6,2a+b-3c=1,解得a=7c-4,b=9-11c ;∵a≥0、b≥0,∴7c-4≥0,9-11c≥0, ∴49711c ≤≤. ∵m=3a+b-7c=3c-3,∴m 随c 的增大而增大, ∵911c ≤. ∴当c 取最大值911,m 有最大值, ∴m 的最大值为s=3×911-3=611-. 故答案为:611-. 【点睛】 本题考查解三元一次方程组以及解不等式组,把c 看作已知数,分别用c 表示a 和b 是解答本题的关键.18.【分析】不等式组整理后根据4个整数解确定出a 的范围即可【详解】解:不等式组整理得:解得:1<x <-a-2由不等式组有4个整数解得到整数解为2345∴5<-a-2≤6解得:-8≤a <-7故答案为:-8解析:87a -≤<-【分析】不等式组整理后,根据4个整数解确定出a 的范围即可.【详解】解:不等式组整理得:12x x a -⎩-⎧⎨><, 解得:1<x <-a-2,由不等式组有4个整数解,得到整数解为2,3,4,5,∴5<-a-2≤6,解得:-8≤a <-7,故答案为:-8≤a <-7【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.19.>【分析】根据不等式的性质直接判断即可【详解】解:∵根据不等式性质2不等式两边乘(或除以)同一个正数不等号的方向不变∴>故答案为:>【点睛】本题考查了不等式的性质解题关键是熟记不等式的性质解析:>【分析】根据不等式的性质直接判断即可.【详解】解:∵a b >,根据不等式性质2,不等式两边乘(或除以)同一个正数,不等号的方向不变,∴2a >2b ,故答案为:>.【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质.20.【分析】依据三角形的内角和定理表示∠A 根据它是钝角列出不等式组求解即可【详解】解:∵∠A+∠B+∠C=180°∴∠A=180°-30°-α=150°-α∵∠A 是钝角∴即故答案为:【点睛】本题考查解不解析:3060α︒<<︒【分析】依据三角形的内角和定理表示∠A ,根据它是钝角列出不等式组,求解即可.【详解】解:∵∠A+∠B+∠C=180°,∴∠A=180°-30°-α=150°-α.∵∠A 是钝角,∴90150180α︒<︒-<︒,即3060α︒<<︒,故答案为:3060α︒<<︒.【点睛】本题考查解不等式组,三角形内角和定理.能正确表示∠A 及利用它的大小关系列出不等式是解题关键.三、解答题21.(1)4x ≤,画图见解析;(2)4a =【分析】(1)先求出不等式的解集,再根据不等式的解集表示在数轴上即可;(2)先求出不等式的解集,再根据不等式解集列出关于a 的方程即可求解.【详解】(1)1213x x +≤+,解得:4x ≤;(2)解不等式得:22a x ->∵1x >-,∴212a -=- 解得:4a =【点睛】本题考查解不等式,用数轴表示解集,根据不等式解集求参数,解题的关键是熟练掌握解不等式的方法.22.不等式组的解集为﹣1<x≤2;所有非负整数解为:0,1,2【分析】求出不等式组的解集,根据不等式组的解集求出即可.【详解】解:()5152642535x x x x -+⎧+>⎪⎨⎪+≤-⎩①②,解不等式①得x >﹣1;解不等式②得x≤ 2;∴原不等式组的解集为﹣1<x≤ 2,∴原不等式组的所有非负整数解为0,1,2.【点睛】本题考查了解一元一次不等式的整数解,关键是求出不等式组的解集.23.(1)每个书包价格为28元,每本词典价格为20元;(2)购买方案为购买书包12个,词典28本.【分析】(1)设每个书包价格为x 元,则每本词典价格为(x-8)元,根据用124元恰好可以买到3个书包和2本词典,列方程组求解;(2)设购买书包m 个,则购买词典(40-m )个,根据“余下的钱最少”列不等式求解即可.【详解】(1)设每个书包价格为x 元,则每本词典价格为(8)x -元,根据题意得32(8)124x x +-=,解得28x =,则28820-=(元),答:每个书包价格为28元,每本词典价格为20元;(2)设购买书包m 个,则购买词典(40)m -个,余下的钱为900[2820(40)]m m -+-1008m =-,由题意知10080m -,即12.5m ≤,当12m =时,1008m -为最小的正整数4,答:购买方案为购买书包12个,词典28本.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.24.20【分析】设x 个月后能赚回这台机器的贷款,根据总利润=单个利润×每月销售数量×月份数结合总利润不低于贷款数,即可得出关于x 的一元一次不等式,解出不等式取其中最小值即可得出结论.【详解】解:设至少x 个月后能赚回这台机器的贷款则()1581520%100080000x --⨯⨯≥解得:20x ≥答:至少20个月后能赚回这台机器的贷款.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.25.(1)404(020)y x x =-<<且x 为正整数;(2)220044000W x =-+(020)x <<且x 为正整数;(3)9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【分析】(1)分别计算每种飞机所运载的重量,根据总重量120吨列出函数关系式,注意x 的实际意义;(2)根据表格信息,分别计算每种飞机所承担的运费,再相加可得总运费,注意x 的实际意义;(3)由每种医疗物资的飞机都不少于4架,列出一元一次不等式组,解得x 的取值范围,即可解得最少运费.【详解】(1)根据题意得,设有x 架飞机装运口罩,有y 架飞机装运消毒剂,则有(20)x y --架飞机装运防护服, 854(20)120x y x y ++--=解得:404(020)y x x =-<<;y ∴与x 之间的函数关系式:404(020)y x x =-<<且x 为正整数;(2)120016001000(20)W x y x y =++--20060020000x y =++200600(404)20000x x =+⨯-+220044000x =-+(020)x <<且x 为正整数;(3)由题意得:44204x y x y ≥⎧⎪≥⎨⎪--≥⎩4404420(404)4x x x x ≥⎧⎪∴-≥⎨⎪---≥⎩解得:89x ≤≤且x 为正整数,8x ∴=或9x =, W 220044000x =-+22000k =-<W ∴随x 的增大而减小,∴当9x =时,W 最小,220044000220094400024200W x =-+=-⨯+=(元)4044,207x x y ∴-=--=答:9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【点睛】本题考查一次函数的实际应用、解一元一次不等式组、一次函数的增减性等知识,是重要考点,难度较易,掌握相关知识是解题关键.26.(1)3-;(2)x≤32-. 【分析】(1)原式利用零指数幂法则,绝对值的意义,以及算术平方根性质计算即可得到结果; (2)去括号,移项,合并同类项,系数化成1即可求出不等式的解集.【详解】解:(1)原式=14+-3-;(2)去括号,得4x+5≤2x+2,移项合并同类项得,2x≤-3,解得x≤32-. 【点睛】此题考查了实数的运算和解一元一次不等式,零指数幂,熟练掌握运算法则是解本题的关键.。
八年级数学北师大版下册 第二章 一元一次不等式与一元一次不等式组 同步单元训练卷(含答案)
北师大版八年级数学下册第二章 一元一次不等式与一元一次不等式组同步单元训练卷一、选择题(共10小题,3*10=30)1.若2a +6的值是正数,则a 的取值范围是( ) A .a >0 B .a >3 C .a >-3 D .a <-32.若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m≥2 B .m >2 C .m <2 D .m≤23.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A.⎩⎪⎨⎪⎧x >-1,x≤2B.⎩⎪⎨⎪⎧x≥-1,x <2 C.⎩⎪⎨⎪⎧x≥-1,x≤2 D.⎩⎪⎨⎪⎧x <-1,x≥2 4.在数轴上到原点的距离大于2的点对应的x 满足( ) A .x>2 B .x<2C .x>2或x<-2D .-2<x<25.若函数y =kx +b 的图象如图所示,则关于x 的不等式kx +2b <0的解集为( )A .x <3B .x >3C .x <6D .x >66. 不等式组⎩⎪⎨⎪⎧2-x >1,①x +52≥1②中,不等式①和②的解集在数轴上表示正确的是( )7. 三个连续正整数的和小于39,这样的正整数中,最大一组的和是( ) A .39 B .36 C .35 D .348.关于x 的不等式2x +a ≤1只有2个正整数解,则a 的取值范围为( ) A.-5<a <-3 B.-5≤a <-3 C.-5<a ≤-3 D.-5≤a ≤-39.若不等式2x<4的解都能使关于x 的不等式(a -1)x<a +5成立,则a 的取值范围是( ) A .1<a≤7 B .a≤710.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( ) A .买甲站的 B .买乙站的 C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二.填空题(共8小题,3*8=24) 11. 不等式 2x -1>3的解集是________.12. 已知“x 的3倍大于5,且x 的一半与1的差不大于2”,则x 的取值范围是__________. 13. 不等式组⎩⎪⎨⎪⎧x -3(x -2)≤8,5-12x >2x 的整数解是________.14.已知关于x 的不等式(a -1)x >4的解集是x <4a -1,则a 的取值范围是____________.15.若|5-10x|=10x -5, 则x 的取值范围是________.16.某商场推出一种购物“金卡”,凭卡在该商场购物可按商品价格的八折优惠,但办理金卡时每张要收100元购卡费,设按标价累计购物金额为x(元),当x___________时,办理金卡购物省钱. 17.某中学举办了“汉字听写大会”,准备为获奖的40名同学颁奖(每人一个书包或一本词典),已知每个书包28元,每本词典20元,学校计划用不超过900元钱购买奖品,则最多可以购买________个书包.18. 已知实数x ,y 满足2x -3y =4,并且x≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.三.解答题(7小题,共66分)19.(8分) 解不等式,并把它们的解集在数轴上表示出来:15-9y <10-4y ;20.(8分) 已知不等式3x -a≤0的正整数解是1,2,3.求a 的取值范围.21.(8分) 根据题意列出不等式:(1)某市化工厂现有甲原料290千克,计划用这种原料与另一种足够多的原料配合生产A,B两种产品共50件.已知生产一件A型产品需甲种原料15千克,生产一件B型产品需甲种原料2.5千克,若该化工厂现有的原料能保证生产,试写出满足生产A型产品x(件)的关系式;(2)某厂生产一种机械零件,固定成本为2万元,每件零件成本为3元,零售价为5元,应纳税款为总销售额的10%.若要使该厂盈利,则该零件至少要生产销售x个,试写出x应满足的不等式.22.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值;(2)利用图象求出:当x取何值时,y1≥y2?(3)利用图象求出:当x取何值时,y1>0且y2<0?23.(10分) 某校九年级有三个班,其中九(一)班和九(二)班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九(一)班的满分率为70%,九(二)班的满分率为80%.(1)求九(一)班和九(二)班各有多少名学生;(2)该校九(三)班有45名学生,若九年级体育成绩的总满分率超过75%,求九(三)班至少有多少名学生体育成绩是满分.24.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值.(2)利用图象求出:当x取何值时,y1≥y2.(3)利用图象求出:当x取何值时,y1>0且y2<0.25.(12分) 某区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设买甲种树苗x棵.有关甲、乙两种树苗的信息如图所示.(1)当n=500时.①根据信息填表(用含x的代数式表示):②如果购买甲、乙两种树苗共用25600元,那么甲、乙两种树苗各买了多少棵?参考答案1-5CCACD 6-10BBCAB11. x>2 12.53<x≤6 13.-1,0,1 14.a <1 15. x≥1216.>500 17. 12 18.1≤k <319.解:移项,得-9y +4y <10-15.合并同类项,得-5y <-5.系数化为1,得y >1.不等式的解集在数轴上表示如图所示.20. 解:3x -a≤0,解得x≤a 3,因为它的正整数解为1,2,3,当a 3=3时,a =9;当a3=4时,a =12.当a =12时,x≤4,有4个正整数,舍去,∴9≤a<1221. 解:(1)生产A 型产品x 件,则生产B 型产品(50-x)件,根据题意, 得15x +2.5(50-x)≤290. (2)5x -3x -5x×10%-20 000>0.22. 解:(1)k =12,b =5.(2)当x≥2时,y 1≥y 2.(3)当x >4时,y 1>0且y 2<0.⎩⎪⎨⎪⎧x =50,y =55.答:九(一)班有50名学生,九(二)班有55名学生 (2)设九(三)班有m 名学生体育成绩满分,根据题意得79+m >(105+45)×75%,解得m >33.5,∵m 为整数,∴m 的最小值为34.答:九(三)班至少有34名学生体育成绩是满分24. 解:(1)将A 点的坐标代入y 1=kx -2,得2k -2=-1,即k =12. 将A 点的坐标代入y 2=-3x +b ,得-6+b =-1,即b =5.(2)从图象可以看出:当x≥2时,y 1≥y 2.(3)直线y 1=12x -2与x 轴的交点坐标为(4,0),直线y 2=-3x +5与x 轴的交点坐标为⎝⎛⎭⎫53,0.从图象可以看出:当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<0.25. 解:(1)①500-x 50x 80(500-x)②由题意得50x +80(500-x)=25600,解得x =480,500-x =20.答:甲种树苗买了480棵,乙种树苗买了20棵(2)由题意得90%x +95%(n -x)≥92%×n ,解得x≤35n ,50x +80(n -x)=26000,解得x =8n -26003.∵8n -26003≤35n ,∴n≤4191131.∵n 为正整数,x 为正整数,当n 为419时,x =7523≈250.7不是整数;当n 为418时,x =248,∴n 的最大值为418。
北师大八年级数学下册《一元一次不等式与一次函数》单元测试题
