高中物理常见连接体问题总结

合集下载

高中物理常见连接体问题总结知识分享

高中物理常见连接体问题总结知识分享

常见连接体问题(一)“死结”“活结”1.如图甲所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为10 kg 的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量也为10 kg 的物体.g取10 m/s2,求(1)细绳AC段的张力FAC与细绳EG的张力FEG之比;(2)轻杆BC对C端的支持力;(3)轻杆HG对G端的支持力.(二)突变问题2。

在动摩擦因数μ=0.2的水平质量为m=1kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,取g=10m/s2,求:(1)此时轻弹簧的弹力大小(2)小球的加速度大小和方向.(三)力的合成与分解3.如图所示,用一根细线系住重力为、半径为的球,其与倾角为的光滑斜面劈接触,处于静止状态,球与斜面的接触面非常小,当细线悬点固定不动,斜面劈缓慢水平向左移动直至绳子与斜面平行的过程中,下述正确的是().A.细绳对球的拉力先减小后增大B.细绳对球的拉力先增大后减小C.细绳对球的拉力一直减小D.细绳对球的拉力最小值等于G(四)整体法4.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接。

在力F的作用下一起沿水平方向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角,则m1所受支持力N和摩擦力f正确的是()A.N=m1g+m2g-FsinθB.N=m1g+m2g-FcosθC.f=FcosθD.f=Fsinθ(五)隔离法5.如图所示,水平放置的木板上面放置木块,木板与木块、木板与地面间的摩擦因数分别为μ1和μ2。

已知木块质量为m,木板的质量为M,用定滑轮连接如图所示,现用力F匀速拉动木块在木板上向右滑行,求力F的大小?6.跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,已知人的质量为70 kg,吊板的质量为10 kg,绳及定滑轮的质量,滑轮的摩擦均可不计,取重力加速度g=10 m/s2,当人以440 N的力拉绳时,人与吊板的加速度a和人对吊板的压力F分别为()A.a=1 m/s2,FN=260 NB.a=1 m/s2,FN=330 NC.a=3 m/s2,FN=110 ND.a=3 m/s2,FN=50 N7.如图所示,静止在水平面上的三角架的质量为M,它中间用两根质量不计的轻质弹簧连着一质量为m的小球,当小球上下振动,三角架对水平面的压力为零的时刻,小球加速度的方向与大小是()A.向下,mMgB.向上,gC.向下,gD.向下,m gmM)(+(六)综合8. 如图所示,一夹子夹住木块,在力F作用下向上提升,夹子和木块的质量分别为m、M,夹子与木块两侧间的最大静摩擦均为f,若木块不滑动,力F的最大值是()答案1。

4连接体问题及解题方法

4连接体问题及解题方法

4连接体问题及处理方法一、连接体问题1.连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统.2.连接体题型(1)系统内所有物体相对静止,即运动情况相同,a 也相同------相对静止问题(2)系统内物体相对运动,运动情况不同,a 也不同------相对运动问题二、处理方法1整体法分析系统受力时只分析外力不必分析内力;在用隔离法解题时要注意判明隔离体的运动方向和加速度方向,同时为了方便解题,一般我们隔离受力个数少的物体.2.相对静止类:程。

(整体与隔离结合使用)例1.A 、B 两物体靠在一起,放在光滑水平面上,m B =6Kg ,今用水平力F A =6N 推A ,用水平力F B =3N 拉B ,A 、B 有多大?3.相对运动问题:例2.如图所示,光滑水平面上静止放着长L =1.6 m 、质量为M =3 kg 的木板.一个质量为m =1 kg 的小木块放在木板的最右端,m 与M 之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F ,若2s 时两者脱离,则F 为多大?4.判断相对静止还是相对运动:以最容易达到最大加速度的物体作为切入点,进入分析例3.如图所示,m 1=40 kg 的木板放在无摩擦的地板上,木板上又放m 2=10 kg 的石块,石块与木板间的动摩擦因数μ=0.6,试问(1)当水平力F =50 N 时,石块与木板间有无相对滑动?(2)当水平力F =100 N 时,石块与木板间有无相对滑动?(g =10 m/s 2)此时m 2的加速度为多大?5.方法总结①.当它们具有共同加速度时,一般是先整体列牛顿第二定律方程,再隔离受力个数少的物体分析列牛顿第二定律方程.②.当它们的加速度不同且涉及到相对运动问题,一般采用隔离法分别分析两个物体的运动情况,再找它们运动或受力的联系点列辅助条件方程.练习题1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( )A .211m m m + FB .212m m m + FC .FD .21m m F 2.上题若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则A 对B 作用力等于为( )3.如图所示,光滑平面上以水平恒力F 拉动小车和木块,一起做无相对滑动的加速运动,若小车质量为M ,木块质量为m ,加速度大小为a ,木块和小车间的动摩擦因数为μ,对于这个过程某同学用以下四个式子来表示木块受到的摩擦力大小,正确的是() A.F-Ma B.μma C.μmg D.Ma4.如图所示,物体P置于水平面上,用轻细线跨过质量不计的光滑定滑轮连接一个重力G=10N的重物,物体P向右运动的加速度为a1;若细线下端不挂重物,而用F=10N的力竖直向下拉细线下端,这时物体P的加速度为a2,则( )A.a1>a2B.a1=a2C.a1<a2D.条件不足,无法判断5.如图所示,质量分别为M、m的滑块A、B叠放在固定的、倾角为θ的斜面上,A与斜面间、A与B之间的动摩擦因数分别为μ1,μ2,当A、B从静止开始以相同的加速度下滑时,B受到摩擦力()A.等于零B.方向平行于斜面向上C.大小为μ1mgcosθD.大小为μ2mgcosθ6.相同材料的物块m和M用轻绳连接,在M上施加恒力F,使两物块作匀加速直线运动,求在下列各种情况下绳中张力。

高考物理连接体模型问题归纳

高考物理连接体模型问题归纳

高考物理连接体模型问题归纳
高考物理连接体模型是指物理学中用来研究物体在力的作用下受到的变形和位移的模型。

连接体模型可以帮助我们理解物体在力的作用下的运动规律,并为解决工程中的问题提供理论支持。

下面是一些关于高考物理连接体模型的问题归纳:
力的三要素:力的大小、方向和作用点。

力的平衡:力的总和为零。

力的合成:多个力可以合成为一个力。

力的叉积:力可以产生转动效应。

力的平衡方程:对于一个物体,所有作用在物体上的力的总和为零。

力的矩:力可以产生弯曲效应。

力的压弯:力可以产生压弯效应。

专题05 连接体问题、板块模型和传送带问题-2024年高考物理二轮专题综合能(002)

专题05  连接体问题、板块模型和传送带问题-2024年高考物理二轮专题综合能(002)

专题05 连接体问题、板块模型、传送带问题【窗口导航】高频考法1 连接体问题 ........................................................................................................................................... 1 角度1:叠放连接体问题 ....................................................................................................................................... 2 角度2:轻绳连接体问题 ....................................................................................................................................... 3 角度3:轻弹簧连接体问题 ................................................................................................................................... 3 高频考法2 板块模型 ............................................................................................................................................... 4 高频考法3 传送带问题 ........................................................................................................................................... 7 角度1:水平传送带模型 ....................................................................................................................................... 8 角度2:倾斜传送带模型 . (11)高频考法1连接体问题1.常见连接体三种情况中弹簧弹力、绳的张力相同(接触面光滑,或A 、B 与接触面间的动摩擦因数相等)常用隔离法常会出现临界条件2. 连接体的运动特点(1)叠放连接体——常出现临界条件,加速度可能不相等、速度可能不相等。

专题16 连接体问题 2022届高中物理常考点归纳

专题16  连接体问题  2022届高中物理常考点归纳

专题16 连接体问题常考点连接体问题分类及解题方法分析【典例1】如图所示,光滑水平桌面上的物体B质量为m2,系一细绳,细绳跨过桌沿的定滑轮后悬挂质量为m1的物体A,先用手使B静止(细绳质量及滑轮摩擦均不计)。

(1)求放手后A、B一起运动中绳上的张力F T。

(2)若在B上再叠放一个与B质量相等的物体C,绳上张力就增大到F T,求m1:m2。

解:(1)对A有:m1g﹣F T=m1a1对B有:F T=m2a1则F T=g(2)对A有:m1g﹣F T2=m1a2对B+C有:F T2=2m2a2则F T2=g由F T2=F T得:g=所以m1:m2=2:1答:(1)放手后A、B一起运动中绳上的张力为g(2)两物体的质量之比为2:1。

【典例2】(多选)如图,倾角为θ的斜面体固定在水平地面上,现有一带支架的滑块正沿斜面加速下滑。

支架上用细线悬挂质量为m的小球,当小球与滑块相对静止后,细线方向与竖直方向的夹角为α,重力加速度为g,则()A.若α=θ,小球受到的拉力为mgcosθB.若α=θ,滑块的加速度为gtanθC.若α>θ,则斜面粗糙D.若α=θ,则斜面光滑【解析】A、若α=θ,则细线与斜面垂直,小球受到的重力和细线拉力的合力沿斜面向下,如图所示,沿细线方向根据平衡条件可得小球受到的拉力为F=mgcosθ,故A正确;B、若α=θ,滑块的加速度与小球的加速度相同,对小球根据牛顿第二定律可得:mgsinθ=ma,解得:a=gsinθ,故B错误;CD、根据B选项可知,若α=θ,整体的加速度为a=gsinθ;以整体为研究对象,沿斜面方向根据牛顿第二定律可得:Mgsinθ﹣f=Ma,解得:f=0;若斜面粗糙,则整体的加速度减小,则α<θ。

【典例3】在光滑的水平地面上有两个A完全相同的滑块A、B,两滑块之间用原长为l0的轻质弹簧相连,在外力F1、F2的作用下运动,且F1>F.以A、B为一个系统,如图甲所示,F1、F向相反方向拉A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0+△l1),系统的加速度大小为a1;如图乙所示,F1、F2相向推A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0﹣△l2),系统的加速度大小为a2.则下列关系式正确的是()A.△l1=△l2,a1=a2B.△l1>△l2,a1=a2C.△l1=△l2,a1>a2D.△l1<△l2,a1<a2【解析】A、B完全相同,设它们的质量都是m,由牛顿第二定律得:对A、B系统:F1﹣F2=2ma1,F1﹣F2=2ma2,对A:F1﹣k△l1=ma1,F1﹣k△l2=ma2,解得:a1=a2,△l1=△l2。

牛顿第二定律的应用——连接体问题

牛顿第二定律的应用——连接体问题

牛顿第二定律的应用――― 连接体问题一、连接体与隔离体两个或两个以上物体相连接组成的物体系统,称为 。

如果把其中某个物体隔离出来,该物体即为。

二、连接体问题的分析方法1.整体法:连接体中的各物体如果 ,求加速度时可以把连接体作为一个整体。

运用 列方程求解。

2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用 求解,此法称为隔离法。

3.整体法与隔离法是相对统一,相辅相成的。

本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。

如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用 法求出 ,再用 法求 。

【典型例题】例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( )A.F m m m 211+B.F m m m 212+C.FD.F m m 21 练习:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。

2.如图右所示,质量为m 1、m 2的物块在F 1、F 2共同作用下向右运动。

已知m 1=3kg m 2=2kg F 1=14 N F 2=4N ,求m 1和m 2之间细绳的作用力F T 为多少?A B m 1 m 2 F3.如右图所示,物体m1、m2用一细绳连接,两者在竖直向上的力F的作用下向上加速运动,重力加速度为g,求细绳上的张力?例2:如图右,m1、m2用细线吊在光滑定滑轮,m1=3kg m2=2kg,当m1、m2开始运动时,求细线受到的张力?例3:如图所示,箱子的质量M=5.0kg,与水平地面的动摩擦因数μ=0.22。