初中数学试卷《一元一次不等式与一次函数》单元测试题一、选择题(每小题4分,共10小题,满分40分)1.直线y=-x+m与y=nx+4n(n=0)交点横坐标为-2,则关于x的不等式-x+m>nx+4n>0的整数解是()A.-1 B.-5 C.-4 D.-3第1题图第2题图第3题图2.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围是()A.x>1 B.x>2 C.x<1 D.x<23.如图,直线y=kx+b交坐标轴于A(-3,0),B(0,5)两点,则不等式-kx+b<0的解集为()A.x>-3 B.x<-3 C.x>3 D.x<34.若函数y=kx-b的图象如图所示,则关于x的不等式k(x-3)-b>0的解集为()A、x<2B、x>2C、x<5D、x>5第4题图第5题图第6题图5.同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是()A、x≤-2B、x≥-2C、x<-2D、x>-26.如图,直线y=kx+b经过A(1,2),B(-2,-1)两点,则不等式12x<kx+b<2的解集为()A.12<x<2 B.12<x<1 C.-2<x<1 D.-12<x<17.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论个数是()A.0 B.1 C.2 D.38.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足-3≤a<0时,k的取值范围是()A、-1≤k<0B、1≤k≤3C、k≥1D、k≥3第7题图第8题图第9题图9.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A、x>0B、0<x<1C、1<x<2D、x>210.如图,直线y=-x+m与y=x+3的交点的横坐标为-2,则关于x的不等式-x+m>x+3>0的取值范围为()A、x>-2B、x<-2C、-3<x<-2D、-3<x<-1第10题图第11题图第12题图二、填空题(每小题4分,共8小题,满分32分)11.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为.12.如图,函数y=-2x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+2x>0的解集为.13.如图,直线y=x+b与y=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集.14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.15.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1>y2中,正确的序号是.16.函数y1=-5x+12,y2=12x+1,使y1<y2成立的x的最小整数值是17.已知不等式-x+5>3x-3的解析集是x<2,则直线y=-x+5与y=3x-3的交点坐标是第13题图第14题图第15题图18.如图,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是三、解答题(共4小题,满分48分)19.某电信运营商有两种手机卡,A类卡收费标准如下:无月租,每通话1分钟交费0.6元;B类卡收费标准如下:月租费15元,每通话1分钟交费0.3元.(1)分别写出A、B两类卡每月应缴费用y(元)与通话时间x(分)之间的关系式;(2)一个用户这个月预交话费120元,按A、B两类卡收费标准分别可以通话多长时间?(3)若每月平均通话时间为100分钟,你选择哪类卡?(4)根据一个月的通话时间,你认为选择哪项业务更实惠?20.某学校要印制一批《学生手册》,甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收2元印刷费,不收制版费.(1)分别写出甲、乙两厂的收费y甲(元)、y乙(元)与印制数量x(本)之间的关系式;(2)问:该学校选择哪间印刷厂印制《学生手册》比较合算?请说明理由.21.某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.22.在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:① ;② ;③ ;④ ;(2)如果点C 的坐标为(13),,那么不等式11kx b k x b ++≥的解集是 .(7分)y y=k 1x+b 1 A C B Ox y=kx+b (第21题) 一次函数与方程的关系 一次函数与不等式的关系 (1)一次函数的解析式就是一个二元一次方程 (2)点B 的横坐标是方程①的解; (3)点C 的坐标()x y ,中的x y ,的值是方程组②的解. (1)函数y kx b =+的函数值y 大于0时,自变量x 的取值范围就是不等式③的解集; (2)函数y kx b =+的函数值y 小于0时,自变量x 的取值范围就是不等式④的解集.答案与解析一、选择题1.D.解:∵直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,∴关于x的不等式-x+m>nx+4n的解集为x<-2,∵y=nx+4n=0时,x=-4,∴nx+4n>0的解集是x>-4,∴-x+m>nx+4n>0的解集是-4<x<-2,∴关于x的不等式-x+m>nx+4n>0的整数解为-3,故选:D.2.C. 解:由图象可知,当x<1直线y1落在直线y2的下方时,使y1<y2的x的取值范围是:x<1.故选C.3. A.解:观察图象可知,当x>-3时,直线y=kx+b落在x轴的上方,即不等式kx+b>0的解集为x>-3,∵-kx-b<0∴kx+b>0,∴-kx-b<0解集为x>-3.故选:A.4.C.解∵一次函数y=kx-b经过点(2,0),∴2k-b=0,b=2k.函数值y随x的增大而减小,则k<0;解关于k(x-3)-b>0,移项得:kx>3k+b,即kx>5k;两边同时除以k,因为k<0,因而解集是x<5.故选C.5. A.解:当x≤-2时,直线l1:y1=k1x+b1都在直线l2:y2=k2x的上方,即y1≥y2.故选A.6.C.解:根据图形可得,不等式12x<kx+b<2的解集为-2<x<1.故选C.7. D.解:①∵y1=kx+b的图象从左向右呈下降趋势,∴k<0正确;②∵y2=x+a,与y轴的交点在负半轴上,∴a<0,故②错误;∴当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④.故选D.8.C.解:把点(0,3)(a,0)代入y=kx+b,得b=3.则a=-3k,∵-3≤a<0,∴-3≤-3k<0,解得:k≥1.故选C.9. C解:把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),所以当x>1时,2x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C10.【答案】C.【解析】∵直线y=-x+m与y=x+3的交点的横坐标为-2,∴关于x的不等式-x+m>x+3的解集为x<-2,∵y=x+3=0时,x=-3,∴x+3>0的解集是x>-3,∴-x+m>x+3>0的解集是-3<x<-2,故选C.二、填空题.11.【答案】x<1.【解析】根据图示知:一次函数y=kx+b的图象x轴、y轴交于点(1,0),(0,-2);即当x<1时,函数值y的范围是y<0.12.【答案】x>-32.【解析】∵函数y=-2x经过点A(m,3),∴-2m=3,解得:m=-32,则关于x的不等式kx+b+2x>0可以变形为kx+b>-2x,由图象得:kx+b>-2x的解集为x>-32.13.【答案】x>-1.【解析】当x>-1,函数y=x+b的图象在函数y=kx-1图象的上方,所以关于x的不等式x+b>kx-1的解集为x>-1.考点:一次函数与一元一次不等式14.【答案】x>32.∴2m=3,解得:m=32,∴A(32,3),∴不等式2x>ax+4的解集为x>32.15.【答案】①②③.【解析】∵一次函数的图象在一、二、四象限,∴y随x的增大而减小,故①正确;∴一此函数与y轴的交点在y轴正半轴,∴b>0,故②正确;∵由函数图象可知,当>2时,函数图象在y轴的负半轴,故y<0,故③正确.故填①②③.16.【答案】y1=-5x+12,y2=12x+1,【解析】解不等式-5x+12<12x+1,得x>-111.所以使y1<y2的最小整数是0.17.【答案】(2,3).【解析】已知不等式-x+5>3x-3的解集是x<2,则当x=2时,-x+5=3x-3;即当x=2时,函数y=-x+5与y=3x-3的函数值相等;因而直线y=-x+5与y=3x-3的交点坐标是:(2,3).18.【答案】x>-2.【解析】∵函数y=2x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式2x+b>ax-3的解集是x>-2.三、解答题.19.解:(1)y A=0.6x,y B=15+0.3x.(2)120=0.6x x=200; 120=15+0.3x x=350 可见选择B卡的通话时间长些.(3)当x=100时,y A=0.6×100=60,y B=15+0.3×100=45可见选B卡好.(4)y A=y B,0.6x=15+0.3x,x=50,当通话时间为50时 A,B卡都可以,当通话<50时,应选择A卡,当通话>50时,选择B卡.20. (1)y甲=x+500,y乙=2x;(2)当y甲>y乙时,即x+500>2x,则x<500,当y甲=y乙时,即x+500=2x,则x=500,当y甲<y乙时,即x+500<2x,则x>500,合算,当印制学生手册数量等于500本时选择两厂费用都一样.21.(1)设每件甲种玩具的进价是x 元,每件乙种玩具的进价是y 元,由题意得 5323123141x y x y +=+=⎧⎨⎩, 解得3027x y ==⎧⎨⎩, 答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元;(2)当0<x ≤20时,y=30x ;当x >20时,y=20×30+(x-20)×30×0.7=21x+180;(3)设购进玩具a 件(a >20),则乙种玩具消费27a 元;当27a=21a+180,则a=30所以当购进玩具正好30件,选择购其中一种即可;当27a >21a+180,则a >30所以当购进玩具超过30件,选择购甲种玩具省钱;当27a <21a+180,则a <30所以当购进玩具少于30件,多于20件,选择购乙种玩具省钱.22. 解:(1)①kx+b=0.②11y kx b y k x b =+=+⎧⎨⎩.③kx+b >0.④kx+b <0; (2)x ≤1.。
北师大版2020八年级数学下册第二章一元一次不等式(组)单元基础达标测试题(附答案)
北师大版2020八年级数学下册第二章一元一次不等式(组)单元基础达标测试题(附答案) 1.不等式组310x x <⎧⎨--≤⎩中两个不等式的解集,在数轴上表示正确的是( )A .B .C .D .2.李老师奖励在数学竞赛中的优胜者,给小明80元去购买奖品笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小明最多能买( )支钢笔? A .5B .6C .7D .83.如图,数轴上表示的是下列哪个不等式组的解集( )A .x 5{x 3≥->-B .x 5{x 3>-≥-C .x 5{x 3<-<-D .x 5{x 3<->-4.若关于x 的不等式组的整数解共有5个,则a 的取值范围是( )A .﹣4<a≤﹣3B .﹣4≤a <﹣3C .﹣4≤a≤﹣3D .﹣4<a <﹣3 5.不等式1-2x <5-x 的负整数解有( ) A .1个 B .2个 C .3个 D .4个 6.下列说法中正确的是( )A .a 不是负数,则a >0B .b 是不大于0的数,则b <0C .m 不小于﹣1,则m >﹣1D .a ,b 是负数,则a + b <0 7.若m n >,则下列不等式中成立的是( ) A .m+a<n+bB .ma>nbC .ma 2>na 2D .a-m<a-n8.若三角形的三边长分别为3,12x +,8,则x 的取值范围是( ) A .2x 5<<B .3x 8<<C .4x 7<<D .5x 9<<9.不等式组的解集为( )A .x≥3B .-3≤x<4C .-3≤x<2D .x> 410.已知x y >,下列变形正确的是( )A .11x y -<-B .2121x y +<+C .x y -<-D .22x y <11.已知不等式组2123x a x b -<⎧⎨->⎩的解集为﹣1<x <1,则(a+b)(b ﹣1)的值为_____.12.6﹣的整数部分是 .13.在温箱里培养A 、B 两种菌苗,A 种菌苗的生长温度m ℃的范围是35≤m ≤ 39,B 种菌苗的生长温度n ℃的范围是33≤n ≤38,那么温箱里的温度T ℃应该设定在_____. 14.已知一次函数y=kx+b 的图象经过两点A (0,1),B (2,0),则当x 时,y≤0. 15.小丽种了一棵高75cm 的小树,假设小树平均每周长高3cm ,x 周后这棵小树的高度不超过100cm ,所列不等式为_________.16.不等式mx+2<12+4m 中x =7,如果m 是整数,那么m 的最大值是_____. 17.如图,经过点B (﹣2,0)的直线y =kx+b 与直线y =4x+2相交于点A (﹣1,﹣2),则不等式4x+2<kx+b 的解集为_____.18.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.19.若不等式组{12x x m <>-恰有两个整数解,则m 的取值范围是______ .20.如图,经过点B (-2,0)的直线y kx b =+与直线y 4x 2=+相交于点A (-1,-2),则不等式4x 2<kx b<0++的解集为 .21.今秋,某市白玉村水果喜获丰收,果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?22.在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:.(年获利=年销售收入﹣生产成本﹣投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.23.对非负实数x“四舍五入”到个位的值记为[x].即当n为非负整数时,若n﹣12≤x<n+12,则[x]=n.如:[2.9]=3;[2.4]=2;……根据以上材料,解决下列问题:(1)填空[1.8]=,5=;(2)若[2x+1]=4,则x 的取值范围是 ; (3)求满足[x]=32x ﹣1的所有非负实数x 的值. 24.某工程机械厂根据市场需求,计划生产A 、B 两型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹集的资金全部用于生产此两型号挖掘机,所生产的此两型号挖掘机可全部售出,此两型号挖掘机的生产成本和售价如下表: 型号A B 成本(万元/台) 200 240 售价(万元/台) 250300(1)该厂对这两型号挖掘机有哪几种生产方案? (2)该厂如何生产才能获得最大利润? 25.解不等式组:(1)336213436x x x -≤⎧⎪--⎨≥⎪⎩ ;(2)()3242113x x x x ⎧-->⎪⎨+>-⎪⎩26.解不等式组,并把解集在数轴上表示出来.27.为了提高学生社会实践活动能力,某校团委与社区联合举办“保护地球,人人有责”活动.星期天选派学生到各条街道发放传单.若每条街道安排4人,那么还剩78人,若每条街道安排8人,那么最后一条街道不足8人,但不少于4人,这个学校共选派发放传单的学生有多少人?共有多少条街道? 28.先化简,再求值22421244a a a a a a a a -+-⎛⎫÷- ⎪--+⎝⎭,其中的值从不等式组02110a a -≤⎧⎨-<⎩的整数解中选取.参考答案1.B【解析】【分析】分别求解两个不等式,得到不等式组的解集,然后判断即可.【详解】解不等式-1-x≤0,可得x≥-1所以不等式组的解集为:-1≤x<3.所以表示在数轴上为:.故选:B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.需要注意的是:如果是表示大于或小于号的点要用空心圆圈,如果是表示大于等于或小于等于号的点要用实心圆点.2.B【解析】【分析】设小明买钢笔x支,则买笔记本为(30-x)本,根据“笔记本数量×单价+钢笔数量×单价≤80”列等式求出x,再取整数即可;【详解】解:设小明买钢笔x支,则:2(30-x)+5x≤80,解得x≤203,∵x为整数,∴x≤6,∴小明最多只能买6支钢笔;故答案为:B.【点睛】本题主要考查了一元一次方程的其他应用,掌握一元一次方程的应用是解题的关键.3.B【解析】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此,由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥﹣3.A、不等式组x5{x3≥->-的解集为x>﹣3,故本选项错误;B、不等式组x5{x3>-≥-的解集为x≥﹣3,故本选项正确;C、不等式组x5{x3<-<-的解集为x<﹣3,故本选项错误;D、不等式组x5{x3<->-的解集为﹣3<x<5,故本选项错误.故选B4.A【解析】先解出一元一次不等式的解集,然后根据解集来取不等式的5个整数解,再根据这5个整数解求a的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.解:,不等式①的解集是:x<2,不等式②的解集是:x≥a,∴原不等式组的解集是:a≤x<2;当关于x的不等式组的整数解共有5个时,x的值可以取1、0、﹣1、﹣2、﹣3,∴a的取值范围是﹣4<a≤﹣3;故选A.5.C【解析】解不等式1−2x<5−x,移项,得:−2x+x<−1+5,合并同类项,得:−x<4,系数化为1,得x>−4,∴不等式的非负整数解有:−3、−2、−1这3个,故选:C.6.D【解析】A. ∵a不是负数,∴a≥0 ,故不正确;B. ∵b是不大于0的数,∴b≤0,故不正确;C. ∵m不小于﹣1,∴m≥﹣1,故不正确;D. ∵a,b是负数,∴a+ b<0,故正确;故选D.7.D【解析】分析:此题考查了立方根,以及算术平方根,熟练掌握运算法则是解本题的关键.详解:A. 不等式两边加的数不同,错误;B. 不等式两边乘的数不同,错误;C. 当a=0时,错误;D. 不等式两边都乘−1,不等号的方向改变,都加a,不等号的方向不变,正确;故选D.点睛:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.8.A【解析】【分析】首先根据三角形的三边关系定理三角形两边之和大于第三边三角形的两边差小于第三边可得8-3<1+2x<3+8解不等式即可.【详解】-<+<+,根据三角形的三边关系可得:8312x38<<.解得:2x5故选A.【点睛】此题主要考查了三角形的三边关系和解一元一次不等式,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.9.B【解析】试题分析:2x+9≥3的解集是x≥-3;的解集是x<4,∴不等式组的解集为:-3≤x<4故选B.考点: 解不等式组10.C【解析】【分析】根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A、两边都减3,不等号的方向不变,故A错误;B、两边都乘以2,不等号的方向不变,两边再加1,不等号的方向不变,故B错误;C、两边都乘以-1,不等号的方向改变,故C正确;D、两边都除以2,不等号的方向不变,故D错误;故选C.【点睛】本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.11.3【解析】【分析】先解不等式,求出解集,然后根据题中已告知的解集,进行比对,从而得出两个方程,解答即可求出a、b,再代入计算即可求解.【详解】不等式组2123x ax b-<⎧⎨->⎩,解得1223axx b+⎧<⎪⎨⎪>+⎩,即2b+3<x<1 2a+,∵﹣1<x<1,∴2b+3=﹣1,12a+=1,解得a=1,b=﹣2;∴(a+b)(b﹣1)=﹣1×(﹣3)=3.故答案为:3.【点睛】本题考查了一元一次不等式组的解法,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.3【解析】试题分析:根据二次根式的性质求出2<<3,根据不等式的性质推出4>6﹣>3即可.解:∵2<<3,∴﹣2>﹣>﹣3,∴6﹣2>6﹣>6﹣3,即4>6﹣>3,∴6﹣的整数部分是3,故答案为:3.点评:本题考查了对不等式的性质,估计无理数的大小等知识点的应用,解此题的关键是确定的范围,此题是一道比较典型的题目.13.35≤T≤38【解析】【分析】T℃应该满足A种菌苗的生长温度,也要满足B种菌苗的生长温度,由此可得出答案.【详解】解:由题意得,3539 3338TT≤≤⎧⎨≤≤⎩,解得:35≤T≤38.故答案为:35≤T≤38.【点睛】本题考查一元一次不等式组的应用,求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.≥2【解析】【分析】利用待定系数法把点A(0,-1),B(1,0)代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式,再解不等式即可.【详解】∵一次函数y=kx+b的图象经过两点A(0,1),B(2,0),∴1{20 bk b=+=,解得:1 {21kb=-=,这个一次函数的表达式为y=﹣12x+1.解不等式﹣12x+1≤0,解得x≥2.故答案为x≥2.15.75+3x≤100【解析】分析:根据x周后这棵小树的高度不超过100cm列不等式即可,不超过用不等号“≤”表示. 详解:由题意得,75+3x≤100.故答案为:75+3x≤100.点睛:本题考查了一元一次不等式的实际应用,解题的关键是正确理解题意,找出题目中的不等量关.16.3【解析】【分析】根据不等式解得概念将x=7代入不等式得关于m的不等式,解不等式可得m的取值范围,继而可得m的最大整数.【详解】∵不等式mx+2<12+4m中x=7,∴将x=7代入不等式,得:7m+2<12+4m,解得:m<103,则m的最大整数为3,故答案为:3.【点睛】本题主要考查不等式解集的定义及解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键.17.x<﹣1.【解析】【分析】根据两函数图象的上下位置关系即可找出不等式的解集,此题得解.【详解】观察函数图象可知:当x<﹣1时,直线y=kx+b在直线y=4x+2的上方,∴不等式4x+2<kx+b的解集为x<﹣1.故答案为x<﹣1.【点睛】本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.18.x≤1.【解析】【分析】将点P(m,3)代入y=x+2,求出点P的坐标;结合函数图象可知当x≤1时x+2≤ax+c,即可求解;【详解】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1,故答案为:x≤1.【点睛】本题考查一次函数的交点坐标与一元一次不等式的关系;运用数形结合思想把一元一次不等式的解转化为一次函数图象的关系是解题的关键.19.0≤m<1【解析】【分析】先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.【详解】∵不等式组{x 1x m 2<>-的解集为m-2<x <1, 又∵不等式组{x 1x m 2<>-恰有两个整数解,∴-2≤m -2<-1,解得:0≤m <1,恰有两个整数解,故答案为0≤m <1.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.2<x<1--【解析】分析:不等式4x 2<kx b<0++的解集就是在x 下方,直线y kx b =+在直线y 4x 2=+上方时x 的取值范围.由图象可知,此时2<x<1--.21.(1)方案一:甲种货车2辆,乙种货车6辆方案二:甲种货车3辆,乙种货车5辆;方案三:甲种货车4辆,乙种货车4辆;(2)方案一运费最少,最少运费2040元【解析】试题分析:(1)首先设安排甲种货车x 辆,则安排乙种货车(8-x)辆,然后根据题意列出不等式组,从而得出x 的取值范围,根据x 为正整数得出方案;(2)分别求出每种方案所需要的费用,然后得出最小值.试题解析:(1)设安排甲种货车x 辆,则安排乙种货车(8-x)辆,依题意得 4x+2(8-x)≥20且x+2(8-x)≥12解此等式组得 x≥2且 x≤4 即 2≤x≤4.∵ x 正整数 ∴ x 取值2、3、4.因此安排甲、乙两种货车有三种方案: 方案一:甲种货车2辆,乙种货车6辆方案二:甲种货车3辆,乙种货车5辆;方案三:甲种货车4辆,乙种货车4辆(2)方案一所需运费 300×2 + 240×6 = 2040元;方案二所需运费300×3 + 240×5 = 2100元;方案三所需运费300×4 + 240×4 = 2160元.所王灿应选择方案一运费最少,最少运费2040元.考点:一元一次不等式组的应用22.【解析】解:(1)∵25≤28≤30,,∴把28代入y=40﹣x得,y=12(万件)。
(常考题)北师大版初中数学八年级数学下册第二单元一元一次不等式和一元一次不等式组测试题包含答案解析
一、选择题1.已知a b >,下列不等式中,不成立的是( ) A .44a b +>+B .33a b ->-C .22a b >D .22a b ->-2.若不等式组11233x xx m+⎧<+⎪⎨⎪>⎩有解,则m 的取值范围为( )A .1mB .1m <C .1mD .3m <3.若关于x 的不等式组5335x x x a -+⎧⎨⎩><无解,则a 的取值范围为( )A .a <4B .a=4C .a≤4D .a≥44.下列各式中正确的是( ) A .若a b >,则11a b -<- B .若a b >,则22a b > C .若a b >,且0c ≠,则ac bc >D .若||||a bc c >,则a b > 5.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a >B .3a ≤C .3a <D .3a ≥6.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤77.已知:一次函数1y kx =-的图像经过点A (1x ,1)和点B (2x ,-3)且1x <2x ,则它的图像大致是( ).A .B .C .D .8.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a的值为( )A .﹣1B .0C .1D .2 9.直线1y x =+与2y x a =-+的交点在第一象限,则a 的取值可以是( )A .1-B .3C .1D .010.运行程序如图所示,规定从“输入一个值x ”到“结果是否95>”为一次程序操作,如果程序操作进行了两次才停止,那么x 的取值范围是()A .23x >B .2347x <≤C .1123x ≤<D .47x ≤11.如图是一次函数1y kx b =+与2y x a =+的图象,则不等式kx b x a ++<的解集是( )A .0x >B .0x <C .3x >D .3x <12.如果a b >,可知下面哪个不等式一定成立( ) A .a b ->-B .11a b< C .2a b b +> D .2a ab >二、填空题13.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.14.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.15.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.16.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________.17.若关于x 的不等式组0521x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是:__________.18.关于x 、y 的二元一次方程组313x y mx y +=+⎧⎨+=⎩的解满足21x y +<,则m 的取值范围是_________.19.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是_____.20.某同学设计了一个程序:对输入的正整数x ,首先进行奇偶识别,然后进行对应的计算,如下图所示.如果按1,2,3…的顺序依次逐个输入正整数x ,则首次输出大于100的y 的值是__________.三、解答题21.已知a ,b 是某一等腰三角形的底边长与腰长,且23a b +=. (1)求a 的取值范围;(2)设32c a b +=,求c 的取值范围22.某校组织元旦汇演,准备购进A ,B 两种文具共40件作为奖品,设购进A 种文具x 件,总费用为y 元.A ,B 文具的费用与x 的函数关系如下表.x (件)8 9 12 A 种文具费用(元) 120 135 ______ B 种文具费用(元)640______560(2)求y 关于x 的函数表达式.(3)当A 种文具的费用不大于B 种文具的费用时,求总费用y 的最小值. 23.在平面直角坐标系中,已知直线经过()3,7A -,()2,3B -两点. (1)画出该一次函数的图象,求经过A ,B 两点的直线的解析式; (2)观察图象直接写出0y ≤时x 的取值范围;(3)求这个一次函数的图象与坐标轴所围成的三角形的面积.24.在2019年全国青少年信息学联赛中,巴蜀中学创历史新高,有69人获得“全国信息学联赛一等奖”,充分展现了巴蜀人探索求知的精神,实力冠绝重庆.学校想借此提升信息课的教学质量,准备更换一批硬件设备,包括电脑主机,显示器和鼠标.其中学校通过招标拟采购两种类型的鼠标,分别为无线鼠标和有线鼠标.根据计划的采购清单,采购12个无线鼠标和16个有线鼠标共花费972元,采购25个无线鼠标比采购8个有线鼠标多花费909元.(1)求采购的无线鼠标和有线鼠标单价各为多少?(2)学校本次计划拟采购两种鼠标一共420个,若采购的无线鼠标数量不少于有线鼠标的数量,用W (单位:元)表示本次计划采购的总费用,请求出W 的最小值.25.近两年,重庆市奉节县紧紧围绕“村有骨干产业、户有致富门路”的发展思路,大力实施农产品产业扶贫项目,实现助农增收其中“乡坛子”什锦套菜礼盒、奉节脐橙10km 装广受好评,单价分别为100元/盒和60元/盒.(1)某公司大力响应扶贫政策,准备用不低于15000元购买什锦套菜礼盒、奉节脐橙共200盒,则至少购入什锦套菜礼盒多少盒?(2)2021年春节将至,该公司准备再次购入以上两种产品作为员工新春福利.恰逢“学习强国”重庆学习平台开展“党员直播带货、‘渝’你抗疫助农”扶贫农产品公益直播活动.直播中,什锦套菜礼盒以原价8折销售,该公司购买数量在(1)问最少数量的基础上增加了5%2m ;奉节脐橙售价比原价降低了815m 元,购买数量在(1)问奉节脐橙最多数量的基础上增加了40%.该公司在直播间下单后实际花费比(1)问中最低花费增加2350元,求m 的值.26.解不等式:()3157x x +≤+,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据不等式的性质逐个判断即可. 【详解】解:A .不等式a b >两边都加上4,不等号的方向不变,即44a b +>+,原变形成立,故此选项不符合题意;B .不等式a b >两边都减去3,不等号的方向不变,即33a b ->-,原变形成立,故此选项不符合题意;C .不等式a b >两边都除以2,不等号的方向不变,即22a b>,原变形成立,故此选项不符合题意;D .不等式a b >两边都乘以2-,不等号的方程改变,即22a b -<-,原变形不成立,故此选项符合题意;故选:D.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键,注意:①不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;:②不等式的性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式的性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.2.B解析:B【分析】不等式组整理后,利用有解的条件确定出m的范围即可.【详解】不等式组整理得:33xx m<⎧⎨>⎩,由不等式组有解,得到3m<3,解得:m<1.故选:B.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.3.C解析:C【解析】解:5335x xx a-+⎧⎨⎩>①<②,由①得:x>4.∵不等式组无解,∴a≤4.故选C.点睛:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).4.D解析:D【分析】根据不等式的性质,可得答案.【详解】A、不等式的两边都减1,不等号的方向不变,故A错误;B、当a<0时,不等式两边乘负数,不等号的方向改变,故B错误;C、当c<0时,ac<bc,故C错误;D、不等式两边乘(或除以)同一个正数,不等号的方向不变,故D正确;故选:D.【点睛】本题考查了不等式的基本性质.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.5.D解析:D 【分析】求出方程的解,根据已知得出a-3≥0,求出即可. 【详解】解:解方程a-x=3得:x=a-3, ∵方程的解是非负数, ∴a-3≥0, 解得:a≥3, 故选:D . 【点睛】本题考查了一元一次方程的解,解一元一次不等式,解一元一次方程的应用,关键是得出一个关于a 的不等式.6.B解析:B 【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围. 【详解】解不等式x ﹣m <0,得:x <m , 解不等式7﹣2x ≤2,得:x ≥52, 因为不等式组有解,所以不等式组的解集为52≤x <m , 因为不等式组的整数解有3个,所以不等式组的整数解为3、4、5, 所以5<m ≤6. 故选:B . 【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.7.B解析:B 【分析】 结合题意,得12x k =,22x k-=;结合1x <2x ,根据不等式的性质,得k 0<;再结合1y kx =-与y 轴的交点,即可得到答案.∵一次函数1y kx =-的图像经过点A (1x ,1)和点B (2x ,-3) ∴111kx =-,231kx -=- ∴12x k =,22x k-= ∵1x <2x∴22k k -< ∴k 0<∴选项A 和C 错误 当0x =时,1y =- ∴选项D 错误 故选:B . 【点睛】本题考查了一次函数、不等式的知识;解题的关键是熟练掌握一次函数图像和不等式的性质,从而完成求解.8.D解析:D 【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值. 【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩,解不等式1x a -<-得:1x a <-, 解不等式113x-≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-, 由数轴知该不等式组有3个整数解, 所以这3个整数解为-2、-1、0, 则11a -=, 解得:2a =, 故选:D . 