在箱子顶板处系一细线,悬挂一个质量m=1.0kg的小球,箱子受到水平恒力F的作用,使小球的悬线偏离竖直方向θ=30°角,则F应为多少?(g=10m/s2)练习:如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间的静摩擦因数μ=0.8,要使物体不致下滑,车厢至少应以多大的加速度前进?(g=10m/s2)例4:如图所示,质量分别为m 和2m 的两物体A 、B 叠放在一起,放在光滑的水平地面上,已知A 、B 间的最大摩擦力为A 物体重力的μ倍,若用水平力作用在B 上,使A 、B 保持相对静止做加速运动,则作用于B 的作用力为多少?练习.如图A 、B 、C 为三个完全相同的物体,当水平力F 作用于B 上,三物体可一起匀速运动。

高中物理连体模型总结

高中物理连体模型总结

精讲3 牛顿运动定律连体问题在实际问题中,常常会碰到几个物体(连接)在一起在外力作用下运动,求解它们的运动规律及所受外力和相互作用力,这类问题被称为连接体问题。

常见的连体模型:①用轻绳连接②直接接触③靠摩擦接触连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。

处理方法:整体法与隔离法相结合例1:如图所示,U形框B放在粗糙斜面上刚好静止。

若将物体A放入放入U形框B内,问B是否静止。

例2 如图所示,为研究a与F、m关系的实验装置,已知A、B质量分别为m、M,当一切摩擦力不计时,求绳子拉力。

原来说F约为mg,为什么?拓展:质量分别为m=2kg和M=3kg的物体A和B,挂在弹簧秤下方的定滑轮上,如图所示,当B加速下落时,弹簧秤的示数是。

(g取10m/s2)例3:用力F推,质量为M的物块A和质量为m的物块B,使两物体一起在光滑水平面上前进时,求物体M对m的作用力F N。

若两物体与地面摩擦因数均为μ时,相互作用力F N是否改变?为什么?例4.如图所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球。

开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的一半,则小球在下滑过程中,木箱对地面的压力是多少?拓展:如图所示,A、B的质量分别为m1和m2,叠放于光滑的水平面上,现用水平力拉A时,A、B一起运动的最大加速度为a1,若用水平力改拉B物体时,A,B一起运动的最大为a2,则a1:a2等于()A.1:1 B.m1:m2C.m2:m1D.m12:m22小结1.连接体问题,和解决连接体问题的方法,即整体法和隔离法。

2.整体法就是把整个系统作为一个研究对象来分析的方法。

不必考虑系统的内力的影响,只考虑系统受到的外力,依据牛顿第二定律列方程求解 .一般用整体法求加速度.3.隔离法是把系统中的各个部分(或某一部分)隔离,作为一个单独的研究对象来分析的方法。

需要求内力时,一般要用隔离法。

必修一物理期末复习专题五 连接体问题

必修一物理期末复习专题五 连接体问题

专题五 连接体问题(整体隔离法)连接体概念:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统。

比较常见的连接方式有三种:①用细绳将两个物体连接,物体间的相互作用是通过细绳的“张力”体现的。

在“抛砖引玉”中所举的两个例题就属于这种连接方式。

②两个物体通过“摩擦力”连接在一起。

③两个物体通互相接触推压连接在一起,它们间的相互作用力是“弹力”。

理解什么叫整体法隔离法例1 如图1-15所示:把质量为M 的的物体放在光滑..的水平..高台上,用一条可以忽略质量而且不变形的细绳绕过定滑轮把它与质量为m 的物体连接起来,求:物体M 和物体m 的运动加速度各是多大?整体法:隔离法:变式1用细绳连接绕过定滑轮的物体M 和m ,已知M>m ,可忽略阻力,求物体M 和m 的共同加速度a 。

整体法隔离法的适用范围:采用“整体法”解题只能求加速度a ,而不能直接....求出物体M 与m 之间的相互作用力T 。

采用“隔离法”解联立方程,可以同时解出a 与T 。

例2 如图1-18所示:在光滑的水平桌面上放一物体A ,在A 上再放一物体B ,物体A 和B 间有摩擦。

施加一水平力F 于物体B ,使它相对于桌面向右运动。

这时物体A 相对于桌面( )A. 向左运B. 向右运C. 不动D. 运动,但运动方向不能判断变式 如图1-30所示,在光滑的水平地面上,水平外力F 拉动小车和木块一起做匀加速直线运动,小车的质量是M ,木块的质量是m ,加速度为a 。

木块与小车间的动摩擦因数为μ,则在这个过程中,木块受到摩擦力的大小是:A. μmgB. maC. mF/(M+m)D. F-Ma变式如图1-21之(a),(b)所示:将m1=4kg的木块放在m2=5kg的木块上,m2放在光滑的水平面上。

若.用F1=12N的水平力拉m1时,正好..牛..使m1相对于m2开始发生滑动;则需用多少顿的水平力(F2)拉m2时,正好..使m1相对于m2开始滑动?变式如图所示,物体A重G A=20N,物体B重G B=40N,A与B、B与地面之间的动摩擦因数均为μ=0.4.当用水平拉力F拉着物体B匀速向右运动,A未脱离B前,求:的大小和方向;(1)A物体所受的滑动摩擦力F(2)B物体所受地面的滑动摩擦力F2的大小和方向;(3)水平拉力F的大小.变式如图,小车质量M=2.0Kg,与水平地面的摩擦阻力忽略不计,物体质量m=0.50kg,物体与小车间的动摩擦因数为0.3.小车在水平向右的拉力作用下由静止开始向右加速运动,求:(1)为使小车和物体一起向右做匀加速运动,水平拉力不能超过多少?(2)小车在外力作用下以1.2m/s2的加速度向右运动,物体受摩擦力多大?水平拉力多大?(3)欲使小车产生a=3.5m/s2的加速度,需给小车提供多大的水平推力?例3两个质量相同的物体1和2紧靠在一起放在光滑水平桌面上,如图1-25所示。