【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.9.B【分析】联立两直线解析式,解关于x 、y 的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可. 【详解】联立12y x y x a =+⎧⎨=-+⎩,解得:1323a x a y -⎧=⎪⎪⎨+⎪=⎪⎩,∵交点在第一象限,∴103203a a -⎧>⎪⎪⎨+⎪>⎪⎩,解得:1a >. 只有3a =符合要求. 故选:B . 【点睛】本题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a 看作常数表示出x 、y 是解题的关键.10.B解析:B 【分析】根据运行程序,第一次运算结果小于等于95,第二次运算结果大于95列出不等式组,然后求解即可. 【详解】解:由题意得,()2195221195x x +≤⎧⎪⎨++⎪⎩①>②解不等式①得,47x ≤, 解不等式②得,23x >, ∴2347x ≤<, 故选:B . 【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.11.C【分析】根据函数图象可以直接判断本题的答案. 【详解】解:结合图象,当3x >时,函数1y kx b =+在函数2y x a =+的下方, 即不等式kx b x a ++<的解集是3x >; 故选:C . 【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,一元一次不等式的解集就是确定直线=+y kx b 在另一条直线(或者x 轴)上(或下)方部分所有点的横坐标的集合;这是数形结合的典型考查.12.C解析:C 【分析】由基本不等式a >b ,根据不等式的性质,逐一判断. 【详解】 解:A 、∵a >b , ∴-a <-b ,故本选项不符合题意; B 、∵a >b ,∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意; C 、∵a >b , ∴a+b >2b ,故本选项符合题意; D 、∵a >b ,且a >0时, ∴a 2>ab ,故本选项不符合题意; 故选:C . 【点睛】本题考查了不等式的性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变. (2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变.二、填空题13.−5【分析】设被污染的数为a表示出不等式的解集根据已知解集确定出a 的值即可【详解】解:设被污染的数为a不等式为1−3x<a解得:x>由已知解集为x>2得到=2解得:a=−5故答案为:−5【点睛】此题解析:−5【分析】设被污染的数为a,表示出不等式的解集,根据已知解集确定出a的值即可.【详解】解:设被污染的数为a,不等式为1−3x<a.解得:x>1-3a,由已知解集为x>2,得到1-3a=2,解得:a=−5,故答案为:−5【点睛】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.14.0【分析】求出不等式组的解集确定出最小整数解即可【详解】不等式组整理得:不等式组的解集为:-1<x≤2最小的整数解为0故答案为:0【点睛】本题主要考查一元一次不等式组的整数解掌握一元一次不等式组的求解析:0【分析】求出不等式组的解集,确定出最小整数解即可.【详解】不等式组整理得:21 xx≤⎧⎨>-⎩,∴不等式组的解集为:-1<x≤2,∴最小的整数解为0.故答案为:0.【点睛】本题主要考查一元一次不等式组的整数解,掌握一元一次不等式组的求解是解题关键.15.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m的不等式从而确定m的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌解析:35 m<-【分析】首先通过解不等式得出25123xx+-≤-的解集和3(1)552()x x m x-+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可.【详解】25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++, 解得12m x -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.16.3≤a <4【分析】求出每个不等式的解集根据找不等式组解集的规律找出不等式组的解集根据已知不等式组有四个整数解得出不等式组-4<-a≤-3求出不等式的解集即可得答案【详解】解不等式①得:x≥-a 解不等解析:3≤a <4【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有四个整数解得出不等式组-4<-a≤-3,求出不等式的解集即可得答案.【详解】0122x a x x +≥⎧⎨->-⎩①② 解不等式①得:x≥-a ,解不等式②x <1,∴不等式组得解集为-a≤x <1,∵不等式组恰有四个整数解,∴-4<-a≤-3,解得:3≤a <4,故答案为:3≤a <4【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a 的不等式组是解题关键.17.【分析】先解不等式组得到解集为:<此时的整数解有且只有4个结合数轴分析可得到的取值范围【详解】解:由①得:<由②得:所以不等式组的解集为:<不等式组的整数解有且只有4个如图不等式组的整数解为<故答案 解析:56m <≤【分析】先解不等式组,得到解集为:2x ≤<m ,此时的整数解有且只有4个,结合数轴分析可得到m 的取值范围.【详解】解:0521x m x -<⎧⎨-≤⎩①②由①得:x <m ,由②得:24,x -≤-2,x ∴≥所以不等式组的解集为:2x ≤<m ,不等式组的整数解有且只有4个,如图,不等式组的整数解为2,3,4,5,5∴< 6.m ≤故答案为:56m <≤.【点睛】本题考查的是不等式组的整数解问题,掌握利用数轴分析得出不等式组中字母的取值范围是解题的关键.18.【分析】先解关于关于xy 的二元一次方程组的解集其解集由a 表示;然后将其代入再来解关于a 的不等式即可【详解】由①+②得4x+2y=4+∴由得解得故答案为【点睛】考查解一元一次不等式解二元一次方程组熟练解析:2m <-【分析】先解关于关于x ,y 的二元一次方程组313x y m x y +=+⎧⎨+=⎩的解集,其解集由a 表示;然后将其代入21x y +<,再来解关于a 的不等式即可.【详解】31 3,x y m x y +=+⎧⎨+=⎩①②由①+②得4x +2y =4+m ,422m x y ++=, ∴由21x y +<,得 41,2m +<, 解得,2m <-.故答案为2m <-.【点睛】考查解一元一次不等式, 解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键. 19.m >﹣2【分析】首先解关于x 和y 的方程组利用m 表示出x+y 代入x+y >0即可得到关于m 的不等式求得m 的范围【详解】解:①+②得2x+2y =2m+4则x+y =m+2根据题意得m+2>0解得m >﹣2故答解析:m >﹣2【分析】首先解关于x 和y 的方程组,利用m 表示出x +y ,代入x +y >0即可得到关于m 的不等式,求得m 的范围.【详解】解:2133x y m x y -=+⎧⎨+=⎩①②, ①+②得2x +2y =2m +4,则x +y =m +2,根据题意得m +2>0,解得m >﹣2.故答案是:m >﹣2.【点睛】此题考查解二元一次方程组,求不等式的解集,正确计算是解题的关键.20.101【分析】根据图示可知此题需要分两种情况讨论:①假设输入正整数x 为偶数时由题意得:;②假设输入的正整数x 为奇数时由题意得:5x-23>100分别解出不等式的解集再确定x 的值【详解】解:①假设输入解析:101【分析】根据图示可知此题需要分两种情况讨论:①假设输入正整数x 为偶数时,由题意得:1891002x ;②假设输入的正整数x 为奇数时,由题意得:5x-23>100,分别解出不等式的解集,再确定x 的值.【详解】解:①假设输入正整数x 为偶数时,由题意得:1891002x , 解得:x >22,∵x 为偶数,∴x=24,当x=24时,对应的y=124891012; ②假设输入的正整数x 为奇数时,由题意得:5x-23>100,解得:x >24.6,∵x 为奇数,∴x=25,当x=25时,对应的y=5×25-23=102;∵24<25,∴首次大于100时对应的x=24,y=101,故答案为:101.【点睛】此题主要考查了一元一次不等式的应用,关键是看懂题意与图示,根据题目中的条件列出不等式,注意要分两种情况进行计算.三、解答题21.(1)0 1.5a <<;(2)36c <<【分析】(1)根据23a b+=可得23b a -=,再根据三角形三边关系得2b >a ,即可求出a 的取值范围;(2)用含a 的代数式表示c ,再根据a 的取值范围和不等式的性质即可求得c 的取值范围.【详解】解:(1)∵23a b+=, ∴23b a -=,∵a ,b 是某一等腰三角形的底边长与腰长,∴b+b=2b >a >0∴3a a ->>0,解得:0 1.5a <<;(2)∵32ca b +=,23a b +=, ∴32c a b +==3323a a a +-=+∵0 1.5a <<,∴3236a <+<,即36c <<.【点睛】本题考查等式的性质、不等式的性质、解一元一次不等式、三角形的三边关系,掌握不等式的性质,以及三角形的三边关系是解答的关键.22.(1)180,620;(2)5800y x =-+;(3)690元【分析】(1)A 文具的单价:120÷8=15元,B 文具的单价:640÷32=20元,计算12×15,31×20填入表格中即可;(2)根据总费用=A 费用+B 费用计算即可;(3)把A 种文具的费用不大于B 种文具的费用转化为不等式,后利用一次函数的增减性求最值即可.【详解】(1)设购进A 种文具x 件,则B 种文具数量为()40x -件,∴()1520405800y x x x =+-=-+;(3)∵()152040x x ≤-,∴6227x ≤, ∵5800y x =-+,50k =-<,∴y 随着x 的增大而减小,∴当22x =时,522800690y =-⨯+=最小值,答:总费用最少为690元.【点睛】本题考查了一次函数的解析式,一次函数的增减性,不等式的构造与求解,熟练运用生活经验,把生活问题准确转化为函数模型求解是解题的关键.23.(1)y =−2x +1,图像见详解;(2)x≥12;(3)14【分析】(1)建立平面直角坐标系,描出A (−3,7)、B (2,−3)两点,画直线AB 即可,可设一次函数的表达式为y =kx +b ,进而利用方程组求得k 、b 的值,即可得到函数解析式; (2)由直线在x 轴下方部分所对应的y≤0,进而即可求解;(3)求出直线与x ,y 轴的交点坐标,结合三角形的面积公式,即可求解.【详解】(1)一次函数图像如图所示:设一次函数的表达式为y =kx +b ,由题意,得:3723k b k b -+⎧⎨+-⎩==,解得:21k b ==-⎧⎨⎩, ∴一次函数的表达式为y =−2x +1;(2)令y=0,代入y =−2x +1得:x=12, ∴直线与x 轴的交点坐标为(12,0), ∵直线在x 轴下方部分所对应的y≤0, ∴当0y ≤时x 的取值范围:x≥12; (3)令x=0,则y=1,∴直线与y 轴的交点坐标为(0,1),∴一次函数的图象与坐标轴所围成的三角形的面积=1111224⨯⨯=. 【点睛】本题主要考查一次函数的图像和性质以及待定系数法,画出函数图像,理解函数图像上的点的坐标特征,是解题的关键.24.(1)45元, 27元.(2)15120元.【分析】(1)设采购的无线鼠标单价为x 元,有线鼠标单价为y 元,根据“采购12个无线鼠标和16个有线鼠标共花费972元,采购25个无线鼠标比采购8个有线鼠标多花费909元”列出二元一次方程组求解即可;(2)设采购的无线鼠标的个数为a 个,则采购的有限鼠标的个数为(420-a)个,根据题意求出a 的取值范围,根据(1)中无线鼠标和有线鼠标的单价得出W 与a 的函数关系式,根据一次函数的性质解答即可.【详解】解:(1)设采购的无线鼠标单价为x 元,有线鼠标单价为y 元,根据题意得1216972258909x y x y +=⎧⎨-=⎩解得4527x y =⎧⎨=⎩答:采购的无线鼠标单价为45元,采购的无线鼠标单价为27元.(2)设采购的无线鼠标的个数为a 个,则采购的有限鼠标的个数为(420-a)个,根据题意得 a≥420-a解得a≥210,∵W=45a+27(420-a)=18a+11340,∴当a 取最小值时,W 取最小值,∴当a=210时,W 取最小值W 最小值=18×210+11340=15120,∴W 的最小值为15120元.【点睛】本题考查了一次函数的实际应用,一元一次不等式,实际问题与二元一次方程组.解(1)题的关键是根据题意找出等量关系建立方程组;解(2)题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和不等式的性质解答.25.(1)至少购入什锦套菜礼盒75盒;(2)15m =.【分析】(1)设购进什锦套菜礼盒x 盒,则购进奉节脐橙礼盒(200-x )盒,根据总价值不低于15000元,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论; (2)根据销售总价=销售单价×销售数量结合题意可得出关于m 的一元一次方程,解之即可得出结论.【详解】(1)设购进什锦套菜礼盒x 盒,则购进奉节脐橙礼盒(200-x )盒,根据题意得:()6020010015000x x -+≥,解得:75x ≥.答:至少购入什锦套菜礼盒75盒;(2)根据题意得:()()5810080%751%6020075140%150002350215m m ⎛⎫⎛⎫⨯⨯++--+=+ ⎪ ⎪⎝⎭⎝⎭, 整理得:1708503m =, 解得:15m =.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元一次方程.26.2x ≥-,在数轴上表示见解析【分析】利用不等式的性质解一元一次不等式的解集,然后将解集表示在数轴上即可.【详解】解:3(1)57x x +≤+,去括号,得: 3357x x +≤+,移项、合并同类项,得:24x -≤ ,化系数为1,得:2x ≥- ,∴不等式的解集为2x ≥-,不等式的解集在数轴上表示为:【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握一元一次不等式的解法步骤,会在数轴上表示不等式的解集是解答的关键,特别注意不等号的方向和端点的空(实)心.。
(常考题)北师大版初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测卷有答案解析