连接体问题专题详细讲解

连接体问题专题详细讲解

连接体问题一、连接体与隔离体两个或两个以上物体相连接组成的物体系统,称为连接体;如果把其中某个物体隔离出来,该物体即为隔离体;二、外力和内力如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的外力,而系统内各物体间的相互作用力为内力;应用牛顿第二定律列方程不考虑内力;如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的外力;三、连接体问题的分析方法1.整体法连接体中的各物体如果加速度相同,求加速度时可以把连接体作为一个整体;运用牛顿第二定律列方程求解;2.隔离法如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用牛顿第二定律求解,此法称为隔离法;3.整体法与隔离法是相对统一,相辅相成的;本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便;如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力;简单连接体问题的分析方法1.连接体:两个或两个以上有相互作用的物体组成的具有相同大小加速度的整体;2.“整体法”:把整个系统作为一个研究对象来分析即当做一个质点来考虑;注意:此方法适用于系统中各部分物体的加速度大小方向相同情况;3.“隔离法”:把系统中各个部分或某一部分隔离作为一个单独的研究对象来分析;注意:此方法对于系统中各部分物体的加速度大小、方向相同或不相同情况均适用;4.“整体法”和“隔离法”的选择求各部分加速度相同的连结体的加速度或合外力时,优选考虑“整体法”;如果还要求物体之间的作用力,再用“隔离法”,且一定是从要求作用力的那个作用面将物体进行隔离;如果连结体中各部分加速度不同,一般都是选用“隔离法”;5.若题中给出的物体运动状态或过程有多个,应对不同状态或过程用“整体法”或“隔离法”进行受力分析,再列方程求解;针对训练1.如图用轻质杆连接的物体AB沿斜面下滑,试分析在下列条件下,杆受到的力是拉力还是压力;1斜面光滑;2斜面粗糙;〖解析〗解决这个问题的最好方法是假设法;即假定A、B间的杆不存在,此时同时释放A、B,若斜面光滑,A、B运动的加速度均为a=g sinθ,则以后的运动中A、B间的距离始终不变,此时若将杆再搭上,显然杆既不受拉力,也不受压力;若斜面粗糙,A、B单独运动时的加速度都可表示为:a=g sinθ-μg cosθ,显然,若a、b两物体与斜面间的动摩擦因数μA=μB,则有a A=a B,杆仍然不受力,若μA>μB,则a A<a B,A、B间的距离会缩短,搭上杆后,杆会受到压力,若μA<μB,则a A>a B杆便受到拉力;〖答案〗1斜面光滑杆既不受拉力,也不受压力2斜面粗糙μA>μB杆不受拉力,受压力斜面粗糙μA<μB杆受拉力,不受压力类型二、“假设法”分析物体受力例题2在一正方形的小盒内装一圆球,盒与球一起沿倾角为θ的斜面下滑,如图所示,若不存在摩擦,当θ角增大时,下滑过程中圆球对方盒前壁压力T及对方盒底面的压力N将如何变化提示:令T不为零,用整体法和隔离法分析A .N 变小,T 变大;B .N 变小,T 为零;C .N 变小,T 变小;D .N 不变,T 变大;〖点拨〗物体间有没有相互作用,可以假设不存在,看其加速度的大小;〖解析〗假设球与盒子分开各自下滑,则各自的加速度均为a =g sin θ,即“一样快” ∴T =0对球在垂直于斜面方向上:N =mg cos θ ∴N 随θ增大而减小; 〖答案〗B针对训练1.如图所示,火车箱中有一倾角为30°的斜面,当火车以10m/s 2的加速度沿水平方向向左运动时,斜面上的物体m 还是与车箱相对静止,分析物体m 所受的摩擦力的方向;〖解析〗1方法一:m 受三个力作用:重力mg ,弹力N ,静摩擦力的方向难以确定,我们可假定这个力不存在,那么如图,mg 与N 在水平方向只能产生大小F =mg tg θ的合力,此合力只能产生g tg30°=3g /3的加速度,小于题目给定的加速度,合力不足,故斜面对物体的静摩擦力沿斜面向下;2方法二:如图,假定所受的静摩擦力沿斜面向上,用正交分解法有: N cos30°+f sin30°=mg ① N sin30°-f cos30°=ma ②①②联立得f =51-3m N ,为负值,说明f 的方向与假定的方向相反,应是沿斜面向下; 〖答案〗静摩擦力 沿斜面向下类型一、“整体法”与“隔离法”例题1如图所示,A 、B 两个滑块用短细线长度可以忽略相连放在斜面上,从静止开始共同下滑,经过,细线自行断掉,求再经过1s,两个滑块之间的距离;已知:滑块A 的质量为3kg,与斜面间的动摩擦因数是;滑块B 的质量为2kg,与斜面间的动摩擦因数是;sin37°=,cos37°=;斜面倾角θ=37°,斜面足够长,计算过程中取g =10m/s 2;〖点拨〗此题考查“整体法”与“隔离法”;〖解析〗设A 、B 的质量分别为m 1、m 2,与斜面间动摩擦因数分别为μ1、μ2;细线未断之前,以A 、B 整体为研究对象,设其加速度为a ,根据牛顿第二定律有m 1+m 2g sin θ-μ1m 1g cos θ-μ2m 2g cos θ=m 1+m 2aa =g sin θ-112212()cos m m g m m μμθ++=s 2;经 s 细线自行断掉时的速度为v =at 1=s;细线断掉后,以A 为研究对象,设其加速度为a 1,根据牛顿第二定律有:a 1=1111sin cos m g m g m θμθ-=g sin θ-μ1cos θ=4m/s 2;滑块A 在t 2=1 s 时间内的位移为x 1=vt 2+2122a t ,又以B 为研究对象,通过计算有m 2g sin θ=μ2m 2g cos θ,则a 2=0,即B 做匀速运动,它在t 2=1 s 时间内的位移为x 2=vt 2,则两滑块之间的距离为 Δx =x 1-x 2=vt 2+2122a t -vt 2=2122a t =2m〖答案〗2m类型三、“整体法”和“隔离法”综合应用例题3如图所示,一内表面光滑的凹形球面小车,半径R =,车内有一小球,当小车以恒定加速度向右运动时,小球沿凹形球面上升的最大高度为,若小球的质量m =,小车质量M =,应用多大水平力推车水平面光滑〖点拨〗整体法和隔离法的综合应用;〖解析〗小球上升到最大高度后,小球与小车有相同的水平加速度a ,以小球和车整体为研究对象,该整体在水平面上只受推力F 的作用,则根据牛顿第二定律,有:F =M +ma ①以小球为研究对象,受力情况如图所示,则: F 合=mg cot θ=ma ②而cot θ=22()R R h R h--- ③由②③式得:a =10m/s 2将a 代入①得:F =50N; 〖答案〗50N针对训练1.如图所示,一根轻质弹簧上端固定,下端挂一质量为m 0的平盘,盘中有物体质量为m ,当盘静止时,弹簧伸长了l ,今向下拉盘使弹簧再伸长Δl 后停止,然后松手放开,设弹簧总处在弹性限度内,则刚刚松开手时盘对物体的支持力等于A .1+ll ∆m +m 0gB .1+l l∆mg C .l l∆mg D .ll∆m +m 0g 〖解析〗题目描述主要有两个状态:1未用手拉时盘处于静止状态;2刚松手时盘处于向上加速状态;对这两个状态分析即可:1过程一:当弹簧伸长l 静止时,对整体有:kl =m +m 0g ① 2过程二:弹簧再伸长Δl 后静止因向下拉力未知,故先不列式;3过程三:刚松手瞬间,由于盘和物体的惯性,在此瞬间可认为弹簧力不改变;对整体有:kl +Δl -m +m 0g =m +m 0a ②对m 有:N -mg =ma ③ 由①②③解得:N =1+Δl /lmg ; 〖答案〗B2.如图所示,两个质量相同的物体1和2紧靠在一起,放在光滑的水平桌面上,如果它们分别受到水平推力F 1和F 2作用,而且F 1>F 2,则1施于2的作用力大小为A .F 1B .F 2C .12F 1+F 2 D .12F 1-F ; 〖解析〗因两个物体同一方向以相同加速度运动,因此可把两个物体当作一个整体,这个整体受力如图所示,设每个物体质量为m ,则整体质量为2m ;对整体:F 1-F 2=2ma , ∴a =F 1-F 2/2m ;把1和2隔离,对2受力分析如图也可以对1受力分析,列式对2:N 2-F 2=ma ,∴N 2=ma +F 2=mF 1-F 2/2m +F 2=F 1+F 2/2;〖答案〗C类型四、临界问题的处理方法例题4如图所示,小车质量M 为,与水平地面阻力忽略不计,物体质量m =,物体与小车间的动摩擦因数为,则:1小车在外力作用下以s 2的加速度向右运动时,物体受摩擦力是多大2欲使小车产生s 2的加速度,给小车需要提供多大的水平推力3若小车长L =1m,静止小车在水平推力作用下,物体由车的右端 向左滑动,滑离小车需多长时间〖点拨〗本题考查连接体中的临界问题〖解析〗m 与M 间的最大静摩擦力F f =mg =,当m 与M 恰好相对滑动时的加速度为:F f =ma a ==mF3m/s 2 (1) 当a =s 2时,m 未相对滑动,则F f =ma =(2) 当a =s 2时,m 与M 相对滑动,则F f =ma =,隔离M 有F-F f =Ma F=F f +Ma =(3) 当F =时,a 车=s 2,a 物=3m/s 2,a 相对= a 车- a 物= m/s 2,由L =21a 相对t 2,得t =2s; 〖答案〗1 2 32s 针对训练1.如图所示,在倾角为θ的光滑斜面上端系一劲度系数为k 的轻弹簧,弹簧下端连有一质量为m 的小球,球被一垂直于斜面的挡板A挡住,此时弹簧没有形变;若手持挡板A以加速度aa <g sinθ沿斜面匀加速下滑,求,1从挡板开始运动到球与挡板分离所经历的时间;2从挡板开始运动到球速达到最大,球所经过的最小路程;〖解析〗1当球与挡板分离时,挡板对球的作用力为零,对球由牛顿第二定律得sinmg kx maθ-=,则球做匀加速运动的位移为x=(sin) m g akθ-;当x=12at2得,从挡板开始运动到球与挡板分离所经历的时间为t=2xa=2(sin)m g akaθ-;2球速最大时,其加速度为零,则有kx′=mg sinθ,球从开始运动到球速最大,它所经历的最小路程为x′=sin mgkθ;〖答案〗12(sin)m g akaθ-2mg sinθ/k2.如图所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度、合外力的变化情况是怎样的按论述题要求解答〖解析〗先用“极限法”简单分析;在弹簧的最上端:∵小球合力向下mg>kx,∴小球必加速向下;在弹簧最下端:∵末速为零,∴必定有减速过程,亦即有合力向上与v反向的过程;∴此题并非一个过程,要用“程序法”分析;具体分析如下:小球接触弹簧时受两个力作用:向下的重力和向上的弹力其中重力为恒力;向下压缩过程可分为:两个过程和一个临界点;1过程一:在接触的头一阶段,重力大于弹力,小球合力向下,且不断变小∵F合=mg-kx,而x增大,因而加速度减少∵a=F合/m,由于a与v同向,因此速度继续变大;2临界点:当弹力增大到大小等于重力时,合外力为零,加速度为零,速度达到最大;3过程二:之后小球由于惯性仍向下运动,但弹力大于重力,合力向上且逐渐变大∵F合= kx-mg因而加速度向上且变大,因此速度减小至零;注意:小球不会静止在最低点,将被弹簧上推向上运动,请同学们自己分析以后的运动情况;〖答案〗综上分析得:小球向下压弹簧过程,F 合方向先向下后向上,大小先变小后变大;a方向先向下后向上,大小先变小后变大;v方向向下,大小先变大后变小;向上推的过程也是先加速后减速;类型五、不同加速度时的“隔离法”例题5如图,底坐A上装有一根直立长杆,其总质量为M,杆上套有质量为m的环B,它与杆有摩擦,当环从底座以初速v向上飞起时底座保持静止,环的加速度为a,求环在升起和下落的过程中,底座对水平面的压力分别是多大〖点拨〗不同加速度时的“隔离法”;〖解析〗此题有两个物体又有两个过程,故用“程序法”和“隔离法”分析如下:1环上升时这两个物体的受力如图所示;对环:f+mg=ma ①对底座:f′+N1-Mg=0②而f′=f③∴N1=Mg—ma-g;2环下落时,环和底座的受力如图所示;对环:环受到的动摩擦力大小不变;对底座:Mg+f′—N2=0 ④联立①③④解得:N2=Mg+ma-g〖答案〗上升 N1=Mg-ma-g下降 N2=Mg+ma-g针对训练1.如图所示,在倾角为θ的光滑斜面上,有两个用轻质弹簧相连接的物块A和B,它们的质量分别为m A、m B,弹簧的劲度系数为k,C为一固定挡板;系统处于静止状态;现开始用一恒力F沿斜面方向拉物块A使之向上运动,求物块B刚要离开时物块C时物块A的加速度a,以及从开始到此时物块A的位移d,重力加速度为g;〖解析〗此题有三个物体A、B和轻弹簧和三个过程或状态;下面用“程序法”和“隔离法”分析:1过程一状态一:弹簧被A压缩x1,A和B均静止归纳:通过例题的解答过程,可总结出解题以下方法和步骤:1.确定研究对象;2.明确物理过程;3.画好受力分析图;4.用合成法或正交分解法求合力,列方程;对A 受力分析如图所示,对A 由平衡条件得:kx 1=m A g sin θ ①2过程二:A 开始向上运动到弹簧恢复原长;此过程A 向上位移为x 1;3过程三:A 从弹簧原长处向上运动x 2,到B 刚离开C 时;B 刚离开C 时A 、B 受力分析如图所示, 此时对B :可看作静止,由平衡条件得:kx 2=m B g sin θ ②此时对A :加速度向上,由牛顿第二定律得:F -m A g sin θ-kx 2=m A a ③由②③得:a =A B A()sin F m m g m θ-+由①②式并代入d =x 1+x 2解得:d =A B ()sin m m g kθ+〖答案a =A B A()sin F m m g m θ-+d =A B ()sin m m g kθ+2.如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M =4kg,长为L =;木板右端放着一小滑块,小滑块质量为m =1kg;其尺寸远小于L ;小滑块与木板之间的动摩擦因数为μ=;g =10m/s 2①现用恒力F 作用在木板M 上,为了使得m 能从M 上面滑落下来,求:F 大小的范围;设最大静摩擦力等于滑动摩擦力②其他条件不变,若恒力F =,且始终作用在M 上,使m 最终能从M 上面滑落下来;求:m 在M 上面滑动的时间;〖解析〗①只有一个过程,用“隔离法”分析如下:对小滑块:水平方向受力如图所示,a 1=f mg m mμ==μg =4m/s 2对木板:水平方向受力如图所示,a 2=F f F mg M Mμ'--=要使m 能从M 上面滑落下来的条件是:v 2>v 1,即a 2>a 1,∴F mgMμ->4 解得:F >20N ②只有一个过程 对小滑块受力与①同: x 1=12a 1t 2=2t 2 对木板受力方向与①同:a 2=F f M-=s 2x 2=12a 2t 2=4.72t 2 由图所示得:x 2- x 1=L 即4.72·t 2-2t 2= 解得: t =2s;〖答案①F >20N ②t =2s1. 如图光滑水平面上物块A 和B 以轻弹簧相连接;在水平拉力F 作用下以加速度a 作直线运动,设A 和B 的质量分别为m A 和m B ,当突然撤去外力F 时,A 和B 的加速度分别为 A .0、0 B .a 、0C .B A A m m am +、BA A m m a m +- D .a 、a m mBA -2. 如图A 、B 、C 为三个完全相同的物体,当水平力F 作用于B 上,三物体可一起匀速运动;撤去力F 后,三物体仍可一起向前运动,设此时A 、B 间作用力为F 1,B 、C 间作用力为F 2,则F 1和F 2的大小为A .F 1=F 2=0B .F 1=0,F 2=FC .F 1=3F ,F 2=F 32 D .F 1=F ,F 2=0 3. 如图所示,质量分别为M 、m 的滑块A 、B 叠放在固定的、倾角为θ的斜面上,A 与斜面间、A 与B 之间的动摩擦因数分别为μ1,μ2,当A 、B 从静止开始以相同的加速度下滑时,B 受到摩擦力 A .等于零B .方向平行于斜面向上基 础 巩 固A BF FCA Bv BA θC .大小为μ1mg cosθD .大小为μ2mg cosθ4. 如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量为m 的小球;小球上下振动时,框架始终没有跳起,当框架对地面压力为零瞬间,小球的加速度大小为A .gB .g mm M -C .0D .g mmM + 5. 如图,用力F 拉A 、B 、C 三个物体在光滑水平面上运动,现在中间的B 物体上加一个小物体,它和中间的物体一起运动,且原拉力F 不变,那么加上物体以后,两段绳中的拉力T a 和T b 的变化情况是 A .T a 增大B .T b 增大C .T a 变小D .T b 不变6. 如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量为M 的竖直竹竿,当竿上一质量为m 的人以加速度a 加速下滑时,竿对“底人”的压力大小为 A .M+mg B .M+mg -ma C .M+mg +maD .M -mg7. 如图,在竖直立在水平面的轻弹簧上面固定一块质量不计的薄板,将薄板上放一重物,并用手将重物往下压,然后突然将手撤去,重物即被弹射出去,则在弹射过程中,即重物与弹簧脱离之前,重物的运动情况是 A .一直加速 B .先减速,后加速C .先加速、后减速D .匀加速8. 如图所示,木块A 和B 用一轻弹簧相连,竖直放在木块C 上,三者静置于地面,它们的质量之比是1:2:3,设所有接触面都光滑,当沿水平方向抽出木块C 的瞬时,A 和B 的加速度分别是a A = ,a B = ;9. 如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间的静摩擦因数μ=,要使物体不致下滑,车厢至少应以多大的加速度前进g =10m/s 210.如图所示,箱子的质量M =,与水平地面的动摩擦因数μ=;在箱子顶板处系一细线,悬挂一个质量m =的小球,箱子受到水平恒力F 的作用,使小球的悬线偏离竖直方向θ=30°角,则F 应为多少g =10m/s 21. 两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于A .F m m m 211+B .F m m m 212+ C .FD .F m m 212. 如图所示,倾角为α的斜面上放两物体m 1和m 2,用与斜面平行的力F推m 1,使两物加速上滑,不管斜面是否光滑,两物体之间的作用力总为 ;3. 恒力F 作用在甲物体上,可使甲从静止开始运动54m 用3s 时间,当该恒力作用在乙物体上,能使乙在3s 内速度由8m/s 变到-4m/s ;现把甲、乙绑在一起,在恒力F 作用下它们的加速度的大小是;从静止开始运动3s 内的位移是;4. 如图所示,三个质量相同的木块顺次连接,放在水平桌面上,物体与平面间μ=02.,用力F 拉三个物体,它们运动的加速度为1m/s 2,若去掉最后一个物体,前两物体的加速度为 m /s 2;5. 如图所示,在水平力F =12N 的作用下,放在光滑水平面上的m 1,运动的位移x 与时间t 满足关系式:234x t t =+,该物体运动的初速度v 0= ,物体的质量m 1= ;若改用下图装置拉动m 1,使m 1的运动状态与前面相同,则m 2的质量应为 ;不计摩擦6. 如图所示,一细线的一端固定于倾角为45°的光滑楔形滑块A 的顶端P 处,细线的另一端拴一质量为m 的小球;当滑块至少以加速度a = 向左运动时,小球对滑块的压力等于零;当滑块以a =2g 的加速度向左运动时,线的拉力大小F = ;7. 如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑,木板上站着一个质量为m 的人,问1为了保持木板与斜面相对静止,计算人运动的加速度2为了保持人与斜面相对静止,木板运动的加速度是多少8. 如图所示,质量分别为m 和2m 的两物体A 、B 叠放在一起,放在光滑的水平地面上,已知A 、B 间的最大摩擦力为A 物体重力的μ倍,若用水平力分别作用在A 或B 上,使A 、B 保持相对静止做加速运动,则作用于A 、B 上的最大拉力F A 与F B 之比为多少9. 如图所示,质量为80kg 的物体放在安装在小车上的水平磅称上,小车沿斜面无摩擦地向下运动,现观察到物体在磅秤上读数只有600N,则斜面的倾角θ为多少物体对磅秤的静摩擦力为多少10.如图所示,一根轻弹簧上端固定,下端挂一质量为m o 的平盘,盘中有一物体,质量为m ,当盘静止时,弹簧的长度比自然长度伸长了L ;今向下拉盘使弹簧再伸长△L 后停止,然后松手放开,设弹簧总处在弹性限度以内,刚刚松开手时盘对物体的支持力等于多少1. 如图所示,一根轻质弹簧上端固定,下端挂一个质量为m 0的平盘,盘中有一物体,质量为m ,当盘静止时,弹簧的长度比其自然长度伸长了l ,今向下拉盘,使弹簧再伸长∆l 后停止,然后松手,设弹簧总处在弹性限度内,则刚松手时盘对物体的支持力等于A .()1+∆l l mgB .()()10++∆l l m m gC .∆lmg lD .∆l m m g l ()+02. 质量为m 的三角形木楔A 置于倾角为θ的固定斜面上,如图所示,它与斜面间的动摩擦因数为μ,一水平力F 作用在木楔A 的竖直面上;在力F 的推动下,木楔A 沿斜面以恒定的加速度a 向上滑动,则F 的大小为 A .[]θθμθcos )cos (sin ++g a mB .θμθθsin cos sin +-mg maC .[]θμθθμθsin cos )cos (sin -++g a mD .[]θμθθμθsin cos )(sin +++soc g a m3. 在无风的天气里,雨滴在空中竖直下落,由于受到空气的阻力,最后以某一恒定速度下落,这个恒定的速度通常叫做收尾速度;设空气阻力与雨滴的速度成正比,下列对雨滴运动的加速度和速度的定性分析正确的是 ①雨滴质量越大,收尾速度越大②雨滴收尾前做加速度减小速度增加的运动 ③雨滴收尾速度大小与雨滴质量无关 ④雨滴收尾前做加速度增加速度也增加的运动综 合 应用 用aP A45A B FθMA .①②B .②④C .①④D .②③4. 如图所示,将一个质量为m的物体,放在台秤盘上一个倾角为α的光滑斜面上,则物体下滑过程中,台秤的示数与未放m 时比较将 A .增加mg B .减少mg C .增加mg cos2α D .减少mg 21+sin 2α5. 质量为m 和M 的两个物体用轻绳连接,用一大小不变的拉力F 拉M ,使两物体在图中所示的AB 、BC 、CD 三段轨道上都做匀加速直线运动,物体在三段轨道上运动时力F 都平行于轨道,且动摩擦因数均相同,设在AB 、BC 、CD 上运动时m 和M 之间的绳上的拉力分别为T 1、T 2、T 3,则它们的大小 A .T 1=T 2=T 3 B .T 1>T 2>T 3C .T 1<T 2<T 3D .T 1<T 2=T 36. 如图所示,在光滑水平面上,放着两块长度相同,质量分别为M 1和M 2的木板,在两木板的左端各放一个大小、形状、质量完全相同的物块,开始时,各物均静止,今在两物体上各作用一水平恒力F 1、F 2,当物块和木块分离时,两木块的速度分别为v 1、v 2,物体和木板间的动摩擦因数相同,下列说法:①若F 1=F 2,M 1>M 2,则v 1>v 2; ②若F 1=F 2,M 1<M 2,则v 1>v 2; ③F 1>F 2,M 1=M 2,则v 1>v 2; ④若F 1<F 2,M 1=M 2,则v 1>v 2, 其中正确的是 A .①③ B .②④ C .①②D .②③7. 如图所示,小车上固定着光滑的斜面,斜面的倾角为θ,小车以恒定的加速度向左运动,有一物体放于斜面上,相对斜面静止,此时这个物体相对地面的加速度是;8. 如图所示,光滑水平面上有两物体m m 12与用细线连接,设细线能承受的最大拉力为T ,m m 12>,现用水平拉力F 拉系统,要使系统得到最大加速度F 应向哪个方向拉9. 如图所示,木块A 质量为1kg,木块B 质量为2kg,叠放在水平地面上,AB 之间最大静摩擦力为5N,B 与地面之间摩擦系数为,今用水平力F 作用于A ,保持AB 相对静止的条件是F 不超过 N 210m /s g =;10. 如图所示,5个质量相同的木块并排放在光滑的水平桌面上,当用水平向右推力F 推木块1,使它们共同向右加速运动时,求第2与第3块木块之间弹力及第4与第5块木块之间的弹力1.D 2.C 3.BC 4.D 5.A 6.B 7.C 8.0、32g 9.212.5m /s解:设物体的质量为m ,在竖直方向上有:mg =F ,F 为摩擦力在临界情况下,F =μF N ,F N 为物体所受水平弹力;又由牛顿第二定律得:F N =ma 由以上各式得:加速度2210m /s 12.5m /s 0.8μ====N F mg a m m 10.48N解:对小球由牛顿第二定律得:mg tg θ=ma ① 对整体,由牛顿第二定律得: F -μM+mg =M+ma ② 由①②代入数据得:F=48N基 础 巩 固a D C A B m M F1. B 2.212=+N m F F m m提示:先取整体研究,利用牛顿第二定律,求出共同的加速度121212()cos ()sin μαα-+-+=+F m m g m m g a m m =12cos sin μαα--+Fg g m m 再取m 2研究,由牛顿第二定律得 F N -m 2g sinα-μm 2g cosα=m 2a 整理得212=+N m F F m m3.3 m/s 2, 4. 5.4m/s,2kg,3kg 6.g7.1M+mg sinθ/m ,2M+mg sinθ/M ; 解析:1为了使木板与斜面保持相对静止,必须满足木板在斜面上的合力为零,所以人施于木板的摩擦力F 应沿斜面向上,故人应加速下跑;现分别对人和木板应用牛顿第二定律得: 对木板:Mg sin θ=F ;对人:mg sin θ+F =ma 人a 人为人对斜面的加速度;解得:a 人=sin θ+M mg m, 方向沿斜面向下;2为了使人与斜面保持静止,必须满足人在木板上所受合力为零,所以木板施于人的摩擦力应沿斜面向上,故人相对木板向上跑,木板相对斜面向下滑,但人对斜面静止不动;现分别对人和木板应用牛顿第二定律,设木板对斜面的加速度为a 木,则: 对人:mg sin θ=F ;对木板:Mg sin θ+F =Ma 木;解得:a 木=sin θ+M mg m,方向沿斜面向下;即人相对木板向上加速跑动,而木板沿斜面向下滑动,所以人相对斜面静止不动; 8.1:2解析:当力F 作用于A 上,且A 、B 刚好不发生相对滑动时,对B 由牛顿第二定律得:μmg =2ma①对整体同理得:F A =m +2ma ②由①②得32μ=AmgF 当力F 作用于B 上,且A 、B 刚好不发生相对滑动时,对A 由牛顿第二定律得: μmg =ma ′ ③ 对整体同理得F B =m +2ma ′ ④ 由③④得F B =3μmg 所以:F A :F B =1:2 9.346N解析:取小车、物体、磅秤这个整体为研究对象,受总重力Mg 、斜面的支持力N ,由牛顿第二定律得,Mg sin θ=Ma ,∴a =g sinθ取物体为研究对象,受力情况如图所示; 将加速度a 沿水平和竖直方向分解,则有 f 静=ma cos θ=mg sin θcos θ ①mg -N =ma sin θ=mg sin 2θ ②由式②得:N =mg -mg sin 2θ=mg cos 2θ,则cos θ,θ=30° 由式①得,f 静=mgsin θcos θ代入数据得 f 静=346N;根据牛顿第三定律,物体对磅秤的静摩擦力为346N; 10.mg 1+∆L L解析:盘对物体的支持力,取决于物体状态,由于静止后向下拉盘,再松手加速上升状态,则物体所受合外力向上,有竖直向上的加速度,因此,求出它们的加速度,作用力就很容易求了; 将盘与物体看作一个系统,静止时: kL =m +m 0g ① 再伸长△L 后,刚松手时,有 kL +△L -m +m 0g=m +m 0a ② 由①②式得刚松手时对物体F N -mg =ma 则盘对物体的支持力F N =mg +ma =mg 1+∆L L1.A 2.C 3.A4.C 5.A 6.B7.tan θg 8.向左拉m 19.6N解析:当F 作用于A 上时,A 与B 的受力分析如图所示;要使A 、B 保持相对静止,A 与B 的加速度必须相等;B的加速度最大值为:其中'f 1为5N, 2() 2(21)100.1N 3NA B f m m g μ=+=+⨯⨯=·代入上式2253m /s 1m /s 2-==a 这也是A 的加速度最大值; 又因 F f m a A-=1 111N 5N 6N6N A F m a f F =+=⨯+=∴最大不超过。

专题:连接体问题(整体法和隔离法)

专题:连接体问题(整体法和隔离法)

专题:连接体问题(整体法和隔离法)一、什么是连接体问题特征:两物体紧靠着或者依靠一根细绳(一根弹簧)相连接后一起做匀加速运动(1)用细线连接的物体系(2)相互挤压在一起的物体系(3)用弹簧连接的物体系二、连接体问题如何处理1.对整体写牛顿第二定律2.把其中任意一个物体隔离写牛顿第二定律三、常见的连接体问题的类型1.计算连接体的加速度2.计算连接体之间的拉力大小3.根据绳子的最大拉力判断水平拉力F的大小4.放在不同平面上判断拉力的变化、加速度的变化5.两个相反方向的力作用与两个物体上,撤去其中一个力后判断物体加速度变化和绳子拉力变化6.在连接体上的某个物体上再放一个物体判断拉力的变化、加速度的变化7.三个物体的连接体问题【典型例题剖析】例1:如图所示,置于光滑水平面上的木块A和B,其质量为m A和m B。

当水平力F作用于A左端上时,两物体一起作加速运动,其A、B间相互作用力大小为N11计算:(1)计算N1的大小(2)若将F作用在物体B上,AB间的相互作用力N2变为多少?(3)计算N 1与N 2之和,N 1与N 2之比(4)若物体A 、B 与地面的动摩擦因数为μ,分析AB 的加速度如何变化,AB 之间相互作用力如何变化?例2:如图所示,置于水平地面上的相同材料的质量分别为m 和m 0的两物体用细绳连接,在m 0上施加一水平恒力F ,使两物体做匀加速直线运动,对两物体间细绳上的拉力,下列说法正确的是( )A .地面光滑时,绳子拉力大小等于mFm 0+mB .地面不光滑时,绳子拉力大小等于mFm 0+mC .地面不光滑时,绳子拉力大于mFm 0+mD .地面不光滑时,绳子拉力小于mFm 0+m答案 AB例3:(多选)如图所示,质量为ml 的物体和质量为m 2的物体,放在光滑水平面上,用仅能承受6N 的拉力的线相连。

m l =2kg ,m 2=3kg 。

现用水平拉力F 拉物体m l 或m 2,使物体运动起来且不致把绳拉断,则F 的大小和方向应为( ) A .10N ,水平向右拉物体m 2B .10N ,水平向左拉物体m 1C .15N ,水平向右拉物体m 2D .15N ,水平向左拉物体m 1 答案:BC例4:如图所示,在水平地面上有A 、B 两个小物体,质量分别为m A =3.0kg 、m B =2.0kg ,它们与地面间的动摩擦因数均为μ=0.10。