一、选择题1.不等式组123x x -≤⎧⎨-<⎩的解集是( ) A .1x ≥-B .1x <-C .15x -≤<D .1x ≤-或5x < 2.若不等式组8x x n <⎧⎨>⎩有解,那么n 的取值范围是( ) A .8n > B .8n ≤ C .8n < D .8n ≤ 3.某商贩去批发市场买西瓜,他上午买了300斤,每斤价格x 元,下午买了200斤,每斤价格y元.后来他以每斤价格2x y +卖出,结果发现自己亏了钱,其原因是( ) A .x y <B .x y >C .x y ≤D .x y ≥ 4.不等式2﹣3x≥2x ﹣8的非负整数解有( )A .1个B .2个C .3个D .4个 5.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,关于x 的不等式21k x k x b >+的解集为( )A .-1x >B .1x <-C .2x <-D .无法确定 6.如果a >b ,那么下列不等式不成立...的是( ) A .0a b -> B .33a b ->- C .1133a b > D .33a b ->-7.若关于x?的不等式组2x 1x 3x a +<-⎧⎨>⎩无解,则实数 a?的取值范围是( ) A .a 4<- B .a 4=-C .a 4?≥-D . a 4>- 8.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .29.运行程序如图所示,规定从“输入一个值x ”到“结果是否95>”为一次程序操作,如果程序操作进行了两次才停止,那么x 的取值范围是()A .23x >B .2347x <≤C .1123x ≤<D .47x ≤ 10.若a b >,则下列不等式中,不成立的是( ) A .33a b ->-B .33a b ->-C .33a b >D .22a b -+<-+ 11.下列不等式变形中,一定正确的是( )A .若ac>bc ,则a>bB .若a>b ,则ac>bcC .若ac²>bc²,则a>bD .若a>0,b>0,且11a b>,则a>b 12.已知a 、b 为有理数,且a<0,b>0,a >b ,则( ).A .a<-b<b<-aB .-b<a<b<-aC .-a<b<-b<aD .-b<b<-a<a二、填空题13.若干名学生住宿舍,每间住 4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____14.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.15.如图,直线1y x m =+和22y x n =-的交点是A ,过点A 分别作x 轴y 轴的垂线,则不等式2x m x n +>-的解集为________.16.将点()1,2P a a +-向上平移2个单位得到的点在第一象限,则a 的取值范围是____________.17.已知关于x 的不等式0123x a x ->⎧⎨->-⎩只有五个整数解,则实数a 的取值范围是__________.18.已知关于x 的不等式(2)50m n x m n -+->的解集1x <,则关于x 的不等式mx n >的解集是__________.19.不等式组235,324,x x -≤⎧⎨-<⎩的解集是________. 20.如图,已知A 、B 是线段MN 上的两点,MN=4,MA=1,MB >1.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成ABC .设AB=x ,若ABC 为直角三角形,则x=__.三、解答题21.如图,已知有甲、乙两个长方形,它们的边长如图所示(m .为正整数....),面积分别为1S 、2S .(1)请比较1S 与2S 的大小:1S _____2S ;(2)若一个正方形与甲的周长相等.①求该正方形的边长(用含m 的代数式表示);②若该正方形的面积为3S ,试探究:3S 与1S 的差(即31S S -)是否为常数?若为常数,求出这个常数:如果不是,请说明理由;(3)若满足条件120n S S <<-的整数n 有且只有8个,直接写出m 的值.22.解不等式:11123x x +--≤. 23.(16224348(2)解不等式组:2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩ 24.为了防疫,某学校需购买甲、乙两种品牌的额温枪.已知甲品牌额温枪的单价比乙品牌额温枪的单价低40元,且用4800元购买甲品牌额温枪的数量是用4000元购买乙品牌额温枪的数量的32倍. (1)求甲、乙两种品牌额温枪的单价;(2)若学校计划购买甲.乙两种品牌的额温枪共80个,且乙品牌额温枪的数量不小于甲品牌额温枪数量的2倍,购买两种品牌额温枪的总费用不超过15000元.设购买甲品牌额温枪m 个,总费用为W 元,则该校共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?25.(1)解不等式组3(2)4 251 3xxxx--≥-⎧⎪-⎨<-⎪⎩,并写出该不等式组的整数解;(2)计算:213904540+-.26.解不等式组253(2)13212x xxx+≤+⎧⎪⎨+-≤⎪⎩,并把不等式组的解集在数轴上表示出来,写出不等式组的非负整数解.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,即可得到答案.【详解】解:∵123xx-≤⎧⎨-<⎩,∴15xx≥-⎧⎨<⎩,∴15x-≤<;故选:C.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解不等式组的方法进行解题.2.C解析:C【分析】解出不等式组的解集,与已知解集比较,可求出n的取值范围.【详解】∵不等式组8x x n <⎧⎨>⎩有解, ∴n <x <8,∴n <8,n 的取值范围为:n <8.故选:C .【点睛】考查了不等式的解集,本题是已知不等式组的解集,求不等式中参数范围的问题.可以先将参数当作常数处理,求出解集与已知解集比较,进而即可求解.3.B解析:B【分析】题目中的不等关系是:买西瓜每斤平均价>卖黄瓜每斤平均价.【详解】 解:根据题意得,他买西瓜每斤平均价是300200500x y +, 以每斤2x y +元的价格卖完后,结果发现自己赔了钱, 则300200500x y +>2x y +, 解之得,x >y .所以赔钱的原因是x >y .故选:B .【点睛】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,列出不等式.4.C解析:C【解析】试题分析:首先移项,合并同类项,然后系数化成1,即可求得不等式的解集,然后确定非负整数解即可.解:移项,得:﹣3x ﹣2x≥﹣8﹣2,合并同类项,得:﹣5x≥﹣10,则x≤2.故非负整数解是:0,1,2共有3个.故选C .点评:本题考查了一元一次不等式的解法,理解解不等式的基本依据是不等式的基本性质是关键.5.B解析:B【分析】由图象可知,当1x =-时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式21k x k x b >+解集.【详解】两条直线的交点坐标为(-1,3),且当 x<−1 时,直线2l 在直线1l 的上方,∴不等式21k x k x b >+的解集为: x<−1故选:B.【点睛】本题考察借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.6.D解析:D【分析】根据不等式的基本性质逐项判断即可得.【详解】A 、0a b ->,成立;B 、不等式的两边同减去3,不改变不等号的方向,即33a b ->-,成立;C 、不等式的两边同乘以正数13,不改变不等号的方向,即1133a b >,成立;D 、不等式的两边同乘以负数3-,改变不等号的方向,即33a b -<-,不成立; 故选:D .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.7.C解析:C【分析】先解出第一个不等式的解集,再根据题意确定a 的取值范围即可.【详解】解:2x 1x 3x a +<-⎧⎨>⎩①②解①的:x ﹤﹣4,∵此不等式组无解,∴a≥﹣4,故选:C .【点睛】本题考查一元一次不等式组的解法,熟知不等式组解集应遵循的原则“同大取大,同小取小,大小小大取中间,大大小小无解”是解答的关键.8.D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-, 解不等式113x -≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.9.B解析:B【分析】根据运行程序,第一次运算结果小于等于95,第二次运算结果大于95列出不等式组,然后求解即可.【详解】解:由题意得,()2195221195x x +≤⎧⎪⎨++⎪⎩①>② 解不等式①得,47x ≤,解不等式②得,23x >,∴2347x ≤<,故选:B .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.10.A解析:A【分析】根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C 、根据不等式的性质2,不等式的两边乘以13,可得33a b >,故C 成立; D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.11.C解析:C【分析】根据不等式的基本性质分别进行判定即可得出答案.【详解】A .当c <0,不等号的方向改变.故此选项错误;B .当c=0时,符号为等号,故此选项错误;C .不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D .不等式的两边都乘以或除以同一个正数,不等号的方向不变,错误.故选:C .【点睛】本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.12.A解析:A【分析】根据绝对值和不等式的性质,经计算,即可得到答案.【详解】∵a<0,b>0∴0a ->,0b -< ∴a a =-,b b =,a a <-,b b >- ∵a b >∴a b ->∴a b <-∴a b b a <-<<-故选:A .【点睛】本题考查了绝对值和不等式的知识;解题的关键是熟练掌握不等式和绝对值的性质,从而完成求解.二、填空题13.【分析】先根据每间住人人无处住可得学生人数再根据每间住人空一间还有一间不空也不满建立不等式组即可得【详解】设有间宿舍则学生有人由题意得:故答案为:【点睛】本题考查了列一元一次不等式组理解题意正确找出 解析:()142626x x ≤+--<【分析】先根据“每间住 4人,2人无处住”可得学生人数,再根据“每间住 6人,空一间还有一间不空也不满”建立不等式组即可得.【详解】设有x 间宿舍,则学生有()42x +人,由题意得:()142626x x ≤+--<,故答案为:()142626x x ≤+--<.【点睛】本题考查了列一元一次不等式组,理解题意,正确找出不等关系是解题关键.14.【分析】先将m 看做常数解方程组求出再代入可得关于m 的不等式解之可得答案【详解】①-②得:将代入②得:∵∴+∴故答案为:【点睛】本题主要考查了解二元一次方程组和解一元一次不等式熟练掌握运算法则是解本题 解析:72m <【分析】先将m 看做常数解方程组求出2x m =-、2y m =+,再代入32x y +>-可得关于m 的不等式,解之可得答案.【详解】 23224x y m x y +=-+⎧⎨+=⎩①② ①2⨯-②得:2x m =-,将2x m =-代入②得:2y m =+,∵32x y +>-, ∴2m - +322m +>-, ∴72m <. 故答案为:72m <. 【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,熟练掌握运算法则是解本题的关键.注意:不等式两边都乘以或除以同一个负数不等号方向要改变.15.【分析】根据两直线的交点坐标结合函数的图象直接写出答案即可【详解】∵直线和的交点是A (23)当时直线在直线的上方∴不等式的解集为故答案为:【点睛】本题考查了一次函数与一元一次不等式的知识解题的关键是 解析:2x <【分析】根据两直线的交点坐标结合函数的图象直接写出答案即可.【详解】∵直线1y x m =+和22y x n =-的交点是A (2,3),当2x <时,直线1y x m =+在直线22y x n =-的上方,∴不等式2x m x n +>-的解集为2x <,故答案为:2x <.【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是能够根据交点坐标确定不等式的解集.16.【分析】根据点的平移规律可得点P (a+1-2a )向上平移2个单位得到的点的坐标为(a+1-2a+2)再根据第一象限内点的坐标符号可得建立不等式即可求解【详解】解:点P(a+1-2a)向上平移2个单位解析:11a -<<【分析】根据点的平移规律可得点P (a+1,-2a )向上平移2个单位得到的点的坐标为(a+1,-2a+2),再根据第一象限内点的坐标符号可得建立不等式即可求解.【详解】解:点P(a +1,-2a )向上平移2个单位得到的点的坐标为(a +1,-2a +2),∵点(a +1,-2a +2)在第一象限,∴10220a a +>⎧⎨-+>⎩解得:11a -<<,故答案为11a -<<.【点睛】此题主要考查了点的平移,一元一次不等式组,平面直角坐标系等,熟练掌握点的平移规律是解决本题的关键.17.【分析】此题需要首先解不等式根据解的情况确定a 的取值范围特别是要注意不等号中等号的取舍【详解】解不等式x-a >0得:x >a 解不等式1-2x >-3得:x <2∴不等式组的解集是a <x <2∵只有五个整数解解析:43a -≤<-【分析】此题需要首先解不等式,根据解的情况确定a 的取值范围.特别是要注意不等号中等号的取舍.【详解】解不等式x -a >0,得:x >a ,解不等式1-2x >-3,得:x <2,∴不等式组的解集是a < x <2,∵只有五个整数解,∴整数解是1,0,-1,-2,-3∴-4≤a <-3,故答案为:-4≤a <-3.【点睛】此题考查了一元一次不等式组的解法.解题中要注意分析不等式组的解集的确定,含参数问题需要特别注意取等号时的情况.18.【分析】根据不等式和解集间的关系可知时化简可得mn 的关系由此可解不等式【详解】解:由题意得时即化简得且不等式的解集变号了说明等量代换可得不等式即为由不等式基本性质可得故答案为【点睛】本题考查了不等式 解析:12x <【分析】根据不等式和解集间的关系可知1x =时,(2)50m n x m n -+-=,化简可得m,n 的关系,由此可解不等式mx n >.【详解】解:由题意得1x =时,(2)50m n x m n -+-=,即250m n m n -+-=,化简得2m n =,且不等式的解集变号了,说明20m n -<,等量代换可得 40,30,0n n n n -<<<,不等式mx n >即为2nx n >,由不等式基本性质可得12x <.故答案为12x <【点睛】 本题考查了不等式,熟练掌握不等式的性质及不等式与解集间的关系是解题的关键. 19.【分析】求出不等式组中两不等式的解集找出解集的公共部分即可;【详解】∵由第一个式子求得:x≥-1由第二个式子求得:x <2则不等式组的解集为-1≤x <2故答案为:-1≤x <2【点睛】本题考查了解一元一解析:12x -≤<【分析】求出不等式组中两不等式的解集,找出解集的公共部分即可;【详解】∵235324x x -≤⎧⎨-⎩< 由第一个式子求得:x ≥-1,由第二个式子求得:x <2,则不等式组的解集为-1≤x <2,故答案为:-1≤x <2【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法是解本题的关键; 20.或【分析】根据三角形的三边关系:两边之和大于第三边即可得到关于x 的不等式组求出x 的取值范围再根据勾股定理即可列方程求解【详解】解:∵在△ABC 中AC=1AB=xBC=3-x 解得1<x <2;①∵1<x 解析:43或53【分析】 根据三角形的三边关系:两边之和大于第三边,即可得到关于x 的不等式组,求出x 的取值范围,再根据勾股定理,即可列方程求解.【详解】解:∵在△ABC 中,AC=1,AB=x ,BC=3-x .1313x x x x+>-⎧∴⎨+->⎩, 解得1<x <2;①∵1<x ,∴AC 不能为斜边,②若AB 为斜边,则x 2=(3-x )2+1,解得x=53,满足1<x <2, ③若BC 为斜边,则(3-x )2=1+x 2,解得x=43,满足1<x <2,故x的值为:43或53,故答案为:43或53.【点睛】本题主要考查了三角形的三边关系以及勾股定理,正确理解分类讨论是解题的关键.三、解答题21.(1)<;(2)①m+4.5;②为常数,0.25;(3)m=8【分析】(1)根据矩形的面积公式计算即可;(2)①根据矩形和正方形的周长公式即可得到结论;②根据矩形和正方形的面积公式即可得到结论;(3)根据题意得出关于m的不等式,解之即可得到结论.【详解】解:(1)图甲中长方形的面积S1=(m+5)(m+4)=m2+9m+20,图乙中长方形的面积S2=(m+7)(m+3)=m2+10m+21,∵S1-S2=-m-1,m为正整数,∴-m-1<0,∴S1<S2.故答案为:<;(2)①2(m+5+m+4)÷4=m+4.5;②S3-S1=(m+4.5)2-(m2+9m+20)=0.25,故S3与S1的差(即S3-S1)是常数;(3)由(1)得|S1-S2|=m+1,且m为正整数,∵0<n<|S1-S2|,∴0<n<m+1,由题意得8<m+1≤9,解得:7<m≤8,∵m为正整数,∴m=8.【点睛】本题主要考查列代数式,整式的混合运算,解题的关键是掌握多项式乘多项式、长方形的性质、正方形的性质等知识.22.1x【分析】去分母,去括号,移项,合并同类项,系数化成1即可.【详解】解:去分母,得()()31216x x +--≤.去括号,得33226x x +-+≤.移项,得32632x x -≤--.合并同类项,得1x ≤.【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键. 23.(1)2)﹣2<x≤2【分析】(1)先算乘除,再算加减;(2)分别求出两个一元一次不等式的解即可;【详解】(1)原式=,=;(2)2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩, 解不等式2(3)8--<x x 得:x >﹣2; 解不等式(1)22--≤-x x x 得:x≤2; 所以,不等式组的解集为:﹣2<x≤2.【点睛】本题主要考查了二次根式的混合运算和一元一次不等式组的求解,准确计算是解题的关键.24.(1)购买甲品牌额温枪的单价为160元,则购买乙品牌额温枪的单价为200元;(2)共有2种购买方案,购买26个甲品牌54个乙品牌的总费用最低,最低费用是14960元【分析】(1)设甲品牌额温枪的单价为x 元,则乙品牌额温枪的单价为()40x +元,根据题意得关于x 的分式方程,解方程即可,注意结果要检验;(2)设购买m 个甲品牌额温枪,则购买()80m -个乙品牌额温枪,总费用为w 元,根据题意写出w 关于m 的一次函数,然后根据题目中的数量关系列不等式组确定m 的取值范围,根据一次函数的性质可得答案.【详解】解:(1)设甲品牌额温枪的单价为x 元,则乙品牌额温枪的单价为()40x +元,根据题意,得480040003402x x =⨯+ 解得:160x =,经检验160x =是原方程的解, 40200x +=答:购买甲品牌额温枪的单价为160元,则购买乙品牌额温枪的单价为200元; (2)设购买m 个甲品牌额温枪,则购买()80m -个乙品牌额温枪,则()160200804016000W m m m =+-=-+乙品牌额温枪的数量不小于甲品牌额温枪数量的2倍,购买两种品牌额温枪的总费用不超过15000元,()1602008015000802m m m m ⎧+-≤∴⎨-≥⎩解不等式组得:80253m ≤≤∵m 为非负整数∴m 的值为:25,26 ,即该队共有2种购买方案,又∵在4016000W m =-+中,w 随m 的增大而减小∴当26m =时,W 最小, 26m =时, 40261600014960W =-⨯+=(元),答:共有2种购买方案,购买26个甲品牌54个乙品牌的总费用最低,最低费用是14960元.【点睛】本题考查了一次函数和一元一次不等式组在实际问题中的应用,理清题中的数量关系正确计算是解题的关键.25.(1)-2<x≤1;整数解为-1,0,1;(2)【分析】(1)分别求出各不等式的解集,再求出其公共解集,据此即可写出不等式组的整数解. (2)先化简二次根式,再合并即可.【详解】解:(1)()3x 24x?2x 5x 1?3⎧--≥-⎪⎨-<-⎪⎩①② 由①去括号得,-3x+6≥4-x ,移项、合并同类项得,-2x≥-2,化系数为1得,x≤1.由②去分母得,2x-5<3x-3,移项、合并同类项得,-x <2,化系数为1得,x>-2.故原不等式组的解集为:-2<x≤1.∴不等式组的整数解为-1,0,1.(2)21 3904540+-=1010 910+-=910.【点睛】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).也考查了二次根式的加减运算,掌握二次根式的化简是关键.26.﹣1≤x≤3,非负整数解为3,2,1,0.【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.【详解】解:()253213212x xxx⎧+≤+⎪⎨+-≤⎪⎩,①.②,由①得:x≥﹣1,由②得:x≤3,不等式组的解集为:﹣1≤x≤3.在数轴上表示为:.∴不等式组的非负整数解,3,2,1,0.【点睛】此题主要考查了解一元一次不等式(组),解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.。
北师大版八年级数学下册第2章【一元一次不等式和一元一次不等式组】单元测试卷(二)含答案与解析
北师大版八年级数学下册第2章单元测试卷(二)一元一次不等式和一元一次不等式组学校:__________姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.若3a >,则下列各式正确的是( )A .14a +<B .30a -<C .41a ->-D .21a -<2.对于不等式组015x x ≥⎧⎨+<⎩,下列说法正确的是( ) A .此不等式组的解集是44x -≤<B .此不等式组有4个整数解C .此不等式组的正整数解为1,2,3,4D .此不等式组无解3.设有理数a 、b 、c 满足(0)a b c ac >><,且c b a <<,则222a b b c a c x x x ++++++﹣﹣的最小值是( ) A .2a c - B .22a b c ++ C .22a b c ++ D .22a b c +- 4.如果关于x 的一元一次方程3(x +4)=2a +5的解大于关于x 的方程()414a x+()343a x -=的解,那么a 的取值是( ). A .2a > B .2a < C .718a > D .718a < 5.不等式231x +≥的解集是( )A .1x ≤-B .1x ≥-C .2x -≤D .2x ≥-6.如图所示,两函数y 1=k 1x +b 和y 2=k 2x 的图象相交于点(m ,−2),则关于x 的不等式 k 1x +b >k 2x的解集为( )A .x >mB .x <-1C .x >-1D .x <m7.若a >b ,则下列不等式成立的是( )A .a 2>b 2B .1﹣a >1﹣bC .3a ﹣2>3b ﹣2D .a ﹣4>b ﹣3 8.下列变形属于移项的是( )A .由3x =-7+x ,得3x =x -7B .由x =y ,y =0,得x =0C .由7x =6x -4,得7x +6x =-4D .由5x +4y =0,得5x =-4y9.若不等式组的解集为0<x <1,则a 的值为( )A .1B .2C .3D .410.已知一次函数1y kx b =+与2y ax c =+的图象如图所示,则不等式kx b ax c +>+的解集为( )A .3x >B .3x <C .1x >D .1x < 11.把不等式组11x x <-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是( )A .B .C .D .12.如果关于x的分式方程1 311a xx x--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3B.0C.3D.9二、填空题(本大题共6小题,每小题3分,共18分)13.若一次函数(1)2y k x k=-++的图像不经过第三象限,则k的取值范围是_____.14.若不等式组841x xx m+>-⎧⎨≤⎩的解集为x<3,则m的取值范围是____________.15.如图,在平面直角坐标系中,点A、B的坐标分别为()1,4、()3,4,若直线y kx=与线段AB有公共点,则k的取值范围为__________.16.若关于x,y的二元一次方程组2134x y ax y-=-⎧⎨+=⎩的解满足40x y-<,则a的取值范围是________.17.若关于x的一元一次不等式组21122x ax x->⎧⎨->-⎩的解集是21x-<<,则a的取值是__________.18.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x 时,y≤0.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.小明今年12岁,老师告诉他:“我今年的年龄是你的3倍小4岁”,接着老师又问小明:“再过几年我的年龄正好是你的2倍?”请你帮助小明解决这一问题.20.2020年疫情期间,某公司为了扩大经营,决定购进6台机器用于生产口罩.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产口罩的数量如下表所示.经过预算,本次购买机器所耗资金不能超过36万元,(1)按该公司要求可以有几种购买方案?(2)如果该公司购进的6台机器的日生产能力不能低于42万个,那么为了节约资金应选择什么样的购买方案?21.解下列不等式:(1)2x-3≤12(x+2);(2)3x>1-36x-.22.解不等式组:3561162x xx x<+⎧⎪+-⎨≥⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.23.解不等式组:1011122xx-≥⎧⎪⎨--<⎪⎩,并求出它的最小整数解.24.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?参考答案与解析二、选择题(本大题共12小题,每小题3分,共36分。
(常考题)北师大版初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测卷含答案解析
一、选择题1.不等式323xx +-≤的非负整数解有( ) A .3个B .4个C .5个D .无数个2.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1020x x ->⎧⎨+≤⎩B .1020x x +>⎧⎨+≤⎩C .1020x x +>⎧⎨-≤⎩D .1020x x -≤⎧⎨+<⎩3.不等式组123x x -≤⎧⎨-<⎩的解集是( )A .1x ≥-B .1x <-C .15x -≤<D .1x ≤-或5x <4.不等式251x -+≥的解集在数轴上表示正确的是( ) A . B . C .D .5.若关于x 的一元次不等式组2324274(1)x mx x x -+⎧≤⎪⎨⎪+≤+⎩的解集为32x ≥,且关于y 的方程2(53)322m y y ---=的解为非负整数,则符合条件的所有整数m 的积为( )A .2B .7C .11D .106.不等式组211x x ≥-⎧⎨>-⎩的解集是( )A .1x >-B .12x >-C .21x ≥-D .112x -<≤-7.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,关于x 的不等式21k x k x b >+的解集为( )A .-1x >B .1x <-C .2x <-D .无法确定 8.下列各数是不等式271x -≥的解的是( ).A .4B .3C .2D .19.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( )A .B .C .D .10.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( ) A .a >1B .a≤2C .1<a≤2D .1≤a≤211.下列不等式变形中,一定正确的是( )A .若ac>bc ,则a>bB .若a>b ,则ac>bcC .若ac²>bc²,则a>bD .若a>0,b>0,且11a b>,则a>b 12.P Q R S ,,,四个小朋友玩跷跷板,结果如图所示,则他们的体重大小关系为( )A .R<Q P SB .Q<R S PC .Q<R P SD .Q<P R S二、填空题13.若关于x 的不等式组13420x a x ⎧->⎪⎨⎪-≥⎩无解,a 则的取值范围为___________.14.不等式21302x --的非负整数解共有__个. 15.一次函数1y ax b 与2y mx n =+的部分自变量和对应函数值如下表:x ⋅⋅⋅ 0 1 2 3⋅⋅⋅ 1y⋅⋅⋅ 232112⋅⋅⋅ x ⋅⋅⋅ 0 1 2 3 ⋅⋅⋅ 2y⋅⋅⋅-3-113⋅⋅⋅x 16.若关于x 的不等式2x ﹣a ≥3的解集如图所示,则常数a =_____.17.一张试卷共20道题,做对一题得5分,做错或不做一题扣1分,小明做了全部试题,若要成绩优秀(注:70分及以上成绩为优秀),那么小明至少要做_________道题.18.不等式组20,360x x ->⎧⎨+<⎩的解集是____________.19.已知一次函数y kx b =+的图像如图所示,则关于x 的不等式320kx b ->的解集为_____.20.已知,当1<x<2时,代数式ax+2的值都大于零;当-2<x<-1时,代数式ax+2的值都小于零,则a 的取值范围是___________三、解答题21.2020年4月23日是第25个世界读书日,为了感觉阅读的幸福,体味生命的真谛,分享读书的乐趣.某学校举办了“让读书成为习惯,让书香飘满校园---阅读•梦飞翔”的主题活动,为此特为每个班级订购了一批新的图书,七年级 订购《曾国藩家书》2套和《凡尔纳三部曲》1套,总费用为135元,八年级订购《曾国藩家书》1套和《凡尔纳三部曲》1套,总费用为105元,(1)求《曾国藩家书》和《凡尔纳三部曲》每套各多少元?(2)学校准备再购买《曾国藩家书》和《凡尔纳三部曲》共20套,总费用不超过960元,购买《曾国藩家书》的数量不超过《凡尔纳三部曲》3倍,问学校有几种购买方案?哪种购买方案的费用最低?最低是多少元?22.某通讯公司推出一款针对手机用户的5G 收费套餐(包括上网流量费和语音通话费两部分).套餐的收费方式是:上网流量费固定;通话时间不超过200分钟时,免收语音通话费;通话时间超过200分钟时,超过部分按每分钟0.25元收取语音通话费.套餐收费y (元)与当月语音通话时间x (分钟)之间的关系如图所示.(1)套餐的上网流量费是多少元?(2)请写出通话时间超过200分钟时,y 关于x 的函数表达式. (3)若要使套餐费用不超过165元,则当月最多能通话多少分钟?23.解不等式组:()341231212x x x x ⎧-≤-⎪⎪⎨+⎪-<⎪⎩24.某社区计划对面积为3600m 2的区域进行绿化,经投标,由甲,乙两个工程队来完成,已知甲队5天能完成绿化的面积等于乙队10天完成绿化的面积,甲队3天能完成绿化的面积比乙队5天能完成绿化面积多60m 2. (1)求甲、乙两工程队每天能完成绿化的面积;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,要使这次绿化的总费用不超过32万元,则至少应安排乙工程队绿化多少天?25.倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某垃圾处理厂计划向机器人公司购买A 型号和B 型号垃圾分拣机器人共60台,其中B 型号机器人不少于A 型号机器人的1.4倍.(1)该垃圾处理厂最多购买几台A 型号机器人?(2)机器人公司报价A 型号机器人6万元/台,B 型号机器人10万元/台,要使总费用不超过510万元,则共有几种购买方案?26.近两年,重庆市奉节县紧紧围绕“村有骨干产业、户有致富门路”的发展思路,大力实施农产品产业扶贫项目,实现助农增收其中“乡坛子”什锦套菜礼盒、奉节脐橙10km 装广受好评,单价分别为100元/盒和60元/盒.(1)某公司大力响应扶贫政策,准备用不低于15000元购买什锦套菜礼盒、奉节脐橙共200盒,则至少购入什锦套菜礼盒多少盒?(2)2021年春节将至,该公司准备再次购入以上两种产品作为员工新春福利.恰逢“学习强国”重庆学习平台开展“党员直播带货、‘渝’你抗疫助农”扶贫农产品公益直播活动.直播中,什锦套菜礼盒以原价8折销售,该公司购买数量在(1)问最少数量的基础上增加了5%2m ;奉节脐橙售价比原价降低了815m 元,购买数量在(1)问奉节脐橙最多数量的基础上增加了40%.该公司在直播间下单后实际花费比(1)问中最低花费增加2350元,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】求出不等式的解集,再根据非负整数解的条件求出特殊解. 【详解】解:去分母得:3(x -2)≤x +3, 去括号,得3 x -6≤x +3, 移项、合并同类项,得2x ≤9, 系数化为1,得x ≤4.5,则满足不等式的“非负整数解”为:0,1,2,3,4,共5个, 故选:C . 【点睛】本题考查解不等式,解题的关键是理解题中的“非负整数”.2.C解析:C 【分析】由数轴可得表示的解集为12x -<≤,把各个选项求出解集,即可解答. 【详解】数轴表示的解集为12x -<≤. 解不等式组1020x x ->⎧⎨+≤⎩,得:12x x >⎧⎨≤-⎩,解集为空集,故A 不符合题意.解不等式组1020x x +>⎧⎨+≤⎩,得:12x x >-⎧⎨≤-⎩,解集为空集,故B 不符合题意.解不等式组1020x x +>⎧⎨-≤⎩,得:12x x >-⎧⎨≤⎩,解集为12x -<≤,故C 符合题意.解不等式组1020x x -≤⎧⎨+<⎩,得:12x x ≤⎧⎨<-⎩,解集为2x <-,故D 不符合题意.故选C . 【点睛】本题考查在数轴上表示不等式的解集以及解不等式组,解决本题的关键是求出不等式组的解集.3.C解析:C 【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,即可得到答案. 【详解】解:∵123x x -≤⎧⎨-<⎩,∴15x x ≥-⎧⎨<⎩,∴15x -≤<; 故选:C . 【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解不等式组的方法进行解题.4.C解析:C 【分析】解出不等式,在进行判断即可; 【详解】251x -+≥,24x -≥-, 2x ≤,解集表示为:;故答案选C . 【点睛】本题主要考查了一元一次不等式的解集表示,准去计算是解题的关键.5.D解析:D 【分析】不等式组整理后,根据已知解集确定出m 的范围,由方程有非负整数解,确定出m 的值,求出之积即可. 