高中物理复习:连接体问题、板块模型、传送带模型

高中物理复习:连接体问题、板块模型、传送带模型

高中物理复习:连接体问题、板块模型、传送带模型考点一连接体问题[知能必备]1.连接体问题模型弹力连接、摩擦力连接、轻绳连接、轻杆连接、弹簧连接.2.解题方略:要充分利用“加速度相等”这一条件或题中特定条件,交替使用整体法与隔离法解题.可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.[典例剖析](多选)如图,三个质量均为1 kg的物体A、B、C叠放在水平桌面上,B、C用不可伸长的轻绳跨过一光滑轻质定滑轮连接,A与B之间、B与C之间的接触面以及轻绳均与桌面平行,A与B之间、B与C之间以及C与桌面之间的动摩擦因数分别为0.4、0.2和0.1,重力加速度g取10 m/s2,设最大静摩擦力等于滑动摩擦力.用力F沿水平方向拉物体C,以下说法正确的是()A.拉力F小于11 N时,不能拉动CB.拉力F为17 N时,轻绳的拉力为4 NC.要使A、B保持相对静止,拉力F不能超过23 ND.A的加速度将随拉力F的增大而增大【思路点拨】解此题关键有两点:(1)利用整体法和隔离法选取研究对象,进行正确受力分析,注意摩擦因数的不同及摩擦力的大小和方向.(2)正确判断“相对滑动”的临界条件.解析:AC当C物体即将运动时,C物体水平方向受桌面给C的向右的摩擦力f桌,绳子向右的拉力T,B给C向右的摩擦力f BC,其中f桌=0.1(m A+m B+m C)g=3 N,f BC=0.2(m A +m B)=4 N,当即将滑动时应有F=f桌+f BC+T,T=f BC=4 N,可解得F=11 N,故A正确;因此B和C的加速度大小相等,在A和B即将发生相对滑动,对A受力分析可得,f AB=0.4m A g =m A a,对AB整体受力分析可得T-f BC=(m A+m B)a,对C物体受力分析可得F-T-f BC-f 桌=m C a ,联立解得F =23 N ,说明A 和B 发生相对滑动的临界力大小为F =23 N ,故C 正确;当F =17 N 时,A 和B 没有发生相对滑动,此时对AB 整体T -f BC =(m A +m B )a 1,对C 物体受力分析F -T -f BC -f 桌=m C a 1,联立解得T =8 N ,故B 错误;当拉力增大,A 和B 发生相对滑动时,则A 物体受到滑动摩擦力,加速度为a =0.4g =4 m/s 2,加速度不变,D 错误.[题组精练]1.如图所示,在倾角为30°的光滑斜面上,有质量相等的两物块用轻绳连接,用沿斜面的力F =40 N 使两物块一起向上加速运动.则轻绳的拉力为( )A .10 NB .20 NC .30 ND .40 N解析:B 以两物块为研究对象,利用牛顿第二定律,有F -2mg sin 30°=2ma ,以靠下的物块为研究对象,设轻绳的拉力为F T ,根据牛顿第二定律,有F T -mg sin 30°=ma ,代入数据,解得F T =20 N ,ACD 错误,B 正确.2.(2021·苏州一模)如图所示,光滑水平面上放置质量分别为m 、2m和3m 的三个木块,其中质量为2m 和3m 的木块间用一不可伸长的水平轻绳相连,轻绳能承受的最大拉力为F T .现用水平拉力F 拉质量为3m 的木块,使三个木块以同一加速度运动,则以下说法正确的是( )A .质量为2m 的木块受到四个力的作用B .当F 逐渐增大到F T 时,轻绳刚好被拉断C .当F 逐渐增大到1.5F T 时,轻绳还不会被拉断D .轻绳刚要被拉断时,质量为m 和2m 的木块间的摩擦力为23F T 解析:C 质量为2m 的木块受五个力的作用,A 项错误;当绳的拉力为F T 时,对m 和2m 有F T =3ma ,此时对整体有F =6ma ,可得F =2F T ,故B 项错误,C 项正确;轻绳刚要被拉断时,质量为m 和2m 的木块间的摩擦力为13F T ,故D 项错误. 3.如图所示,一根不可伸长的轻绳一端系住小球,另一端固定在光滑直角斜劈顶端O 点,轻绳与斜面平行,斜劈底面水平.使小球和斜劈做下列运动,下面5种运动中,小球对斜面的压力可能为零的是( )①一起水平向左加速; ②一起水平向右加速;③一起竖直向上加速; ④一起竖直向下加速;⑤绕过O点的竖直轴一起匀速转动.A.①②③B.②③⑤C.②④⑤D.①③④解析:C①若一起水平向左加速,小球受合外力水平向左,斜面对小球的支持力的水平分力与绳子拉力的水平分力的合力水平向左,因此支持力不可能为零,①错误;②一起水平向右加速,当绳子拉力的竖直分量恰好等于重力时,斜面的支持力为零,绳子拉力的水平分力就是合外力,②正确;③一起竖直向上加速,绳子拉力与支持力的合力竖直向上,大于重力,绳子拉力不可能为零,因此支持力不可能为零,③错误;④一起竖直向下加速,当加速度等于g时,绳子拉力减小为零时,此时斜面的支持力也为零,④正确;⑤绕过O点的竖直轴一起匀速转动,合力指向转轴,当角速度足够大时,绳子拉力的竖直分量恰好等于重力时,斜面的支持力为零,⑤正确.考点二板块模型[知能必备]1.审题建模:求解时应先仔细审题,弄清楚题目的含义、分析清楚每一个物体的受力情况、运动情况.2.求加速度:准确求出各物体在各运动过程的加速度(注意两过程的连接处加速度可能突变).3.做好两分析[典例剖析](经典高考题)如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐.A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B 上滑动距离L后停下.接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下.最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)A 被敲击后获得的初速度大小v A ;(2)在左边缘再次对齐的前、后,B 运动加速度的大小a B 、a B ′;(3)B 被敲击后获得的初速度大小v B .【解题策略】(1)读题审题:①A 与B 、B 与地面间的动摩擦因数均为μ――→想到地面与B 间的摩擦力是A 与B 间的摩擦力的2倍②左边缘再次对齐时恰好相对静止――→想到B 与A 的位移差等于第一次A 的位移(2)情境转化:①敲击A 后―→A 做匀减速直线运动②敲击B 后―→B 做匀减速直线运动、A 做匀加速直线运动③A 、B 相对静止后―→A 、B 整体做匀减速直线运动解析:(1)由牛顿运动定律知,A 加速度的大小a A =μg由匀变速直线运动得2a A L =v 2A 解得v A =2μgL (2)设A 、B 的质量均为m对齐前,B 所受合外力大小F =3μmg由牛顿运动定律F =ma B ,得a B =3μg对齐后,A 、B 整体所受合外力大小F ′=2μmg由牛顿运动定律F ′=2ma B ′,得a B ′=μg(3)经过时间t ,A 、B 达到共同速度v ,位移分别为x A 、x B ,A 加速度的大小等于a A 则v =a A t ,v =v B -a B tx A =12a A t 2,x B =v B t -12a B t 2 且x B -x A =L解得v B =22μgL答案:(1)2μgL (2)3μg μg (3)22μgL解答“板块”问题时要注意:“一个转折、两个关联”(1)一个转折:即滑块与长木板达到相同的速度时或滑块离开长木板时的受力情况以及运动状态的变化为转折点.(2)两个关联:即发生转折前后滑块和长木板的受力情况以及滑块与长木板的位移之间的关联,必要时要通过作草图把握关系.当有外力作用在木板上的物块或木板上时,一般用动力学观点借助牛顿运动定律和运动学公式就能求解,做好两物体的受力分析和运动过程分析是解决此类问题的关键点和突破口.[题组精练]1.如图所示,静止在水平地面上的木板(厚度不计)质量为m1=1 kg,与地面间的动摩擦因数μ1=0.2,质量为m2=2 kg 且可看成质点的小物块与木板和地面间的动摩擦因数均为μ2=0.4,以v0=4 m/s的水平速度从左端滑上木板,经过t=0.6 s滑离木板,g取10 m/s2,以下说法正确的是() A.木板的长度为1.68 mB.小物块离开木板时,木板的速度为1.6 m/sC.小物块离开木板后,木板的加速度大小为2 m/s2,方向水平向右D.小物块离开木板后,木板与小物块将发生碰撞解析:D由于μ2m2g>μ1(m1+m2)g,对木板由牛顿第二定律得μ2m2g-μ1(m1+m2)g=m1a1,解得a1=2 m/s2,即物块在木板上以a2=μ2g=4 m/s2向右减速滑行时,木板以a1=2 m/s2向右加速运动,在0.6 s时,物块的速度v2=1.6 m/s,木板的速度v1=1.2 m/s,B错误;物块滑离木板时,物块位移为x2=v0+v22t=1.68 m,木板位移x1=v12t=0.36 m,两者相对位移为x=x2-x1=1.32 m,即木板长度为1.32 m,A错误;物块离开木板后,木板做减速运动,加速度大小为a1′=2 m/s2,方向水平向左,C错误;分离后,在地面上物块会滑行x2′=v222a2=0.32m,木板会滑行x1′=v212a1′=0.36 m,所以两者会相碰,D正确.2.如图甲所示,一长方体木板B放在水平地面上,木板B的右端放置着一个小铁块A,在t=0时刻,同时突然给A、B初速度,其中A的初速度大小为v A=1 m/s,方向水平向左;B的初速度大小为v B=14 m/s,方向水平向右,木板B运动的v­t图像如图乙所示.已知A、B的质量相等,A与B及B与地面之间均有摩擦(动摩擦因数不等),A与B之间的最大静摩擦力等于滑动摩擦力,A始终没有滑出B,取重力加速度g=10 m/s2.(提示:t=3 s时刻,A、B达到共同速度v=2 m/s;3 s时刻至A停止运动前,A向右运动的速度始终大于B的速度)求:(1)小铁块A向左运动相对地面的最大位移;(2)B运动的时间及B运动的位移大小.解析:(1)由题图乙可知,0~3 s内A做匀变速运动,速度由v A=-1 m/s变为v=2 m/s则其加速度大小为a A =v -v A t 1=2-(-1)3m/s 2=1 m/s 2,方向水平向右. 当A 水平向左运动速度减为零时,向左运动的位移最大,则s =v 2A 2a A=0.5 m. (2)设A 与B 之间的动摩擦因数为μ1,由牛顿第二定律得μ1mg =ma A则μ1=a A g=0.1 由题图乙可知,0~3 s 内B 做匀减速运动,其速度由v B =14 m/s 变为v =2 m/s则其加速度大小为a B =v B -v t 1=14-23m/s 2=4 m/s 2 方向水平向左设B 与地面之间的动摩擦因数为μ2,由牛顿第二定律得μ1mg +2μ2mg =ma B则μ2=a B -μ1g 2g=0.15 3 s 之后,B 继续向右做匀减速运动,由牛顿第二定律得2μ2mg -μ1mg =ma B ′则B 的加速度大小为a B ′=2μ2g -μ1g =2 m/s 2方向水平向左3 s 之后运动的时间为t 2=v a B ′=22s =1 s 则B 运动的时间为t =t 1+t 2=4 s0~4 s 内B 的位移x B =v B +v 2t 1+v 2t 2=25 m ,方向水平向右. 答案:(1)0.5 m (2)4 s 25 m3.(2021·山东省泰安市高三检测)如图所示,水平面上有一长度为L 的平板B ,其左端放置一小物块A (可视为质点),A 和B 的质量均为m ,A 与B 之间、B 与水平面之间的动摩擦因数均为μ=0.50,开始时A 和B 都静止,用一个水平推力作用到平板B 上,使A 和B 恰好能保持相对静止一起向右匀加速运动.当位移为x 时,将原来的推力撤去并同时用另一水平推力作用到A 上,使A 保持原来的加速度继续匀加速运动,直到脱离平板.已知重力加速度为g .求:(1)平板B 的最大速度;(2)物块A 脱离平板时的速度大小v .解析:(1)设A 和B 一起做匀加速运动的加速度大小为a ,对A ,有μmg=ma解得a=0.5g将原推力撤去时平板B的速度最大,得v2m=2ax解得B的最大速度v m=gx(2)推力作用到A上之后,A保持匀加速运动,有x A=v m t+12at2v=v m+atv2-v2m=2ax A平板B做匀减速运动,有μ·2mg-μmg=ma′解得a′=0.5g讨论两种情况:(a)物块A脱离平板时平板未停下,则对B,有x B=v m t-12a′t2A、B的位移关系满足x A-x B=L联立可解得t=2L g代入数据可得A脱离平板时的速度v=gx+0.5gL此时B的速度满足v B=v m-a′t>0可解得相应的条件为L<2x(b)物块A脱离平板时平板停下,则对B,有v2m=2a′x BA、B的位移关系同样满足x A-x B=L解得A脱离平板时的速度v=2gx+gL相应的条件为L≥2x答案:(1)gx(2)见解析考点三传送带模型[知能必备]1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上运动的力学系统可看作“传送带”模型,如图(a)(b)(c)所示.2.解题关键(1)关注两个时刻①初始时刻:物体相对于传送带的速度或滑动方向决定了该时刻的摩擦力方向.②物体与传送带速度相等的时刻:摩擦力的大小、方向或性质(滑动摩擦力或静摩擦力)可能会发生突变.(2)注意过程分解①摩擦力突变点是加速度突变点,也是物体运动规律的突变点,列方程时要注意不同过程中物理量莫混淆.②摩擦力突变点对应的状态是前一过程的末状态,也是后一过程的初状态,这是两个过程的连接点.(3)物体在倾斜传送带上运动,物体与传送带速度相同后需比较tan θ与μ的大小关系:μ>tan θ,速度相等后一起匀速;μ<tan θ,速度相等后物体的加速度向下,根据v与a的方向关系即可判定运动情况.[典例剖析]如图所示,一水平传送带以4 m/s的速度逆时针传送,水平部分长L=6 m,其左端与一倾角为θ=30°的光滑斜面平滑相连,斜面足够长,一个可视为质点的物块无初速度地放在传送带最右端,已知物块与传送带间的动摩擦因数μ=0.2,g取10 m/s2.求物块从放到传送带上到第一次滑回传送带最远端所用的时间.【解题指导】解析:物块在传送带上,根据牛顿第二定律得,μmg=ma解得a =μg =2 m/s 2设经过时间t 1物块的速度与传送带的速度相同,则有:v =at 1,解得t 1=v a =42 s =2 s ; 经过的位移x 1=v 22a=4 m<6 m , 在传送带上匀速运动的时间t 2=L -x 1v =0.5 s物块在斜面上的加速度a ′=mg sin 30°m=5 m/s 2, 在斜面上的运动时间t 3=2v a ′=85s =1.6 s , 返回传送带在传送带上减速到零(即第一次滑回传送带最远端)的时间t 4=v a =42s =2 s 则t =t 1+t 2+t 3+t 4=6.1 s.答案:6.1 s传送带问题的分析技巧(1)理清物体与传送带间的相对运动方向及摩擦力方向是解决传送带问题的关键.(2)传送带问题还常常涉及临界问题,即物体与传送带达到相同速度,这时会出现摩擦力改变的临界状态,对这一临界状态进行分析往往是解题的突破口.[题组精练]1.如图所示,绷紧的水平传送带始终以恒定速率v 1运行.初速度大小为v 2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v ­t 图像(以地面为参考系)如图乙所示.已知v 2>v 1,则( )A .t 2时刻,小物块离A 处的距离达到最大B .t 2时刻,小物块相对传送带滑动的距离达到最大C .0~t 2时间内,小物块受到的摩擦力方向先向右后向左D .0~t 3时间内,小物块始终受到大小不变的摩擦力作用解析:B 0~t 1时间内小物块向左做匀减速直线运动,t 1时刻小物块向左速度减为零,此时离A 处的距离达到最大,故A 错误;t 2时刻前小物块相对传送带向左运动,之后小物块相对传送带静止,t 2时刻小物块相对传送带滑动的距离达到最大,故B 正确;0~t 2时间内小物块先减速,后反向加速,小物块受到大小不变,方向始终向右的摩擦力作用,故C 错误;t 2时刻小物块向右速度增加到与传送带相等,t 2时刻之后小物块与传送带保持相对静止随水平传送带一起匀速运动,摩擦力消失,故D 错误.2.(2021·湖北荆州二模)如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB 足够长,传送皮带轮以大小为v =2 m/s 的恒定速率顺时针转动.一包货物以v 0=12 m/s 的初速度从A 端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(g =10 m/s 2,已知sin 37°=0.6,cos 37°=0.8)(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A 端共用了多长时间?解析:(1)设货物刚滑上传送带时加速度为a 1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f =ma 1垂直传送带方向:mg cos θ=F N又F f =μF N由以上三式得:a 1=g (sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s 2=10 m/s 2,方向沿传送带向下.(2)货物速度从v 0减至传送带速度v 所用时间设为t 1,位移设为x 1,则有:t 1=v -v 0-a 1=1 s ,x 1=v 0+v 2t 1=7 m. (3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a 2,则有mg sin θ-μmg cos θ=ma 2,得:a 2=g (sin θ-μcos θ)=2 m/s 2,方向沿传送带向下.设货物再经时间t 2,速度减为零,则t 2=0-v -a 2=1 s 货物沿传送带向上滑的位移x 2=v +02t 2=1 m 则货物上滑的总距离为x =x 1+x 2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a 2.设下滑时间为t 3,则x =12a 2t 23,代入解得t 3=2 2 s. 所以货物从A 端滑上传送带到再次滑回A 端的总时间为t =t 1+t 2+t 3=(2+22) s. 答案:(1)10 m/s 2,方向沿传送带向下 (2)1 s 7 m (3)(2+22) s3. (2021·安徽省马鞍山市高三下学期二模)有一水平足够长的传送带,以3 m/s 的速度沿顺时针方向匀速运转,传送带右端与倾角为37°的粗糙固定斜面底端B 平滑连接,一质量为1 kg 的小滑块从斜面上A 点由静止释放,经过一段时间后,最终停在传送带与斜面的连接处.小滑块与斜面、传送带之间的动摩擦因数均为0.5,A 、B 间距离为4 m .重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小滑块从释放到第一次到达B 点经历的时间;(2)小滑块第三次通过B 点的速度大小;(3)从释放到最终停止,小滑块运动的总路程.解析:(1)小滑块从A 点由静止释放向下运动mg sin θ-μmg cos θ=ma 1得a 1=2 m/s 2s AB =12a 1t 21得t 1=2 s(2)小滑块第一次滑上传送带的速度为v =a 1t 1=4 m/s此后先向左匀减速,而后向右匀加速,v =4 m/s>v 0=3 m/s ,当滑块和传送带速度相同时开始匀速,所以滑块返回B 点时速度为v 0=3 m/s滑块沿斜面向上运动的加速度为ma 2=mg sin θ+μmg cos θ解得a 2=10 m/s 2滑块第一次以初速度v 0冲上斜面后上升的最大距离x 1,滑块第三次到B 时速度为v 1,则v 20=2a 2x 1v 21=2a 1x 1联立得v 1=v 0 15=355m/s (3)滑块第一次以v 滑上传送带,向左运动的位移为s 1=v 22μg=1.6 m 滑块第二次以初速度v 1滑上传送带,由于v 1<v 0,滑块从传送带上返回B 点时速度大小仍为v 1,由第(2)问的分析知,此后滑块每次滑下斜面的速度大小是滑上斜面速度的 15 v 1=v 015 v 2=v 0⎝⎛⎭⎫152 v 3=v 0⎝⎛⎭⎫153 ……滑块第一次滑上斜面之后在斜面上的总路程s 2=2v 202a 2+2v 212a 2+2v 222a 2+… 联立可得s 2=1.125 m滑块第三次滑上传送带之后在传送带上的总路程s 3=2v 212μg +2v 222μg +2v 232μg+… 联立可得s 3=0.45 m小滑块运动的总路程s 总=s AB +2s 1+s 2+s 3=8.775 m答案:(1)2 s (2)355m/s (3)8.775 m 限时规范训练(三) 连接体问题、板块模型、传送带模型建议用时60分钟,实际用时________一、单项选择题 1.如图所示,质量分别为3 kg 、5 kg 的P 、Q 两滑块,用轻弹簧连接后置于光滑水平地面上.现用大小F =8 N 的水平拉力拉Q ,使P 、Q 一起向右做匀加速直线运动.则此过程中弹簧的弹力大小为( )A .3 NB .4 NC .5 ND .8 N解析:A 对PQ 的整体,由牛顿第二定律F =(m P +m Q )a ,对P ,T =m P a, 解得T =3 N ,故选项A 正确.2.(2021·山东省聊城市高三下学期模拟)车厢中用细线悬挂小球,通过细线的倾斜程度来检测车辆在行进过程中的加速度.如图所示,质量相同的两个光滑小球通过轻质细线分别系于车的顶部,左侧小球与车厢左侧壁接触,两细线与竖直方向的夹角相同,拉力大小分别为T 1和T 2.下列说法正确的是( )A .车可能正在向左做加速运动B .两细线的拉力T 1=T 2C .当汽车加速度增大时,T 1变小D .当汽车加速度减小时,T 2增大解析:B 对右边小球进行受力分析,沿细线方向斜右上方的拉力,和竖直向下的重力.设细线与竖直方向夹角为θ,根据牛顿第二定律有ma =mg tan θ,T 2=mg cos θ,加速度水平向右,可以判断小车可能向右加速,或者向左减速,故A 错误;同理,对左边小球受力分析,可得ma =F N -T 1sin θ,T 1=mg cos θ,联立可得T 1=T 2,故B 正确;根据上面选项的分析,可知当汽车加速度增大时, T 1不变,故C 错误;根据上面选项的分析,可知当汽车加速度减小时,小球2的细线的夹角变小,T 2变小.故D 错误.3.如图所示,在平直公路上行驶的厢式货车内,用轻绳AO 、BO 在O 点悬挂质量为5 kg 的重物,轻绳AO 、BO 与车顶部夹角分别为30°、60°.在汽车加速行驶过程中,为保持重物悬挂在O 点位置不动,重力加速度为g ,厢式货车的最大加速度( )A.g 2B .3g 3 C.3g 2 D .3g解析:B 对小球受力分析可得F A sin 30°+F B sin 60°=mg ,F B cos 60°-F A cos 30°=ma ,联立解得12·⎝⎛⎭⎫233mg -33F A -32F A =ma ,整理得33mg -233F A =ma ,当F A =0时,a 取得最大值a =33g .故选B 项. 4.如图所示,一水平方向足够长的传送带以恒定的速度v 1=2 m/s 沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面,一物体以恒定速度v 2=5 m/s 沿直线向左滑向传送带后,经过一段时间又返回光滑水平面,速率为v 2′,物体与传送带间的动摩擦因数为0.2,则下列说法正确的是( )A .返回光滑水平面时的速率为v 2′=2 m/sB .返回光滑水平面时的速率为v 2′=5 m/sC .返回光滑水平面的时间为t =3.5 sD .传送带对物体的摩擦力先向右再向左解析:A 因为传送带足够长,且顺时针转动,又因为v 1<v 2,则物体会先向左减速直到速度为0,再向右加速,最后匀速,则物体返回光滑水平面时的速率为v 2′=2 m/s ,故A 正确,B 错误;由牛顿第二定律得a =f m =μmg m =μg =2 m/s 2,则物体减速的时间为t 1=v 2a=2.5 s ,物体减速的位移为x 1=12at 21=6.25 m ,物体反向加速的时间为t 2=v 1a=1 s ,反向加速的位移为x 2=12at 22=1 m ,物体匀速的时间为t 3=x 1-x 2v 1=2.625 s ,故物体返回光滑水平面的时间为t =t 1+t 2+t 3=6.125 s ,故C 错误;由于物体是先向左减速,后反向加速,最后匀速返回,所以传送带对物体的摩擦力先向右后为0,故D 错误.5.质量为1 kg 的木板B 静止在水平面上,可视为质点的物块A 从木板的左侧沿木板上表面水平冲上木板,如图甲所示.A 和B 经过1 s 达到同一速度,之后共同减速直至静止,A 和B 运动的v ­t 图像如图乙所示,取g =10 m/s 2,则物块A 的质量为( )A .1 kgB .2 kgC .3 kgD .6 kg解析:C 由图像可知,物块在0~1 s 内的加速度大小为a 1=2 m/s 2,以物块为研究对象,由牛顿第二定律得μ1mg =ma 1,解得:μ1=0.2,木板在0~1 s 内的加速度大小为a 2=2 m/s 2,在1 s ~3 s 内物块与木板相对静止,一起做匀减速运动,加速度大小为a 3=1 m/s 2,AB 同速后整体为研究对象,由牛顿第二定律得:μ2(M +m )g =(M +m )a 3,解得:μ2=0.1,再以B 为研究对象,在0~1 s 内水平方向受到两个滑动摩擦力,由牛顿第二定律得:μ1mg -μ2(M +m )g =Ma 2代入数据解得A 的质量m =3 kg.6.用货车运输规格相同的两层水泥板,底层水泥板固定在车厢内,为防止货车在刹车时上层水泥板撞上驾驶室,上层水泥板按如图所示方式放置在底层水泥板上.货车以3 m/s 2的加速度启动,然后以12 m/s 匀速行驶,遇紧急情况后以8 m/s 2的加速度刹车至停止.已知每块水泥板的质量为250 kg ,水泥板间的动摩擦因数为0.75,最大静摩擦力等于滑动摩擦力,取g =10 m/s 2,则( )A .启动时上层水泥板所受摩擦力大小为1875 NB .刹车时上层水泥板所受摩擦力大小为2000 NC .货车在刹车过程中行驶的距离为9 mD .货车停止时上层水泥板相对底层水泥板滑动的距离为0.6 m解析:C 摩擦力提供给水泥板最大的加速度为a ′=μg =7.5 m/s 2启动时,加速度小于最大加速度,上层水泥板所受摩擦力为静摩擦力,大小为f =ma =250×3 N =750 N ,A 错误;刹车时,加速度大于最大加速度,上层水泥板所受摩擦力为滑动摩擦力,其大小为f =μmg=1875 N ,B 错误;货车在刹车过程中行驶的距离为s =v 22a=9 m ,C 正确;货车停止时间为t =v a =1.5 s ,该时间内,上层水泥板滑动的距离为s ′=v t -12μgt 2=18-8.4375=9.5625 m ,货车停止时上层水泥板相对底层水泥板滑动的距离为Δs =s ′-s =0.5625 m ,D 错误.7.(2021·山东济宁高三检测)如图所示,三个物体A 、B 和C 的质量分别为2m 、m 和m ,A 、B 叠放在水平桌面上,A 通过跨过光滑定滑轮的轻绳与C 相连,定滑轮左端的轻绳与桌面平行,A 、B 间的动摩擦因数为μ(μ<1),B 与桌面间的动摩擦因数为μ3,A 、B 、桌面之间的最大静摩擦力等于相对应的滑动摩擦力,重力加速度为g ,下列说法正确的是( )A .三个物体A 、B 、C 均保持静止B .轻绳对定滑轮的作用力大小为2mgC .若A 、B 之间发生相对滑动,则需满足μ<0.2D .若A 、B 之间未发生相对滑动,则A 受到的摩擦力大小为1+2μ3mg 解析:C 物块A 与B 之间的最大静摩擦力f 1=2μmg ,物块B 与桌面间的最大静摩擦力f 2=3mg ×μ3=μmg ,显然f 2<f 1,由于μ<1,即μmg <mg ,物块B 一定与桌面间发生相对滑动,A 错误;由于物块C 加速下降,绳子拉力T <mg ,因此轻绳对定滑轮的作用力大小F =2T <2mg ,B 错误;若A 与B 间恰好将发生相对滑动时,A 与B 的加速度恰好相等,此时对物块B :f 1-f 2=ma ,对A 、B 整体:T -f 2=3ma ,对物块C: mg -T =ma ,解得μ=0.2,因此若A 、B 之间发生相对滑动,则需满足μ<0.2,C 正确;若A 、B 之间未发生相对滑动,则对整体mg -f 2=4ma ,对物块B :f -f 2=ma ,可得A 受到的摩擦力大小f =1+3μ4mg ,D 错误. 8.(2021·湖北省八市高三下学期3月联考)如图所示,传送带以10 m/s 的速度逆时针匀速转动,两侧的传送带长都是16 m ,且与水平方向的夹角均为37°.现有两个滑块A 、B (可视为质点)从传送带顶端同时由静止滑下,已知滑块A 、B 的质量均为1 kg ,与传送带间动摩擦因数均为0.5,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.下列说法正确的是( )A .滑块A 先做匀加速运动后做匀速运动B .滑块A 、B 同时到达传送带底端C .滑块A 、B 到达传送带底端时的速度大小相等D .滑块A 在传送带上的划痕长度为5 m解析:D 两滑块都以10 m/s 的初速度沿传送带下滑,且mg sin 37°>μmg cos 37°,故传送带对两滑块的滑动摩擦力均沿斜面向上,大小也相等,故两滑块沿斜面向下的加速度大小相同,为a =g sin 37°+μg cos 37°=10 m/s 2,滑块A 先加速,加速到传送带速度所需位移为x 1=v 202a =5 m<16 m ,所需时间为t 1=v 0a=1 s ,加速到传送带速度后,由于mg sin 37°>μmg cos 37°,故不能和传送带保持相对静止,摩擦力反向,之后加速度为a ′=g sin 37°-μg cos 37°=2 m/s 2,加速到传送带底端L -x 1=v 0t 2+12a ′t 22,解得时间t 2=1 s ,到达底端共用时t =t 1+t 2=2 s ,B 滑块一直以加速度a ′加速至传送带底端L =12a ′t ′2,解得t ′=4 s ,AB 错误;A 到达底端时的速度为v A =v 0+a ′t 2=10 m/s +2×1 m/s =12 m/s ,B 到达底端时的速度为v B =a ′t ′=2×4 m/s =8 m/s ,C 错误;加速到传送带速度之时的相对位移为Δx 1=v 0t 1-x 1=10×1 m -5 m =5 m ,加速到传送带速度以后,相对位移为Δx 2=11-v 0t 2=1 m ,滑块比传送带速度快,会覆盖之前的划痕,滑块A 在传送带上的划痕长度为5 m ,D 正确.二、多项选择题9.如图甲所示,一水平传送带沿顺时针方向旋转,在传送带左端A 处轻放一可视为质点的小物块,小物块从A 端到B 端的速度—时间变化规律如图乙所示,t =6 s 时恰好到达B 点,重力加速度g 取10 m/s 2,则( )。