【详解】不等式组整理得:31032x m x ⎧≥⎪⎪⎨⎪≥⎪⎩,由解集为32x ≥,得到33102m ≤,即5m ≤, 方程去分母得:64253y m y -=-+,即213m y -=, 由y 为非负整数,得213m k -=(k 为非负整数),整理得:3152k m +=≤, 解得:0k ≤≤3,∴0k =或1或2或3,∴12m =(舍去)或2或72(舍去)或5, ∴2m =或5,∴符合条件的所有整数m 的积为2510⨯=, 故选:D . 【点睛】本题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.6.C解析:C 【分析】先求出2x≥-1的解集,再确定不等式组的解集即可. 【详解】解:211x x ≥-⎧⎨>-⎩①②解不等式①得,21x ≥-, 解不等式②得,x>-1,∴不等式组的解集为:21x ≥- 故选:C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.B解析:B 【分析】由图象可知,当1x =-时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式21k x k x b >+解集.【详解】两条直线的交点坐标为(-1,3),且当 x<−1 时,直线2l 在直线1l 的上方, ∴不等式21k x k x b >+的解集为: x<−1 故选:B. 【点睛】本题考察借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.8.A解析:A 【分析】先求出不等式的解集,再选项进行判断即可. 【详解】271x -≥, 217x +≥, 28x ≥解得,4x ≥. 故选:A . 【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.9.B解析:B 【分析】先根据不等式组求出解集,然后在数轴上准确的表示出来即可. 【详解】111x x -<⎧⎨-⎩①② 由不等式①组得,x<2 ∴不等式组的解集为:21x x ⎧⎨≥-⎩< 其解集表示在数轴上为,故选B . 【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10.C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a⩽2,故选C.11.C解析:C【分析】根据不等式的基本性质分别进行判定即可得出答案.【详解】A.当c<0,不等号的方向改变.故此选项错误;B.当c=0时,符号为等号,故此选项错误;C.不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D.不等式的两边都乘以或除以同一个正数,不等号的方向不变,错误.故选:C.【点睛】本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.12.C解析:C【分析】观察图中的三个跷跷板,哪个重则往哪边下沉,可得出一元一次不等式组,解之即可得出结论.【详解】解:依题意,哪个重则往哪边下沉可得:(1)(2)(3)S PP RP R S Q>⎧⎪>⎨⎪+>+⎩,由(1)(2)得:R P<S,由(3)得:Q R,故:Q R P S<<<,故选:C.【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.二、填空题13.【分析】先解不等式组中的两个不等式然后根据不等式组无解可得关于a 的不等式解不等式即得答案【详解】解:对不等式组解不等式①得解不等式②得∵原不等式组无解∴解得:故答案为:【点睛】此题主要考查了解不等式 解析:23a ≥【分析】先解不等式组中的两个不等式,然后根据不等式组无解可得关于a 的不等式,解不等式即得答案. 【详解】解:对不等式组103420x a x ⎧->⎪⎨⎪-≥⎩①②,解不等式①,得3x a >, 解不等式②,得2x ≤, ∵原不等式组无解, ∴32a ≥, 解得:23a ≥. 故答案为:23a ≥. 【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则,得出关于a 不等式是解题关键.14.4【分析】不等式去分母合并后将x 系数化为1求出解集找出解集中的非负整数解即可【详解】解:解得:则不等式的非负整数解为0123共4个故答案为:4【点睛】此题考查了一元一次不等式的非负整数解熟练掌握运算解析:4 【分析】不等式去分母,合并后,将x 系数化为1求出解集,找出解集中的非负整数解即可. 【详解】 解:21302x --, 2160x --,27x ,解得: 3.5x ,则不等式的非负整数解为0,1,2,3共4个. 故答案为:4.此题考查了一元一次不等式的非负整数解,熟练掌握运算法则是解本题的关键.15.【分析】根据统计表确定两个函数的增减性以及函数的交点然后根据增减性判断【详解】根据表可得y1=kx+b中y随x的增大而减小;y2=mx+n中y随x 的增大而增大且两个函数的交点坐标是(21)则当x<2解析:2x【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】根据表可得y1=kx+b中y随x的增大而减小;y2=mx+n中y随x的增大而增大.且两个函数的交点坐标是(2,1).则当x<2时,kx+b>mx+n,故答案为:x<2.【点睛】本题考查了一次函数与一元一次不等式,函数的性质,正确确定增减性以及交点坐标是关键.16.-5【分析】先根据数轴上不等式解集的表示方法求出此不等式的解集再求出所给不等式的解集与已知解集相比较即可求出a的值【详解】解:由数轴上关于x的不等式的解集可知x≥﹣1解不等式:2x﹣a≥3解得:x≥解析:-5【分析】先根据数轴上不等式解集的表示方法求出此不等式的解集,再求出所给不等式的解集与已知解集相比较即可求出a的值.【详解】解:由数轴上关于x的不等式的解集可知x≥﹣1,解不等式:2x﹣a≥3,解得:x≥3+2a,故3+2a=﹣1,解得:a=﹣5.故答案为:﹣5.【点睛】本题考查在数轴上表示一元一次不等式的解集,熟知实心圆点与空心圆点的区别是解题关键.17.15【分析】设小明做对x道题则做错或不做(20−x)道题根据总分=5×做对题目数−1×做错或不做题目数结合总分不少于70分即可得出关于x的一元一次不等式解之即可得出x的取值范围再取其中的最小整数值即【分析】设小明做对x道题,则做错或不做(20−x)道题,根据总分=5×做对题目数−1×做错或不做题目数,结合总分不少于70分,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再取其中的最小整数值即可得出结论.【详解】解:设小明做对x道题,则做错或不做(20−x)道题,依题意,得:5x−(20−x)≥70,解得:x≥15,∴小明至少要做对15道题.故答案为:15.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.18.【分析】分别求出每一个不等式的解集根据口诀:同大取大同小取小大小小大中间找大大小小无解了确定不等式组的解集【详解】解:由①得:x<0由②得:x<-2不等式组的解集为:x<-2【点睛】本题考查了解一元解析:2x<-【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:20 360xx->⎧⎨+<⎩①②由①得:x<0,由②得:x<-2,不等式组的解集为:x<-2.【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【分析】根据函数的图象可知k<0且x=-6时y=0把(-60)代入y=kx+b得出k与b之间的关系式再利用一元一次不等式解法得出答案【详解】解:∵一次函数y=kx+b的图象过(-60)∴0=-6k+解析:4x<【分析】根据函数的图象可知,k<0且x=-6时,y=0,把(-6,0)代入y=kx+b,得出k与b之间的关系式,再利用一元一次不等式解法得出答案.【详解】解:∵一次函数y=kx+b的图象过(-6,0),∴0=-6k+b,∴b=6k,∴3kx-2b=3kx-12k>0,∵函数图象经过第二、三、四象限,∴k<0,∴x-4<0,解得:x<4.故答案为:x<4.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.20.【分析】分a>0a=0a<0三种情况根据不等式的性质求解即可【详解】解:当1<x<2时①当a>0时1×a<ax<2×a∴a+2<ax+2<2a+2∵代数式ax+2的值都大于零∴a+2≥0即a≥−2∴a解析:2【分析】分a>0,a=0,a<0三种情况,根据不等式的性质求解即可.【详解】解:当1<x<2时,①当a>0时,1×a<ax<2×a,∴a+2<ax+2<2a+2,∵代数式ax+2的值都大于零,∴a+2≥0,即a≥−2,∴a>0;②当a<0时,2a<ax<a,∴2a+2<ax+2<a+2,∵代数式ax+2的值都大于零,∴2a+2≥0,即a≥−1,∴−1≤a<0;③当a=0时,ax+2=2>0,∴满足代数式ax+2的值都大于零;当−2<x<−1时,①当a>0时,−2a<ax<−a,∴−2a+2<ax+2<−a+2,∵代数式ax+2的值都小于零,∴−a+2≤0,即a≥2,∴a≥2;②当a<0时,−a<ax<−2a,∴−a+2<ax+2<−2a+2,∵代数式ax+2的值都小于零,∴−2a+2≤0,即a≥1,∴不存在这样的a 值使ax+2的值小于零;③当a=0时,ax+2=2>0,∴不满足代数ax+2的值都小于零,若同时满足上述情况,则a≥2,故答案为:a≥2.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.三、解答题21.(1)《曾国藩家书》每套30元,《凡尔纳三部曲》每套75元;(2)有四种购买方案,其中《曾国藩家书》15套,《凡尔纳三部曲》5套总费用最小,825元【分析】(1)设《曾国藩家书》每套x 元,《凡尔纳三部曲》每套y 元,由题意可得: 2135105x y x y +=⎧⎨+=⎩,解方程组即可; (2)设《凡尔纳三部曲》为y 套,由题意可得:()302075960203y y y y ⎧-+≤⎨-≤⎩①②,解不等式组求出5≤y≤8,分别求出当y=5, y=6, y=7, y=8时方案,设总费用为W 元,由题意可得W=45y+600,45>0,W 随y 的增大而增大,在四种方案中,当y=5时W 有最小值,求出即可.【详解】解:(1)设《曾国藩家书》每套x 元,《凡尔纳三部曲》每套y 元,由题意可得: 2135105x y x y +=⎧⎨+=⎩, 解得3075x y =⎧⎨=⎩, ∴《曾国藩家书》每套30元,《凡尔纳三部曲》每套75元;(2)设《凡尔纳三部曲》为y 套,由题意可得:()302075960203y y y y ⎧-+≤⎨-≤⎩①② , 解不等式①得8y ≤,解不等式②得5y ≥,解得5≤y≤8,当y=5时,20-y=15;当y=6时,20-y=14;当y=7时,20-y=13;当y=8时,20-y=12,∴有四种购买方案,分别是①《曾国藩家书》15套,《凡尔纳三部曲》5套;②《曾国藩家书》14套,《凡尔纳三部曲》6套;③《曾国藩家书》13套,《凡尔纳三部曲》7套;④《曾国藩家书》12套,《凡尔纳三部曲》8套;设总费用为W 元,由题意可得W=30(20-y)+75y=45y+600,∵45>0,W 随y 的增大而增大,∴在四种方案中,当y=5时W 有最小值,最小值为45×5+600=825元.【点睛】本题考查列二元一次方程组解应用题,及利用不等式组进行方案设计,利用一次函数的性质求最值,解题关键是构造不等式组进行方案设计.22.(1)100元;(2)y=0.25x+50;(3)460分钟【分析】(1)根据图像可直接得到结果;(2)求出通话400分钟时a 的值,再将通话200分钟时费用为100,再利用待定系数法求解;(3)令0.25x+50≤165,求出x 的范围即可.【详解】解:(1)由图像可知:套餐的上网流量费是100元;(2)当x=400时,y=100+(400-200)×0.25=150,设y 与x 的表达式为y=kx+b ,则100200150400k b k b =+⎧⎨=+⎩, 解得:0.2550k b =⎧⎨=⎩, ∴y 关于x 的函数表达式为y=0.25x+50;(3)0.25x+50≤165,解得:x≤460,∴当月最多能通话460分钟.【点睛】本题考查了一次函数的实际应用,解题的关键是结合图像,理解题意,求出函数表达式. 23.53x -≤<.【分析】首先分别解两个不等式,然后根据两个不等式解集的关系确定不等式组的解集即可.【详解】由题意得:()341231212x x x x ⎧-≤-⎪⎪⎨+⎪-<⎪⎩①② 解不等式①:()3412x x -≤- 去分母得:2833x x -≤- 移项得:5x -≤解得5x ≥-解不等式②:去分母得:4312x x --<解得3x <∴不等式组的解集为53x -≤<.【点睛】本题考查了求一元一次不等式组的解集,关键是掌握求解一元一次不等式解集的方法,熟记口诀是本题的关键.24.(1)甲工程队每天能完成绿化的面积为120m 2,乙工程队每天能完成绿化的面积为60m 2;(2)至少应安排乙工程队绿化40天.【分析】(1)设乙工程队每天能完成绿化的面积为xm 2,则甲工程队每天能完成绿化的面积为2xm 2,根据甲队3天能完成绿化的面积比乙队5天能完成绿化面积多50m 2,即可得出关于x 的一元一次方程,解之即可得出结论;(2)设安排乙工程队绿化m 天,则安排甲工程队绿化360060120m -天,根据总费用=每日绿化的费用×绿化时间结合这次绿化的总费用不超过32万元,即可得出关于m 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设乙工程队每天能完成绿化的面积为xm 2,则甲工程队每天能完成绿化的面积为2xm 2,依题意,得:3×2x ﹣5x =60,解得:x =60,∴2x =120.答:甲工程队每天能完成绿化的面积为120m 2,乙工程队每天能完成绿化的面积为60m 2. (2)设安排乙工程队绿化m 天,则安排甲工程队绿化360060120m -天, 依题意,得:1.2×360060120m -+0.5m ≤32, 解得:m ≥40.答:至少应安排乙工程队绿化40天.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.25.(1)25台;(2)3种【分析】(1)设该垃圾处理厂购买x 台A 型号机器人,根据“B 型号机器人不少于A 型号机器人的1.4倍”列出不等式求解即可;(2)根据“总费用不超过510万元”列出不等式,结合(1)中不等式的解和x 为整数,即可得出共有3种方案.【详解】解:(1)设该垃圾处理厂购买x 台A 型号机器人.由题意得60 1.4x x -≥,解得25x ≤,∴该垃圾处理厂最多购买25台A 型号机器人;(2)610(60)510x x +-≤,解得22.5x ≥,22.525x ≤≤,且x 为整数,23x ∴=或24或25,答:共有3种购买方案.【点睛】本题考查一元一次不等式的应用.能根据题中不等关系列出不等式是解题关键. 26.(1)至少购入什锦套菜礼盒75盒;(2)15m =.【分析】(1)设购进什锦套菜礼盒x 盒,则购进奉节脐橙礼盒(200-x )盒,根据总价值不低于15000元,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论; (2)根据销售总价=销售单价×销售数量结合题意可得出关于m 的一元一次方程,解之即可得出结论.【详解】(1)设购进什锦套菜礼盒x 盒,则购进奉节脐橙礼盒(200-x )盒,根据题意得:()6020010015000x x -+≥,解得:75x ≥.答:至少购入什锦套菜礼盒75盒;(2)根据题意得:()()5810080%751%6020075140%150002350215m m ⎛⎫⎛⎫⨯⨯++--+=+ ⎪ ⎪⎝⎭⎝⎭, 整理得:1708503m =, 解得:15m =.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元一次方程.。
北师大八年级数学下册一元一次不等式与一元一次不等式组单元练习检测试题含答案1