15连接体问题及处理方法

15连接体问题及处理方法

15连接体问题及处理方法一、连接体问题1.连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统.2.连接体题型(1)系统内所有物体相对静止,即运动情况相同,a 也相同------相对静止问题(2)系统内物体相对运动,运动情况不同,a 也不同------相对运动问题二、处理方法1整体法分析系统受力时只分析外力不必分析内力;在用隔离法解题时要注意判明隔离体的运动方向和加速度方向,同时为了方便解题,一般我们隔离受力个数少的物体.2.相对静止类:程。

(整体与隔离结合使用)例1.A 、B 两物体靠在一起,放在光滑水平面上,m B =6Kg ,今用水平力F A =6N 推A ,用水平力F A =3N 拉B ,A 、B 有多大?3.相对运动问题:例2.如图所示,光滑水平面上静止放着长L =1.6 m 、质量为M =3 kg 的木板.一个质量为m =1 kg 的小木块放在木板的最右端,m 与M 之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F ,若2s 时两者脱离,则F 为多大?4.判断相对静止还是相对运动:例3.如图所示,m 1=40 kg 的木板放在无摩擦的地板上,木板上又放m 2=10 kg 的石块,石块与木板间的动摩擦因数μ=0.6,试问(1)当水平力F =50 N 时,石块与木板间有无相对滑动?(2)当水平力F =100 N 时,石块与木板间有无相对滑动?(g =10 m/s 2)此时m 2的加速度为多大?5.方法总结①.当它们具有共同加速度时,一般是先整体列牛顿第二定律方程,再隔离受力个数少的物体分析列牛顿第二定律方程.②.当它们的加速度不同且涉及到相对运动问题,一般采用隔离法分别分析两个物体的运动情况,再找它们运动或受力的联系点列辅助条件方程.练习题1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( )A .211m m m +FB .212m m m + FC .FD .21m m F 2.上题若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则A 对B 作用力等于为( )3.如图所示,光滑平面上以水平恒力F 拉动小车和木块,一起做无相对滑动的加速运动,若小车质量为M ,木块质量为m ,加速度大小为a ,木块和小车间的动摩擦因数为μ,对于这个过程某同学用以下四个式子来表示木块受到的摩擦力大小,正确的是() A.F-Ma B.μma C.μmg D.Ma4.如图所示,物体P置于水平面上,用轻细线跨过质量不计的光滑定滑轮连接一个重力G=10N的重物,物体P向右运动的加速度为a1;若细线下端不挂重物,而用F=10N的力竖直向下拉细线下端,这时物体P的加速度为a2,则( )A.a1>a2B.a1=a2C.a1<a2D.条件不足,无法判断5.如图所示,质量分别为M、m的滑块A、B叠放在固定的、倾角为θ的斜面上,A与斜面间、A与B之间的动摩擦因数分别为μ1,μ2,当A、B从静止开始以相同的加速度下滑时,B受到摩擦力()(双选)A.等于零B.方向平行于斜面向上C.大小为μ1mgcosθD.大小为μ2mgcosθ6.相同材料的物块m和M用轻绳连接,在M上施加恒力F,使两物块作匀加速直线运动,求在下列各种情况下绳中张力。

连接体问题——高考物理热点模型(解析版)

连接体问题——高考物理热点模型(解析版)