一元一次不等式与一元一次不等式组组卷人:家长签名:班级:_________________ 姓名:_________________ 座号:________________一. 选择题(共10小题,答案写在表格内)题号 1 2 3 4 5 6 7 8 9 10 答案1.(2021·同步练习)下列不等式中,属于一元一次不等式的是A.B.C.D.2.(2020·上海·单元测试)关于的不等式组有四个整数解,则的取值范围是A.B.C.D.3.(2021·北京市·期末)已知关于的不等式组仅有三个整数解,则的取值范围是A.B.C.D.4.(2019·天津南开区·期末)一元一次不等式组的解集是,则与的关系为A.B.C.D.5.(2019·淮安市淮安区·期末)不等式的解集在数轴上表示为A.B.C.D.6.(2021·同步练习)现在有住宿生若干人,分住若干间宿舍,若每间住人,则还有人无宿舍住;若每间住人,则有一间宿舍不空也不满.若设宿舍间数为,则可以列不等式组为A.B.C.D.7.(2020·深圳市龙岗区·期中)直线与直线的交点在第四象限,则的取值范围是A.B.C.D.8.(2020·同步练习)如果不等式的正整数解为,,,那么的取值范围是A.B.C.D.9.(2019·深圳市福田区·期中)如图所示,一次函数的图象与坐标轴交于,两点,且,是方程的一组解,这下列结论错误的是A.B.C.D.10.(2018·佛山市禅城区·期末)用不等式可将“与和的平方为非负数”表示为A. B.C. D.二、填空题(共7题)11.(2021·单元测试)若关于的一元一次不等式组的解集是,则的取值范围是.12.(2021·同步练习)不等式的解集是.13.(2020·江苏南通市·期中)若对于某一范围内的的任意值,的值为定值,则这个定值为.14.(2021·北京市·期末)一个盒子的质量为,装入每个质量为的砝码后,总质量不少于,盒内至少装了个砝码.15.(2021·专项)我们用符号表示不大于的最大整数.例如,,.那么()当时,的取值范围是;()当时,函数的图象始终在函数图象的下方,则实数的范围是.16.(2020·上海·期中)某市某商场为做好“家电下乡”的惠农服务,决定从厂家购进甲、乙、丙三种不同型号的电视机台,其中甲种电视机的台数是丙种的倍,购进三种电视机的总金额不超过元,已知甲、乙、丙三种型号的电视机的出厂价分别为元/台,元/台,元/台.则该商场至少购买丙种电视机台.17.(2021·上海浦东新区·模拟)不等式组的解集是.三、解答题(共8题)18.(2019·杭州市滨江区·期末)一种商品每件成本元,按成本增加标价.(1) 每件标价多少元?(2) 由于库存积压,实际按标价的九折出售,每件是盈利还是亏损?盈利或亏损多少元?19.(2018·杭州市西湖区·期末)为了弘扬中华民族传统美德,今年慈善日郑州市民政部门将租用甲、乙两种货车共辆,把粮食吨、副食品吨全部运到我市穷困山区,已知一辆甲种货车同时可装粮食吨、副食品吨;一辆乙种货车同时可装粮食吨、副食品吨.(1) 若将这批货物一次性运到山区,有哪几种租车方案?(2) 若甲种货车每辆需付燃油费元;乙种货车每辆需付燃油费元,应选()中的哪种方案,才能使所付的费用最少?最少费用是多少元?20.(2021·广东广州市·单元测试)如图,点的坐标为,点的坐标为,点的坐标为,三角形的面积为.(1) 三角形的面积为,当时,直接写出点的坐标;(2) 若三角形的面积不超过,当时,求的取值范围;(3) 三角形的面积为,当时,直接写出与的数量关系;21.(2021·同步练习)某学校组织夏令营活动,乘车时,小明发现,如果每辆车坐人,则有人没有车坐,如果每辆车坐人,则有一辆车不空也不满.求参加夏令营活动的学生人数及汽车的辆数.22.(2021·深圳市福田区·期末)解不等式组并写出不等式组的非负整数解.23.(2021·专项)解不等式组并把不等式组的解集在数轴上表示出来.24.(2020·北京房山区·模拟)解不等式组:25.(2018·上海黄浦区·期末)对于有理数,,我们用符号表示,两数中较小的数,,又如.(1) 直接写出的值;(2) 已知.①当时,求的值;②小明说“的值不可能是.”你认为他说得对吗?如果你认为他的观点错误,求当时,的值;如果你认为他的观点正确,求当成立时,的取值范围.答案一、选择题(共10题)1. 【答案】B【知识点】一元一次不等式的概念2. 【答案】B【知识点】含参一元一次不等式组3. 【答案】A【解析】解不等式得,因为不等式组仅有三个整数解,所以这三个整数解为,,,所以,解得.【知识点】含参一元一次不等式组4. 【答案】A【解析】不等式的解集是,【知识点】含参一元一次不等式组5. 【答案】C【解析】,,,不等式的解集在数轴上表示为:【知识点】常规一元一次不等式的解法6. 【答案】D【知识点】一元一次不等式组的应用7. 【答案】C【解析】联立解得交点在第四象限,解不等式①得,,解不等式②得,,的取值范围是.故选:C.【知识点】一次函数与二元一次方程(组)的关系、常规一元一次不等式组的解法8. 【答案】A【知识点】常规一元一次不等式的解法、含参一元一次不等式9. 【答案】B【解析】如图,,,,故A正确;又,(是方程的解),,,故C正确;,,令,,得,,,故D正确;又,不确定符号,错误.【知识点】一次函数与方程、不等式10. 【答案】B【解析】由题意可得:.【知识点】一元一次不等式的应用二、填空题(共7题)11. 【答案】【解析】解不等式,得,解不等式,得,不等式组的解集为,,解得.【知识点】含参一元一次不等式组12. 【答案】【知识点】常规一元一次不等式的解法13. 【答案】【解析】为定值,的表达式化简后的系数和为;由于;的取值范围是:且,即,.故答案为:.【知识点】常规一元一次不等式组的解法14. 【答案】【知识点】不等式的概念15. 【答案】;或【解析】()根据符号表示不大于的最大整数,得到时.当时,;当时,;当时,.从而的取值范围是.()本题可根据题意构造新函数,采取将自变量分类讨论的方式判别新函数的正负,继而根据函数性质反求参数.令,,,由题意可知时,函数的图象始终在函数的图象下方.①当时,,,此时随的增大而增大,故当时,有最小值,得;②当时,,,此时;③ 时,,,此时随的增大而减小,故当时,有最小值,得.综上所述,或.【知识点】不等式的解集、二次函数的图象与性质16. 【答案】【知识点】一元一次不等式的应用17. 【答案】【知识点】常规一元一次不等式组的解法三、解答题(共8题)18. 【答案】(1) 标价为:(元),答:每件标价元.(2) ,,盈利,盈利元.【知识点】简单列代数式、一元一次不等式的应用19. 【答案】(1) 设租用甲种货车辆,租用乙种货车为辆,根据题意得,由得,由得,.为正整数,.因此,有种租车方案:方案一:租甲种货车辆,乙种货车辆;方案二:租甲种货车辆,乙种货车辆;方案三:租甲种货车辆,乙种货车辆.(2) 由()知,租用甲种货车辆,租用乙种货车为辆,设两种货车燃油总费用为元,由题意得,,随值增大而增大,当时,有最小值,,答:租用甲种货车辆,乙种货车辆时,所付费用最少,最少为元.【知识点】其他实际问题、一元一次不等式组的应用20. 【答案】(1) 或(2) 作轴于点,作轴于点交于点.设点坐标为,则点为,点为,,,,,,,又,,,,作于点,作于点,,,,点的坐标为,点的坐标为,,且,当时,,,三点共线,(舍去),当且时,三角形的面积不超过;(3) 或【知识点】坐标平面内图形的面积、含绝对值的一元一次不等式、含参一元一次不等式21. 【答案】设有辆车,则有人.由题意,得解得..答:有人,辆车.【知识点】一元一次不等式组的应用22. 【答案】,非负整数解为,.【知识点】常规一元一次不等式组的解法23. 【答案】解不等式①,得解不等式②,得把解集表示在数轴上如图.故原不等式组的解集为.【知识点】常规一元一次不等式组的解法24. 【答案】解不等式得解不等式得不等式组的解集是【知识点】常规一元一次不等式组的解法25. 【答案】(1) .(2) ①当时,;当时,.经检验,均满足条件.②小明观点正确.当时,,;当时,,.的取值范围是.【知识点】常规一元一次不等式的解法、利用绝对值比较数的大小、解常规一元一次方程第11页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 已知a =23+x ,b =32+x ,且a >2>b ,那么求x 的取值范围。
3、已知方程组 2x +y =5m +6 的解为负数,求m 的取值范围。
X -2y =-174、若不等式组 x <a 无解,求a 的取值范围。
213-x >15、当x 取哪些整数时,不等式 2(x +2)<x +5与不等式3(x -2)+9>2x 同时成立?6、解不等式 (1)12-x x >1 (2)223-+x x <27、某工厂现有A 种原料290千克,B 种原料220千克,计划利用这两种原料生产甲、乙两种产品共40件,已知生产甲种产品需要A 种原料8千克,B 种原料4千克,生产乙种产品需要A 种原料5千克,B 种原料9千克。
问有几种符合题意的生产方案?8、已知有长度为3cm,7cm,xcm 的三条线段,问,当x 为多长时,这三条线段可以围成一个三角形?9、把一批铅笔分给几个小朋友,每人分5支还余2支;每人分6支,那么最后一个小朋友分得的铅笔小于2支,求小朋友人数和铅笔支数。
一、填空1、不等式组()122431223x x x x ⎧--≥⎪⎪⎨-⎪>+⎪⎩解集为 2、若m<n ,则不等式组12x m x n >-⎧⎨<+⎩的解集是3.若不等式组2113x a x <⎧⎪-⎨>⎪⎩无解,则a 的取值范围是 .4.已知方程组2420x ky x y +=⎧⎨-=⎩有正数解,则k 的取值范围是 .5.若关于x 的不等式组61540x xx m +⎧>+⎪⎨⎪+<⎩的解集为4x <,则m 的取值范围是 .6.不等式723x x +--<的解集为 . 二、选择题:7、若关于x 的不等式组12x x m -≤<⎧⎨>⎩有解,则m 的范围是( )A .2m ≤ B .2m < C .1m <- D .12m -≤<8、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩的解集是( ).1.0.01.21A x B x C x D x >-><<-<<9、关于x 、y 方程组322x y x y a +=⎧⎨-=-⎩解是负数,则a 取值范围( ) A.-4<a<5 B.a>5 C.a<-4 D.无解三、解答题 10、解下列不等式组,并在数轴上表示解集。
⑶()72321235312x x x x x -⎧+>+⎪⎪⎨-⎪>-⎪⎩ ⑷()43321311522x x x x -<+⎧⎪⎨->-⎪⎩11、已知方程组256217x y m x y +=+⎧⎨-=-⎩的解为负数,求m 的取值范围.12、代数式213x +的值小于3且大于0,求x 的取值范围.13、求同时满足2328x x -≥-和121xx --<+的整数解14、某校今年冬季烧煤取暖时间为4个月.如果每月比计划多烧5吨煤,那么取暖用煤总量将超过100吨;如果每月比计划少烧5吨煤,那么取暖用煤总量不足68吨.该校计划每月烧煤多少吨?15、某班学生完成一项工作,原计划每人做4只,但由于其中10人另有任务未能参加这项工作,其余学生每人做6只,结果仍没能完成此工作,若以该班人数为未知数列方程,求此不等式解集。
一元一次不等式及不等式组基础训练一.选择题:1.在平面直角坐标系中,若点P (x -2, x )在第二象限,则x 的取值范围为( ) A .x >0 B .x <2 C .0<x <2 D .x >22.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( )A .0B .1C .2D .33、(2007年福州)解集在数轴上表示为如图1所示的不等式组是(A .32x x >-⎧⎨⎩≥ B .32x x <-⎧⎨⎩≤ C .32x x <-⎧⎨⎩≥ D .32x x >-⎧⎨⎩≤4.已知两个不等式的解集在数轴上表示如图所示,那么由这两个不等式组成的不等式组的解集是A .x ≥1B .x >-1C .x >1D .-1≤x ≤15.(2007山东临沂课改)若0a b <<,则下列式子:①12a b +<+; ②1ab>;③a b a b +<;④11ab <中,正确的有( ) A .1个B .2个C .3个D .4个6. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩ 其中是一元一次不等式组的个数是( )图1A.3x > B.1y y -+>C.12x> D.21x >8.如果a ,1a +,a -,1a -四个数在数轴上所对应的点是按从左到右的顺序排列的,那么a 满足下列各式中的( ) A.12a <B.0a < C.0a > D.12a <-9.下列不等式总成立的是( ) A.42a a >B.20a >C.2a a >D.212a -≤010.已知a <b ,则下列不等式中不正确的是( ).A.4a <4b B.a +4<b +4 C.-4a <-4b D.a -4<b -411.如果0x y +<,0xy <,那么正确的结论是( ) A.x y ,同号B.x y ,异号,且负数的绝对值较大 C.x y ,异号,且正数的绝对值较大D.不确定12.已知不等式组2113x x a-⎧>⎪⎨⎪>⎩的解集为2x >,则 ( )A.2a <B.2a =C.2a >D.2a ≤13.已知方程组2231y x my x m -=⎧⎨+=+⎩的解x 、y 满足2x+y ≥0,则m 的取值范围是 ( )A.m ≥-43B.m ≥43C.m ≥1D.-43≤m ≤114..关于x 的不等式组⎩⎨⎧x +152>x -32x +23<x +a 只有4个整数解,则a 的取值范围是 ( )A. -5≤a ≤-143B. -5≤a <-143C. -5<a ≤-143D. -5<a <-14315. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( )A.1个 B.2个 C.3个 D.4个16. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.1 17. a 是一个整数,比较a 与3a 的大小是( )A.3a a > B.3a a < C.3a a = D.无法确定 18. 若m >n ,则下列不等式中成立的是( )A .m + a <n + bB .ma <nbC .ma 2>na 2D .a -m <a -n 19.(2005年大连市)图2是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是( )A B C D 20.(黄石市2005)已知关于x 的不等式2x+m>-5的解集如图所示,则m 的值为( ) A .1 B .0 C .-1 D .-221.设a b <,那么解集是a x b <<的不等式组是( )A.00x a x b ->⎧⎨->⎩,;B.00x a x b -<⎧⎨-<⎩,;C.00x a x b ->⎧⎨-<⎩,;D.00x ax b -<⎧⎨->⎩,22.下列不等式组中是一元一次不等式组的是( )A.30220x x ->⎧⎨-<⎩,;B.210230x x x +<⎧⎨+⎩,;≤C.020x y x +>⎧⎨<⎩,;D.1020x y -<⎧⎨+>⎩,23.如果|x -2|=x -2,那么x 的取值范围是( ).A.x ≤2 B.x ≥2 C.x <2 D.x >2 24.已知关于x 的不等式组2x x m<⎧⎨>⎩,无解,则m 的取值范围是( )A.2m <B.2m >C.2m ≥D.不能确定25.已知关于x 的不等式组21x x x a <⎧⎪>-⎨⎪<⎩,,无解,则a 的取值范围是( ) A.1a ≤- B.12a -<< C.a ≥0 D.2a ≤二.填空题:1.已知x >2,化简x -|2-x |=______.2.若不等式组12x x m -⎧⎨>⎩,≤有解,则m 的取值范围是______.3.如果三角形的三边长度分别为3a ,4a ,14,则a 的取值范围是______.4.已知点()P a b ,在第二象限,向下平移4个单位得到点Q ,点Q 在第三象限,那么b 的取值范围是______. 5.如果关于x 的不等式(1)5a x a -<+和24x <的解集相同,则a 的值为______.6.不等式组42078x y y x y=+⎧⎨<<⎩,的整数解为______.7.若不等式组x a <⎧⎨,的解集是空集,则a ,b 的大小关系是_________.甲 乙40kg 丙50kg 甲图19. 若a b >,则22____ac bc . 10. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .11. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .12. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .13.( 2007湖北天门)已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是 。
14.不等式的解集在数轴上表示如图所示,则该不等式可能是_____________。
15.不等式1252x +-≤-≤的解集是______________16.如果不等式(3)3a x a +>+的解集是1x <,那么a 的取值范围是____________.17.已知关于x 的不等式组321x a x -≥⎧⎨->-⎩有五个整数解,这五个整数是____________,a 的取值范围是___________________18.比较下面两个算式结果的大小(在横线上填“>”“<”“=”)2243+______432⨯⨯ 2222+______222⨯⨯ 22431⎪⎭⎫ ⎝⎛+______4312⨯⨯()2252+-______()522⨯-⨯ 223221⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛ ______32212⨯⨯通过观察归纳,写出能反映这种规律的一般情况:______________________________。