连接体问题模型概述1.连接体:两个或两个以上相互作用的物体组成的具有相同运动状态的整体叫连接体.如几个物体叠放在一起,或并排放在一起,或用绳子、细杆等连在一起,在求解连接体问题时常用的方法为整体法与隔离法.2.常见类型①物物叠放连接体:两物体通过弹力、摩擦力作用,具有相同的速度和加速度②轻绳连接体:轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.③轻杆连接体:轻杆平动时,连接体具有相同的平动速度和加速度.④弹簧连接体:在弹簧发生形变的过程中,两端连接体的速度、加速度不一定相等;在弹簧形变最大时,两端连接体的速度、加速度相等.3.方法:整体法与隔离法,正确选取研究对象是解题的关键.①整体法:若连接体内各物体具有相同的加速度,且不需要求系统内各物体之间的作用力,则可以把它们看作一个整体,根据牛顿第二定律,已知合外力则可求出加速度,已知加速度则可求出合外力.②隔离法:若连接体内各物体的加速度不相同,则需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.③若连接体内各物体具有相同的加速度,且需要求物体之间的作用力,则可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力,即“先整体求加速度,后隔离求内力”.4.力的“分配”地面光滑两物块在力F 作用下一起运动,系统的加速度与每个物块的加速度相同,若外力F 作用于m 1上,则m 1和m 2的相互作用力F 弹=m 2m 1+m 2F ,若作用于m 2上,则F 弹=m 1m 1+m 2F 。

此“分配”与有无摩擦无关(若有摩擦,两物体与接触面间的动摩擦因数必须相同),与两物体间有无连接物、何种连接物(轻绳、轻杆、轻弹簧)无关,而且无论物体系统处于平面、斜面还是竖直方向,此“分配”都成立。

5.关联速度连接体轻绳在伸直状态下,两端的连接体沿绳方向的速度大小总是相等。

下面三图中A 、B 两物体速度和加速度大小相等,方向不同。

关联速度连接体做加速运动时,由于加速度的方向不同,一般分别选取研究对象,对两物体分别列牛顿第二定律方程,用隔离法求解加速度及相互作用力。

高中物理连接体问题习题汇总

高中物理连接体问题习题汇总

高中物理连接体问题汇总一、选择题(共5题)1、质量分别是m 和 2 m 的两个物体用一根轻质弹簧连接后再用细绳悬挂,m在上,2m在下,细绳连接在m上,并悬挂于天花板。

稳定后将细绳剪断,则剪断的瞬间,下列说法正确的是(g 是重力加速度)()A .质量为m 的物体加速度是 0B .质量为2 m 的物体加速度是gC .质量为m 的物体加速度是 3 gD .质量为2 m 的物体加速度是 3 g2、质量为 3kg 的物体 A 静止于竖直的轻弹簧上,质量为2kg 的物体 B 用细线悬挂,A 、B 间相互接触但无压力,取重力加速度g=10N/kg。

某时刻将细线剪断,则细线剪断瞬间()A .弹簧的弹力大小为50NB . A 的加速度为零C . B 对 A 的压力大小为12ND . B 的加速度大小为5m/s23、A 、 B 两木块间连一轻弹簧,A在上B在下, A 、 B 质量相等,一起静止地放在一块光滑木板上,重力加速度为g 。

若将此木板突然抽去,在此瞬间, A 、 B 两木块的加速度分别是()A .aA =0, aB=2gB .aA =g, aB=gC .aA =0, aB=0D .aA =g,aB=2g4、如图所示,光滑水平面上有叠放在一起的长方形物体 A 和 B ,A在上,B在下,质量均为m ,它们之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g 。

现在物体 A 上施加一水平外力F ,下列说法不正确的是()A .B 受到的摩擦力可能等于F/2B . B 受到的摩擦力一定等于μmgC .当 F=5μmg/3时, A 、 B 还没相对滑动D .当F=7μmg/3时, A 、 B 一定相对滑动5、质量为1KG的木板静止在光滑水平面上,一个小木块(可视为质点)质量也为1KG,以初速度V=4m/s从木板的左端开始向右滑,木块与木板之间的动摩擦因数为 0.2 ,要使木块不会从木板右端滑落,则木板的长度至少为()A .5mB .4mC .3mD .2m二、填空题(共2题)1、如图所示,质量分别为 10kg 和5kg 的长方形物体A 和B 静止叠放在水平桌面上。

牛顿运动定律连接体问题

牛顿运动定律连接体问题

牛顿运动定律之连接体一、连结体问题在研究力和运动的关系时,经常会涉及到相互联系的物体之间的相互作用,这类问题称为“连结体问题”。

连结体一般是指由两个或两个以上有一定联系的物体构成的系统。

二、解连接体问题的基本方法:整体法与隔离法当物体间相对静止,具有共同的对地加速度时,就可以把它们作为一个整体,通过对整体所受的合外力列出整体的牛顿第二定律方程。

当需要计算物体之间(或一个物体各部分之间)的相互作用力时,就必须把各个物体(或一个物体的各个部分)隔离出来,根据各个物体(或一个物体的各个部分)的受力情况,画出隔离体的受力图,列出牛顿第二定律方程。

许多具体问题中,常需要交叉运用整体法和隔离法,有分有合,从而可迅速求解。

1、连接体整体运动状态相同:【例1】A 、B 两物体靠在一起,放在光滑水平面上,它们的质量分别为m A 、m B ,今用水平力F A 推A , 求A 、B 间的作用力有多大?扩展(一)若地面动摩擦因数为求A 、B 间的作用力有多大?扩展(二)若在倾角为的光滑斜面上,求A 、B 间的作用力有多大?μθ【练1】如图所示,质量为M 的斜面斜面间无摩擦。

在水平向左的推力F 起做匀加速直线运动,为,物体B 的质量为m 的大小为( )A.B.C.D.【练2】如图所示,质量为的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为的物体,与物体1相连接的绳与竖直方向成角,则( )A. 车厢的加速度为B. 绳对物体1的拉力为m 1g/cos θC. 底板对物体2的支持力为D. 物体22【例2】如图所示,箱和杆的总质量为M 动,当加速度大小为a 时(a <g )A. Mg + mg C. Mg + ma 【练3】如图所示,一只质量为根质量为M A. B. C. 【练4面,现将一个重4 N θ)(,sin θ+==m M F g a θ)(,cos m M F g a +==)(,tan θ+==m M F g a g m M F g a )(,cot +==μθ2m 1m θθsin g g g M m物体的存在,而增加的读数是( )A.4 NB.23 NC.0 ND.3 N【练5】如图所示,A 、B 的质量分别为m A =0.2kg ,m B =0.4kg ,盘C 的质量m C =0.6kg ,现悬挂于天花板O 处,处于静止状态。

高中物理连接体问题精选(含答案)

高中物理连接体问题精选(含答案)
(1)求物块 刚着地时的速度大小?
(2)若使物块 不与 相碰,则 应满足什么条件?
(3)若 时,求物块 由最初位置上升的最大高度?
(4)若在(3)中物块 由最高位置下落,拉紧轻绳后继续下落,求物块 拉紧轻绳后下落的最远距离?
题型四 通过弹簧的连接体问题
例题5如图,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态。一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩。开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向。现在挂钩上升一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升。若将C换成另一个质量为(m1+m3)的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度的大小是多少?已知重力加速度为g。
变式10如图所示,用半径为0.4m的电动滚轮在长薄铁板上表面压轧一道浅槽.薄铁板的长为2.8m、质量为10kg.已知滚轮与铁板、铁板与工作台面间的动摩擦因数分别为0.3和0.1.铁板从一端放人工作台的滚轮下,工作时滚轮对铁板产生恒定的竖直向下的压力为100N ,在滚轮的摩擦作用下铁板由静止向前运动并被压轧出一浅槽.已知滚轮转动的角速度恒为5rad/s,g取10m/s2.
4.两个质量相同的小球用不可伸长的细线连结,置于场强为E的匀强电场中,小球1和小球
2均带正电,电量分别为q1和q2(q1>q2)。将细线拉直并使之与电场方向平行,如图所示。
若将两小球同时从静止状态释放,则释放后细线中的张力T为(不计重力及两小球间的库
仑力)()
A. B.
C. D.
5.如图所示,光滑水平面上放置质量分别为m、2m和3m的三个木块,其中质量为2m和3m的木块间用一不可伸长的轻绳相连,轻绳能承受的最大拉力为FT。现用水平拉力F拉质量为3m的木块,使三个木块以同一加速度运动,则以下说法正确的是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见连接体问题
(一)“死结”“活结”
1.如图甲所示,轻绳AD跨过固定在水
平横梁BC右端的定滑轮挂住一个质量为10 kg
的物体,∠ACB=30°;图乙中轻杆HG一端用
铰链固定在竖直墙上,另一端G通过细绳EG
拉住,EG与水平方向也成30°,轻杆的G点
用细绳GF拉住一个质量也为10 kg的物体.g
取10 m/s2,求
(1)细绳AC段的张力FAC与细绳EG的张力FEG
之比;
(2)轻杆BC对C端的支持力;
(3)轻杆HG对G端的支持力.
(二)突变问题
2。

在动摩擦因数μ=0.2的水平
质量为m=1kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为
零,当剪断轻绳的瞬间,取g=10m/s2,求:
(1)此时轻弹簧的弹力大小
(2)小球的加速度大小和方向.
(三)力的合成与分解
3.如图所示,用一根细线系住重力为、半径
为的球,其与倾角为的光滑斜面劈接触,
处于静止状态,球与斜面的接触面非常小,
当细线悬点固定不动,斜面劈缓慢水平向左
移动直至绳子与斜面平行的过程中,下述正确
的是().
A.细绳对球的拉力先减小后增大
B.细绳对球的拉力先增大后减小
C.细绳对球的拉力一直减小
D.细绳对球的拉力最小值等于G
(四)整体法
4.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接。

在力F的作用下一起沿水平方
向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角,则m1所受支持力N
和摩擦力f正确的是()
A.N=m1g+m2g-Fsinθ
B.N=m1g+m2g-Fcosθ
C.f=Fcosθ
D.f=Fsinθ
(五)隔离法
5.如图所示,水平放置的木板上面放置木块,木板与木块、木板与地面间的摩擦因数分别为μ1和μ2。

已知木块质量为m,木板的质量为M,用定滑轮连接如图所示,现用力F匀速拉动木块在木板上向右滑行,求力F的大小?
6.跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,已知人的质量为70 kg,
吊板的质量为10 kg,绳及定滑轮的质量,滑
轮的摩擦均可不计,取重力加速度g=10 m/s2
,当人以440 N的力拉绳时,人与吊板的加
速度a和人对吊板的压力F分别为()A.a=1 m/s2,FN=260 N
B.a=1 m/s2,FN=330 N C.a=3 m/s2,FN=110 N
D.a=3 m/s2,FN=50 N
7.如图所示,静止在水平面上的三角架的质量为M,它中间用两根质量不计的轻质弹簧连着一质量为m的小球,当小球上下振动,三角架对水平面的压力为零的时刻,小球加速度的方向与大小是()
A.向下,m
Mg
B.向上,g
C.向下,g
D.向下,m
g
m
M)
(
(六)综合
8. 如图所示,一夹子夹住木块,在力F作用下向上提升,夹子和木块的质量分别为m、M,夹子与木块两侧间的最大静摩擦均为f,若木块不滑动,力F的最大值是()
答案
1。

(1)图甲中轻绳AD跨过定滑轮拉住质量为M1
的物体,物体处于平衡状态,
绳AC段的拉力F AC=F CD=M1g
图乙中由F EG sin30°=M2g得F EG=2M2g
所以得
(2)图甲中,根据几何关系得:
F C=F AC=M1g=100 N,
方向和水平方向成30°向斜右上方
(3)图乙中,根据平衡方程有
F E
G sin30°=M2g;F EG cos30°=F G
所以F G=M2g cot30°=M2g≈173 N,
向水平向右
2。

由平衡条件得:
竖直方向:Fcosθ=mg
水平方向:Fsinθ=T
解得:T=mgtanθ=10N
当剪断轻绳瞬间弹簧的弹力大小不变,仍为10N;
(2)剪断轻绳后小球在竖直方向仍平衡,
水平面支持力与重力平衡:N=mg
由牛顿第二定律得:T-μN=ma
解得:a=8m/s2方向向左.
答:(1)此时轻弹簧的弹力大小为10N;
(2)小球的加速度大小为8m/s2,方向向左.
3.C
4.AC
5.12
2()
mg M m g
μμ
++
6。

B
7.D
8.
2f(m
+M)
M。

相关文档
最新文档